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Abstract

Grid cells have been proposed to encode task regularities that allow predicting future states. En-
torhinal grid-like signals might therefore mirror behavioral biases associated with relying on task
regularities, like regression-to-the-mean biases in time estimation. Here, we tested this proposal
using functionalmagnetic resonance imaging and a rapid timing task in humans. Indeed, trial-wise
entorhinal activity reflected task accuracy and the degree to which interval estimates regressed
towards the mean of all tested intervals. Grid-like signals were observed exclusively for the inter-
val closest to the mean, which was explained by differences in temporal stability across intervals.
Finally, both behavioral and entorhinal results were explained by a Bayesian observer model that
assumes the integration of current-trial sensory evidence with prior expectations. Together, we
find that entorhinal activity and grid-like signals reflect behavioral performance in a timing task,
supporting the proposed role of grid cells in encoding task structure for predictive coordination
of behavior.
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Introduction1

The ability to recognize and utilize statistical regularities governed by the co-occurrence of stimuli,2

actions, and events is crucial for any successful interaction with the environment (Vetter, Wolpert,3

2000; Clark, 2013; Friston, Buzsáki, 2016). Learning about such regularities allows us to predict4

future states of the world, for instance to track moving objects during occlusion, which is an es-5

sential ability underlying flexible and robust behavior broadly (Fiser et al., 2010; Heald et al., 2023;6

Schapiro, Turk-Browne, 2015; Schapiro et al., 2016). When catching an approaching ball, for ex-7

ample, we anticipate the moment it will reach us not solely based on our estimates of its current8

speed and distance, but also based on our knowledge of how previous balls have behaved in simi-9

lar situations. Through experience, we have learned about the probability associated with certain10

speeds and arrival times, which now guides when and how we act. How does the brain encode11

such statistical regularities and how do they afford predictive inference in the service of behavior?12

A prominent metaphor of how the brain encodes statistical regularities can be found in the con-13

cept of cognitive maps, referring to relational map-like representations of places and events that14

support mnemonic and predictive processes (O’Keefe, Nadel, 1978; Moser et al., 2014; Stachenfeld15

et al., 2017; Whittington et al., 2020; Eichenbaum et al., 1999). A large body of neuroscientific lit-16

erature on cognitive maps and predictions pointed to the hippocampal formation as a key neural17

component involved in both, fueling efforts to unify theories of its contribution to a range of tasks18

(Whittington et al., 2020; Stachenfeld et al., 2017; Ambrogioni, Ólafsdóttir, 2023; Behrens et al.,19

2018; Bellmund et al., 2018). An emerging view is that the hippocampal formation plays an impor-20

tant role in encoding regularities that afford generalization across tasks or contexts (e.g., different21

environments; Whittington et al. (2020); Bousquet et al. (1998); Fuhs, Touretzky (2007); Penny et al.22

(2013); Friston, Buzsáki (2016); Pezzulo et al. (2017)), thus greatly accelerating learning and reduc-23

ing behavioral errors in novel or noisy situations (Lisman, Redish, 2009; Stachenfeld et al., 2017).24

In particular, the hippocampus has been suggested to support the encoding of task regularities in25

real time as a task is performed, as its activity reflects feedback and behavioral improvements even26

in fast-paced timing tasks (Polti et al., 2022).27

Like the hippocampus, the entorhinal cortex is widely considered critical for cognitivemapping; not28

only is it a major anatomical gateway for hippocampal-cortical interactions (Witter, Amaral, 2004),29

but it also harbors grid cells (Hafting et al., 2005; Moser et al., 2014) proposed to provide amap-like30

coordinate system useful for representing relationships between places and events in the world31

(e.g., different spatial positions during navigation, but also non-spatial features (Constantinescu32

et al., 2016; Aronov et al., 2017; Behrens et al., 2018; Bellmund et al., 2018; Bao et al., 2019; Theves33

et al., 2019, 2020; Viganò, Piazza, 2020; Park et al., 2021). This grid-like coordinate system may be34

predictive in nature, meaning that it likely anticipates future states of the agent (e.g., future po-35

sitions during navigation, Stachenfeld et al. (2017)) and affords efficient vector computations for36

spatial planning (Banino et al., 2018; Bush et al., 2015; Bicanski, Burgess, 2020). At the population37

level, grid cell activity is believed to exhibit a hexadirectional (i.e., six-fold rotationally symmetric)38

modulation as a function of virtual running or gaze direction (Killian et al., 2012), which can be ob-39

served in the human entorhinal cortex using functionalmagnetic resonance imaging (fMRI) (Doeller40

et al., 2010; Julian et al., 2018; Nau et al., 2018b). Importantly, while grid-like signals have been ob-41

served in a range of tasks and species (Kunz et al., 2019), most studies left open whether or not42

grid-like signals were indeed relevant for task performance.43

Here, we set out to understand the contributions of the entorhinal cortex and grid-like signals in44

particular to the encoding of task regularities that afford predictive coordination of actions relative45
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to sensory events. In addition, we investigated the relationship between grid-like signals and task46

performance - a relationship that is often assumed but remains to be demonstrated empirically.47

For this purpose, we monitored human brain activity using fMRI while participants engaged in a48

visual tracking task previously shown to engage grid-like signals in the human entorhinal cortex49

(Nau et al., 2018b) as well as a time-to-contact (TTC) estimation task shown to engage the adjacent50

hippocampus in a rapid and behavior-dependent manner (Polti et al., 2022). We specifically tested51

whether and how entorhinal activity reflects behavioral biases previously linked to the encoding52

of timing-task regularities (Jazayeri, Shadlen, 2010), focusing on the posteromedial portion of the53

entorhinal cortex (pmEC); the presumed human homologue of the rodentmedial entorhinal cortex54

that harbours grid cells (Navarro Schröder et al., 2015; Maass et al., 2015; Syversen et al., 2021).55

Results56

In the following, we will present our experiment and results in 5 steps. First, we introduce our task57

design and empirical measures in detail. Second, we show that task performance depended not58

only on the interval that was tested in each trial, but also on the intervals tested in previous trials,59

with behavioral responses showing a systematic bias towards the average interval. This regression-60

to-the-mean bias suggests that participants relied on prior knowledge that accumulated across tri-61

als. Third, we report that trial-wise pmEC activity mirrored this behavioral bias in real time, similar62

to previous reports for the hippocampus (Polti et al., 2022). Fourth, we show that human pmEC63

grid-like signals co-varied with the tested intervals across trials. This effect was explained by the64

temporal stability of the grid-like signal (i.e. replicability across data partitions), and its amplitude65

was correlated with behavioral performance in all participants. Finally, by showing that a Bayesian66

observer model provides a parsimonious account of the data, we illustrate a potential computa-67

tional explanation of our results, namely that entorhinal grid-like signals may reflect the mismatch68

between prior knowledge and sensory evidence obtained in each trial. Collectively, these results69

suggest that non-spatial task factors (such as tested intervals) shape spatial representations in the70

entorhinal cortex in service of timing behavior, and that entorhinal activity, and grid-like signals in71

particular, reflect the rapid encoding of task regularities in service of predictive inference. More-72

over, our results also provide evidence for a link between grid-like signals and task performance.73

Time-to-contact (TTC) estimation task74

Our task consisted of two components; a visual tracking task that engages grid-like signals in the75

human EC (Nau et al., 2018b), as well as a predictive timing task that engages other regions includ-76

ing the adjacent hippocampus (Polti et al., 2022). Over the course of 768 trials, participants tracked77

amoving fixation target with their eyes until it was occluded, which then prompted them to predict78

when the target would hit a visual boundary. In each trial, the fixation target moved 10 degrees of79

visual angle (dva) into one of 24 directions (Fig. 1A, "Gaze trajectory") at one of 4 possible speeds,80

yielding 4 different intervals to be estimated (tTTC): 0.55, 0.65, 0.86, and 1.2 s (SeeMethods). Speed81

and direction were held constant within each trial. After the target stopped moving, participants82

estimated the timewhen it would have hit the visual boundary 5 dva apart, which they indicated via83

button click (Fig. 1A, "TTC estimation"). Participants then received feedback reflecting the accuracy84

of their estimated TTC relative to the ground-truth TTC. The next trial then started after a jittered85

inter-trial interval (ITI). See the methods section for details.86
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Figure 1: A) Visual tracking and Time-To-
Contact (TTC) estimation task. In each
trial during fMRI scanning, participants
fixated on a target (1), which started
moving at one of 4 possible speeds and
in one of 24 possible directions for 10
dva (2). After the target stopped mov-
ing, participants kept fixating and esti-
mated when the fixation target would
have hit a boundary 5 dva apart (3). Af-
ter pressing a button at the estimated
TTC, participants received feedback (4)
based on their performance. B) Task
performance. Root-mean-square error
(RMSE) differences across TTCs show a
quadratic pattern, i.e. target TTCs closer
to the mean of the sampled TTCs (ver-
tical dashed line) have a lower RMSE.
We plot the mean and SEM (black dot
and line). C) Regression effect. Partici-
pants responses regressed towards the
mean of the sampled TTCs (0.82, hori-
zontal dashed line), away from the iden-
tity line (diagonal dashed line). Regres-
sion line (black) and standard error (gray
shade). BC) Single-participant data plot-
ted as dots. Target TTCs are color coded.

Behavioral results87

To examine whether participants performed the task well, we first compared their estimated TTC88

to the target TTC (ground truth) using a mixed-effects model (MEM). Indeed, we found that the89

estimated and target TTCs were tightly correlated (Fig. 1C; F(1) = 976.44, p = 2.2x10−16, ϵ2 = 0.91,CI :90

[0.88, 1]). However, TTC estimates were further systematically biased towards the mean of the91

tested intervals (0.82 s, Fig. 1C, horizontal dashed line) in line with previous reports using inter-92

val timing tasks (Miyazaki et al., 2005; Jazayeri, Shadlen, 2010; Acerbi et al., 2012; Cicchini et al.,93

2012; Chang, Jazayeri, 2018). We quantified this regression-to-the-mean bias by fitting a line to the94

TTC estimates on group-level, which resulted in a slope value of 0.53 (Fig. 1C, MEM fit, diagonal95

solid line). For comparison, perfect task performance would lead to a slope of 1, whereas total96

regression to the mean would result in a slope of 0.97

To quantify task performance in more detail, we then calculated the precision and accuracy in TTC98

estimation for each participant and time interval. Precision describes how similar the estimates99

were across trials, whereas accuracy describes how similar they were to the ground-truth target100

TTC (see methods for details). Together, these two measures combine into the root-mean-square101

error (RMSE), which we computed as our final performance measure. Note that a given RMSE can102

be the result of different precision-accuracy trade-offs (Fig. S1A). We found that the RMSE showed103

a quadratic relationship to the tTTC , meaning that lower RMSE’s were observed for tTTC closer to104

the mean of the tested intervals (Fig. 1B; MEM, F(2) = 39.18, p = 1.5x10−9, ϵ2 = 0.68,CI : [0.52, 1]). This105

quadratic trend explained the data better than assuming a linear trend (Chi-square test, χ2(3) =106

66.15, p = 2.85x10−14).107

Taken together, our behavioral results showed that participants performed the taskwell (Fig. 1B, C),108

and that their TTC estimates exhibited systematic regression-to-the-mean biases (Fig. 1C). These109

biases are well documented in the literature and suggest that participants relied on prior knowl-110
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edge beyond the current trial to estimate time (Miyazaki et al., 2005; Jazayeri, Shadlen, 2010; Acerbi111

et al., 2012; Cicchini et al., 2012; Chang, Jazayeri, 2018; Meirhaeghe et al., 2021; Polti et al., 2022).112

Entorhinal cortex activity reflects trial-wise accuracy and biases in TTC estimation113

Previous work on the present data showed that activity in the hippocampus reflected the mag-114

nitude of the behavioral regression-to-the-mean effect across trials (Polti et al., 2022). Here, we115

therefore first tested whether a similar effect can be observed for the pmEC. Usingmass-univariate116

general linear models (GLM), we modeled the activity in each trial parametrically either as a func-117

tion of accuracy (i.e., the absolute difference between estimated and target TTC; Fig. 2A, top) or as a118

function of the magnitude of the regression effect (i.e., the absolute difference between estimated119

TTC and the mean of the tested intervals; Fig. 2A, bottom). To avoid effects of potential colinearity120

on the final parameter estimates, these two predictors were fit in two independent GLMs, which in-121

cluded additional nuisance predictors (e.g., for head-motion, see methods). We found that pmEC122

activity was higher in trials in which TTC estimates were more accurate (Fig. 2B, left; two-tailed123

one-sample Wilcoxon signed-rank test; V = 89, p = 1.8x10−4, r = −0.70,CI : [−0.85,−0.45]), but also124

that it linearly increased with stronger regression-to-the-mean biases (Fig. 2B, right; two-tailed one-125

sample Wilcoxon signed-rank test; V = 157, p = 0.015, r = −0.47,CI : [−0.72,−0.13]), resembling the126

effects previously reported for the hippocampus (Polti et al., 2022).127

Figure 2: Posteromedial entorhinal cortex (pmEC)
activity predicts trial-wise TTC behavior. A)
Schematic description of the parametric regres-
sor (PR) used in each separate GLM. The Accu-
racy PR (Top) contained the absolute difference
between estimated TTC and the identity line for
each trial (petrol diagonal dashed line), whereas
the Regression effect PR (Bottom) contained the
absolute difference between estimated TTC and
mean of the tested TTCs (0.82, magenta hori-
zontal dashed line). B) Independent regions-of-
interest analysis for pmEC. We plot the beta es-
timates obtained for each participant for each
of the two regressors. Negative values indicate
higher pmEC activity with either higher accuracy
(left) or higher magnitude of the regression ef-
fect (right). Depicted are the mean and SEM
across participants (black dot and line) overlaid
on single participant data (colored dots). Statis-
tics reflect p<0.05 (*) obtained using a group-level
two-tailed one-sample Wilcoxon signed-rank test
against zero.

Entorhinal grid-like signals predict behavioral performance in time estimation128

The results reported above indicate that trial-wise pmEC activity was associated with the accuracy129

and the bias in TTC estimation. However, these analyses do not address whether or not grid-like130

signals show an association to our behavioral measures as well. Therefore, we next examined grid-131

like signals in our data separately for each tTTC using an established quadrature filter approach132

(Doeller et al., 2010). The aim of this analysis was to examine whether pmEC voxels exhibited133

visual grid-like signals in our task (i.e., six-fold rotationally symmetric modulations as a function of134

gaze direction (Nau et al., 2018b; Julian et al., 2018; Staudigl et al., 2018)), and if so, whether these135

signals show a relationship to the regression-to-the-mean bias as well.136
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We split the time series of each pmEC voxel into two halves for later cross-validation, and then137

modeled each of the halves separately using a voxel-wise GLM. The GLM included two parametric138

main predictors modeling the sine and cosine of gaze direction modulo 60◦ (Fig. 3A) in addition to139

nuisance regressors (see methods). The ratio between the beta estimates obtained for these two140

predictors then allowed us to infer the putative grid orientation (i.e., the phase of the hexadirec-141

tional modulation) for each voxel, which were then averaged across voxels and across scanning142

runs within each data partition. This procedure resulted in one putative grid-orientation for each143

tTTC and each data partition. Using a second GLM, we then tested the reliability of these grid-like144

signals in the respective held-out data bymodeling the activity of each voxel as a function of gaze di-145

rection aligned with the putative grid orientation modulo 60◦. In other words, the predictor tested146

whether MRI signals observed for gaze directions aligned with the putative grid orientation were147

stronger than those observed for directions misaligned to it.148

We found that pmEC indeed exhibited a reliable grid-like modulation in our task as indicated by149

a regions-of-interest (ROI) analysis. Critically, however, we observed a main effect of tTTC on the150

amplitude of this grid-like modulation (Fig. 3B; MEM, F(3) = 3.08, p = 0.029, ϵ2 = 0.04,CI : [0, 1]),151

with only one of the four tested intervals showing the effect (TTC0.86, Fig. 3B; Table S1). Trials in152

which TTC0.86 was tested yielded a stronger grid-like signal than all other TTCs (Table S1). Note153

that TTC0.86 was the interval that was closest to the mean of all intervals. A whole-brain voxel-wise154

analysis later confirmed that this grid-like modulation for TTC0.86 occurred in both hemispheres in155

the entorhinal cortex (Fig. 3C, left and middle panels) as well as in a few other regions that shared156

the putative grid orientation with the pmEC (e.g., the pre-supplementary motor area (preSMA), Fig.157

3C, right panel; see Table S2 for post-hoc ROI-analysis). No effect was observed in pmEC when the158

same cross-validation analysis was repeated for other directional periodicities such as 90◦ (Fig. 3D,159

Left; Table S3A) and 45◦ (Fig. 3D, Center; Table S3B). Furthermore, as expected based on previous160

work Nau et al. (2018b), the early visual cortex did not exhibit a grid-like signal (Fig. 3D, Right; Table161

S3C).162

Having established that pmEC activity was modulated in a grid-like fashion for one of the TTCs, we163

next sought to understand the underlying differences across TTCs in more detail. Previous studies164

using navigation paradigms (Kunz et al., 2015; Stangl et al., 2018) suggested that these differences165

in grid-like signals may be due to (i) differences in spatial stability (i.e., grid orientations may differ166

across voxels and therefore average out), or (ii) differences in temporal stability (i.e., grid orienta-167

tionmay change over the course of the experiment). To test whether any one of these factors could168

explain the pattern of results in our data, we estimated the spatial and temporal stability of the169

pmEC grid-like signal for each of the 4 TTCs separately. We found that grid orientations clustered170

across pmEC voxels for all tTTC in a similar way (Fig. S3B; Table S4A), ruling out differences in spatial171

stability between tTTC (Fig. S3B; MEM, F(3) = 0.36, p = 0.78, ϵ2 = −0.02,CI : [0, 1]). However, tempo-172

ral stability predicted the amplitude of grid-like signals, which means that the more pmEC voxels173

showed a stable grid orientation over data partitions, the stronger the resulting cross-validated174

signal amplitude turned out to be (Fig. 3E; Spearman’s rho = 0.57, p = 5x10−4). Furthermore, as ex-175

pected based on the results for grid-like signal amplitude, TTC0.86 trials showed the highest tempo-176

ral stability among all tested tTTC (Fig. S3A; Table S4B, MEM, F(3) = 3.49, p = 0.018, ϵ2 = 0.05,CI : [0, 1]).177

These findings provide evidence that pmEC grid-like signal amplitude differed across tested inter-178

vals, and that this difference was largely explained by how stable the putative grid orientation was179

over time. Importantly, we observed the grid-like signal only for the interval closest to the mean180

of all intervals. This result dovetails with our prior observation that trial-wise pmEC activity cor-181

related with how strongly behavioral responses were biased towards the mean interval (Fig. 2),182
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and it suggests that grid-like signals may also show a relationship to behavioral performance in183

our task, which was indeed the case. In all of our participants, the grid-like signal amplitude was184

negatively and linearly related to timing performance, meaning that TTCs with lower RMSE showed185

the strongest grid signals (Fig. 3F; MEM, F(3) = 10.1, p = 0.004, ϵ2 = 0.28,CI : [0.07, 1]). Again, this186

result was not observed for early visual cortex (V1, Fig. S3D; MEM, F(3) = 2.6, p = 0.125, ϵ2 = 0.13,CI :187

[0.0, 1]).188

Figure 3: A) Visual grid-like analysis
method. The hexadirectional signal is
cross-validated across data partitions.
Putative grid-orientation was estimated
using half of the data and then used
to contrast orientation-aligned vs.
orientation-misaligned gaze movements
in the other half (odd vs. even runs). B)
Independent regions-of-interest (ROI)
analysis for 6-fold symmetry in pmEC.
We plot the amplitude of the hexadirec-
tional signal in held-out data expressed
as beta estimate. We found reliable
cross-validated hexadirectional modu-
lation at the group level only for TTC0.86

trials. There were consistent differences
in pmEC fMRI activity for aligned vs.
misaligned directions across target TTCs.
Statistics reflect p<0.05 at FDR-corrected
levels (*). C) Voxel-wise analysis results
exhibiting activity modulation by gaze
movement direction with 60◦ periodicity
aligned to the pmEC grid orientation
for TTC0.86 trials. We plot thresholded
t-test results at 2mm resolution at p <
0.001 uncorrected levels overlaid on a
structural template brain. Insert zoom-
ing in on EC and MNI coordinates added.
D) Control symmetries and regions.
Left: 4-fold symmetry in pmEC. Center:
8-fold symmetry in pmEC. Right: 6-fold
symmetry in V1. E) TTC0.86 pmEC temporal
stability predicts corresponding grid-like
modulation across participants. Each
dot represents a single participant.
Regression line (black) and standard
error (gray shade). F) Within-subject
pmEC grid-like modulation predicts TTC
estimation error (RMSE). Stronger pmEC
grid-like modulation elicited lower RMSE.
Separate regression lines are plotted
for each participant. B,D) Depicted are
the mean and SEM across participants
(black dot and line) overlaid on single
participant data (colored dots). Target
TTCs are color coded. EF) Participants are
color coded.
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A Bayesian observer model explains performance differences across target TTCs189

The behavioral and physiological results presented above suggest that participants’ interval esti-190

mates depended on both the current trial and previous trials. This pattern of results is reminiscent191

of prior work on Bayesian integration (Körding, Wolpert, 2004; Petzschner et al., 2015), which has192

indeed been argued to underlie contextual effects in interval timing (Jazayeri, Shadlen, 2010; Acerbi193

et al., 2012; Cicchini et al., 2012). According to the Bayesian framework, the regression-to-the-mean194

effects we observed at the behavioral level (Fig. 1C) may be a natural consequence of integrating195

the sensory evidence in each trial (i.e., the inferred probability of a certain TTC being tested) with196

an expectation informed by the statistical regularities governing prior trials (i.e., the inferred prior197

distribution of all tested intervals), leading to the characteristic behavioral biases towards themean198

of the encoded interval distribution. A Bayesian observer model may therefore provide a parsimo-199

nious computational explanation of both the behavioral regression-to-the-mean effect (Fig 1C) and200

the observed difference in grid-like activity across TTCs (Fig. 3B).201

We tested this possibility post-hoc using a Bayesian observer model that was successfully used202

to model timing behavior in previous work (Jazayeri, Shadlen, 2010, 2015; Remington et al., 2018;203

Chang, Jazayeri, 2018). Briefly, the model predicts the optimal TTC estimate for each trial by com-204

bining two sources of information: (i) the probability that a specific TTC was tested in a trial given205

the sensory evidence obtained during the visual tracking phase (Likelihood, Fig. 4A Left), and (ii) a206

Gaussian prior centered on the mean of the sampled intervals (Prior; Fig. 4A Left). For each par-207

ticipant, a separate model was trained and tested using cross-validation, which built on fitting the208

model on one half of the data and predicting TTC estimates in the remaining half (see Methods for209

details).210

In line with previous work (Jazayeri, Shadlen, 2010, 2015; Remington et al., 2018; Chang, Jazayeri,211

2018), we found that the model accurately predicted participants’ interval estimates across trials212

(Fig. 4B), with a group average Mean Absolute Error (MAE) of 0.02. Themodel further recapitulated213

each participant’s task-performancemeasures (Fig. 1B), with model-derived RMSE values following214

a quadratic pattern across tTTC similar to the data (Fig. 4C; MEM, F(2) = 74.95, p = 3.4x10−13, ϵ2 =215

0.8,CI : [0.7, 1]). Moreover, by relating the model estimates to the neuroimaging results obtained216

for pmEC, we found that model-derived RMSE values were indeed correlated with the amplitude217

of grid-like signals observed in all participants (Fig. 4D; MEM, F(1) = 8.15, p = 0.008, ϵ2 = 0.22,CI :218

[0.03, 1]). Together, these modeling results suggest that the differences in participants’ TTC esti-219

mates and in grid-like signals across TTCs can indeed be well explained using a Bayesian observer220

model that assumes that predictions informed by temporal regularities in previous trials bias tim-221

ing behavior in the current trial.222

One notable assumption of the model was that the prior distribution of intervals was centered on223

the mean of the sampled intervals. To test whether this assumption was valid, we ran the model224

four times, each time centering the prior close to one of the four tested intervals (Fig. S4). Centering225

the prior on a value far from themean interval could in theory result in an even better fittingmodel226

and a closer match to our behavioral data. However, we found both the model fit (Fig. S4C, Table227

S5) and the match between model-derived and real task performance (Fig. S4D) to be optimal228

when the prior was assumed to be centered on the mean interval. Consequently, only the model229

with a prior centered on the mean interval recapitulated the quadratic RMSE pattern across tTTC230

we observed in the data (Fig. S4D).231
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Figure 4: A) Schematic illustration of Bayesian TTC estimation. Left: A Bayesian observer integrates sensory Likelihood and
Prior information sources to minimize their mismatch (yellow lines). One source of information comes from a prior expecta-
tion (Prior, magenta Gaussian distribution), centered at themean of the sampled durations (magenta horizontal dashed line).
Another source of information comes from noisy sensory inputs (Likelihood, Gaussian distributions of different widths and
turquoise tones). On each trial, by combining these two information sources participants can produce a statistically optimal
Estimated TTC. Center: An optimal Bayesian estimator that minimizes the mismatch between Prior and Likelihood would be
expected to show a Root-Mean-Square-Error (RMSE) pattern across target TTCs best explained by a quadratic function (solid
green line). The RMSE increases quadratically as a function of the Target TTC’s distance to the mean of the prior (magenta
vertical dashed line, 0.82 s). Right: As a result of the integration of these two sources of information, TTC estimates are bi-
ased ’away’ from the identity line (petrol blue diagonal dashed line) and ’towards’ the mean of the sampled TTCs (magenta
horizontal dashed line). B) Bayesian observer model performance. We plot the cross-validated model prediction vs. partici-
pants’ data. The model successfully captures participants’ behavior, with a Mean Absolute Error (MAE) of 0.02. Colored lines
represent participants’ linear model fits across Target TTCs. For most participants the linear model fits are well aligned with
the identity line (diagonal grey dashed line). C) Model RMSE per target TTC. Predicted participants’ behavior using the cross-
validated Bayesian observer model. RMSE differences across TTCs show a quadratic pattern, replicating real participants’
behavior (Fig. 1B). D) As expected, participants’ pmEC grid-like signals predict model’s RMSE, replicating our experimental
observations (Fig. 3F). BC) Target TTCs are color coded. Single-participant data plotted as dots. BD) Separate regression lines
are plotted for each participant.

Discussion232

The present study examined whether and how the human pmEC contributes to the encoding of233

task regularities that guide timing behavior. We used fMRI to record human brain activity while par-234

ticipants performed a rapid time-to-contact estimation task, which allowed us to analyze trial-wise235

pmEC activity as a function of time-estimation performance across a range of sampled intervals.236

Moreover, the task included periods in which participants followed a moving fixation target with237

their eyes, allowing us to estimate visual grid-like signals in the pmEC: the amplitude and stabil-238
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ity of a six-fold rotationally symmetric MRI-signal modulation as a function of gaze direction. We239

found that pmEC activity closely tracked task performance across trials as well as behavioral re-240

sponse biases towards the mean interval, and we observed a bias towards that mean interval on241

the level of grid-like signals. Traditionally, such regression-to-the-mean biases have been taken as242

evidence for Bayesian integration in the brain (Petzschner et al., 2015), since they arewell explained243

by models that assume the integration between sensory evidence obtained in a trial with a prior244

expectation derived from previous trials. Indeed, a Bayesian observer model previously used to245

model timing behavior in humans and macaques (Jazayeri, Shadlen, 2010, 2015; Remington et al.,246

2018; Chang, Jazayeri, 2018; De Kock et al., 2021) provided a parsimonious account for both our247

behavioral and pmEC results. In the following, we will discuss these results in light of previous liter-248

ature on timing behavior and relate them to prior work on spatial and non-spatial coding principles249

in the hippocampal formation.250

Task regularities bias TTC estimation in future trials251

While participants were not explicitly told about the true range of intervals that were tested, their252

estimates were nevertheless biased towards the mean interval (Fig. 1B, C). This regression-to-the-253

mean effect in time estimation is well documented and has been proposed to reflect participants’254

reliance on the temporal regularities learned from previous trials (Miyazaki et al., 2005; Jazayeri,255

Shadlen, 2010; Acerbi et al., 2012; Cicchini et al., 2012; Petzschner et al., 2015; Chang, Jazayeri,256

2018; Polti et al., 2022). Specifically, integrating a prior expectation with the sensory evidence ob-257

tained in the current trialmay help participants to anticipate the trajectory ofmoving objects during258

occlusion (Fig. 4A). This prior expectation likely takes the form of a Gaussian distribution of time259

intervals centered on the mean (Fig. S4D). Relying on this prior to make an interval judgement260

will therefore most often be biased towards that mean, depending on how strong the sensory evi-261

dence is in a given trial about the true TTC that was tested. With increasedmismatch between prior262

expectation and sensory evidence, participants’ estimates may be biased more towards the mean263

(Fig. 1B, C), potentially reflecting an increase in uncertainty about their estimate (Jazayeri, Shadlen,264

2010; Petzschner et al., 2015). Overall, this strategy may lead to large errors in some trials, but it265

may nevertheless be adaptive, since the mean is still a "good guess" for the large majority of trials.266

This is especially true for those trials in which the evidence derived from the senses is sparse or267

noisy. Interestingly, we tested only four intervals drawn from a uniform distribution, meaning that268

the mean interval does not actually account for a large proportion of the trials. However, previous269

work has shown that interval estimates tend to be encoded using a Gaussian distribution even270

when the intervals were sampled uniformly (Acerbi et al., 2012), in line with our observation that271

our datawaswell described using a Bayesianmodel that assumed aGaussian distribution centered272

on the mean interval (Fig. 4).273

Entorhinal cortex encodes task regularities that afford time estimation274

Entorhinal activity reflected the behavioral response biases towards the mean across trials, as well275

as overall task performance. In our view, this result is striking in our view as the functions of the276

entorhinal cortex are mostly studied in the context of spatial navigation (Epstein et al., 2017; Kunz277

et al., 2019) and long-term memory formation (Fernández et al., 1999; Hargreaves et al., 2012;278

Staresina et al., 2013; Schiller et al., 2015), not in the context of rapid timing tasks. Notably, similar279

tasks have been used successfully for studying predictive processes in rodents (Henke et al., 2021),280

humans (Jazayeri, Shadlen, 2010; Acerbi et al., 2012; Cicchini et al., 2012; Chang, Jazayeri, 2018;281

Polti et al., 2022), and non-human primates (Jazayeri, Shadlen, 2015; Wang et al., 2018; Sohn et al.,282
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2019), but not in the context of entorhinal functions. Our results suggest that computations in the283

human entorhinal cortex contribute to timing task performance in real time as the task is being284

performed. In fact, we found trial-wise pmEC activity to follow a pattern that closely resembled the285

one previously reported for the adjacent hippocampus, as well as for other regions prominently286

including the striatum (Polti et al., 2022; Rolando et al., 2024). The contributions of the entorhinal287

cortex to task performancemay therefore closely depend on other regions shown to preferentially288

encode distinct behaviorally relevant factors, such as task details versus task structure (Doeller289

et al., 2008; Geerts et al., 2020). Specifically, the hippocampal-entorhinal region has been shown290

to signal the encoding of task structure (e.g., graphs reflecting transition probabilities between se-291

quentially presented stimuli (Garvert et al., 2017)) and abstract task spaces (Constantinescu et al.,292

2016; Theves et al., 2019, 2020; Viganò, Piazza, 2020; Park et al., 2021), which may reflect the learn-293

ing of generalizable principles that guide behavior across tasks. Our results are in line with these294

ideas and support recently proposed computational accounts of entorhinal function that center295

on structured, factorized representations allowing inference and generalisation (Whittington et al.,296

2020).297

Our results further dovetail with work on temporal-context encoding (Schapiro et al., 2012; Hsieh298

et al., 2014) and sequencememory (Fortin et al., 2002; Montchal et al., 2019; Bellmund et al., 2020a,299

2022) in the hippocampal-entorhinal region. For example, animal studies have shown that damage300

to the entorhinal cortex impairs memory for relations (Buckmaster et al., 2004), and inactivation301

of the rodent MEC prevents context-dependent learning of intervals (Bigus et al., 2023). In general,302

recent years have seen a growth in the literature on the links between MEC and timing behavior in303

rodents (Heys, Dombeck, 2018; Heys et al., 2020; Vo et al., 2021; Dias et al., 2021; Bigus et al., 2023).304

Our results extend these reports to the humanpmEC, revealing a direct relationship betweenpmEC305

activity and behavioral performance in a timing task. Specifically, its activity mirrored a behavioral306

bias towards the mean of the tested intervals; a phenomenon that occurs for any type of magni-307

tude estimation (Petzschner et al., 2015; Petzschner, Glasauer, 2011). Investigating the relationship308

between these mean biases and neural activity across a range of tasks therefore provides fertile309

ground for investigations of the domain-general functions of the hippocampal-entorhinal region310

(Behrens et al., 2018; Bellmund et al., 2018; Stachenfeld et al., 2017). In line with this idea, hip-311

pocampal activity has been linked to regression-to-the-mean biases during the estimation of spa-312

tial distances (Wiener et al., 2016) and intervals (Polti et al., 2022), and entorhinal activity has been313

shown to be modulated by spatial context during virtual navigation (Julian, Doeller, 2021).314

Non-spatial task factors shape entorhinal grid-like signals315

In addition to co-variations in pmEC activity and task-performancemeasures across trials, we found316

that pmECgrid-like signals in particular reflectedparticipants’ performance across intervals (Fig. 3F).317

Like behavioral performance, also the grid-like signal seemed to be biased towards themean inter-318

val, with cross-validation revealing a robust grid-like modulation exclusively for the interval closest319

to the mean. This effect was driven by the temporal stability, not spatial stability, of the grid-like320

signal (Figs. S3A, B), in line with previous reports (Kunz et al., 2015; Stangl et al., 2018). Furthermore,321

our results also replicate previous work on visual grid-like signals in humans (Nau et al., 2018b; Ju-322

lian et al., 2018; Staudigl et al., 2018), while going beyond these studies by reporting a relationship323

between these signals and behavioral performance. Eyemovementsmay engage similar processes324

in the entorhinal cortex as navigation (Nau et al., 2018a), while offering higher experimental con-325

trol and study-design efficiency. Since behavioral performance was well explained by a Bayesian326

observermodel, we tested whether thismodel also predicted the grid-like signal differences across327
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intervals, which was indeed the case (Fig. 4C). Cross-validated model predictions recapitulated the328

link between task performance and the grid-like signal differences across intervals, potentially of-329

fering a parsimonious and normative explanation of our findings. The entorhinal cortex, and grid330

cells in particular, may support the encoding of task regularities that ultimately manifest in both331

neural activity and behavior as regression-to-the-mean effects.332

Why would a spatial grid-like signal be modulated by the range of intervals that was tested? Previ-333

ous work has shown that task-dependent factors such as environmental features, goal locations,334

and rewards can distort the grid-cell pattern in rodents (Barry et al., 2007, 2012; Krupic et al., 2015;335

Hardcastle et al., 2015; Keinath et al., 2018; Boccara et al., 2019; Butler et al., 2019), as well as336

grid-like (Viganò et al., 2023) and behavioral (Bellmund et al., 2020b; Chen et al., 2015) response337

patterns in humans. It therefore seems plausible that also human grid-like signals can be modu-338

lated by behaviorally-relevant features of the task. In our task, the most relevant feature was the339

intervals that were tested, possibly explaining why the timing error was lowest (Fig. 1C) and the340

temporal stability of the grid-like signal was highest (Fig. S3A) for the interval closest to the mean.341

Previous work suggested that the distortions of the grid-cell patterns could be the consequence342

of conflicting sources of information (Barry et al., 2007; Hardcastle et al., 2015; Krupic et al., 2015),343

which would be broadly in line with our Bayesian modeling results (Fig. 4). In our case, the con-344

flicting sources of information may be the prior expectation derived from previous trials, which345

is inherently biased towards the mean interval, and the current-trial evidence derived from the346

senses. Therefore, we speculate that the amplitude and orientation of grid-like signals depend347

on the agreement between these two sources of information. This alignment becomes higher the348

closer the tested interval is to the mean interval.349

Predictive processing as a domain-general principle of entorhinal function?350

Whilemany of the above considerations remain to be tested, it has long been recognized that learn-351

ing task regularities ultimately requires the encoding of relationships between stimuli, actions, and352

events (Körding, Wolpert, 2004; Petzschner, Glasauer, 2011; Petzschner et al., 2015), which has353

been proposed to build on a relational coding scheme that has often been discussed for the me-354

dial temporal lobe (Manns, Eichenbaum, 2006;Whittington et al., 2020) even for non-spatial feature355

spaces (e.g., Aronov et al. (2017); Bellmund et al. (2018); Behrens et al. (2018); Constantinescu et al.356

(2016); Bao et al. (2019); Theves et al. (2019, 2020); Viganò et al. (2021); Park et al. (2021); Wagner357

et al. (2023); Nitsch et al. (2023)). Our task explicitly required participants to make temporal pre-358

dictions, but the central ideas and observations presented in this article may therefore very well359

translate also to other tasks and less explicit situations. Taking a predictive-processing perspective360

maymore generally help to understand the functional contributions of the entorhinal cortex across361

behavioral domains and species (e.g., Cothi de et al. (2022)), which includes, but is not limited to, the362

Bayesian framework. In fact, a growing number of studies support the idea that Bayesian models363

can provide a normative explanation for a range of observations in the spatial navigation literature,364

including the integration of visual cues and landmarks during path integration (Cheng et al., 2007;365

Petzschner, Glasauer, 2011; Kessler et al., 2022). Intriguingly, the same Bayesianmodel (Kang et al.,366

2023) that explains distortions in spatial memory in humans (Hartley et al., 2004; Chen et al., 2015;367

Bellmund et al., 2020b; Keinath et al., 2021) can also explain distortions of the grid-cell pattern in368

rodents (e.g., Krupic et al. (2015)), pointing towards a unified computational account for behavior369

and entorhinal activity across species.370
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Predictions for future work371

Our results suggest that non-spatial task factors shape human entorhinal activity in real time as the372

task is performed, a phenomenon that future studies should investigate across a range of tasks.373

It is important to note that we modeled our results using a Bayesian observer model due to its374

successful application to similar problems in the past (Jazayeri, Shadlen, 2010; Acerbi et al., 2012;375

Remington et al., 2018; Chang, Jazayeri, 2018), but other computational frameworks may be able376

to explain our data equally well. Approaches that model the mismatch between prior expectations377

and sensory evidence more explicitly seem especially promising in this context (e.g., prediction er-378

rors in reinforcement learning (Momennejad et al., 2017; Niv, 2009; Dayan, Daw, 2008; Stachenfeld379

et al., 2017)). Second, our results are in line with the idea that participants encoded the tested380

intervals using a Gaussian distribution centered on the mean intervals, but a more fine-grained381

sampling of intervals would be necessary to convincingly show that this was actually the case. The382

ideal scenario would be to samplemanymore time intervals, not from one but frommultiple distri-383

butions, each centered on a different value. In this case, one would predict that the grid-like signal384

is stable at the center of each of these distributions. Finally, to investigate the range of non-spatial385

factors that affect grid-like signals, and therefore to understand potential domain-general contri-386

butions of the pmEC to human cognition, future work should test a range of tasks beyond time387

estimation and spatial navigation.388

Conclusion389

Taken together, using fMRI and a rapid time-to-contact estimation paradigm in humans, we showed390

that time estimates are biased towards the mean of the tested intervals, and that this mean bias is391

reflected in entorhinal activity across trials (similar to the hippocampus, Polti et al. (2022)). More-392

over, we report a novel relationship between grid-like signals and behavioral performance, as the393

amplitude of the grid-like signal correlated with participants’ time-estimation error, and the puta-394

tive grid orientation was stable exclusively for the interval closest to the mean. Finally, both our395

behavioral and neuroimaging results were well explained (post hoc) by a Bayesian observer model396

that assumes the integration of prior expectations and sensory evidence in each trial. These re-397

sults point to an involvement of the pmEC in interval timing, likely building on the encoding of task398

regularities that afford predictive inference in the service of goal-directed behavior.399
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Methods424

Participants425

Thedata used in this studywere used in a previous report (Polti et al., 2022). Thirty-nine participants426

(16 women, 23men, 19-35 years old) were recruited for this study. Five participants were excluded:427

one was excluded because the eye-tracker calibration failed, one was excluded because they did428

not follow the task instructions, and three participants were excluded because of technical issues429

during scanning. A total of 34 participants entered the analysis. The study was approved by the430

regional committee for medical and health research ethics (project number 2017/969) in Norway431

and participants gave their written consent prior to scanning in accordance with the Declaration of432

Helsinki (World Medical Association, 2013).433

Task434

Weused a Time-to-contact (TTC) task that required participants to estimate the timewhen amoving435

dot reached a target location. Each trial began with the smooth visual pursuit of a dot moving in436

1 of 24 predefined linear trajectories with 1 of 4 possible speeds: 4.2◦/s, 5.8◦/s, 7.5◦/s and 9.1◦/s.437

All trajectories had two segments, one where the dot was visible ("Gaze trajectory", Fig. 1A; length438

of 10 dva) and one where the dot was occluded (length of 5 dva). Because all trajectories had the439

same length, the 4 speeds led to 4 target TTC (tTTC) durations: 1.2s, 0.88s, 0.67s, and 0.55s. A tTTC440

duration was defined as the time it takes the dot to traverse the occluded segment. When the441

dot reached the end of the visible segment, a fixation cross remained in place until participants442

had performed a TTC estimation judgment. The latter consisted of clicking a button when the443

dot presumably reached the end of the occluded segment ("Boundary", Fig. 1A). After giving a444

response, participants received visual feedback for 1 s reflecting their TTC estimation accuracy.445

When accuracy was not high, a visual cue signaled the TTC error direction: either responding too446

early (underestimation) or too late (overestimation). At the feedback offset, the dot became visible447

again and remained static for a variable ITI sampled randomly from a uniform distribution ranging448

from 0.5 to 1.5 s. Then, a new trial began with the dot moving in a different direction. Over the449

course of 768 trials, we sampled eye movement directions with 15◦ resolution. Participants were450

never explicitly informed about the full visual trajectory or the range of tTTC . See previous work of451

Polti et al. (2022) for more details on the task.452
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Behavioral analysis453

Participants indicated the estimated TTC in each trial via button press. To test if participants dis-454

criminated the four target TTCs we used a linear mixed-effect model with estimated TTC (eTTC) as455

the dependent variable, target TTC (tTTC) as the predictor and separate intercepts and slopes per456

participant.457

Wepartitioned participants’ behavioral performance for each tTTC i using two parameters, Accuracy458

and Precision (Fig. S1A). Accuracyi was computed as the absolute difference between the average459

eTTC ( ¯eTTC) and tTTC , divided by ¯eTTC :460

Accuracyi =
| ¯eTTC − tTTC |

¯eTTC
(1)

Precisioni was computed as the coefficient of variation (CV), given by the standard deviation of the461

eTTC divided by the ¯eTTC :462

Precisioni = CVi =

√∑
(eTTC − ¯eTTC)2/N

¯eTTC
(2)

where N is the number of eTTC values. These two parameters can be integrated in a single mea-463

surement that reflects the precision-accuracy trade-offwhenwritten as a Pythagorean sum, i.e. the464

root-mean-square error (RMSE):465

RMSEi =

√
Precisioni

2 + Accuracyi
2 (3)

In order to analyze the pattern of RMSE across target TTCs, we used a mixed-effect model with466

RMSE as the dependent variable, target TTC as a quadratic predictor, and separate slopes and467

intercepts per participant (Fig. 1B). We also ran the same model again while using a linear instead468

of quadratic trend. We then tested which model best explained the changes in RMSE across target469

TTCs using a chi-square test.470

Imaging data acquisition & preprocessing471

Imaging data were acquired on a Siemens 3T MAGNETOM Skyra located at the St. Olavs Hospi-472

tal in Trondheim, Norway. A T1-weighted structural scan was acquired with 1mm isotropic voxel473

size. Following EPI-parameters were used: voxel size=2mm isotropic, TR=1020ms, TE=34.6ms, flip474

angle=55◦, multiband factor=6. Participants performed a total of four scanning runs of 16-18 min-475

utes each including a short break in the middle of each run. Functional images were corrected for476

head motion and co-registered to each individual’s structural scan using SPM12 (www.fil.ion.ucl.ac.477

uk/spm/). We used the FSL topup function to correct field distortions based on one image acquired478

with inverted phase-encoding direction (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup). Functional images479

were then spatially normalized to the Montreal Neurological Institute (MNI) brain template and480

smoothed with a Gaussian kernel with full-width-at-half-maximum of 4 mm for regions-of-interest481

analysis or with 8 mm for whole-brain analysis. Time series were high-pass filtered with a 128 s482

cut-off period.483

Region-of-interest (ROI) definition and analysis484

Rodent studies have consistently reported grid cells in the medial entorhinal cortex (Heys et al.,485

2014; Moser et al., 2014), which likely corresponds to the posteromedial portion of the entorhinal486

cortex in humans (Maass et al., 2015; Navarro Schröder et al., 2015). We therefore used a (bilat-487

eral) posteromedial entorhinal cortex (pmEC) mask from Navarro Schröder et al. (2015) in all our488
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fMRI analyses (Fig. S2). As a control region, we chose the early visual cortex (V1) for which, to our489

knowledge, no hexadirectional signals have been reported. V1masks were generated for each indi-490

vidual participant based on the automatic parcellation derived from FreeSurfer’s structural recon-491

struction (https://surfer.nmr.mgh.harvard.edu/). A pre-supplementary motor area (preSMA) mask was492

obtained from the JuBrain SPM anatomy toolbox (https://www.fz-juelich.de/inm/inm-1/EN/Forschung/493

_docs/SPMAnatomyToolbox/SPMAnatomyToolbox_node.html) in order to post-hoc confirmwhether activ-494

ity observed in voxel-wise analyses corresponded to preSMA. All masks were spatially normalized495

to the MNI brain template space and re-sliced to the functional imaging resolution using SPM12.496

All ROI analyses described in the following were conducted using the following procedure. We497

extracted beta weights estimated for the respective regressors of interest for all voxels within a498

region in both hemispheres, averaged them across voxels within that region and performed a one-499

sample Wilcoxon test on group level against zero as implemented in the software R (https://www.500

R-project.org).501

EC activity as a function of accuracy and as a function of the regression effect502

To examine the relationship between behavioral biases and brain activity, we usedmass-univariate503

general linear models (GLM) to model the trial-wise activity of the pmEC voxels as a function of504

accuracy (i.e. the absolute difference between estimated and target TTC in each trial) and as a505

function of the regression effect (i.e. the absolute difference between the estimated TTC and the506

mean of the tested intervals, which was 0.82 s) in the TTC task. To avoid effects of potential co-507

linearity between these regressors, we estimated model weights using two independent GLMs,508

which modeled the time course of each trial with either one of the two regressors. The GLMs509

also included one regressor modeling ITIs, one for button presses and one for periods of rest,510

whichwere all convolvedwith the canonical hemodynamic response function in SPM12. In addition,511

the models included the six realignment parameters obtained during pre-processing as well as a512

constant termmodeling the mean of the time series. After fitting each model, we used the weights513

estimated for the two regressors to perform ROI analyses for the EC using a two-tailed one-sample514

Wilcoxon test (Fig. 2).515

Hexadirectional analysis of visual grid-like representations516

Prior work showed that theMRI signal in the human entorhinal cortex exhibits a six-fold rotationally517

symmetric modulation as a function of gaze direction, which is thought to reflect grid-cell popula-518

tion activity (Nau et al., 2018b; Julian et al., 2018). Here, we tested whether such grid-like signals519

were also detectable in our data. The analysis builds on cross-validation to first estimate the puta-520

tive grid orientation relative to the screen, and then testing in held-out datawhether gaze directions521

aligned to this putative grid orientation are associated with stronger MRI signals than directions522

misaligned to it.523

To estimate the putative grid orientation, we first modeled the activity in each voxel in half of the524

data using a GLM (odd vs even runs) that incorporated two main regressors of interest. These525

regressors modeled the sine and cosine of the movement direction of the fixation target θ with a526

periodicity of 60◦, i.e. sin(6θ) and cos(6θ). For each trial, θ included the tracking and TTC estimation527

task phases. In addition, nuisance regressors modeled ITIs, the feedback phase, button presses528

and periods of rest, and two parametric regressors modeled the effect of feedback on the activity529

during the feedback phase and another one modeling the effect of TTC bias on button presses.530

All regressors were convolved with the HRF. Because different fixation-target speeds also led to531
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different TTCs and thus trial durations, and because the amplitude of the HRF-convolved signal532

scaled with duration, we re-scaled the resulting main regressors to obtain a balanced regressor533

amplitude for all speeds. Moreover, we added the realignment parameters and a constant term to534

the model. Each speed level was modeled separately. Weights for all regressors were estimated535

using SPM12.536

We used the beta weights corresponding to the sine (β sin) and cosine (β cos) of each target TTC level537

to estimate the putative grid orientation relative to the screen ϕ for voxels within the entorhinal538

cortex using the following formula: ϕ = arctan(β sin /β cos). The estimated orientations were then cir-539

cularly averaged across voxels and across runs within each data partition, resulting in a single grid540

orientation for each target TTC and data partition. We then used the estimated grid orientation541

in a second GLM to estimate the amplitude of the grid-like signal in its independent data counter-542

part (Fig. 3A). To do so, we again modeled nuisance variance as described before, this time adding543

one main regressor per target TTC modeling the cosine of each fixation-target movement direc-544

tion modulo 60◦ aligned to the previously estimated mean orientation using the following formula:545

cos(6(θ−ϕ)). Again, all regressors but the realignment parameters and the constant term were con-546

volved with the HRF, and all main regressors were rescaled to match their amplitude across TTCs.547

We then again estimated weights for all regressors using SPM12 and averaged them across the548

pmEC ROI. For each target TTC, we tested its corresponding estimated weight against zero using a549

one-tailed one-sample Wilcoxon test on group-level (Fig. 3B; Table S1). In order to test for a main550

effect of target TTC on grid-like signal amplitude, we ran a mixed-effects model with target TTC551

as predictor, the estimated weights as the dependent variable and participants as the error term.552

We used two-tailed paired Wilcoxon signed-rank tests to compare differences in grid-like signal553

between target TTCs (Table S1).554

To test whether the grid-like signal found in the pmEC exhibited a specifically 6-fold symmetric555

periodicity (60◦), not other periodicities, we repeated the cross-validation analysis for 4-fold (i.e.556

90◦, Fig. 3D, Left) and 8-fold (i.e. 45◦, Fig. 3D, Center) symmetries. In addition, we tested for 6-fold557

symmetry in a control region (early visual cortex (V1), Fig. 3D, Right).558

In order to exhibit a reliable grid-like signal, a voxel’s grid orientation should remain stable over time559

(i.e. temporal stability). For each participant and target TTC, we therefore computed the percentage560

of pmEC voxels that maintained an orientation difference of less than 15◦ between training and561

test data partitions. We then tested if differences in temporal stability could explain individual562

differences in the pmEC grid-like modulation for TTC0.86 using a Spearman’s rank-order correlation563

(Fig. 3E).564

Finally, to asses the behavioral relevance of the pmEC grid-like signal, we ran a linear mixed effect565

model with the RMSE for all four target TTCs as the dependent variable and their corresponding566

pmEC grid-like signal as a predictor. The model included separate intercepts and slopes for each567

participant. We expected that a stronger visual grid-like modulation would predict lower RMSE568

values (i.e. better performance in the TTC task, Fig. 3F).569

Additional analyses of pmEC visual grid-like signals570

Besides having high temporal stability, a robust grid-like signal is also expected to have high spatial571

stability (i.e., pmEC voxel-wise grid orientations should cluster in order to provide a robust mean572

grid orientation). We used Rayleigh’s z-value as a measure of spatial stability: higher z values cor-573

respond to higher voxel-wise grid orientation clustering. For each participant and target TTC (tTTC),574

we computed Rayleigh’s test for non-uniformity of circular data on the pmEC voxel-wise grid orien-575
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tations from the training data partition. We tested the Rayleigh’s z-values separately for each tTTC576

against zero using one-tailed one-sample Wilcoxon tests on group-level. In order to compare spa-577

tial stability between tTTC , we again used a mixed-effects model incorporating spatial stability as a578

dependent variable, tTTC as a predictor, and participants as the error term (Fig. S3B). We further579

used a Spearman’s rank-order correlation to test if individual differences in spatial stability could580

predict the cross-validated grid-like signal amplitude estimated for TTC0.86 (Fig. S3C; Spearman’s581

rho = 0.49, p = 0.003).582

Differences in grid-like signal amplitude across tTTC could also be explained by differences in tem-583

poral stability. We thus used amixed-effectsmodel with temporal stability as a dependent variable,584

tTTC as a predictor and participants as the error term to test this possibility (Fig. S3A). This analysis585

was conducted both for the pmEC and the early visual cortex control (Fig. S3D).586

Bayesian observer model587

The Bayesian observer model, developed originally by Jazayeri and colleagues (Jazayeri, Shadlen,588

2010), has been successfully adapted and applied several times to model timing behavior (Jazayeri,589

Shadlen, 2015; Remington et al., 2018; Chang, Jazayeri, 2018; De Kock et al., 2021). We adapted the590

original code provided at https://jazlab.org/resources/ in order to model participants’ behavior in our591

TTC estimation task.592

The Bayesian observer model is composed of three stages. In the first stage, the observer makes593

a noisy duration measurement (mvt) of the visual tracking period (VT, Fig. 1A), from the movement594

onset of the fixation disc until it becomes occluded. Measurement noise was modeled as a zero-595

mean scalar Gaussian likelihood distribution (Gibbon, 1977). Specifically, the standard deviation of596

measurement noise was scaled as a function of the VT duration with constant of proportionality597

wm (Weber fraction for VT duration measurement).598

During the second stage, the Bayesian observer integrates two sources of information to minimize599

their mismatch: the likelihood of mvt and a prediction based on prior knowledge (a statistical rep-600

resentation of the temporal context, i.e., the distribution of sampled VT durations). The prior was601

modeled as a Gaussian distribution centered on the mean of the range of sampled VT durations,602

with standard deviation equal to the standard deviation of the sampled VT durations. As a result of603

Bayesian integration, the posterior distribution is then computed over the sampled VT durations.604

In the third stage, the Bayesian observer selects the optimal VT duration estimate corresponding605

to the mean of the posterior based on a quadratic loss function. This value is further scaled by 0.5,606

a gain factor (G f ) equal to the ratio of distances between the occluded and visible segments of the607

path (5 / 10 dva; Fig. 1A). The scaled value corresponds to the optimal estimated TTC (eTTC), which608

is then augmented by TTC production noise to account for motor variability. TTC production noise609

wasmodeled as a scalar Gaussian distribution centered at themean of the posterior. The standard610

deviation of TTC production noise scaled as a function of eTTC with constant of proportionality wp611

(Weber fraction for TTC production). To account for idiosyncratic response biases (e.g. consistently612

producing TTC responses earlier or later than expected), the model includes an offset parameter613

ob (Remington et al., 2018).614

In order to fit the Bayesian observer model to behavioral data, we used a cross-validation proce-615

dure. We first split the data of each participant into two independent halves (384 trials each) with616

an equal number of trials for each tTTC . The trials were randomly sampled without replacement617

throughout the experimental session. The model parameters (wm, wp, ob) were fitted separately on618

each data partition by maximizing the log-likelihood of participants’ responses given the sampled619
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TTCs using the f minsearch MATLAB function. Parameter searches were repeated 10 times using620

different initialization values, showing a high degree of consistency between iterations and data621

partitions (Fig. S4A). Given such consistency, we used as final model parameters the median value622

across all the fits to the data (Fig. S4B). Thesemodel parameters were further used for model simu-623

lations, where we generated the same number of trials and tTTC combinations as participants had624

in each data partition.625

To evaluate the model predictions we computed the RMSE of each tTTC as a summary statistic and626

calculated the Mean Absolute Error (MAE) between the observed and predicted RMSE (Fig. 4B).627

To corroborate that the model replicated participants’ quadratic RMSE pattern across tTTC , we ran628

a mixed-effects model with the model RMSE as a dependent variable, target TTC as a quadratic629

predictor and separate intercepts and slopes per participant. Furthermore, to test the model suit-630

ability to replicate the observed relationship between pmEC grid-like signals and RMSE, we used631

a mixed-effects model with model RMSE as the dependent variable, participants’ pmEC grid-like632

signal as a predictor, and separate intercepts and slopes per participant.633

In our model, we assumed a prior Gaussian distribution centered on the mean of the sampled634

VT durations (1.64 s), and Gaussian likelihood functions centered on the respective value of each635

sampled VT duration (1.1 s, 1.34 s, 1.72 s and 2.4 s; Fig. 4A, Left). With these settings, the smallest636

mismatch between prior and likelihood occurs for the sampled VT duration 1.72 s (Fig. 4A, Left,637

yellow lines). Consequently, the lowest RMSE values are observed at the corresponding tTTC of638

this VT duration (0.86 s; Fig. 4A, Center). We explored alternative configurations by running model639

simulations where the prior was centered close to a different VT duration each time. The different640

prior values were obtained by multiplying each VT duration with the ratio between the average641

VT duration 1.64 s and the VT duration 1.72 s. When scaled by G f the prior means correspond to642

0.52 s, 0.64 s, 0.82 s and 1.14 s, and the sampled VT durations correspond to the tTTC 0.55 s, 0.67643

s, 0.86 s and 1.2 s (Fig. S4D). For each participant and model, we simulated the same number of644

trials as were originally tested and calculated the MAE between the observed and simulated RMSE645

(Fig. S4C). To examine potential differences in MAE across model simulations with different prior646

means, we ran a mixed-effects model with MAE as the dependent variable, prior mean value as647

predictor and participants as the error term. We found a main effect of prior mean on the MAE (;648

F(3) = 44.23, p = 2.2x10−16, ϵ2 = 0.55,CI : [0.44, 1]). We expected the model with the prior centered on649

the mean interval to show the lowest MAE. To test this prediction, we conducted one-tailed paired650

Wilcoxon signed-rank tests between each model pair (Table S5).651

Eye tracking652

We used an MR-compatible infrared eye tracker with long-range optics (Eyelink 1000) to monitor653

gaze position at a rate of 500 hz during the experiment. After blink removal, the eye tracking data654

was linearly detrended, median centered, downsampled to the screen refresh rate of 120 hz and655

smoothed with a running-average kernel of 100 ms. Fixation error was computed separately for656

each participant and trial as the euclidean distance between the fixation target and the measured657

gaze position. In order to test for systematic imbalances or biases in viewing behavior, we used sep-658

arate mixed-effects models (one per tTTC) with fixation error as the dependent variable, direction659

as predictor, and participants as the error term. There were no significant differences in fixation660

error across directions (Fig. S1B; Table S6).661
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Supplementary Material892

Figure S1: A) Precision (Coefficient of Variation) as a function of Accuracy (the absolute difference betweenaverage estimated
TTC and target TTC, normalized by the average estimated TTC) separately for each target TTC. The distance from the origin is
the TTC performance, i.e. the Root-Mean-Square-Error (RMSE). Solid grey quarter circle lines represent the locus of the mean
RMSE for each target TTC. The same RMSE can arise from low accuracy and high precision, and from high accuracy and low
precision. Mean RMSE for each target TTC represented by a colored dot with a black edge. Target TTCs are color coded. B)
Euclidean distance between fixation target and gaze (fixation error). There were no significant differences in fixation error
across all 24 gaze directions. Fixation quality does not affect the gaze-dependent hexadirectionalmodulation in EC presented
in this study. Each dot per direction represents a single participant. Target TTCs are color coded. Group-level mean (black
line) and SEM (gray shade). Fixation error displayed as degree of visual angle (radial axis). AB) Single-participant data plotted
as dots.
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Figure S2: Regions of interest (ROIs). Red) posterior medial entorhinal cortex (pmEC) ROI representing the human homolog
of rodent medial entorhinal cortex. This mask was obtained from Navarro Schröder et al. (2015). Green) pre-supplementary
motor area (preSMA) obtained from the JuBrain SPM anatomy toolbox. Blue) early visual cortex (V1) anatomically defined for
each participant using FreeSurfer’s cortical parcellation. ROIs superimposed onto a 2mm resolution skull-stripped structural
template brain. MNI coordinates added.
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Figure S3: Additional pmEC grid-like signal analyses. A) Significant differences in temporal stability of grid-like signals in pmEC
voxels across target TTCs. TTC0.86 showed thehighest percent of pmEC temporally stable voxels. B)No significant difference in
spatial stability of grid-like signals in pmEC voxels across target TTCs. C) TTC0.86 pmEC spatial stability predicts corresponding
grid-like signal across participants. Each dot represents a single participant. Regression line (black) and standard error (gray
shade). D) Within-participant V1 grid-like signal does not predict TTC estimation RMSE. Separate regression lines are plotted
for eachparticipant. AB) Depicted are themeanand SEMacross participants (black dot and line) overlaid on single participant
data (colored dots). Target TTCs are color coded. CD) Participants are color-coded.
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Figure S4: Bayesian observermodel parameters and simulations. A) Model parameter differences across data partitions. Dis-
tribution of differences in parameter values across data partitions centered around zero across participants. Themagnitude
of these differences were relatively small. Model parameters: wm (measurement noise parameter, green), wp (TTC produc-
tion noise, blue), ob (response bias, red). B) Median parameter value across data partitions for each participant. Parameter
values showed differences across participants. Parameters were color coded. C) Mean Absolute Error (MAE) across Bayesian
model simulations with different prior mean values. Group average model performance was best for simulations that set
the prior mean value at 0.82 s, the average across sampled durations. Model simulations with different prior mean values
were color coded. Statistics reflect p<0.05 at FDR-corrected levels (*). D) Bayesian model performance using different prior
mean values. For each model simulation, we show the simulated vs observed RMSE for each participant (Left) and the pat-
tern of RMSE across tTTC . The model simulation with a prior mean value equal to the average across sampled durations (0.82
s) displayed a quadratic RMSE pattern across tTTC that most resembled participants’ observed behavior. Separate regression
lines are plotted for each participant. tTTC are color coded. Grey diagonal dashed line represents the identity line. Better
model performance can also be observed as greater overlap between the individual regression lines and the identity line.
Magenta vertical dashed line represents the scaled prior mean value used in the model simulation. BCD) Single-participant
data plotted as dots.
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pmEC hexadirectional modulation aligned to pmEC grid orientation
One-tailed one-sample Wilcoxon signed-rank tests

Target TTC n V statistic p pFDR Effect size (r) CI
0.55 34 286 0.580 0.908 -0.04 [-0.35, 1]
0.67 34 220 0.908 0.908 -0.26 [-0.53, 1]
0.86 34 448 0.004 0.018 0.51 [0.23, 1]
1.2 34 224 0.896 0.908 -0.25 [-0.52, 1]

Two-tailed paired Wilcoxon signed-rank tests
Target TTC n V statistic p pFDR Effect size (r) CI
0.86 vs. 0.55 34 425 0.029 0.023 0.43 [0.07, 0.69]
0.86 vs. 0.67 34 441 0.013 0.022 0.48 [0.14, 0.72]
0.86 vs. 1.2 34 439 0.014 0.022 0.48 [0.13, 0.72]

Table S1: Independent ROI analysis for 6-fold symmetry in pmEC

preSMA n-fold modulation aligned to pmEC grid orientation
One-tailed one-sample Wilcoxon signed-rank tests

Target TTC Symmetry n V statistic p Effect size (r) CI
0.86 4 34 363 0.135 0.22 [-0.10, 1]
0.86 6 34 422 0.016 0.42 [0.12, 1]
0.86 8 34 165 0.989 -0.45 [-0.67, 1]

Table S2: Independent ROI confirmatory analyses for 6-fold symmetry in preSMA.
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A) pmEC 4-fold symmetry control
One-tailed one-sample Wilcoxon signed-rank tests

Target TTC n V statistic p pFDR Effect size (r) CI
0.55 34 305 0.453 0.868 0.03 [-0.29, 1]
0.67 34 295 0.520 0.868 −8.4x10−3 [-0.32, 1]
0.86 34 259 0.745 0.868 -0.13 [-0.42, 1]
1.2 34 232 0.869 0.868 -0.22 [-0.50, 1]

B) pmEC 8-fold symmetry control
One-tailed one-sample Wilcoxon signed-rank tests

Target TTC n V statistic p pFDR Effect size (r) CI
0.55 34 269 0.688 0.694 -0.10 [-0.40, 1]
0.67 34 312 0.407 0.694 0.05 [-0.27, 1]
0.86 34 297 0.507 0.694 −1.7x10−3 [-0.31, 1]
1.2 34 268 0.694 0.694 -0.10 [-0.40, 1]

C) V1 6-fold symmetry control
One-tailed one-sample Wilcoxon signed-rank tests

Target TTC n V statistic p pFDR Effect size (r) CI
0.55 34 295 0.520 0.554 −8.4x10−3 [-0.32, 1]
0.67 34 306 0.446 0.554 0.03 [-0.29, 1]
0.86 34 343 0.223 0.554 0.15 [-0.17, 1]
1.2 34 290 0.554 0.554 -0.03 [-0.34, 1]

Table S3: A) Independent ROI control analysis for 4-fold symmetry in pmEC. B) Independent ROI control analysis for 8-fold
symmetry in pmEC. C) Independent ROI control analysis for 6-fold symmetry in V1.

A) pmEC visual grid-like modulation spatial stability
One-tailed one-sample Wilcoxon signed-rank tests

Target TTC n V statistic p pFDR Effect size (r) CI
0.55 34 595 5.8x10−11 5.8x10−11 1 [1, 1]
0.67 34 595 5.8x10−11 5.8x10−11 1 [1, 1]
0.86 34 595 5.8x10−11 5.8x10−11 1 [1, 1]
1.2 34 595 5.8x10−11 5.8x10−11 1 [1, 1]

B) pmEC visual grid-like modulation temporal stability
One-tailed paired Wilcoxon signed-rank tests

Target TTC n V statistic p pFDR Effect size (r) CI
0.86 vs. 0.55 34 429 0.004 0.012 0.53 [0.25, 1]
0.86 vs. 0.67 34 337 0.042 0.042 0.36 [0.05, 1]
0.86 vs. 1.2 34 392 0.009 0.013 0.48 [0.20, 1]

Table S4: A) Clustering of grid orientations across pmEC voxels for each TTCt. B) Percent of pmEC temporally stable voxels for
each TTCt.
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MAE for model simulations with different prior mean values
One-tailed paired Wilcoxon signed-rank tests

Prior mean (s) n V statistic p pFDR Effect size (r) CI
0.82 vs. 0.52 34 589 8.1x10−10 2.4x10−9 0.98 [0.96, 1]
0.82 vs. 0.64 34 582 5.1x10−9 6.4x10−9 0.96 [0.92, 1]
0.82 vs. 1.14 34 581 6.4x10−9 6.4x10−9 0.95 [0.91, 1]

Table S5: Comparison of group averageMeanAbsolute Error (MAE) acrossmodel simulationswith different priormean values

Fixation error across directions per target TTC
Mixed-Effect Model results

Target TTC (s) DF F p-value Effect size (ϵ2) CI
0.55 23 0.75 0.79 −7.5x10−3 [0.00, 0.00]
0.67 23 1.33 0.14 9.6x10−3 [0.00, 0.00]
0.86 23 1.31 0.15 9x10−3 [0.00, 0.00]
1.2 23 0.98 0.48 −4.5x10−4 [0.00, 0.00]

Table S6: Fixation error across directions per target TTC.
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