
Dissertation
submitted to the

Combined Faculty of Mathematics, Engineering and Natural Sciences of

Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by:

Ting Cheng
Born in: Taipei, Taiwan

Oral examination: 07.12.2023





Neutrino Coherence and

Decoherence in Terrestrial and

Astrophysical Environments

Referees: Prof. Dr. Dr. h.c. Manfred Lindner

Prof. Dr. Jörg Jäckel
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Abstract

This thesis explores how neutrinos may serve as a portal to effects in the quantum regime. Due

to the smallness of neutrino masses and its feebly interacting feature, the neutrino system acts

as a closed quantum system at a macroscopic scale. Nonetheless, as the precision of neutrino

oscillation experiments increases, a closed quantum system description would become insufficient

at some point, and a door to effects in the quantum regime through decoherence signatures

would be open up. In order to sift the fundamental, quantum signal from the classical noise

in the future detection, a more consistent machinery warrants development. For this purpose,

we incorporate the concept of open quantum systems into the quantum field theory description

of neutrino oscillations. As a result, we present a generic structure (introduced as the layer

structure) for decoherence effects in neutrino oscillations, showing how decoherence signatures

from quantum effects and classical uncertainties may be interpreted as phase wash-out effects on

different layers with different phase structures. On the other hand, additional coherence could

come into play when interactions with a low momentum transfer are included. In addition,

we explore the expanded coherence due to the interaction with magnetic field, which flips the

chirality of the neutrino through the theoretically motivated magnetic moment effect. For high

energy neutrinos, such effect can be sizeable as some of them are likely to be produced in a

highly magnetized region. By adopting a simple model aiming to investigate the imprints of

magnetic moment effect on the neutrino flux generated from the particle collisions nearby a

magnetar, possible signatures with the IceCube observatory is speculated and discussed.
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Zusammenfassung

In dieser Arbeit wird untersucht, wie Neutrinos als Portal zu Effekten im Quantenbereich di-

enen können. Aufgrund der geringen Masse der Neutrinos und der Tatsache, dass sie nur über

die schwache Wechselwirkung interagieren, entspricht das Neutrinosystem auf makroskopischer

Ebene einem geschlossenen Quantensystem. Mit zunehmender Präzision der Neutrinooszil-

lationsexperimente würde eine Beschreibung als geschlossenes Quantensystem jedoch irgend-

wann nicht mehr ausreichen und es würde sich eine Tür zu Effekten im Quantenbereich durch

Dekohärenzsignaturen öffnen. Wir integrieren das Konzept offener Quantensysteme in die

quantenfeldtheoretische Beschreibung von Neutrinooszillationen. Als Ergebnis stellen wir eine

generische Struktur (die Schichtstruktur) für Dekohärenzeffekte in Neutrinooszillationen vor

und zeigen, wie Dekohärenzsignaturen aus Quanteneffekten und klassischen Unsicherheiten als

Phasenauswaschungseffekte auf verschiedenen Schichten mit unterschiedlichen Phasenstrukturen

interpretiert werden können. Andererseits könnte zusätzliche Kohärenz ins Spiel kommen, wenn

Wechselwirkungen mit geringem Impulstransfer einbezogen werden. In dieser Arbeit unter-

suchen wir auch die erweiterte Kohärenz aufgrund der Wechselwirkung mit einem Magnetfeld,

das die Chiralität des Neutrinos durch den theoretisch motivierten magnetischen Momentenef-

fekt umkehrt. Insbesondere untersuchen wir die Erwartung eines solchen Effekts für hochener-

getische Neutrinos astrophysikalischen Ursprungs, da sie eng mit den Magnetfeldanforderungen

für die Teilchenbeschleunigung verbunden ist.





Contents v

Contents

Disclaimer vii

Acknowledgements ix

1 Introduction 1

2 Neutrino Coherence and Decoherence Formalisms 7

2.1 Closed Quantum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Flavour Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Helicity Flip by Neutrino Magnetic Moment . . . . . . . . . . . . . . . . . 8

2.1.3 Length-scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Anti-symmetric Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Open Quantum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Formalisms for Neutrino Decoherence . . . . . . . . . . . . . . . . . . . . 14

2.2.2 The Quantum Field Theory Formalism . . . . . . . . . . . . . . . . . . . 15

3 The Layer Structure 23

3.1 Microscopic Layer (Layer 1): QFT Transition Amplitude . . . . . . . . . . . . . . 28

3.2 Microscopic Layer (Layer 1): Quasi-Transition Probability . . . . . . . . . . . . . 31

3.3 Physical Layer (Layer 2): Transition Probability . . . . . . . . . . . . . . . . . . 34

3.4 Measurement Layer (Layer 3): Transition Probability . . . . . . . . . . . . . . . 38

4 Neutrino Decoherence Signatures 43

4.1 Classification of Decoherence-like Signatures . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.2 State Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.3 Phase Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Reactor Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 A Phase Measuring Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 The Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Decay at Rest Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



vi Contents

5 High Energy Neutrino Magnetic Moment 73

5.1 Production of High Energy Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 Systems involving a magnetar . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.2 Magnetic Field Structure and Numerical Results . . . . . . . . . . . . . . 80

5.2 Neutrino Magnetic Moment Effect . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Signatures at IceCube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Conclusions 93

A Fourier Transformation and Convolution Properties 97

B Factorization Condition 101

C Phase Decoherence for Discrete Neutrino Sources 103



Disclaimer

This thesis is based on two papers with the original research performed by the author in collab-

oration with others. In particular:

• The results of Chapter 3 and 4 are based on Reference [1], in collaboration with Manfred

Lindner and Werner Rodejohann.

• The results of Chapter 5 are based on a paper currently in the finalisation process, which

is in collaboration with Vedran Brdar, Hao-Jui Kuan and Yingying Li.

Another paper published in peer-reviewed journals developed during my time as a PhD

student is Reference [2], in collaboration with Manfred Lindner and Manibrata Sen.





Chapter 0. Acknowledgements ix

Acknowledgements

I would first like to thank my supervisors at the Max-Planck-Institut für Kernphysik: Werner

Rodejohann and Manfred Lindner. Without their invaluable guidance and support of all its

forms, I would have not fulfilled my thesis. I was very naive when I started my PhD, and would

particularly like to thank Werner for integrating me into the field. I remember on my first day

at the institute, Manfred told me that the goal is to find what I am good at and excel in that

area, and at the end of the day, be able to look myself in the mirror and know what I want to do.

I would like to thank him for the guidance and providing an idea environment for this journey.
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Terminology

Phase space (PS) variables

Three coordinate variables, three momentum variables (composing the six-dimension PS)

and a temporal variable.

Layer structure

Composed of three layers (layer 1-3) from the microscopic Hilbert space to the macroscopic

measurement space, where all spaces are represented by PS variables. The structure

is illustrated in Chapter 3, and its value of providing a simple and generic picture of

decoherence effects is shown in Chapter 4.

Layer-Moving-Operator (LMO)

Operators moving some physical quantity up one layer, characterised by some weighting

functions on the lower layer. The definition is given in Eq. (3.1).

Microscopic layer (layer 1)

Configurations of fundamental theories are described on this layer, such as the Feynman

diagram, and intrinsic quantum mechanical uncertainties. More explanations are given in

Section 3.1 and Section 3.2.

Physical layer (layer 2)

As an intermediate layer between the fundamental theories and experimental measure-

ments, this layer describe the statistical ensemble. On top of quantum uncertainties

brought up from the first layer, this layer also include uncertainties due to a lack of

knowledge. More explanations are given in Section 3.3.

Measurement layer (layer 3)

This layer describes realistic experimental measurements including effects such as energy

resolution. Examples are given in Section 3.4.

Fock phase space (Fock-PS)

A representation of layer 1 where the occupation of the PS is written in terms of Fock

states. The case for neutrino oscillations calculated by QFT is demonstrated in Section

3.1.

Wigner phase space (Wigner-PS)

A representation of layer 1 where the occupation of the PS is written in terms of Wigner

quasi-probability distributions. More explanations are given in Section 3.2.

Relativistic phase space (Relativistic-PS)

A representation of layer 2, by taking the expectation values of the PS variables on the

first layer assuming a relativistic system (e.g. massless neutrinos). The case for neutrino

oscillation is demonstrated in Section 3.3.
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Measurement phase space (Measurement-PS)

A representation of layer 3, given by PS variables from experimental measurement.

Weighting function

Localized distributions that characterise uncertainties included in the LMO. Examples of

uncertainties from layer 1 and layer 2 for neutrino oscillation are summerized in Section

4.1.2 and Section 4.1.3, respectively.

Phase wash-out (PWO) effect

An averaging effect which washes out oscillation signatures by introducing a damping term

and a phase shift term. Mathematical formalism and properties are given in Appendix A.

Uncertainty parameters (σn)

Widths of the weighting functions w.r.t. some PS variable n which parameterize decoher-

ence signatures. Some analysing methods, as well as its sensitivity estimation of three

relevant uncertainty parameters are shown in Section 4.2 for neutrino oscillation experi-

ments.

State decoherence (SD)

Decoherence by the separation of superposition states on the physical layer, which is equiv-

alent to a PWO effect on the Wigner-PS under a factorisation condition (see Appendix B)

and is dominated by uncertainties on layer 1 (see Section 4.1.2).

Phase decoherence (PD)

Decoherence by the PWO effect on the physical layer dominated by the macroscopic un-

certainties on layer 2 (see Section 4.1.3).
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Chapter 1

Introduction

Neutrinos are like the late bloomers in physics due to their unique properties. Since it is nearly

invisible, it didn’t exist in the eyes of physicists until Pauli ”invented” them in 1930 to preserve

energy-momentum conservation in beta decay. For the same reason, it took another 26 years

before they were directly observed. Furthermore, due to the absence of neutrino masses in the

standard model (SM) renormalizable terms, neutrinos were long treated as massless particles

until the observation of neutrino oscillations around the beginning of the 21st century. These

properties are also why neutrinos could play a crucial role in advancing high energy physics.

This statement will be elaborated upon in terms of theoretical motivation, followed by probes

through quantum information and astrophysics in this section. On the other side of the coin,

neutrinos may also contribute to our understanding of quantum mechanics and the development

of astrophysics.

Features from existing measurements of neutrino properties, such as their masses and the

leptonic mixing matrix (i.e., the Pontecorvo–Maki–Nakagawa–Sakata, or PMNS matrix), have

been considered indications of beyond standard model (BSM) physics at a high energy scale (see,

e.g., [3] for a review). Dissatisfaction arises from the fact that if neutrinos were Dirac particles

with masses generated through the same Higgs vacuum expectation value (vev) as other SM

particles, their Yukawa coupling would need to be at least six orders of magnitude smaller than

that of the lightest charged fermions. In the context of effective field theory, massive degrees

of freedom at the high scale are integrated out, resulting in a suppression effect at low energies

imposed by the high energy scale. When expanding over 1/Λ, where Λ represents the scale of

some unknown new physics, the lowest order non-renormalizable term with d = 5 would be the

unique Weinberg operator, responsible for generating Majorana masses. Numerous models, such

as the celebrated (three types of) seesaw models that generate neutrino masses at the tree level,

as well as radiative models generating neutrino mass at the loop level, fall into this category [4].

Furthermore, in the spirit of reducing the randomness of parameters in a bigger picture, one

may expand to the lepton sector (or even further to the entire fermion sector). In addition
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to explaining the hierarchy among leptonic masses, the structure of the obviously-non-diagonal

PMNS matrix also needs to be addressed. This is known as the flavor puzzle. Solving the

flavor puzzle in addition, would indicate a more unified and comprehensive theory. It would

also provide intermediate points for a bottom-up/top-down approach to unified theories [5].

In addition, note that there are other measured neutrino properties and their implications not

covered here, such as the effective number of neutrino families in cosmology and their abundance

in the universe.

The unique features of neutrinos enable them to evolve as a closed quantum system on a

macroscopic scale. Consequently, the interference pattern of quantum coherence arising from

the misalignment of the mass basis and the flavor (or interaction) basis has been extensively

studied in neutrino oscillation experiments across a wide range of energies, involving multiple

sources. Based on current data, neutrino sources can be classified as either fully coherent or fully

decoherent at the detection site. The former category includes all terrestrial and atmospheric

sources, and their coherence properties have been verified by introducing a damping factor

exp(−γjk) when fitting current oscillation data, [6–8]. Here, γjk ∝ ∆m2
jkL

n/Em, and exp(−γjk)
suppresses the interference pattern between the jth and kth mass eigenstates. For decoherence

resulting from wavepacket (WP) separation, the values are m = 2 and n = 4. Additionally,

according to the Lindblad equation (Eq. (2.27)) and under certain assumptions, such as having

a single scaling parameter for all decoherence effects and no energy or neutrino loss, we have

m = 1, while n can remain a free parameter for a power-law fit. In contrast, neutrinos originating

from astrophysical or cosmic sources are considered fully decohered due to WP separation.

To elaborate, in order for an interference pattern to occur from the superposition of mass

eigenstates, there must be a minimal energy uncertainty, as discussed in Section 3.3. This

uncertainty imposes an upper limit on the size of the wavepackets []. Consequently, as different

mass eigenstates travel at different group velocities, the WPs become fully separated over cosmic

distances.

The study of decoherence was initiated in 1970 by H.D. Zeh here in Heidelberg to address

the problem of ”how to describe classical phenomena in the framework of quantum theory” [9].

Since then, it has been extensively developed to understand the emergence of classicality within

the quantum framework (see, e.g., [10–12] for a review). Decoherence has been observed in

various systems, including photon states in a cavity, matter-wave interferometry, superconduct-

ing systems, and ion traps [11]. The typical experimental challenges involve: 1) Creating a

macroscopic superposition state to start with. 2) Ensuring that decoherence is not too fast,

allowing the gradual process to be observed. 3) Minimizing unwanted decoherence, such as

that caused by closely monitoring the system. For neutrinos, due to their unique features, the

challenges are the other way around. It is impossible to produce a macroscopically coherent

state for neutrinos, and artificial decoherence from monitoring is basically unattainable. Hence,

the main obstacle is that the decoherence of neutrinos is not fast enough. In a way, this is also

why neutrinos may be a late bloomer in terms of decoherence, since these challenges can be

overcome by reducing statistical and/or systematic uncertainties. Once the required sensitivity
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is achieved, it could open up a vast observational landscape for quantum effects. This statement

is demonstrated in Chapter 4, where we address the question of “how much more statistics

is needed if quantum decoherence appears at a certain scale” by manually reducing statistical

uncertainties in the analysis while assuming a true decoherence scale. On the other hand, the

requirement of systematic uncertainties can be answer by whether we will be able to identify

decoherence signatures between quantum uncertainties and classical uncertainties.

The theoretical development for neutrino decoherence in this work (Section 2.2 - 4.1) aims

to investigate the potential of probing quantum effects through decoherence tomography, which

involves observing decoherence signatures over a range of E0 and L0. Here, E0 represents the

observed energy of the neutrinos, and L0 is the length of the baseline. To describe quantum

effects at a fundamental level, we work within the framework of quantum field theory, making

it more suitable for testing new physics, e.g., [13,14]. As decoherence effect results from leaking

information to the environment in an open quantum system, would be convenient to view it as

a quantum version of statistical mechanics. In fact, the Wigner quasi-probability distribution,

which maps density matrix states onto a phase space, allows us to visualize quantum decoherence

as a statistical effect. This will be referred to as state decoherence in Section 4.1. Furthermore,

classical uncertainties also lead to decoherence signatures, and these are classified as phase

decoherence in Section 4.1. The summary provided above motivates us to construct a layered

structure in Chapter 3, comprising phase spaces ranging from a quantum (microscopic) level to

a classical (macroscopic) level. The neutrino system is described within a quantum field theory

framework at the quantum level (layer 1), and it can be mapped to a Wigner quasi-probability

distribution (also at layer 1). By applying the open quantum system concept of integrating our

the environment, we can move up to the classical level (layer 2) where classical uncertainties

come into play. Finally, we present decoherence tomography at the observational level (layer 3)

after statistical averaging. Experimental realization may involve constraining the range of E0

and L0 while implementing the analysis method. Two examples are provided in Section 4.2 and

4.3.

While neutrinos with an astrophysical origin become fully decohered upon their arrival at

Earth, they can still carry information about additional coherence effects near their source.

Specifically, the presence of an additional coherence effect, such as the coherent forward scatter-

ing effect (known as the Mikheyev-Smirnov-Wolfenstein or MSW effect), can cause the energy

eigenstates to deviate from alignment with the mass eigenstates. This results in an energy-

dependent variation in the flavor ratio detected at Earth. A prominent example of this effect is

the observed oscillation pattern of solar neutrinos with respect to their energy. Moreover, astro-

physical sources can provide extreme environments that are unattainable on Earth. Therefore,

taking advantage in terms of extreme magnetic energy density, we focus on neutrinos above 100

TeV in Chapter 5. This energy threshold is chosen for two reasons: 1) it ensures an astrophysical

source because atmospheric neutrinos cannot reach such high energies, and 2) it guarantees the

presence of an effectively large magnetic field, which is a requirement for particle acceleration.

As these neutrinos propagate in a effectively large magnetic field environment, they may gain
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additional coherence, similar to the MSW effect, from the neutrino magnetic moment (νMM)

effect. However, unlike the MSW effect, this effect enhances the degree of freedom because

the νMM induces a chirality flip in the neutrinos. In the standard three-neutrino scenario, the

degree of freedom expands from 3 (e.g., three flavors or masses) to 3
⊗

2 for Majorana neu-

trinos, and 3
⊗

4 for Dirac neutrinos. Consequently, this effect impacts the flavor and helicity

structure detectable at Earth.

In the particle physics point of view, signatures of the flavour + helicity structure of these

high energy neutrinos could provide information about 1) the Dirac or Majorana Nature of

neutrinos and, 2) the νMM. The former is because only half the coherent degree of freedom (the

left-handed half) is detectable for Dirac neutrinos, while the complete set of degrees of freedom

are detectable for Majorona neutrinos. Knowing whether neutrinos are Dirac or Majorana not

only determines the first step of constructing a mechanism to generate neutrino mass, it also

tells if lepton number is violated. For Majorona neutrinos, the generation of both the neutrino

mass and the magnetic moment would violate lepton number by two units, which is a feature

favored by grand unification theories as well as models addressing the baryon asymmetry of

the Universe through leptogenesis. As for νMM, since neutrinos are charge-less, it is typically

generated at loop level. Furthermore, it has a tight connection with neutrino mass due to having

a similar (chiral) structure in the effective field theory Lagrangian. For instance, without non-

trivial model building, removing the photon line in a diagram generating νMM would result in a

diagram generating neutrino mass. Benchmark points of νMM include: Dirac neutrinos for the

simplest extension of the SM implies µν ≃ 3× 10−19(mν/eV)µB and the current upper bound

from terrestrial experiments µν < 10−12µB . On the other hand, in the astrophysics point of

view, these signature could also provide information about the source. For example, acceleration

and cooling mechanism through their relation with the magnetic field strength. However, such

effect will also increase the uncertainty for determining the collision processes through tracing

back the neutrino’s initial flavour state through the flavour ratio and/or Glashow resonance

signatures.

In the context of particle physics, the flavor and helicity signatures of these high-energy

neutrinos offer valuable insights into determining the Dirac or Majorana Nature of neutrinos

and the value of νMM. The former is because only half the coherent degree of freedom (the

left-handed half) is detectable for Dirac neutrinos, while the complete set of degrees of freedom

are detectable for Majorona neutrinos. Knowing whether neutrinos are Dirac or Majorana not

only guides the initial steps in constructing mechanisms for generating neutrino mass but also

provides insight into whether lepton number conservation is violated. In the case of Majorana

neutrinos, the generation of both neutrino mass and the magnetic moment results in a violation

of lepton number by two units. This is a feature favored by grand unification theories as well

as models addressing the baryon asymmetry of the Universe through leptogenesis. Knowing

whether neutrinos are Dirac or Majorana not only determines the first step of constructing a

mechanism to generate neutrino mass, it also tells if lepton number is violated. For Majorona

neutrinos, the generation of both the neutrino mass and the magnetic moment would violate
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lepton number by two units, which is a feature favored by grand unification theories as well as

models addressing the baryon asymmetry of the Universe through leptogenesis. As for νMM,

since neutrinos are charge-less, it is typically generated at loop level. Additionally, it shares a

close connection with neutrino mass due to its analogous (chiral) structure in the effective field

theory Lagrangian. For instance, without non-trivial model building, removing the photon line

in a diagram generating νMM would result in a diagram generating neutrino mass. Benchmark

points of νMM include: Dirac neutrinos for the simplest extension of the SM implies µν ≃
3 × 10−19(mν/eV)µB; the present upper bound from terrestrial experiments places µν at less

than 10−12µB . From an astrophysical perspective, these signatures also offer insights into the

source of these high-energy neutrinos. They can provide information about the acceleration and

cooling mechanisms, particularly in relation to the strength of the magnetic field. However,

such effects will also increase the uncertainty when attempting to determine collision processes

by tracing back the initial flavor state of the neutrinos using the flavor ratio and/or Glashow

resonance signatures.
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Chapter 2

Neutrino Coherence and

Decoherence Formalisms

Contents

2.1 Closed Quantum System . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Open Quantum System . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Closed Quantum System

The state of a neutrino can be characterized using the density matrix ρ = |ν⟩⟨ν|. The choice

of basis for the neutrino state (|ν⟩) depends on the basis neutrinos interact and propagate

on. When neutrinos evolve as a closed quantum system, their dynamics are governed by the

Liouville-von Neumann equation:

d

dt
ρ(t) = i [H(t), ρ(t)] . (2.1)

This equation applies whether we consider the system in the coordinate basis or the momentum

basis. In a closed quantum system, there is no loss of information. Consequently, the Hamil-

tonian operator H, which may include both kinematic and potential energy terms, suffices to

completely describe the neutrino’s evolution. In this scenario, quantum coherence is preserved

by the unitarity of the time evolution operator. In simpler terms, to maintain coherence, it is

essential not to disrupt unitarity, thereby ensuring that Eq. (2.1) remains valid. For example,

when a neutrino scatters off other particles, it can still remain coherent as long as the momen-

tum transfer between the incident neutrino and the target particle is sufficiently small. This

means that interactions that do not significantly change the momentum of the neutrino are less
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likely to disrupt its quantum coherence. In fact, this is particularly the case for the MSW effect

from coherent forward elastic scattering of the neutrinos through weak interaction, and the spin

flavour procession effect caused by νMM. The former will be included but not emphasised in

this thesis, while the latter will be elaborated in the following.

2.1.1 Flavour Transition

Taking into account that neutrinos are produced and detected only through weak interactions,

their initial (production) and final (detection) states are restricted to the flavor basis. However,

during free propagation, the kinematic eigenstates are determined by the neutrino’s mass, as a

result, Eq. (2.1) will be diagonal in the mass basis. For neutrinos with an initial state as flavor

α, i.e. , ρ(0) = |να⟩⟨να|, the probability of observing the final state as flavor β can be expressed

as:

Pαβ = Tr [|νβ⟩⟨νβ |ρ(t)] =
∑
j,k

U∗
αjUβjUαkU

∗
βke

i
∆m2

jkt

2p . (2.2)

This expression is obtained by inserting Hαβ = 1
2p̄

∑
j Uαjm

2
jU

†
jβ into ρ(t) = e−iHtρ(0)eiHt to

satisfy the Liouville-von Neumann equation. Here, U represents the leptonic mixing matrix,

which relates the flavor and mass eigenstates as: |να⟩ =
∑
i Uαi|νi⟩. Note that this expression

is still different from the standard vacuum oscillation formula where t and p are replaced by

the propagation distance (L) and the neutrino energy (E), respectively. The difference arises

because the trace is taken only to sum over the mass eigenstates, without integration over

momentum (or coordinate) space and time t. A comprehensive integration will be presented

later in the context of neutrino decoherence. Nevertheless, it’s evident that if all eigenstates are

sharply peaked at t = L and |p̄| = E due to a delta function, the standard oscillation formula

would appear, and quantum coherence remains intact. Furthermore, when neutrinos propagate

through matter, coherent scattering processes will dominate over incoherent ones, leading to

an effective potential in the Hamiltonian that is diagonal in the flavour basis. In this case,

the flavour transition probability may be obtained by tracing over the new eigenstates of the

Hamiltonian which includes the matter potential. Consequently, it results in the same form as

Eq. (2.2) but with different eigenvalues (∆m2
jk) and eigenvectors (U).

2.1.2 Helicity Flip by Neutrino Magnetic Moment

In general, the mass term of neutrinos can be written as Lm = mνLν̄R. If Dirac spinors (with four

degrees of freedom) are necessary to represent the neutrino field, i.e., we have Dirac neutrinos, ν̄R

represent chirally right-handed neutrino field, which is invisible to weak interaction, and lepton

number is conserved. On the other hand, if it is sufficient for a neutrino field to be represent by

Wyel spinor having only two degrees of freedom, then the neutrinos have a Majorona nature, and

ν̄R = ν̄cL is the chirally left-handed neutrino field with a charge conjugation. In this case, lepton

neutrino is violated by two units, making it possible for neutrinos to be produced and detected

with different helicity (hence, having a helicity flip). However, such effect is m/E suppressed,
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therefore, due to the smallness of neutrino mass and the difficulty of observing non-relativistic

neutrinos such effect is usually negligible. Similar to the neutrino mass, in the presence of strong

magnetic field, a chiral flip can also be induced since the Lagrangian for the νMM:

L ⊃ 1

2
µαβνL,ασµν ν̄R,βF

µν + h.c. , (2.3)

has the same chiral structure as the neutrino mass. Here µαβ is the magnetic moment of

neutrinos, νL,α/νR,β is the left/right-handed neutrino field with flavor α/β, and Fµν is the

electromagnetic field strength tensor.

However, unlike neutrino mass, νMM effect scale with the magnetic field strength. Moreover,

since the momentum transfer between the incident neutrino and the magnetic field is negligible,

coherence will be contained with an additional potential term in the Hamiltonian which mixes

the right and left chiral states. In other words, |ν(t, p̄)⟩ include n flavor states
⊗

m spinor states

and satisfy the Liouville-von Neumann equation. Furthermore, since neutrinos are usually ultra-

relativistic, helicity would majorly coincide with chirality. Therefore, written in the standard

three flavor basis, {α, β} = {e, µ, τ}, and the two helicity basis, {h, h′} = {1 (for νL), 2 (for ν̄L)},
the 6× 6 entries of the Hamiltonian is

H11/22
αβ =

1

2p̄

∑
j

Uαjm
2
jU

†
jβ ± δαβV

mat
α , (2.4)

H12
αβ =

(
H21
βα

)∗
= µαβ B⊥ e

iϕ, (2.5)

for Majorana neutrinos. Here, the first term in Eq. (2.4) would be responsible for neutrino

oscillation in vacuum due to the mass splitting, where mj is the neutrino mass and Uαβ is the

leptonic mixing matrix; the second term is the MSW matter potential, which is diagonal in

flavor space; and Eq. (2.5) describes the helicity flip induced by B⊥ e
iϕ, the strength of the

magnetic field perpendicular to the propagation direction of the neutrino. We note that µαβ is

asymmetric due to CPT symmetry (i.e., Uαα = 0), indicating that a neutrino with one flavor α

will be converted to another flavor β ̸= α by νMM effects. As for Dirac neutrinos, the helicity

basis is doubled, viz. {h, h′} = {1 (for νL), 2 (for ν̄L), 3 (for νR), 4 (for ν̄R)}, the Hamiltonian

defining the evolution is thus extended to a 12× 12 matrix, expressed as

H11/22
αβ =

1

2p̄

∑
j

Uαjm
2
jU

†
jβ ± δαβV

mat
α , (2.6)

H33
αβ = H44

αβ =
1

2p̄

∑
j

UαjmjU
†
jβ , (2.7)

H14
αβ = H41

αβ =
(
H23
βα

)∗
=
(
H32
βα

)∗
= µαβ B⊥ e

iϕ, (2.8)

while the rest of the entries are 0. The νMM effects for Dirac neutrino are expected to be

dominated by flavour diagonal terms of µαβ even though all entries are allowed, since the off-

diagonal terms would, in principle, suffer from the GIM mechanism.
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2.1.3 Length-scales

Different effects may be decoupled if their length-scales differ by orders of magnitude. The

length-scale of a certain effect X (e.g., mass-splitting, MSW effect, and νMM effect) is deter-

mined by the associated Hamiltonian, dubbed as HX , and is given by

Ljk = 2π/(Hj −Hk), (2.9)

for Hk the kth eigenvalue of HX . Reading from the first term in Eqs. (2.4) and (2.6), the

length-scale of mass-splitting is set by the oscillation length for the larger m2
j −m2

k, i.e.,

Lmass =
4πE

∆m2
jk

≃ 2.0× 109 km

(
2.44× 10−3eV2

∆m2
32

)(
E

100TeV

)
, (2.10)

where j, k denote the mass eigenstates. For the MSW effect, we have the refractive length,

Lmat
αβ =

2π

Vα − Vβ
, (2.11)

for the flavor eigenstates α, β. Therefore, since contributions from neutral current will cancel

among flavours, the length-scale would be left with,

Lmat =

√
2π

GFne
, (2.12)

where GF is the Fermi constant, and ne = nbaryYe is the electron’s number density for the baryon

number density nbary and the electron fraction Ye. In contrast to the above two length-scales,

that for νMM effect is sensitive to the nature of neutrinos. In particular, we have

Lmag,D
αβ = 4π(µα − µβ)

−1B−1
⊥ (2.13)

for Dirac neutrinos, where α, β is expected be close to the flavor eigenstates considering that

flavour diagonal terms are significantly larger than off-diagonal ones. On the other hand, the

length-scale is lesss straightforward to define for Majorana neutrinos due to the asymmetricity

of the νMM matrix. As we will derive later in this section, the length-scale can be found as

LM
mag = 4πµ−1

ν B−1
⊥ (2.14)

with µ2
ν = µ2

eµ + µ2
eτ + µ2

µτ and the Bohr magneton µB .

Comparing two effects, the one with a small length scale would dominate. This can be

understood by by the smaller length scale having a larger frequency, therefore, the reaction

time-scale would be shorter and the energy would be larger. Furthermore, the mass splitting

effect is dependent on neutrino energy while the matter potential as well as the magnetic field

potential would be localized in space. Hence, only in certain energy and/or coordinate regions

will two effects be comparable with each other, or even have a resonant effect, while in the other
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regions, one effect will dominate over the others. For instance, Lmass would increase with the

neutrino energy, so if it is larger then the region where νMM potential is relevant (neglecting

matter effect), then the transition probability can be decoupled as

Phh
′

αβ (0 → L) (2.15)

≃
∑
δ

Phh
′

αδ (0 → Lcut;H = HνMM)× Ph
′h′

δβ (Lcut → L;H = Hmass).

Such decoupling occurs when there exist L1, L2, where L1 < Lcut < L2, such that Lmass >>

LνMM when ℓ < L1 and Lmass << LνMM when ℓ > L2. Here, ℓ is the traveling distance of the

neutrinos. In fact, this would be particularly the case for magnatar produced neutrinos with

energy above 100 TeV, which will be investigated in Chapter 5.

2.1.4 Anti-symmetric Hamiltonian

For Majorana neutrinos, in the region where νMM effect dominates (i.e., when ℓ < Lcut), the

time evolution cannot be solved by diagonalizing the Hamiltonian due to its asymmetricity.

However, we can block diagonalize the time evolution operator exp[−iA(t)] satisfying Eq. (2.1)

as

ρ(t, p̄) = |ν(t, p̄)⟩⟨ν(t, p̄)| = e−iA(t)ρ(0, p̄)eiA(t), (2.16)

by recasting it into the form:

exp

[
−i
∫ t

0

dt′

(
0 µ̃B⊥(t

′)eiϕ

µ̃†B⊥(t
′)e−iϕ 0

)]
=

(
Ũ cos θ̂(t) Ũ† iU sin θ̂(t) Ũ†µ̂ν

−iµ̂†
νŨ sin θ̂(t) Ũ† Ũ cos θ̂(t) Ũ†

)

for

µ̂ =
1

µν

 0 µeµ µeτ

−µeµ 0 µµτ

−µeτ −µµτ 0

 (2.17)

with µν =
√
µ2
eµ + µ2

eτ + µ2
µτ (i.e., µ̃ = µν µ̂). Moreover, when the geometric of magnetic

field evolves slowly such that |ϕ/∇ϕ| ≪ 1 (as in the case of dipolar structure considered in

Chapter 5), the νMM effect is adiabatic and the e±iϕ can be factored out, leaving no physical

influence. Consequently, we have U†|µ̂|2U = diag(0, 1, 1) and thus θ̂(t) = θν(t)diag(0, 1, 1) for

the oscillation phase given by

θν(t) = µν

∫ t

0

dt′B⊥(t
′). (2.18)

We see that the magnitude of the νMM effect is decided by the effective eigenvalue µν through

the oscillation phase θν , and the flavor structure of it is determined by Ũ and µ̂ν .

In addition, the transition probability from νhα to νh
′

β can be calculated through Phh
′

αβ =
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Tr
[
⟨νh′

β |ρ(α,h)(t)|νh′

β ⟩
]
, which reads

PHC
αβ = Tr

[∣∣⟨νβ |Ucos(θ̂)U†|να⟩
∣∣2] =∑

j,k

U∗
αjUβjUαkU

∗
βk cos θj cos θk, (2.19)

when helicity is conserved (h = h′), and

PHF
αβ = Tr

[∣∣⟨νβ |Ũ cos(θ̂)Ũ†µ̂ν |να⟩
∣∣2] = ∑

j,k,γ,δ

µ̂∗
αγ µ̂αδŨ

∗
γjŨβjŨδkŨ

∗
βk sin θj sin θk, (2.20)

when helicity is flipped (h ̸= h′). Here, the (effective) eigenvalues are θ1 = 0 and θ2 = θ3 = θν(t).

The CP symmetry is assumed in the above expressions; in general, PHCαβ (PHFαβ ) would be splitted

into P++
αβ and P−−

αβ (P+−
αβ and P−+

αβ ) by an additional CP phase.

As mentioned above, the two phenomenological inputs for decoupled Majorana νMM effect

would be the effective magnetic moment µν , and the flavour structure µ̂. The transition prob-

ability would be maximized when θν(∝ µν) = π/2 and how the flavour structure of the νMM

matrix reflect on the flavour structure of the transition probability Pαβ = PHC
αβ +PHF

αβ is shown in

Fig. 2.1, where full coherence is assumed. In particular, plot (a) and (c), as well as plot (b) and

(d), compensate each other by
∑
β Pαβ = 1. For instance, when only µβγ ̸= 0 (top corner), the

να state would not be affected, hence, Pαα = 1 while Pαβ = Pαγ = 0 for α ̸= β ̸= γ. Note that

Pαγ would simply be plot (c)/(d) after exchanging β and γ. The lower left corner is when only

µαβ ̸= 0, in this case, there will be an 100% transition from να to νβ in the optimal θν = π/2

scenario. However, in the equilibrium scenario, where θν is averaged over, να and νβ will each

have a 50% share. In fact, such equilibrium feature holds in general, for instance, the center

point of plot (b) and (d) indicates that all flavours each have a 1/3 share when µeµ = µeτ = µµτ .

Such flavour structure will be crucial once the initial flavour is taken into account, this will be

explored for the typical initial states for high energy neutrinos in Chapter 5.

2.2 Open Quantum System

In an open quantum system, the system is coupled to the environment, leading to a gradual

leakage of information into the environment. Consequently, the unitary for the evolution of

the density matrix of this system, ρS = TrE[ρ], would no longer hold when the Liouville-von

Neumann equation is only satisfied for the complete density matrix ρ. Here TrE signifies the

process of tracing out or removing the environmental degrees of freedom, leaving only the focus

on the system’s dynamics. Such leak of information would cause the lost of coherence, namely,

the lost of interference between two eigenstates. Such process of losing quantum interference is

decoherence, which describes how a (entangled) quantum state evolves into a classical state.

For the flavour transition probability (FTP) describing neutrino oscillation, decoherence
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 θν = π
2 Average over θν

(a) (b)

(c) (d)

Figure 2.1: Demonstration of how the flavour structure matrix ν̂ would reflect on the flavour
structure of the transition probability. (a) and (b) is the probably that the flavour remains
unchanged, while (c) and (d) is the transition of state να to νβ where α ̸= β. (a) and (c) is
when HF is maximized (i.e. at θν = π/2) while (b) and (d) when equilibrium is reached between
transitions (i.e. when θν is averaged over).
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effect can be summerized by a function Ψjk as

Pαβ =
∑
j,k

U∗
αjUβjUαkU

∗
βke

iψjkΨjk, (2.21)

where ψjk is the coherent phase, commonly approximated ∆m2
jkL0/(2E0) for some traveling

distance L0 and energy E0. The decoherence term Ψjk would, in general, erase the interference

pattern, hence, |Ψjk| ≤ 1. However, since it could also be complex, is might also cause a phase

shift w.r.t. ψjk. Furthermore, Ψjj = 1 , ∀j, since the correlation, or overlap-ness, between an

eigenstate and itself is naturally 100%. These properties will be shown to hold without assump-

tion using the QFT approach in Sec. 4.1. Therefore, when neutrino state if fully decohered, the

FTP reads

Pαβ = |Uα1U∗
β1|2 + |U∗

α2Uβ2|2 + |U∗
α3Uβ3|2, (2.22)

which is widely used for neutrinos traveling over a cosmic distance. Similarly, the transition

probability in Eq. (2.19) and Eq. (2.20) for an anti-symmetric Hamiltonian would be modified

as

PHC
αβ =

∑
j,k

Ũ∗
αjŨβjŨαkŨ

∗
βkΨj,k cos θj cos θk, (2.23)

PHF
αβ =

∑
j,k,γ,δ

µ̂∗
αγ µ̂αδŨ

∗
γjŨβjŨδkŨ

∗
βkΨj,k sin θj sin θk, (2.24)

where θ1 = 0, θ2 = θ3 = θν(t). Note that, unlike neutrino oscillation in vacuum, where

ψjj = 0 , ∀j, the transition probability will still have a time dependence from the modes where

j = k, since the time evolution operator can only be block diagonalized. In this case

PHC
αβ = |Ũα1Ũ∗

β1|2 +
(
|Ũ∗
α2Ũβ2|2 + Ũ∗

α3Ũβ3|2
)
cos2 θν(t), (2.25)

and

PHF
αβ =

∑
j,γ,δ

µ̂∗
αγ µ̂αδŨ

∗
γjŨβjŨδjŨ

∗
βj sin

2 θν(t). (2.26)

2.2.1 Formalisms for Neutrino Decoherence

The literature extensively explores various theoretical approaches to quantify quantum deco-

herence in neutrino oscillation, often referred to as neutrino decoherence. In the frame work

of the open quantum system, decoherence can be analyzed through the framework of Liouville

dynamics using density matrices [15–23]. The Lindblad equation

ρ̇ = −i[H, ρ] +
∑
k

(
LkρL

†
k −

1

2
{L†

kLk, ρ}
)

(2.27)

is often used in this approach. In this equation, the Lindblad operators Lk serve as parameters

that quantify the extent of decoherence. This approach is valid when the Markov approximation
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holds, which implies that the environment’s response occurs significantly faster than that of the

system of interest. In other words, the environment has not quantum memory effect, such that

the system’s time evolution can be effectively described through time-local quantum master

equations.

In addition, decoherence can also be expressed by the Wigner quasi-probability distribution

[19,24,25] through the Wigner-Wyel transformation:

W(ρ̂) =

∫ ∫
dx dy ⟨x+

1

2
|ρ̂|x− 1

2
⟩e−iy·p. (2.28)

On the other hand, neutrino decoherence is often described by the degree of wavepacket sep-

aration using principles from quantum mechanics (QM) [26–30] and quantum field theory

(QFT) [28, 31–35]. Furthermore, there is a body of literature that compares these different ap-

proaches, including comparisons between QM and QFT methods for wavepacket separation [28],

as well as comparisons involving the Lindblad equation in relation to both the wavepacket for-

mat [17] and the Wigner quasi-probability distribution [19]. Among these diverse theories, QFT

stands out as a comprehensive description, describing neutrino oscillation as the propagator

within a full Feynman diagrams including both production and detection process. On the other

hand, the open quantum system method is more tailored to address quantum decoherence ef-

fects, offering a broader perspective by considering a system of interest within its surrounding

environment.

2.2.2 The Quantum Field Theory Formalism

In this thesis, we introduce a novel approach known as the open quantum system method into

quantum field theory (QFT) calculations. In this approach, we regard the propagator describing

neutrino oscillation as the system of interest, treating everything else in the diagram as the

surrounding environment, which we intend to integrate out of the calculations. Furthermore,

since neutrino oscillation is a phenomenon arising from the coherence of kinematics between mass

eigenstates, the states of the environment that we integrate out exist within the phase space (PS).

To be more specific, if a state is characterized by creation and annihilation operators in either the

coordinate or momentum space, we refer to it as the ”Fock-PS”. On the other hand, if a state is

defined by occupation numbers within a PS, resulting in a Wigner quasi-probability distribution,

we call it the ”Wigner-PS.” It’s worth noting that, since the Fock space representations for mass

basis and flavor basis are unitarily inequivalent with each other [36, 37], at least one of them

must be unphysical. Given that both representations approximately coincide with each other in

the relativistic limit, our choice is to construct the Fock-PS for mass states, with flavor states

being represented as a superposition of mass states. However, it’s essential to recognize that

one can also establish a flavor-based Fock-PS for the layered structure, as this choice does not

dictate the specific representation we opt for in our analysis.

Specifically, we compute the transition amplitude using the Fock-PS representation by ap-

plying the S-matrix method as outlined in [31]. In this context, we treat the traveling neutrino
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|Pi⟩

|Pf⟩

|Di⟩

|Df⟩

⟨x1⟩ = 0 ⟨x2⟩ = L

ν
x1 x2

Production Detection

Figure 2.2: A simplified Feynman diagram where the neutrino propagating a macroscopic dis-
tance is treated as a propagator of a full diagram, and the kinematics of the external particles
are described with wavepackets. At the production/detection vertex site, the diameter of the
shaded blue/green areas represent the uncertainties of external wavepackets projected onto the
coordinate space, and their mean value is labeled as x1/x2. The inner circles with solid lines
at both sites are the additional coordinate uncertainties from the blob vertices for the internal
states regardless of the external particles. In other words, it represents the uncertainties of
x1/x2 by gP (x1)/gD(x2) in Eq. (2.30). Hence the total uncertainty on the coordinate space at
this layer would be the diameter of the dashed-lined circles.

as an internal propagator within a diagram of the full process, including both production and

detection interactions, as illustrated in Figure 2.2. The kinematic properties of the neutrino’s

initial and final states are expressed as WPs in momentum space, which will later be combined

into a weighting function with a width denoted as σp. Consequently, without loss of generality

we can write

|Pi⟩ =
∫
[dq]fPi(q, t)|q⟩, |Pf ⟩ =

∫
[dk]fPf (k, t)|k⟩,

|Di⟩ =
∫
[dq′]fDi(q

′, t)|q′⟩, |Df ⟩ =
∫
[dk′]fDf (k

′, t)|k′⟩, (2.29)

Here, [dh] = d3h/(2π)3 for each h = {q, k, q′, k′}. Additionally, the internal states (excluding

the neutrino propagator) of the process are described by the distributions gP (x1) and gD(x2).

These distributions account for space-time uncertainties around the vertex at the production and

detection sites, respectively. It is important to note that since these states are not constrained

to the mass-shell, such uncertainties encompass four degrees of freedom: a temporal uncertainty

and three spatial ones. In contrast, the on-shell WPs only possess three degrees of freedom.

However, these uncertainties are typically not explicitly emphasized in the literature. Concerning

WP separation, we will demonstrate that they can effectively be combined with σp. Regarding

a localization term, as seen in [32], these uncertainties are microscopic compared to the scale

of the experiment. Nevertheless, given that the external particles are better characterized and

are, in principle, observable, there remains the possibility of extracting the contribution of such

uncertainties through measurements.

We can readily compute the transition amplitude for a neutrino that is initially produced
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as flavor α, detected as flavor β, and propagating in mass eigenstates with mass mj . To make

our structure complete, we integrate over both x1 and x2. In this regard, the total amplitude is

expressed as:

iA2,αβ(T,L,P) ≡ i
∑
j

U∗
αjUβjA2,j(T,L,P)

= i
∑
j

U∗
αjUβj

∫
[dq]fPi(q)

∫
[dk] f∗Pf (k)

∫
[dq′] fDi(q

′)

∫
[dk′]f∗Df (k

′)

×
∫
d4x1 gP (x1)

∫
d4x2 gD(x2)

∫
d4 y2MDj(q

′, k′)e−i(q
′−k′)(y2−x2)

×
∫

d4pν
(2π)4

̸ pν +mj

p2ν −m2
j + iϵ

e−ipν(y1−y2)
∫
d4y1MPj(q, k)e

−i(q−k)(y1−x1). (2.30)

In this expression,MP (q, k) andMD(q
′, k′) represent the plane-wave amplitudes associated with

the particles involved in the production and detection processes, respectively. In the following

sections, we will explicitly compute the transition amplitude by singling out the neutrino system

(equivalently, tracing out the environment) from two distinct perspectives in terms of how the

“neutrino system” is defined.

Neutrinos Represented Indirectly

In the viewpoint that neutrinos are represented by states entangled to it, the Fock-PS is com-

posed by x = x2−x1 and p̄ = q−k = k′−q′. Here x1/x2 are the space-time coordinates of the

production/detection vertices and q,k,q′,k′ are the momenta of the initial and final states of

the production and detection sites. Therefore, x and p̄ represent the traveling distance and the

momentum of the neutrino determined by the external particles and the position of the vertices

— essentially, the states entangled with the neutrino. The process to reach the expression where

the neutrino system is singled out (i.e. Eq. (3.7) in the next chapter) includes a series of Fourier

transformations and convolutions. We summarize these processes in Fig. 2.3. These relations

are particularly important in the sense that we can clearly see how each of the uncertainties are

combined to an effective one. Note that Fourier properties in Appendix ??, which is summer-

ized in Table A.1 and Table A.2, are particularly useful. Below, we will outline the step-by-step

derivation process from Eq. (2.30) to Eq. (3.7), which leads to the relations in Fig. 2.3. We first

include all the uncertainties following Eq. (2.30):

A2,j(T,L,P) =

∫
[dq]fPi(q)

∫
[dk] f∗Pf (k)

∫
[dq′] fDi(q

′)

∫
[dk′]f∗Df (k

′)

×
∫
d4x1 gP (x1)

∫
d4x2 gD(x2)

∫
d4 y2MDj(q

′, k′)e−i(q
′−k′)(y2−x2)

×
∫

d4pν
(2π)4

̸ pν +mj

p2ν −m2
j + iϵ

e−ipν(y1−y2)
∫
d4y1MPj(q, k)e

−i(q−k)(y1−x1). (2.31)
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In addition, since the external states are on the mass-shell, h0 = Eh(h) =
√

h2 −m2
h ∀h =

{q, k, q′, k′}. Furthermore, if the WPs are sharply peaked at the expectation value ⟨h⟩, we can

write Eh(h) ≃ Eh+vh(h−h0), where Eh = Eh(⟨h⟩), using the saddle point approximation. As

for the production site, the integration over k performs a convolution between the initial state

and the final state while the plane wave, amplitudes MPj(q, k), are included. Namely,∫
d3k

(2π)3
f∗Pf (k)fPi(k− p)M ′

Pj(p,k)e
−i(y01−x

0
1)(Eq(k−p̄)−Ek(k))

= FPj(p̄)F
′
P (y

0
1 − x01)e

iξ(p̄)(y01−x
0
1), . (2.32)

Here, a change of variables: {q, k} → {p, k}, where p = k − q, is applied. Also, we have written

M ′
Pj(p̄,k) =MPj(k − p, k)|p0=Eq(k−p̄)−Ek(k), k0=Ek(k) for convenience. In particular, if fPi and

fPj are Gaussian distributed with width σq and σk respectively, the momentum uncertainties

from the external states at the production site would be

FPj =M ′
Pj(⟨p⟩, ⟨k⟩) exp

[
−(p̄−P)2

4(σ2
q + σ2

k)

]
, (2.33)

where P = ⟨q⟩ − ⟨k⟩. The other terms are

F ′
P (y

0
1 − x01) = exp

[
−(y01 − x01)

2σ2
qk v

2
qk

]
, (2.34)

ξP (p̄) = Eq − Ek − vqq0 + vkk0 +
v2
qk

∆qk
P+ p̄

(
vq +

v2
qk

∆qk

)
. (2.35)

Particularly, vqk = vq − vk, ∆qk = (σ2
q + σ2

k)/σ
2
k, and σkq refers to the notation in Table A.1.

The detection site can be derived analogously, by having p̄′ = k′ − q′ and P′ = ⟨k′⟩ − ⟨q′⟩
instead. Therefore, Eq. (2.31) can be reformulated as:

A2,j =

∫
d3pFPj(p̄)

∫
d3p′ FDj(p̄

′)

∫
d4x1 gP (x1)

∫
d4x2 gD(x2)

×
∫
d4y1e

−i(y01−x
0
1)ξP (p̄)+i(y1−x̄1)p̄F ′

P (y
0
1 − x01)

∫
d4y2e

−i(y02−x
0
2)ξD(p̄′)+i(y2−x̄2)p̄

′
F ′
D(y

0
2 − x02)

×
∫

d4pν
(2π)4

̸ pν +mj

p2ν −m2
j + iϵ

e−ipν(y1−y2). (2.36)

The integration over
∫
d3y1 and

∫
d3y2 gives rise to δ3(p̄− p̄ν) and δ

3(p̄′ − p̄ν), respectively. On

the other hand, the integration over
∫
dy01 returns∫

dy01e
−iy01(ξ(p̄)−p

0
ν)F ′

P (y
0
1 − x01) = e−ix

0
1(ξ(p̄)−p

0
ν)F̃ ′

P (ξ(p̄)− p0ν), (2.37)
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where F̃ ′
P is the Fourier transformation of F ′

P . Finally after including the detection site,

Eq. (2.36) takes the form:

A2,j =

∫
d3p

∫
d4xFj(p̄;P)G(x;X)A1,j(x, p̄), (2.38)

where x = x2 − x1, Fj(p̄,P) = FPj(p̄)FDj(p̄),

G(x) =

∫
d4x2gP (x2 − x)gD(x2). (2.39)

As we will see in the next chapter, this expression takes the form of a layer moving operator.

Furthermore, the transition amplitude of the neutrino system becomes:

A1,j(x, p̄) = eip̄x̄
∫
dp0νe

−ip0νx
0

F̃ ′
P (ξP (p̄)− p0ν)F̃

′
D(ξD(p̄)− p0ν)

̸ pν +mj

p2ν −m2
j + iϵ

∣∣∣∣
p̄ν=p̄

. (2.40)

Intuitively, this expression may be interpreted as the collection of all configuration that are

energetically allowed for some p̄ given by the external particles. Moreover, since the neutrino

propagates a macroscopic distance, we may consider them to travel on the mass-shell. In other

words, the dispersion relation p0ν = Ej(p̄) ≡
√
p̄2 +m2

j would hold. Therefore, we can replace

A1,j(x, p̄) → e−itEj(p̄)+ix̄p̄ and

Fj(p̄) → Fj(p̄)F̃
′
P (ξ(p̄)− Ej(p̄))F̃

′
D(ξ

′(p̄)− Ej(p̄)), (2.41)

in Eq. (2.38). In this case, the width of Fj , σp becomes

1

σ2
p

=
1

σ2
q + σ2

k

+
1

σ2
q′ + σ2

k′
+

|vq − vj + v2
qk/∆qk|

σ2
qkv

2
qk

+
|vq′ − vj + v2

q′k′/∆q′k′ |
σ2
q′k′v

2
q′k′

. (2.42)

This result can be more efficiently observed from Fig. 2.3.

The calculation can be further carrier out by integrating out the coordinate space
∫
d4x, for

X = (T,L):

A2,j =

∫
d3p e−iTEj(p̄)+iLp̄Fj(p̄;P)G̃(p̄). (2.43)

Under the condition that one of the functions FP , FD, F̃
′
P , F̃

′
D or G̃ is sharply peaked, we can

apply the saddle point approximation at Pj , such that

d

dp̄
Fj(p̄;P)G̃(p̄)

∣∣∣∣
p̄=Pj

= 0. (2.44)

This leads to Ej(p̄) ≃ Ej +vj(p̄−Pj), resulting in the final form of the transition amplitude as

A2,j = e−iEjT+iPjLΦ̂j(Lj ,Pj), (2.45)
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fPi(q)Mqj(q) fPf(k)Mk, j(k) fDi(q′ )Mq′ j(q′ ) fDf(k′ )Mk′ j(k′ )

FP, j(p) FDj(p)F̃′ P(ξP(p) − Ej(p))

F′ P((y02 − x02)vqk)

F̃′ P(ξP(p) − Ej(p))

F′ P((y02 − x02)vqk)

g1(x1) g2(x2)

Fj(p; P)G(x; X)

FT Type Product Type Convolution Type I Convolution Type II

Figure 2.3: The final (width of the) weighting functions (G(x;X) and Fj(p̄,P)) in terms of
the wavepacket (size) of each of the external particles, and the spatial uncertainty (size) at the
vertices. Referring to Table A.1 and Table A.2, this diagram is useful for finding how the widths
are related, and how they contribute to the width of the weighting functions, which are σx and
σp in the main text.

where Lj = L− vjT . Similarly, for

Gx(x,X) = exp

[
− (t− T )2

4σ2
t

− (x̄− L)2

4σ2
x̄

]
, (2.46)

after integrating over x, which preforms a Fourier transformation to the momentum space, we

will arrive at: ∫
dt

∫
d3xe−it(Ej+vj p̄−vjPj)+ix̄p̄Gx(x,X) (2.47)

= e−i(Ej−vjPj)T+ip̄(L−vjT ) exp
[
−(σ2

t v
2
j + σ2

x̄)(p̄− m̃j)
2
]
, (2.48)

where m̃j = mjvjσ
2
t /(σ

2
t v

2
j + σ2

x̄). Hence, Eq. (2.38) can be eventually written as

e−iEjT+vjPjT

∫
dp3

∫
dx3 eix̄p̄G(x̄;Lj)Fj(p̄;Pj). (2.49)

Here G, centred at Lj = L − vjT , has width σ2
x = σ2

t v
2
j + σ2

x̄; and that for Fj , centred at

P′
j = ∆Pj , is σp. Additionally, ∆ = 1+4σ2

xσ
2
p, such that the saddle point from Eq. (2.44) is at

Pj . In fact, if all the input distributions are Gaussian distributed and both x̄ and p̄ are linear

dependent, Fj and G will also be Gaussian distributed with some width σp and σx, respectively.
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Neutrinos Represented Directly

Alternative from representing the Fock-PS by states entangled to the neutrino system, we rep-

resent it by the neutrinos directly in this section. In this case, we need to leave y = y2 − y2

and pν non-integrated. However, as demonstrated in this section, this particular representation

does not allow us to explicitly account for uncertainties related to the external particles and

the internal vertex as the previous representation. Instead, we can only treat them as effec-

tively as either spatial-temporal or energy-momentum uncertainties, but not both. Hence, for

the purpose of investigating neutrino decoherence concerning these two types of uncertainties,

the previous representation will by applied in the following chapters. Nevertheless, it’s worth

noting that the representation presented in this subsection remains compatible with our overall

framework, yielding equivalent effects. In fact the difference between this representation and the

previous one is similar to the difference between the density matrix formalism and the Wigner

quasi-probability distribution. The underlying argument is: while it can be more intuitive to

write the direct representation (density matrix) in either the momentum or coordinate space,

the interference pattern between eigenstates can be straightforwardly seen using the indirect

representation (Wigner distribution) on the phase space.

The above statement may be demonstrated by following Eq. (2.36):

A2,j(T,L,P) =

∫
d4y1

∫
d4y2

∫
d4pν
(2π)4

∆(pν)e
−ipν(y1−y2)

×
∫
d4x1 gP (x1)F̃P (y1 − x1)e

iPP (y1−x1)

∫
d4x2 gD(x2)F̃D(y2 − x2)e

−iPD(y2−x2), (2.50)

where ∆(pν) is the neutrino propagator in the momentum space. In this formalism, the WPs

at the production and detection site in coordinate space are

F̃Pj(y1 − x1) e
iPP (y1−x1) ≃

∫
d3pFPj(p̄)e

−i(y01−x
0
1)ξP (p̄)+i(y1−x̄1)p̄, (2.51)

F̃Dj(y2 − x2) e
−iPD(y2−x2) ≃

∫
d3p′FDj(p̄

′)e−i(y
0
2−x

0
2)ξD(p̄′)+i(y2−x̄2)p̄

′
. (2.52)

Here, PP and PD are the saddle points of FPj(p̄) and FDj(p̄
′), respectively. Furthermore, under

the assumption that the energy loss during the neutrino propagation is negligible, we have

PP = PD ≃ P . Therefore, after integrating over x1 and x2, Eq. (2.50) becomes∫
d4y

{∫
d4y1IP (y1;PP )ID(y1 − y;PD)e

−[xP (y1)−xD(y1−y)]
}
eiPy∆̃(y), (2.53)

where y = y1 − y2. Moreover, ˜∆(y) is the Fourier transformation of the propagator, or the two

point function with distance y of the neutrino. Here, with the help of Property 5 in Appendix A,

IP and ID results from the convolutions between the coordinate uncertainties of the external
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states and the vertices:

IP (y1;P )e
iP [y1−xP (y1)] =

∫
d4x1 gP (x1)F̃Pj(y1 − x1)F

′
P (y

0
1 − x01)e

iP (y1−x1) (2.54)

ID(y2;P )e
−iP [y2−xD(y2)] =

∫
d4x2 gD(x2)F̃Dj(y2 − x2)F

′
D(y

0
2 − x02)e

−iP (y2−x2). (2.55)

In fact, they represent the total coordinate uncertainties for the production and detection site.

Finally, the total coordinate uncertainty within the large bracket in Eq. (2.53), comes from the

width of the convolution function (IP ∗ID)(y), or equivalently, ((gP ∗F̃PjF ′
P )∗(gD ∗F̃DjF ′

D))(y).

Moreover, with the association and commutation property for convolution, the total coordinate

width may be rewritten as (G ∗ F̃ tot
Pj ∗ F̃ tot

Dj )(y), where G is in Eq. (2.39), F̃ tot
Pj = F̃PjF

′
P and

F̃ tot
Dj = F̃DjF

′
D.
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Chapter 3

The Layer Structure
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Following the QFT description for calculating neutrino oscillation in the previous Sec. 2.2.2,

we have singled out the neutrino system while shuffling the environmental effect into weighting

functions w.r.t. the PS integration. Note that even though the PS does not inherently include

a temporal dimension, the kinematics of the states involved are time-dependent. Thus, when

we refer to “PS variables” we implicitly include a temporal component. In this chapter, our

focus lies on the structural aspects of the PS during the calculation of the FTP. We refer to this

structure as the “layer structure”, which consists of three distinct layers. Vertically, these layers

include the microscopic layer, the physical layer, and the measurement layer. Horizontally, each

layer represents a PS composed of space-time and momentum variables, collectively determining

the kinematics of the neutrinos comprehensively.

The microscopic layer is closely related to the theories found in the existing literature, such

as [15–19, 24–28, 31–34]. These theories can be represented using either the Fock-PS or the

Wigner-PS, where Fock states and the Wigner quasi-probability distribution are employed,

respectively. With the layer structure, we can comprehensively account for the decoherence effect

resulting from information loss to the environment, from a microscopic to a macroscopic level.

Differing from existing literature that also calculates neutrino decoherence at a macroscopic

level [34,38], our primary focus is on classifying and understanding decoherence within a generic

framework. Eventually, neutrino decoherence for continuously emitted neutrinos is primarily

parameterized by four uncertainties within the layer structure. These uncertainties encompass
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coordinate/momentum uncertainties on the microscopic layer (quantum effects quantified by

σx/σp), as well as those on the physical layer (macroscopic effects such as energy resolution or

neutrino production profile σL/σE), providing an interface between microscopic mechanisms and

the macroscopic experiments. In the case of non-continuously emitted neutrinos, an additional

temporal uncertainty on the physical layer, denoted as σT , comes into play.

In Fig. 3.1, we present the layered structure designed for computing the expectation value of

a given observable. This structure is composed of three layers of S, ranging from the microscopic

level to the macroscopic level. These layers are denoted as the “microscopic layer” (Layer 1),

the “physical layer” (Layer 2), and the “measurement layer” (Layer 3). As introduced earlier,

this structural framework integrates the concept of an open quantum system into the QFT

framework while accounting for statistical effects relevant to practical measurements.

Layer 1, the “microscopic layer,” is where quantum effects come into play. This layer accom-

modates phenomena like the superposition of states within the Hilbert space. It’s important

to note that, owing to the uncertainty principle, both coordinate and momentum uncertainties

cannot simultaneously be zero. These uncertainties are parameterized as σp and σx, and are

generally independent of each other. The former accounts for uncertainties arising from external

states on the mass-shell, described by the WPs in momentum space. The latter characterizes

uncertainties from the vertices in coordinate space, representing how non-point-like the effec-

tive vertices are in a simplified diagram that includes only the external states and the neutrino

propagator, as exemplified in Fig. 2.2.

Layer 2, the “physical layer”, reflects our limited knowledge of the system within the clas-

sical regime. Here, probability is summed (integrated) over, instead of the amplitudes. The

uncertainties on this layer include those inherited from the first layer, along with additional

macroscopic uncertainties. These additional uncertainties may be parameterized as the energy

uncertainty (σE), for aspects like the energy resolution and how correct the energy reconstruction

models is; and the coordinate uncertainty (σE), which can encompass elements like the neutrino

production profile. As we progress in the following sections, each layer will be introduced in

context, and we will delve into specific examples contributing to σp, σx, σE and σL.

Let’s consider the double-slit experiment, where we observe the interference pattern by cap-

turing a photograph as an analogy to illustrate our point: the two slits in the experiment

correspond to uncertainties on the first layer, creating interference between wavefunctions. In

contrast, the probability density function (PDF) that describes the resolution of the camera

taking the photo belongs to the second layer. The former allows the superposition of states,

while the latter is a classical effect. In the context of neutrino oscillation, even though the

uncertainties on the second layer are macroscopic, we still observe quantum coherence. This can

be attributed to the smallness of the neutrino mass splitting.

In the upcoming discussion, we will delve into the layered structure in a more formal manner,

encompassing various aspects depicted in Fig. 3.1. This includes the representation of the PS

and the layer-moving-operators (LMOs) denoted as LMO, which connect each layer. Notably,

a crucial point to emphasize is that, as we will demonstrate later, the uncertainty parameters on
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Microscopic layer (layer 1) — Fock-PS Microscopic layer (layer 1) — Wigner-PS

Physical layer (layer 2)

Measurement layer (layer 3)

PS variables : {  ,  ,  } or {  ,  ,  ,  }                                            {  ,  
Uncertainties : Those from lower layers 
Corresponding figures: Fig. 6, 7, 10 (2nd & 3 rd row), 11 (2nd & 3 rd row), 12-17

T0 L0 P0 T0 L E0 Ω L0 E0}T0=0

PS variables : {  ,  , } 
Uncertainties : Macroscopic (  ,  , ) + those from layer 1 
Corresponding figures: Fig. 5, 8, 9 (right) , 10 (1st row), 11 (1st row)

T L P
σT σL σE

PS variables : {  , }             {  ,  , } 
Uncertainties : Microscopic (  , )   
Corresponding figures: Fig. 2, 18

x p t x p
σx σp

PS variables : {  ,  , } (on shell) 
Uncertainties : Microscopic (  , )   
Corresponding figures: Fig. 3, 4, 9 (left),  
10 (1st row)

t̄ x̄ p̄
σx̄ σp̄

on shell

Continuous and isotropic
emission of neutrinos 

Figure 3.1: Illustration of the layer structure, and the notation of each phase space variable
deciding the kinematics of states: t, t̄, T, T0 are the temporal variables; x̄, ¯̄x,L,L0 are the spatial
variables; and p̄, ¯̄p,P,P0 are the momentum variables; E0 is the energy and Ω represents the
solid angle. The layers are linked by the layer-moving operator in Eq. (3.1), and the uncertainties
are discussed in the text.

each layer correspond to the width of a weighting function within the LMO. These weighting

functions carry information about the environment entangled with the system. Consequently,

these uncertainty parameters play a significant role in characterizing neutrino decoherence in

experiments.

In our structural framework, different representation of the PS may be chosen for each

layer. For example, the first layer may be represented using either the Fock-PS or the Wigner-

PS. Concerning the representation of the second layer, we take the PS variables to be the

expectation values of that from the first layer when neutrinos are massless (detailed explanations

are found in Sec. ??. This representation is referred to as the ”relativistic-PS”. As for the third

layer, we simply express the PS variables in terms of the expectation values obtained from the

relativistic-PS. These values should align with the actual measurements. This statement must

hold because, otherwise, should there be a dependence on the mass of the neutrino, the states

would collapse to a specific neutrino mass state, resulting in no oscillation. Consequently, we

label such representation as the ”measurement-PS.” Each PS encompasses its own temporal,

coordinate, and momentum spaces, with energy implicitly derived from the momentum variables

through the dispersion relation. The specific notations for these components can be found in

Fig. 3.1. It’s worth noting that while the layer structure has a broad applicability for calculating

the expectation value of any measurement, our focus in this work is specifically on computing

the FTP for neutrino oscillation. As shown in Fig. 3.1, the layers are linked by Layer-Moving

Operators, denoted as LMOi, which transport a quantity, denoted as Bi(xi, pi), such as the

FTP or the transition amplitude, from Layer i to Layer i + 1. This transfer is achieved by

integrating out the PS variables, specifically xi and pi, from Layer i while taking into account



26

additional uncertainties through the inclusion of a weighting function, denoted as W i. This

operation can be expressed as follows:

LMOiBi(xi, pi) =

∫
d4xi

∫
d3pi

[
W i(xi, pi;xi+1, pi+1)Bi(xi, pi)

]
= Bi+1(xi+1, pi+1). (3.1)

In the context of the open quantum system, B1 typically represents the system of interest, with

W1 encompassing the environment entangled with it.

Additionally, with respect to the notation of PS variables in Fig. 3.1, we have x1 = (t, x̄)

and p1 = p̄ for the Fock-PS, x1 = (t̄, ¯̄x) and p1 = ¯̄p for the Wigner-PS (representing the PS

for the occupation number of quasi-probability distributions), x2 = (T,L) and p2 = P for the

relativistic-PS, and x3 = (T0,L0) and p3 = P0 for the measurement-PS. Each of these PS

representations will be explored in detail in the following subsections, specifically in the context

of neutrinos.

Moreover, Bi on the first, second, and third layers represent the system of interest, the

observable, and the measured value, respectively. Additionally, Wi serves as a PDF with the

property: ∫
d4xi

∫
d3piW

i(xi, pi;xi+1, pi+1) = 1. (3.2)

Additionally, if Bi = eixipiCi(xi, pi), we have LMOieixipiCi = eixi+1pi+1Ci+1(xi+1, pi+1)

(see Appendix A for details), indicating that the uncertainty principle between xi, pi remains

fulfilled on each layer. This is because LMOi along with eixipi means to first project everything

onto the xi or the pi space, and then integrate over that space, while the projection process

secures the uncertainty principle. In fact, this is exactly the case for the position-space represen-

tation of the wavefunction for some considered particle. In this case, B1(x, p) = eixp∆̃(p), where

∆̃(p) is the propagator in momentum space. We will demonstrate this explicitly for the case

of neutrinos in Sec. 3.1. As a matter of fact, if Bi = exp(iη(xi, pi)), for some phase structure

η(xi, pi), the LMO meets the condition of giving rise to a phase wash-out (PWO) effect described

in Appendix A. The PWO effect is an averaging effect over the phase structure caused by the

non-trivial width of the (normalized) weighting function, resulting in an additional suppression

term Φ as

Bi(xi+1, pi+1)Φ(xi+1, pi+1) = LOMiBi(xi, pi), (3.3)

where |Φ(xi+1, pi+1)| ≤ 1, ∀ (xi+1, pi+1). Only when the weighting function is symmetric with

respect to the phase structure would Φ be a real function (see again Appendix A).

Furthermore, when there is a substructure of B, i.e. Bi =
∑
ν Bνi, then the summation rule

is simply

In fact, the normalization of Wi is not relevant at this point, as we will demonstrate in

Sec. 4.1.1 that the FTP will inherently be normalized. Nonetheless, we define the weighting

function as a PDF for the sake of examining its width, which relates to the concept of ”width”

described in Appendix A. Furthermore, xi+1 and pi+1 represent the variables on the next layer

and are typically defined as the expectation values of xi and pi. Consequently, the width
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of W1(x, p;T,L,P), characterizing the microscopic quantum uncertainties, w.r.t. t, x̄, and p̄

are denoted as σt, σx, and σp, respectively. Similarly, the width of W2(T,L,P;T0,L0,P0),

representing macroscopic statistical uncertainties, w.r.t. T , L, and P are denoted as σT , σL,

and σP , respectively.

Additionally, if the weighting function can be expressed as W i(xi − xi+1, pi − pi+1), the

layer-moving operator becomes a convolution between Wi and Bi, as discussed in Appendix A.

Moreover, LMOi is related to the calculation of the expectation value of the quantity Bi and

the layer structure can be mathematically described as fiber bundles, as detailed in [39]. In

simpler terms, when looking from upper layers to lower layers, each PS point (xi+1, pi+1) can

be expanded into a complete PS composed of (xi, pi) on the lower layer. Additionally, on each

layer, operations can map one state to another, depending on what is to be observed. Viewing

the LMOs as vertical operators, these operators can be thought of as horizontal operators that

keep the state within the same layer. Furthermore, if Bi = eixipiCi(xi, pi), then we have

LMOieixipiCi = eixi+1pi+1Ci+1(xi+1, pi+1) (see Appendix A for details). This indicates that

the uncertainty principle between xi and pi remains satisfied on each layer. This is because

LMOi along with eixipi first projects everything onto the xi or pi space and then integrates

over that space, ensuring the uncertainty principle is maintained. In fact, this would correspond

to the position-space representation of the wavefunction for a given particle. In such cases,

B1(x, p) = eixp∆̃(p), where ∆̃(p) represents the propagator in momentum space.

It is worth emphasising that, if Bi = exp(iη(xi, pi)) for some phase structure η(xi, pi), the

LMO satisfies the condition for inducing a Phase Wash-Out (PWO) effect, as described in

Appendix A. The PWO effect involves averaging over the phase structure due to the non-trivial

width of the (normalized) weighting function, resulting in an additional suppression term Φ:

Bi(xi+1, pi+1)Φ(xi+1, pi+1) = LOMiBi(xi, pi), (3.4)

where |Φ(xi+1, pi+1)| ≤ 1, ∀ (xi+1, pi+1). When the weighting function is symmetric with respect

to the phase structure, Φ is a real function, otherwise, there will be an addition phase on top

of η (see again Appendix A). In addition, when there is a substructure of B, i.e. Bi =
∑
ν Bνi,

the summation rule can be expressed as:

LMOiBi =
∑
ν

∫
d4xi

∫
d3piW

ν
i (xi, pi;xi+1, pi+1)Bνi(xi, pi). (3.5)

Finally, to determine the measurement expectation value of the FTP, denoted as P3, we

perform statistical averaging (LMO2) over the FTP on the physical layer (P2). However, P2

can be calculated in two ways: either by squaring the transition amplitude (A2) on Layer 2

or by moving up (LMO1̄) the quasi-probability distribution (P1̄) from the Wigner-PS. Here,

A2 is computed by integrating over all quantum-mechanical configurations of the environment

(LMO1), moving the system of interest from the Fock-PS (A1) up to the physical layer. On

the other hand, LMO1̄ performs an effective statistical averaging over an effective FTP, which

is the quasi-probability distribution representing the quantum-mechanical superposition effect



28 3.1. Microscopic Layer (Layer 1): QFT Transition Amplitude

in the Wigner-PS [24,40]. In summary:

P3(T0,L0,P0) = LMO2P2(T,L,P) = LMO2{A∗
2(T,L,P)A2(T,L,P)}

= LMO2{LMO1A∗
1(x, p̄)LMO1A1(x, p̄)}

= LMO2{LMO1̄P1̄(t̄, ¯̄x, ¯̄p)}.

(3.6)

In the following sections, we will introduce each layer and its role in calculating the expectation

value for the measurement of the FTP in the context of neutrino oscillation in vacuum.

3.1 Microscopic Layer (Layer 1): QFT Transition Ampli-

tude

In this subsection, we apply the calculate of the transition amplitude on the Fock-PS with the

QFT approach in Sec. 2.2.2 onto the layer structure. While QM can describe neutrino coher-

ence and decoherence on the Fock-PS, it falls short in addressing several important questions,

which the QFT approach can tackle effectively, as demonstrated in previous works [28,31]. Fur-

thermore, for the purpose of investigating quantum decoherence effects and their implications

for fundamental physics, employing the QFT framework is essential, even for the scenario of

vacuum propagation. This is because the weighting functions on the first layer may originate

from uncertainties in the interactions occurring around the vertices. Moreover, to explicitly

capture the influence of states entangled with neutrinos on these weighting functions, we apply

the viewpoint of Sec. 2.2.2, where the PS on this layer is dictated by the states entangled to the

neutrino.

Regarding the weighting functions, we treat the external particles as WPs, often referred to

as the Jacob-Sachs model [41] in [31], following the approach outlined in Eq. (2.29). The WPs

introduce a microscopic uncertainty parameter, denoted as σp, which is defined in the momentum

space. σp encapsulates information such as the lifetime of the external particles [42] for neutrinos

produced by decaying particles or the mean free path of processes preceding the production of

neutrinos [43]. Additionally, regardless of the uncertainties associated with external particles,

we account for the microscopic uncertainties in the interaction processes around the vertices

through another parameter, σx. The value of σx depends on the internal states and the details

of the scattering or collision process. In principle, it is possible to directly express the Fock-PS

in the first layer in terms of neutrinos, as shown in Appendix 2.2.2. However, this approach

would only yield an effective weighting function in either the energy-momentum space or the

space-time coordinate space.

Applying results from Sec. 2.2.2, where only the neutrino momentum (p̄ = q− k = k′ − q′)

and traveling distance and time (x = x2 − x1) determined by the entangled states are left

unintegrated, into the layer structure shows:

A2,αβ(T,L,P) =

∫
d3p

∫
d4xFj(p̄;P)Gx(x;X)A1,αβ(x, p̄), (3.7)
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In this expression, F (p̄;P) characterizes the PDF arising from the WPs of the external particles,

while Gx(x;X) represents a PDF associated with the vertices. Consequently, the layer-moving

operator is given by:

LMO1 =

∫
d3p

∫
d4xFj(p̄;P)Gx(x;X), (3.8)

In this context, the product F (p;P )Gx(x;X) serves as the weighting function, and the width of

these uncertainties, σp and σx, are considered as the parameters of observation. The relationship

between these parameters and the original uncertainties are outlined Fig. 2.3. Here, the notation

Gx(x;X) denotes that X is the expected value of x for the PDF Gx(x), as well as for other

functions in this paper.

In general, the transition amplitude on the first layer takes the form shown in Eq. (2.40),

where all configurations of the internal energy of the neutrino propagator should, in principle,

be included. However, since the measurement is performed on a macroscopic scale, we can treat

the propagating neutrino as being on the mass shell. Consequently, the first-layer transition

amplitude for neutrino oscillation becomes:

A1,αβ(x, p̄) =
∑
j

U∗
αjUβje

−itEj(p̄)+ix̄p̄. (3.9)

It is worth noting that although we have “imposed” the on-shell approximation in this expression,

it will be on-shell on the second layer, even if we choose not to do so. This is due to the fact that

the variables on the second layer are macroscopic, while those on the first layer are microscopic.

Consequently, the dynamics evolve into a classical regime, and we obtain the energy-momentum

dispersion relation. Furthermore, we stress that eipx in A1,αβ ensures the preservation of the

uncertainty principle all the way up to the measurement layer, as discussed previously.

Finally, we proceed to expand the neutrino energy around p̄ = Pj , which serves as the saddle

point of the overall weighting function in momentum space. We retain terms up to the first order,

denoted as Ej(p̄) ≃ Ej + vj(p̄ −Pj), where Ej ≡ Ej(Pj) and vj ≡ ∂Ej(p̄)/∂p̄|p̄=Pj
= Pj/Ej .

Therefore, in accordance with Eq. (2.45), we obtain:

A2,j(T,L,P) = e−iEjT+iPjLΦ̂j(L,P), (3.10)

Here, L and P represent the second-layer phase space variables, such that Pj = Pj(P) (the

explicit relationship for the latter will be discussed in Section 3.3). In principle, a comprehensive

analysis of weighting functions resulting in the neutrino decoherence phenomena is possible,

providing insight into the underlying mechanisms. However, this would require exceptionally

precise measurements encompassing a wide spectrum in both coordinate and momentum space,

and an analysis that exceeds the scope of this paper. In this context, we investigate the weighting

function through the width of the PDF, denoted as σx/σp for G(x̄,Lj)/Fj(p̄,Pj) in Eq. (3.11)

below. If the weighting functions are symmetric, then Φ̂j(L,P) is real, as explained in Appendix

A. Otherwise, an additional parameter for the phase of Φ̂j(L,P) would be required.

Additionally, it’s important to note that σx and σp do not represent the total momentum
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and coordinate uncertainty of the system. In fact, the total coordinate uncertainty is calculated

in Appendix 2.2.2, revealing that it arises from the convolution between the coordinate distri-

butions at the production and detection sites. Specifically, the total coordinate distribution for

each production/detection site is the result of convolving gP (x1)/gD(x2) with the momentum

distributions of the external states projected onto the coordinate space (F̃ tot
P/D). In other words,

the total coordinate uncertainty can be expressed as (gP ∗ F̃ tot
P )(gDF̃

tot
D ), where ∗ denotes con-

volution between two functions, as noted in Table A.1. This concept is illustrated at the vertices

in Fig. 2.2: while the external particles contribute to some coordinate uncertainties by mapping

the momentum uncertainties onto the coordinate space (represented by the individual blue and

green circles), the internal process introduces additional spatial uncertainties (represented by

the inner solid circle lines), resulting in a total coordinate uncertainty (represented by the outer

dashed lines) that surpasses the individual uncertainties.

Specifically, for the case of Gaussian WPs, the formalism for Fj(p̄,P) is widely established in

the literature, as found in references such as [28,31,32]. For the sake of demonstration, we also

adopt a generic Gaussian form for the weighting function on the Fock-PS. Although, in general,

the WPs can talk any shape. Additionally, we integrate out x0 in Eq. (3.7) for later convenience.

Consequently, following the discussion in Sec. 2.2.2, we arrive at the following expression:

A2,j(T,L,P) = e−iEjT+ivjPjT

∫
dp3

∫
dx3 eix̄p̄G(x̄;Lj)Fj(p̄;Pj). (3.11)

Here, the functions G(x̄;Lj) and Fj(p̄;Pj) are given by:

G(x̄;Lj) ∝ exp

[
−(x̄− Lj)

2

4σ2
x

]
, Fj(p̄;Pj) ∝ exp

[
−(p̄−∆Pj)

2

4σ2
p

]
, (3.12)

where Lj = L− vjT and ∆ = 1 + 4σ2
xσ

2
p.

Ultimately, σx encompasses all individual uncertainties, both temporal and coordinate, asso-

ciated with production and detection, in a convolutional manner. Consequently, the dominant

factor will be the larger one among them. On the other hand, σp combines the momentum

uncertainties of production and detection through a product relationship, as indicated in Ta-

ble A.1. However, at each site, the total momentum uncertainty arises from the convolution

of momentum uncertainties of individual external states, implying that the largest one among

them will dominate. This relationship aligns with the findings of Ref. [32], assuming Gaussian

distributions. Again, the normalization of the weighting functions is irrelevant at this point, as

we will later demonstrate that the FTP will automatically normalize on the measurement layer

with the definition in Eq. (4.4). With the Gaussian distributions incorporated, we can easily

determine that:

Φ̂j(L,P) ∝ eiPjLj exp

[
−P2

j∆σ
2
x −

L2
jσ

2
p

∆

]
. (3.13)

Thus, when σx ≪ 1/(2σp), that is, when the width of the inner solid line in Fig. 2.2 is significantly

smaller than that of the blue/green circle’s width, σx can be safely neglected, and vice versa.
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3.2 Microscopic Layer (Layer 1): Quasi-Transition Prob-

ability

In this section, we perform calculations to determine the quasi-probability distribution (or

Wigner function, as referred to in some literature, e.g., [40]) of the FTP on the Wigner-PS rep-

resentation. These distributions serve as a connection between quantum mechanics (or quantum

field theory, as in this context) and statistical probability distributions, enabling the calcula-

tion of expectation values through direct PS integration. Furthermore, in Section 4.1.2, we will

demonstrate the insightfulness and utility of viewing state decoherence as a phase wash-out

(PWO) effect from the perspective of the Wigner-PS representation. Although we do not di-

rectly obtain the quasi-probability distribution P1̄ through the Wigner transformation, we arrive

at the same formalism by performing a change of variables that satisfies Eq. (3.6). This means

that we find P1̄ in a way that fulfills the following relation:

P2,αβ =

∫
d3x̄

∫
d3p̄ P1̄(¯̄x, ¯̄p) = A2,αβA

†
2,αβ

=
∑
j,k

U∗
αjUβjUαkU

∗
βk e

−i(Ej−Ek)T+i(vjPj−vkPk)T A2,jA
†
2,k, (3.14)

Here, A2,j/k is given by Eq. (3.11). Thus, for a P1̄ of the form:

P1̄ =
∑
j,k

U∗
αjUβjUαkU

∗
βke

−i(Ej−Ek)T+i(vjPj−vkPk)TP1̄,jk, (3.15)

Eq. (3.14) implies that∫
d3x̄

∫
d3p̄ P1̄,jk(¯̄x, ¯̄p) =

∫
d3x

∫
d3p eip̄x̄G(x̄)Fj(p̄)

∫
d3x′

∫
d3p′ e−ip̄

′x̄′
G∗(x̄′)F ∗

k (p̄
′).

(3.16)

The right-hand side of this equation involves the mixing of two phase-spaces, (x̄, p̄) and (x̄′, p̄′),

while the left-hand side does not.

Therefore, P1̄,jk represents the quasi-probability distribution, indicating the occupation

number of having both the jth and the kth mass eigenstates simultaneously on the Wigner-

PS. This equation is achieved by replacing (x̄, x̄′) → (¯̄x = 1
2 (x̄ + x̄′),∆x̄ = x̄ − x̄′) and

(p̄, p̄′) → (¯̄p = 1
2 (p̄+ p̄′),∆p̄ = p̄− p̄′). Consequently, Eq. (3.16) can be expressed as:

P1̄,jk(¯̄x, ¯̄p) = W̃G
jk(¯̄x, ¯̄p)W̃

F
jk(¯̄x, ¯̄p). (3.17)

Here W̃G
jk(¯̄x, ¯̄p) and W̃F

jk(¯̄x, ¯̄p) take the form of the Wigner quasi-probability distribution as
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follows:

W̃G
jk(¯̄x, ¯̄p) =

∫
d3(∆x̄) ei∆x̄

¯̄pG(¯̄x+
1

2
∆x̄;Lj)G

∗(¯̄x− 1

2
∆x̄;Lk),

W̃F
jk(¯̄x, ¯̄p) =

∫
d3(∆p̄) ei∆p̄

¯̄x Fj(¯̄p+
1

2
∆p̄;Pj)F

∗
k (¯̄p−

1

2
∆p̄;Pk).

(3.18)

In this context, LMO1̄ =
∫
d3x̄

∫
d3p̄ simply involves integrating over the Wigner-PS, and the

FTP on this layer is represented by the quasi-probability distribution W̃G
jkW̃

F
jk, encompassing

bothW1 and B1 as described in Eq. (3.1). In particular, if we assume that all weighting functions

take Gaussian forms on the Fock-PS as given in Eq. (3.12), the quasi-probability distributions

become:

W̃G
jk(¯̄x, ¯̄p) ∝ exp [i ¯̄p(Lj − Lk)] exp

[
− (¯̄x− L̄jk)

2

2σ2
x

− 2 ¯̄p2σ2
x

]
,

W̃F
jk(¯̄x, ¯̄p) ∝ exp [i¯̄x∆(Pj −Pk)] exp

[
− (¯̄p−∆P̄jk)

2

2σ2
p

− 2 ¯̄x2σ2
p

]
,

(3.19)

where L̄jk =
Lj+Lk

2 and P̄jk =
Pj+Pk

2 . After moving the FTP up to the physical layer by

integrating over the Wigner-PS, there will be a PWO effect that suppresses the plane wave term

on the physical layer. Moreover, the strength of the PWO effect is determined by the width

of the weighting function relative to the wavelength of the phase structure, which is Pj − Pk

for ¯̄x and Lj − Lk for ¯̄p in this case. Essentially, the wider the weighting function relative to

the wavelength of the phase structure, the greater the suppression caused by the PWO effect

will be. This can also be viewed as counting the number of periods determined by the phase

structure (e.g., 2π/(Pj−Pk) is one period in ¯̄x) within a certain width of the weighting function.

This quantity is referred to as the phase density. Hence, a higher phase density results in more

damping from the PWO effect.

Fig.3.2 and Fig.3.3 serve as examples to illustrate the quasi-probability distribution on the

Wigner-PS before integrating out the phase-space variables, which would ultimately lead to a

PWO effect on the physical layer after the integration. In particular, Fig.3.3 provides a 2D

contour plot, illustrating the projection of 3D plots like Fig.3.2. The shaded and non-shaded

circles within the plot represent contour lines corresponding to one standard deviation of a

Gaussian distribution as described in Eq. (3.19). In both plots, the alternation between positive

and negative values (red and blue circles) within the circles indicates the phase density within

one standard deviation of the weighting function. A higher phase density within this range

results in a larger PWO effect. The left plot corresponds to a specific time Tleft and a certain

width σp = σx = σleft for the weighting functions. The middle plot maintains the same width

but features a longer propagation time, i.e., Tmiddle > Tleft. On the other hand, the right plot

presents two scenarios for the width resulting it the same effect: σp = σx = σright = 0.325, σleft

and σp = σx = σright = 1.376, σleft, both with Tmiddle = Tright.

Comparing the left and middle plots of Fig.3.3, we observe that as time progresses, although

the FTP of the two mass eigenstates separate, the width of the overlapping profiles remains
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Figure 3.2: An illustration of the quasi-probability distribution in Eq. (3.19) on layer 1 in
the Wigner-PS assuming Gaussian distributed weighting functions scaled by N (as explained
in the text, the normalization of the distributions is irrelevant, just the width and shape are).
The yellow/grey areas represent P1̄,jj/P1̄,kk, and the red/blue area are for the positive/negative
values of P1̄,jk.
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Figure 3.3: An illustration of the quasi-probability distribution in Eq. (3.19) on layer 1 in the
Wigner-PS assuming Gaussian distributed weighting functions. These plots show the projection
of 3D plots like Fig. 3.2 onto 2D plots. The edge of the shaded areas, the (outer) thick solid
lines and the dashed lines are contour lines for the distributions within two standard deviations,
while the (inner) thin lines are for one standard deviation. The shaded areas represent P1̄,jj and
P1̄,kk, the red/blue lines are for the positive/negative values of P1̄,jk, and the black dashed line
shows the weighting function for P1̄,jk. The three plots differ by the traveling time (Tplot) and
width (σplot = σp = σx) as: Tleft < Tmiddle = Tright and σleft = σmiddle, also σright = 0.325σleft
or 1.376σleft.
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constant. However, the phase density increases, consequently intensifying the PWO effect. On

the other hand, since the width of the weighting function is determined by σ2
x̄ = σ2

x/(1+4σ2
xσ

2
p)

for ¯̄x and σ2
p̄ = σ2

p/(1 + 4σ2
xσ

2
p) for ¯̄p, the maximum value of σ2

x̄σ
2
p̄ is 1/4. This signifies that the

quasi-probability distribution is localized, and the uncertainty principle is inherently maintained.

Consequently, there exist two solutions for σright, each corresponding to a value of σx̄ = σp̄ < 1/2.

Moreover, a reduction in σx̄ and σp̄ would also decrease the phase density, ultimately mitigating

the PWO effect. Note that on the Wigner-PS, when the quasi-probability distribution becomes

localized at a single point, it effectively describes a classical monochromatic field [40].

3.3 Physical Layer (Layer 2): Transition Probability

In this section, we transition to the physical layer, where we must account for experimental

uncertainties in addition to the existing ones from layer 1. To simplify matters, we assume

isotropic neutrino emission. The supplementary uncertainties introduced through the weighting

function on this layer encompass the macroscopic energy uncertainty, denoted as σE , and the

macroscopic coordinate uncertainty, denoted as σL. The former summarizes energy-related

uncertainties, such as the energy resolution of the experiment (σE ∝ 1/
√
E0) and sophistication

of the energy reconstruction models (e.g., see [44,45]). The latter concludes uncertainties related

to the propagation distance, which can arise from various sources, such as: the core size and

distribution of multiple reactors for reactor neutrinos; the length of the decay pipe and the

velocity of parent particles before they decay into neutrinos for accelerator neutrinos; or even

exotic effects that introduce uncertainties in the time and distance a neutrino travels before

detection, such as spacetime fluctuations.

Before accounting for the additional uncertainties on layer 2, we must first transfer the FTP

from layer 1 to this layer. This can be accomplished by moving from the Fock-PS with the

following expression:

P2,jk(T,L,P) = e−i(Ej−Ek)T+i(Pj−Pk)LΦ̂∗(Lk;Pk)Φ̂(Lj ;Pj), (3.20)

where the FTP is

P2,αβ(T,L,P) =
∑
j,k

U∗
αjUβjUαkU

∗
βkP2,jk(T,L,P). (3.21)

Alternatively, we can also move from the Wigner-PS as follows:

P2,jk(T,L,P) =

∫
d3x̄

∫
d3p̄ W̃G

jk(¯̄x, ¯̄p) W̃
F
jk(¯̄x, ¯̄p). (3.22)

Both approaches yield the same result, serving as a valuable consistency check. When we utilize

Gaussian distributions for the first layer as described in Eq. (3.12), we arrive at the following

expression:

P2,jk(T,L,P) ∝ e−i(Ej−Ek)T+i(Pj−Pk)L exp
[
−(P2

j +P2
k)σ

2
x̄ − (L2

j + L2
k)σ

2
p̄

]
. (3.23)
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This result can be obtained from either Eq.(3.13) or Eq.(3.19), and it’s worth noting that it’s

helpful to express the widths in terms of σx̄ = ∆, σx and σp̄ = σp/∆, where ∆ = 1 + 4σ2
xσ

2
p.

So far, we have not specified the relationship between the second-layer momentum variable

P in the relativistic-PS and the expectation value of momentum Pj for each mass eigenstate.

We will now derive this relationship by comparing the massless case with the small mass case.

In the massless case, for a certain energy E, we have E = |P|. However, for nonzero neutrino

mass, some of the energy, denoted as δEj , will be used to account for the mass, and this energy

distribution is constrained by the uncertainty of the energy on the first layer. In other words,

we can think of this as having Pj(E
′) instead of Ej(p̄) while deriving Eq. (3.10), with E being

the mean of energies E′ of the neutrinos given by the external particles in the first layer.

Therefore, we can express this relationship as:

|Pj | ≡ E − δEj . (3.24)

Expanding Pj with respect to mj and keeping only the leading order, we obtain:

Pj ≃ P− ξ⃗j
m2
j

2E
= ξ⃗pE − ξ⃗j

m2
j

2E
, (3.25)

where ξ⃗p = P/E = P/|P|, ensuring that |ξ⃗p|2 = |ξ⃗j |2 = 1. This allows us to identify δEj , by

substituting Eq. (3.25) to Eq. (3.24) with |Pj | =
√
P 2
j , as:

δEj = E − |Pj | ≃ ξ⃗pξ⃗j
m2
j

2E
(3.26)

to the lowest order in mj . The actual energy carried by the mass eigenstate is determined by

the dispersion relation:

Ej =
√
|Pj |2 +m2

j ≃ E − δE +
m2
j

2E
≃ E +

m2
j

2E

(
1− ξ⃗pξ⃗j

)
. (3.27)

Hence, when ξ⃗pξ⃗j = 1, which is the case where all mass eigenstates and the massless case are

co-linear, we have equal energy of mass states. Conversely, when ξ⃗pξ⃗j = 0, we have equal

momentum modulus. To have exact equal momentum, we would need ξ⃗j = 0⃗. However, both

of these extreme case would contradicts Lorentz invariance [46,47]. Additionally, we can derive

the group velocity as:

vj =
Pj

Ej
≃

(
ξ⃗pE − ξ⃗j

m2
j

2E

)
1

E

(
1 +

m2
j

2E2
(1− ξ⃗pξ⃗j)

)−1

≃ ξ⃗p

(
1−

m2
j

2E2

)
. (3.28)

With this approximation, Eq. (3.23) becomes:

P2,jk(T, L,E) = eiψ
′
jk(T,L,E)D′

x(T, L,E)D′
p(E), (3.29)
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where the phase structure, the momentum weighting function, and the coordinate weighting

function are given by equations (3.30), (3.31), and (3.32) below, respectively.

ψ′
jk(T, L,E) = −

∆m2
jk

2E
(T (1− η) + Lη), (3.30)

D′
p(E) ∝ exp

−2σ2
x̄

(
Eξ⃗p −

m2
j ξ⃗j +m2

k ξ⃗k

2E

)2

− σ2
x̄

2

(
m2
j ξ⃗j −m2

k ξ⃗k

2E

)2
 , (3.31)

D′
x(T, L,E) ∝ exp

−σ2
p̄

(
L∆m2

jk

2
√
2E2

)2

− 2σ2
p̄

(
1−

m2
j +m2

k

2E2

)
(T − L)

2

 , (3.32)

Here, we have taken ξ⃗j = ξ⃗k ≡ ξ⃗ and η = ξ⃗ ξ⃗p = ξ⃗ ξ⃗L as the alignment factor. In particular,

terms such as the second term in the brackets of Eq. (3.31) will be cancel out by normalization.

This will be shown in Sec. ??.

For experiments with continuously emitted neutrinos over a sufficiently long period of time,

we integrate out the time variable T . In this scenario, ψ′
jk is replaced by ψjk, and D

′
x is replaced

by Dx in the equation above, where:

ψjk(L,E) = −
∆m2

jkL

2E
, (3.33)

Dx(L,E) ∝ exp

−σ2
p̄

(
L∆m2

jk

2
√
2E2

)2

− 1

2σ2
p̄

[
∆m2

jk

2E
(1− η)

]2 . (3.34)

Note that ψjk being independent of ξ⃗j and ξ⃗k implies that regardless of whether we have ”equal

energy,” ”equal momentum,” or anything in between, the same phase structure results when we

have no temporal information. Furthermore, in the limit where σx̄ ∼ 0, we obtain the standard

decoherence formula (3.35), which is in line with existing literature. [32], namely

P2,jk(L,E) ≃ exp

[
i
∆m2

jkL

2E

]
exp

−( L

Lcoh
kj

)2

− (1− η)

(
∆m2

jk

2
√
2Eσp̄

)2
 , (3.35)

where

Lcoh
kj =

2
√
2E2

|∆m2
kj |σp̄

(3.36)

for freely propagating neutrinos.

So far, we have focused on the transmission of weighting functions from the first layer to

the second layer. However, before delving further into this, we will simplify our discussion by

introducing a change of variables. We will move from T,L,P to T, L = |L|, E = |P|,ΩL,ΩP ,
where ΩL and ΩP represent the solid angles associated with L and P, respectively. With these

new variables, the layer-moving operator from the physical layer to the measurement layer can
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be expressed as:

LMO2 =

∫
dL

∫
dE

∫
dΩ

∫
dT HL(L;L0)HE(E;E0)HT (T ;T0)HΩ(Ω;Ω0). (3.37)

Assuming isotropic neutrino emission and a lack of temporal information, meaning we only

consider uncertainties in E and L, we can express P2,jk as it moves to the third layer via

P3,jk(L0, E0) ∝
∫
dL

∫
dE HL(L;L0)HE(E;E0)P2,jk(L,E). (3.38)

For a counting experiment, the transformation from the second layer to the third layer can be

understood as a convolution between the FTP on the second layer (which includes uncertainties

from the first layer) and the weighting function HX(X;X0), which represents the PDF of the

true value X for a measured value X0. Namely,

P3,jk(X0) =

∫
dX P2,jk(X)HX(X −X0). (3.39)

For instance, when considering the measured rate at L0, it doesn’t solely account for neutrinos

actually propagating the distance L0. Instead, it encompasses contributions from all possible

distances within a time window, considering the uncertainty in time. In the case of continuous

neutrino emission over a sufficiently long period of time, this time window is taken as infinite.

Particularly, he coordinate uncertainty, represented by HL(L;L0), arises from the convolution

of the spatial PDF of the neutrino production process and the detection process. Therefore, the

dominant source of uncertainty is typically the production PDF, which refers to the source profile

or the PDF characterizing neutrino production, because the largest among these uncertainties

will dominate.

Since Eq. (3.38) also results in a PWO effect, Fig. 3.4 is plotted in the same way as Fig. 3.3

such that the phase density of the weighting function can be visualized. However, unlike the

case of the Wigner-PS in Fig. 3.3, the separation of P2,jj(L,P) and P2,kk(L,P) affects the width

of P2,jk(L,P) (black dotted circle) on the relativistic-PS. In Fig. 3.4 the time-dependent case

for P2,jk on the physical layer is illustrated as an example. The phase structure is the same as

Eq. (3.30), and the spatial uncertainty is the same as Eq. (3.32). Nonetheless, since the effect

from D′
p is suppressed by the neutrino mass, in Eq. (3.31) we consider the second layer weighting

function HE(E;E0) solely for the energy uncertainty. Hence, with

P2jk(T, L,E;E0) = exp

[
−(E − E0)

2

2σ2
E

]
D′
x(T, L,E) eiψ

′
jk(T,L,E). (3.40)

we can show the contour lines in Fig. 3.4 for one standard deviation. To demonstrate how

the time-dependent phase structure would be affected by the alignment η, Fig. 3.4 is plotted

under two cases of η between ξp and ξ = ξj = ξk in Eq. (3.25). In addition, due to the energy

dependence of the group velocity in Eq. (3.28), we can also see that the heavier mass eigenstate

P2,jj (the yellow shaded area) is a bit tilted at large T . In reality, however, this tilting is
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η=0.99
η=0.01

T = 0 T = 20 T = 40

Figure 3.4: Same as Fig. 3.3, but demonstrating the FTP in Eq. (3.40) on the physical layer,
also assuming Gaussian distributed weighting functions. The differences between each FTP are
labeled on the figure, showing the time evolution of the FTP and the effect of the alignment
factor.

negligible, because the mass splitting is a lot smaller compared to the uncertainty of the energy,

σE . In Sec. ??, from time-independent version of these plots, we will show that Fig. 3.3 and

Fig. 3.4 correspond to state decoherence and phase decoherence, respectively.

3.4 Measurement Layer (Layer 3): Transition Probability

In this section, we arrive at the measurement layer, where we consider the collection of exper-

imental data. In addition to the uncertainties that have originated from the previous layers,

namely the phase space uncertainties (PSUs), the final data must also account for count uncer-

tainties (CUs). While the PSUs pertain to uncertainties in the phase space variables (such as

σx, σp, σL, and σE discussed earlier), the CUs relate to uncertainties in the neutrino flux. These

include statistical uncertainties and background uncertainties. In our likelihood/χ2 analysis in

Sec. 4.2, we will treat the PSUs and the CUs differently. Specifically, we will treat the CUs

as conventional “uncertainties” in the analysis, while the PSUs will be incorporated into the

theoretical prediction. The total count rate for energy-distance binned data is given by:

Ntot =

∫
L0 bin

dL0
1

4πL0

∫
E0 bin

dE0 Φ0(E0)D(E0)P3,αβ(L0, E0). (3.41)

Here, the CUs are encompassed within Φ0(E0), which represents the neutrino flux at L0 = 0,

accounting for production rate. The term D(E0) encapsulates the detection rate, including

the cross section pertinent to the detection process. Conversely, the PSUs are integrated into

P3,αβ(L0, E0), which signifies the FTP on the measurement layer. These PSU-related aspects

will be discussed in the following paragraph.
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Below, we demonstrate impact of PSUs on the FTP after integrating over the time-ignorant

FTP on the second layer. In the following, we take Gaussian PDFs for both HL(L;L0) and

HE(E;E0) for demonstration, the integration over L would result as

P semi
3,jk (L0, E) =

∫
dL exp

[
−(L− L0)

2

4σL

]
P2,jk(L,E)

= exp

[
i
∆m2

jkL
eff
0,jk

2E

]
exp

−
(
Leff
0,jk

)2
(
Lcoh
kj

)2 −

(
∆m2

jk∆L

2E

)2

−

(
∆m2

jk

2
√
2E

)2 [(
1− η

σp̄

)2

+ σ2
x̄

]
≃ exp

[
i
∆m2

jkL0

2E

]
exp

−(∆m2
jkσL

2E

)2

−

(
L0

Lcoh
kj

)2
 , (σx̄, 1/σp̄ ≪ σL ≪ Lcoh

jk , L0),

(3.42)

and the integration over E will be done numerically. The resulting FTP on the measurement

layer, P3(L0, E0) is plotted in Fig. 3.5 and Fig. 3.6. In Eq. (3.42), the total spatial uncertainty,

being the width of HL, would usually be dominated by σS , the width of the production profile.

This is because σ2
L = σ2

S+σ
2
D for neutrinos propagating in vacuum, and the the spatial resolution

of the detector σD would be subdominant. Consequently,

∆2
L =

σ2
L

(
Lcoh
kj

)2
4σ2

L +
(
Lcoh
kj

)2 , Leff
0,jk =

L0

(
Lcoh
kj

)2
4σ2

L +
(
Lcoh
kj

)2 . (3.43)

In the second line of Equation (3.42), the last two terms in the exponent represent locality

terms, indicating that a higher degree of local uncertainty (including σx̄, 1/σp̄, and σL), whether

microscopic or macroscopic, results in more smearing of the FTP. Since σx̄ and 1/σp̄ ≪ σL, the

macroscopic uncertainty dominates, as seen in the third line. As for the first term in the second

exponent, it modifies the coherence length by Lcoh
kj →

√
(Lcoh

kj )2 + 4σ2
L. However, since Lcoh

kj

is inversely proportional to the mass splitting of neutrinos, it is usually much larger than σL

for ground-based experiments. In this case, the microscopic uncertainty would dominate this

term. Nevertheless, for neutrinos produced in continuously emitting celestial objects for ex-

tended periods, the situation might be different [48]. For instance, the size of the Sun’s core

could be much larger than the coherence length in the three-neutrino paradigm. However, the

coherence length might be stretched out for neutrinos produced in extreme environments, such

as supernovae [49,50],or at ultra-high energies [51], leading to long oscillation lengths. Further-

more, since the integration
∫
dEHE(E;E0)P

,semi
3,jk (L0, E) satisfies the factorization condition in

Appendix B, we can express it as follows:

P3,jk(L0, E0) ≃ exp

−(∆m2
jkσL

2E0

)2

−

(
∆m2

jkσp̄L0

2
√
2E2

0

)2
∫ dE exp

[
i
∆m2

jkL0

2E

]
HE(E;E0).

(3.44)
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Figure 3.5: Three flavor FTP spectrum from electron neutrino to electron neutrino on the mea-
surement layer at L0 = 200 km (this distance is chosen such that decoherence effects are visible
in this energy range for some reasonable uncertainties). The black line represents completely
coherent FTP, and the coloured lines all have σp̄ = 0.4 MeV and σx̄ is negligible compared to
σL. We have σL = 0 m, σE = 0 MeV for the yellow line, σL = 5 m, σE = 0 MeV for the purple
line, σL = 0 m, σE = 0.1

√
E0 MeV for the red line, and σL = 5 m, σE = 0.1

√
E0 MeV for the

blue line. Here σL is chosen according to a typical reactor core size, σE is a typical detector
resolution and σp̄ is taken at a value such that it is comparable with σE .

Hence, the effects of HL on P3 hardly depend on L0, unless σL accumulates as L0 increases.

Utilizing oscillation parameters extracted from the NuFit 5.1 global fit results [52], we have

generated FTP plots for long-distance neutrinos, as presented in both Fig.3.5 and Fig.3.6.

These figures reveal key insights: the impact of decoherence, either in terms of damping or

phase shifts, is notably more pronounced at lower energies. This phenomenon is attributed to

the higher phase-density associated with lower energies, resulting from the reduced oscillation

length. Consequently, the Phase Width Overlap (PWO) effect is enhanced. Moreover, in the

context of long-distance scenarios, σL exhibits minimal impact, as it does not increase with L0.

Additionally, for Gaussian-distributed weighting functions, only σE introduces a phase shift, as

it is the only one asymmetric with respect to the phase structure. In contrast, in extremely

short baseline situations, as illustrated in the right panel of Fig. 3.6, sensitivity to σL surpasses

that of σp and σE , due to the same underlying principle. However, it’s crucial to note that this

effect is exceptionally small in comparison to long-distance scenarios. Nevertheless, it benefits

from larger statistics, scaling by a factor of L2
0.
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Figure 3.6: FTP from electron neutrino to electron neutrino as a function of L0/E0 on the
measurement layer for near (right) and far (left) detector. The lines are labels in the same way
as Fig. 3.5. We can identify more sensitivity to σL at near detectors while effects of σp̄ and σE
are more pronounced at far detectors.
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Chapter 4

Neutrino Decoherence Signatures
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Overview

With information loss occurring at different levels, quantum mechanical uncertainties provide

a parameterization for decoherence via an inherent effect of mass eigenstate separation. On

the other hand, decoherence stemming from classical uncertainties is typically dominated by

a statistical averaging process. In this chapter, we will illustrate that by leveraging the layer

structure, we can categorize the former as state decoherence (SD) and the latter as phase

decoherence (PD). Furthermore, we will establish that both SD and PD originate from PWO

effects associated with distinct phase structures on different layers. These effects lend themselves

to straightforward numerical calculations of decoherence, contingent upon the specific width and

shape of uncertainties. Furthermore, the distinction between difference decoherence parameters

comes from different dependence on the phase structure(s). Put differently, whereas quantum

coherence is reflected in the oscillation signature, decoherence can be characterized as a form

of washing-out of such signature. Therefore, the PWO effect arising from neutrino decoherence

results in a damping and/or phase shift signature to the oscillation by Ψjk in Eq. (2.2) for each

eigenstate interference.

In terms of the phenomenological aspects of neutrino decoherence, broadly speaking, obser-

vations of neutrinos for both long and short baseline experiments, as well as those from the

atmosphere, are best described by treating neutrinos as fully coherent. One can refer to [52] for

an updated global fit supporting this notion. On the other hand, for neutrinos produced outside
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the Earth, a fully incoherent description appears to be more appropriate. There have been

extensive discussions regarding various aspects of neutrino decoherence phenomena, including

general neutrino decoherence in reactor experiments [7,53,54]; gravitational fluctuations or cos-

mological effects leading to atmospheric neutrino decoherence [6, 16, 55, 56]; and matter effects

responsible for accelerator or atmospheric neutrino decoherence [20,57–60].

Our framework has the capacity to encompass all of these mechanisms and more, given that

it incorporates both the QFT approach and the concept of open quantum systems. Conse-

quently, instead of going into the specifics of these theories, we provide a general overview of

the measurable parameters they could potentially affect. Furthermore, we also consider de-

coherence effects arising from classical uncertainties due to the observer’s lack of knowledge,

such as uncertainties in the neutrino production profile (e.g., the exact shape of the neutrino

source) and the energy reconstruction model. We delve deeper into the analysis of damping

and phase shift signatures with respect to both classical and quantum mechanical uncertainty

parameters, focusing on reactor/decay-at-rest (DAR) neutrinos. Damping signatures, which are

anticipated in the literature mentioned earlier, are evaluated for their sensitivity by directly

analyzing the neutrino count rate using conventional methods. However, phase shift signals are

found to be less amenable to this approach. Instead, we explore the feasibility of measuring the

distance-dependent oscillation phase for phase shift signals.

4.1 Classification of Decoherence-like Signatures

4.1.1 Formalism

In this section, we will illustrate how neutrino decoherence can be further categorized into two

distinct types, one resulting from the separation of mass eigenstates leading to coherence loss,

and the other arising from statistical averaging effects. Within the framework of the layer

structure, we will demonstrate that both types of decoherence effects stem from PWO effects.

As a result, we formulate neutrino decoherence effects in terms of a damping term (ϕjk) and a

phase shift term (βjk), expressed as follows:

P3,jk(X3) = ei[ψjk(X3)−βjk(X3;σ⃗)]ϕjk(X3; σ⃗), (4.1)

for

P3,αβ(X3) =
∑
j,k

U∗
αjUβjUαkU

∗
βkP3,jk(X3), (4.2)

where P3,αβ(X3) =
∑
j

∑
k P3,jk(X3). Here, ψjk represents the phase structure on the second

layer, as discussed in Eq. (3.30). The vector σ⃗ = σ⃗x, σ⃗p, σ⃗L, σ⃗E , σ⃗T encompasses parameters

describing the weighting functions, such as the width and asymmetry parameters associated

with each variable.

In general, X3 includes temporal, spatial, energy, spatial solid angle, and momentum solid

angle variables for the third layer. For isotropic neutrinos, X3 = T0, L0, E0, and in the case of
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neutrinos continuously emitted over a sufficiently long period, X3 = L0, E0. For simplicity, this

thesis considers only these latter two cases. Specifically, if all the weighting PDFs are Gaussian

distributions, then the damping term can be parameterized as:

ϕjk(X3) = e−[∆m
2
jkγ(X3;σ⃗)]

2

. (4.3)

Additionally, it is essential to define the operational FTP, since P3,jk is on the measurement

layer. We define the FTP for each P3,jk(X3) as the ratio between the total count with and

without oscillation, as follows:

P3,jk(X3) =

∫
dX2H(X2;X3) Γ2,jk(X2;X3)√∫

dX2H(X2;X3) Γ2,jj(X2;X3)
√∫

dX2H(X2;X3) Γ2,kk(X2;X3)
, (4.4)

where Γ2,jk(X2;X3) ∝ P2,jk(X2;X3) represents the un-normalized FTP on the second layer,

and X2 corresponds to the second layer variables analogous to X3. It is important to note that,

with this definition, P3,jk(X3) is independent of the scaling of the weighting functions on each

layer and is solely determined by their widths and shapes.

One might raise concerns regarding the validity of the definition provided in Eq. (4.4), as it

measures the FTP by considering the total P3,αβ rather than each P3,jk individually. However,

from a theoretical perspective, it is indeed possible to measure P3,jk by employing an approach

where the denominator is measured with precision to determine the exact neutrino mass. This

would be accomplished through a well-controlled oscillation experiment. It’s worth noting that

in a mass-measuring experiment, oscillation doesn’t occur since the neutrino’s mass eigenstate is

precisely known. Therefore, such an experiment serves the purpose of normalizing an oscillation

experiment. In the context of neutrino mixing, where only two mass eigenstates (with eigenvalues

mj and mk) are involved and sensitive, the numerator in Eq. (4.4) can be obtained through

oscillation experiments. Furthermore, due to the smallness of the mass splitting, the shape of the

weighting functions on each layer can be approximated as being independent of the indices j and

k. Consequently, we can express Γ2,jj(X2;X3) = Γ2,kk(X2;X3) = Γpro
α (X2;X3)σ

det
β (X2;X3).

Here, Γpro
α (X2;X3) represents the production rate for flavor α, and σdet

β (X2;X3) is the detection

cross section for flavor β. In this scenario, the difference between the weighting functions only

arises from the distinct group velocities vj , which becomes relevant when j ̸= k. Consequently,

the FTP can be expressed as:

P3,α→β(X3) =

∑
j,k U

∗
αjUβjUαkU

∗
βk

∫
dX2H(X2;X3) Γ2,jk(X2;X3)∫

dX2Γ
pro
α (X2)σdet

β (X2)H(X2;X3)
. (4.5)

This expression, along with its conditions for the uncertainties to be independent of j and k,

align with the formulation in [28].
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Additionally, the definition presented in Eq. (4.4) inherently normalizes as follows:∑
α

P3,αβ =
∑
β

P3,α→β = 1. (4.6)

This normalization is achieved without imposing any further conditions since it implies that

P3,jj = 1 for any value of j. This condition ensures that:∑
α

P3,α→β =
∑
j,k

∑
α

U∗
αjUαkUβjU

∗
βk P3jk =

∑
j,k

δjkUβjU
∗
βk P3,jk =

∑
j

UβjU
∗
βj P3,jj = 1, (4.7)

and similarly for
∑
β P3,αβ = 1. This result remains consistent as long as 0 ≤ UβjU

∗
βj ≤ 1 and

0 ≤ P3,jj ≤ 1 for all values of j. In essence, the normalization condition is satisfied if and only

if P3,jj = 1.

Moreover, Eq. (4.4) can also be employed to analyze the decoherence effect by expressing it

as follows:

P3,jk(X3) ≡ S3,jk(X3) Φ3,jk(X3) e
iψjk(X3). (4.8)

In this equation, we have introduced two functions:

S3,jk(X3) =

∫
dX2H|Γ2,jk|√∫

dX2H Γ2,jj

√∫
dX2H Γ2,kk

, (4.9)

and

Φ3,jk(X3) =

∫
dX2H Γ2,jk∫
dX2H|Γ2,jk|

e−iψjk . (4.10)

Here, for simplicity, we have denoted H ≡ H(X2;X3), Γ2jk ≡ Γ2jk(X2;X3), and θjk ≡ θjk(X3).

Both functions in Eq.(4.9) and Eq.(4.10) serve as the decoherence terms. They are both

unitary in the fully coherent case, with their modulus being less than or equal to 1 in general.

Specifically, S3,jk represents the probability of overlap between the two mass states. In this

context, we refer to it as “the state decoherence (SD) term”. When S3,jk(X3) = 1, it signifies

that the two mass eigenstates are entirely overlapping, implying that jth and kth eigenstate

are fully in coherent. On the other hand, Φ3,jk gives us insight into the PWO effect introduced

in previous sections. Hence, we label this part as “the phase decoherence (PD) term”. When

Φ3,jk(X3) = 1, it indicates that there is no PWO effect occurring on the physical layer, where

no decoherence signature will be observed from this term.

We can illustrate the separation of the decoherence term into SD and PD in Eq.(4.8) using

a visual representation, as demonstrated in Fig.4.1. To achieve this, we insert the identity

1 =
∫
dX2H|Γ2,jk|, e−iψjk/

∫
dX2H|Γ2,jk|, e−iψjk into Eq. (4.4). In the figure, the blue and red

shaded circles represent two distinct mass eigenstates on the physical layer. The total FTP

corresponds to the purple area in the numerator of the phase decoherence term normalized by

the purple area in the denominator of the state decoherence term. Consequently, SD denotes

the probability of the two mass eigenstates being in a superposition on the relativistic-PS. On
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State decoherence term Phase decoherence term 

× × eiψjkP3,jk =

Figure 4.1: Demonstration of how we separate the FTP defined in Eq. (4.4) into two terms:
the state decoherence term and the phase decoherence term in Eq. (4.9) and Eq. (4.10) in terms
of probability. The blue and red shaded circles represent two different mass eigenstates on the
physical layer, and while the state decoherence term represents the separation of the two mass
eigenstates, the phase decoherence term demonstrates a phase wash-out effect.

the other hand, PD reflects our uncertainty about the system on the relativistic-PS, achieved

by averaging over all possible scenarios. More specifically, in alignment with Eq. (3.42), the

term involving the coherence length describing the WP separation represents SD, while the

localization term signifies PD. Therefore, we can anticipate that the SD term will be primarily

influenced by the (microscopic) uncertainties on the first layer, while the PD term will be largely

affected by the (macroscopic) uncertainties on the second layer.

4.1.2 State Decoherence

In this section, we will demonstrate how the SD term can be subjected to a further analysis and

approximation. Ultimately, we will establish that despite SD representing state separation on

the physical layer (2nd layer), it can be considered equivalent to a PWO effect on the Wigner-PS

(1st layer) in most scenarios. Consequently, the primary sources of uncertainty that dominate

SD are those involved in the first layer, namely σx and σp.

• σx (coordinate uncertainty on the Fock-PS ∋ layer 1): This uncertainty arises from intrinsic

off-shell effects associated with the finite space-time extent of the vertices, which, in turn,

depend on the neutrino interaction occurring at the production and detection sites. In

fact, when a Fourier transformation of the weighting function gP /gD is preformed, it

results in an effective form factor that depends on the neutrino momentum. This can be

observed by integrating out x1/x2 in Eq. (2.30). Consequently, depending on the nature

of the interaction, σx may represent the charge radius of the proton or neutron, which is

typically on the order of 0.1−1 fm, as noted in [61], or even the inter-atomic distance, which

can be at a scale of 0.1−1 nm, as discussed in [62]. In Sec. 3.1, we accounted for sources of

uncertainty as unrelated spatial and temporal uncertainties (as they are not constrained

to the mass-shell) for both the production and detection locations in the computation of

the transition amplitude. In Sec. 2.2.2, we have demonstrated that σx combines these

sources of uncertainty in a convolution-like manner, and thus, it is primarily influenced by

the largest source of uncertainty.
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• σp (momentum uncertainty on the Fock-PS ∋ layer 1): This uncertainty originates from the

WP description of the external states at a quantum mechanical level, which also becomes

apparent when we compute the transition amplitude. To illustrate, σp is closely related to

the mean free path of interactions that occur before the external particles engage with the

neutrinos or the lifetime of the parent particles, as discussed in [32, 42]. Furthermore, as

the external particles are on the mass-shell, the energy uncertainties are intrinsically linked

to the momentum uncertainties. Unlike σx, σp combines various sources of uncertainty,

encompassing the momentum and energy uncertainties in both production and detection

processes, in a product manner. Consequently, the smallest among these uncertainties

tends to dominate. However, the total momentum uncertainty at each site results from

the convolution of the initial and final state WPs, thus, it is the smaller of the two that

typically prevails, as explained in Sec. 2.2.2.

We stress that σp and σx are independent of each other, and both can be characterized

in either coordinate space or momentum space. The distinction between these two types of

uncertainties lies in whether they originate from uncertainties associated with the external states

or the effective vertices (internal states). Furthermore, as demonstrated in Sec.3.3 and Sec.3.4,

it is more convenient to express the width of the quasi-probability distribution in terms of

σx̄ = σx/∆ and σp̄ = σp/∆, where ∆ = 1 + 4σ2
xσ

2
p.

• σx̄ (coordinate uncertainty on the Wigner-PS ∋ layer 1): By Eq. (4.20), the damping term

in Eq. (4.3) for a time-independent Gaussian distributed PDF is

γx =
σx̄

2
√
2E0

. (4.11)

Nevertheless, as we will demonstrate in the following section, this structure is identical

to that of σL, which is typically macroscopic, and consequently, it can be disregarded

comparably.

• σp̄ (momentum uncertainty on the Wigner-PS ∋ layer 1): The damping term in Eq. (4.3)

would be

γp =
σp̄L0

2
√
2E2

0

, (4.12)

for a time-independent Gaussian distributed PDF, according to Eq. (3.34). Here, the time-

dependent component can be accounted for by substituting L0 with T0. Consequently, the

decoherence effect arising from σp̄ should be sought for at longer distances. Such effects

have been extensively researched and examined, particularly for reactor neutrinos, as seen

in [53,54]. These studies exclude values of (2σp̄)
−1 below 2.08× 10−4 nm at a 90% confi-

dence level. In fact, (2σp̄)
−1 characterizes the total spatial uncertainty, encompassing both

the production and detection regions. Hence, in the ensuing discussion, we occasionally

consider σp̄ to be approximately 0.1 MeV as a ”reasonable” value. This value corresponds

to (2σp̄)
−1 ∼ 10−3 nm, which falls within the range of the proton/neutron charge radius
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and the inter-atomic distance (typically around 0.1–1 nm), as estimated in [62] for reactor

neutrinos.

To derive the State Decoherence (SD), we can begin by expressing the SD term using Eq. (4.9)

as

S3,jk(X3) =

∫
dX2H|Γ2,jk|√∫

dX2H Γ2,jj

√∫
dX2H Γ2,jj

=

∫
dX2HS2,jkΦ2,jk√∫

dX2H Φ2,jj

√∫
dX2H Φ2,jj

, (4.13)

where we replace Γ2,jk with

Γ2,jk = |Γ2,jk|eiψjk = S2,jk Φ2,jke
iψjk and Φ2,jk(X2) =

∫
d3x̄

∫
d3p̄ |Γ1,jk(¯̄x, ¯̄p;X2)|. (4.14)

Here, S2,jk = S2,jk(X2), Φ2,jk = Φ2,jk(X2), and ψjk = ψjk(X2). Additionally, according

to Eq. (3.29), ψjj(X2) = 0 for any j, and Γ1̄,jk(¯̄x, ¯̄p;X2) ∝ P1̄,jk(¯̄x, ¯̄p;X2) represents the

un-normalized transition probability distribution on the Wigner-PS, such that Γ2,jk(X2) =∫
d3x̄

∫
d3p̄,Γ1̄,jk(¯̄x, ¯̄p;X2). Thus, the remaining term becomes:

S2,jk(X2) = e−iψjk

∫
d3x̄

∫
d3p̄Γ1,jk(¯̄x, ¯̄p;X2)∫

d3x̄
∫
d3p̄ |Γ1,jk(¯̄x, ¯̄p;X2)|

≡ e−iψjk

∫
d3x̄

∫
d3p̄ D̄jk(¯̄x, ¯̄p;X2)e

iη̄jk(X2)∫
d3x̄

∫
d3p̄ D̄jk(¯̄x, ¯̄p;X2)

,

(4.15)

This shows that S2jj(X2) = 1, since ψjj = ηjj = 0 for all j. Therefore, we only need to consider

the terms dependent on x̄ and p̄ for D̄jk. In fact, Eq.(4.15) has the same form of a PWO effect

(Eq.(A.3)) with the phase structure η̄jk averaged within the normalized D̄jk region.

For example, if we consider Gaussian distributed weighting functions as in Eq. (3.19), then

D̄jk(¯̄x, ¯̄p;T,L, E) = exp

[
−
(
¯̄x− L̄jk/∆

)2
2σ2

x̄

]
exp

[
−
(
¯̄p− P̄jk

)2
2σ2

p̄

]
. (4.16)

The phase structure is generally given by:

η̄jk(¯̄x, ¯̄p;T,E) = −iT ¯̄p (vj − vk) + i∆ ¯̄x (Pj −Pk), (4.17)

where the relation between T,L, E and L̄jk, P̄jk,Pj ,Pk is provided in Sec. ??.

In the following discussion, we will assume isotropic distributions and simplify the scenario

to one dimension. From Appendix B, we observe that the first approximation in Eq. (4.18)

can be made in the limit of X3 ≫ ∆X2 and σS ≫ ∆X2 . Here, we have taken σS and ∆X2 as

the width of S2,jk(X2) and Y2,jk(X2;X3) ≡ H(X2;X3)Φ2,jk(X2), respectively, when applying

Appendix B. This factorization condition implies neglecting the uncertainty of X3 on the second

layer for the term that can be taken out of the integral, i.e., X2 ≃ X3, in S2,jk for some ∆X2 .

At the same time, σS cannot be neglected to maintain SD. Furthermore, if the total uncertainty

∆X2 is predominantly due to the physical layer uncertainty H, as is the case for macroscopic

measurements, then Y2,jk(X2) ≃ Y2,jj(X2) ≃ Y2,kk(X2), leading us to the second approximation



50 4.1. Classification of Decoherence-like Signatures

in the following equation:

S3,jk(X3) ≃ S2,jk(X2)

∣∣∣∣
X2=X3

∫
dX2Y2,jk√∫

dX2 Y2,jj

√∫
dX2 Y2,kk

≃ S2,jk(X2)

∣∣∣∣
X2=X3

. (4.18)

The comparison between the width sizes of S2,jk, Φ2,jk, and H can be assessed by assuming

Gaussian distributions for the weighting functions on each layer. Specifically, for both S2,jk

(with width σS,X2) and Φ2,jk (with width σΦ,X2), we can use Eq. (3.12). As for H(X2) (with

width σH,X2), we can simply represent it as a Gaussian distribution around X3. In this scenario,

we have the following expressions for Φjk and Sjk:

Φ2,jk(L,E, T ) = exp

[
−
(Lj + Lk)

2σ2
p̄

2
− (Pj + Pk)

2σ2
x̄

2

]
, (4.19)

and

S2,jk(L,E, T ) = exp

[
−
(Lj − Lk)

2σ2
p̄

2
− (Pj − Pk)

2σ2
x̄

2

]
. (4.20)

Therefore, the width of Φjk with respect to L and T is given by σΦ,L = (2σp̄)
−1 and σPhi,T =

[σp̄(vj + vk)]
−1 ≃ E2[σp(m

2
j +m2

k)]
−1, respectively. For Sjk, the width with respect to L and T

is σS,T = [σp̄(vj − vk)]
−1 ≃ E2[σp(m

2
j −m2

k)]
−1, while σS,L → ∞ for the time-dependent case,

as S2,jk does not depend on L.

In terms of energy uncertainties, we have:

σΦ,E =

∫
dE exp

−1

2

(
2L− T

m2
j +m2

k

2E2

)2

σ2
p̄ −

1

2

(
2E +

m2
j +m2

k

2E

)2

σ2
x̄

 (4.21)

and

σS,E =

∫
dE exp

−1

2

(
T
m2
j −m2

k

2E2

)2

σ2
p̄ −

1

2

(
m2
j −m2

k

2E

)2

σ2
x̄

 . (4.22)

Due to the 1/E dependence, the exponent in Eq. (4.22) approaches 1 as E approaches infinity,

resulting in a divergence of σS,E . Consequently, the width σΦ,E also becomes very large in

such cases. Therefore, σH,L ≪ σPhi,L, σS,L and σH,E ≪ σPhi,E , σS,E . This indicates that the

macroscopic uncertainty σH,L, σH,E will dominate over the transferred microscopic ones of Φ2,jk

for Y2,jk(X2;X3) in Eq. (4.18). As a result, we can approximate ∆L ≃ σH,L and ∆E ≃ σH,E .

In summary, the factorization condition for Eq. (4.18) is satisfied for the L and E components if

the measured values L0 and E0 are much larger than σH,L and σH,E . This condition is typically

met in neutrino experiments with the resolution required to measure neutrino oscillations.

Regarding the temporal aspect, we will explore two scenarios: one where σH,T is much

smaller than σΦ,T and σS,T , and another where σH,T approaches infinity. If neither of these

situations applies, it’s necessary to perform an integration over the variable T while considering

the influence of HT . In the former case, where σH,T is significantly smaller than σΦ,T and σS,T ,
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L0 = 5, E0 = 10 L0 = 10, E0 = 10 L0 = 15, E0 = 10

L0 = 5, E0 = 5 L0 = 10, E0 = 5 L0 = 15, E0 = 5

State decoherence Phase decoherence

Figure 4.2: Demonstration of time-independent state decoherence (left plot) and phase de-
coherence (right plot) plotted in a similar fashion as Fig. 3.3 and Fig. 3.4, both representing
phase wash-out effects. The former is in the Wigner phase space on layer 1, while the latter
is in the relativistic phase space on layer 2. The coloured contour plot in the background is
the oscillating phase structure plotted as cos(ηjk) (left plot) and cos(ψjk) (right plot), on the
corresponding layer. The outer red (blue) circles are the level for two standard deviations of
positive (negative) values of the time-independent P1̄,jk(X1;X3) (left plot) and P2,jk(X2;X3)
(right plot) for weighting functions Eq. (4.24) and Gaussian distributed HL/HE , respectively.
The inner circle (if there is one), is the contour for one standard deviation. Also, the black
dashed line is the contour for two standard deviations of the weighting functions.

the condition for factorization with respect to the variable T is met. Here, H(X2) dominates

over Φ2,jk(X2) for all X2 = L,E, T , resulting in S3,jk(X3) ≈ S2,jk(X3). Consequently, we

can directly obtain the time-dependent SD weighting function D′jk(x̄, p̄;T0, L0, E0) and phase

structure η′jk by substituting X2 with X3. In particular, if all quantum uncertainties follow

Gaussian distributions, then D′jk corresponds to D̄jk(x̄, p̄;T0, L0, E0), and η′jk aligns with

η̄jk(p̄, x̄;T0, E0). To illustrate this time-dependent PWO effect, we have provided a visual

representation in Fig.3.3. This effect intensifies as the wave packets of two states separate over

time. Importantly, this phenomenon can be translated into WP separation on the physical layer,

as described in Eq.(4.13) and visualized in Fig. 4.1.

On the other hand, if we have no temporal information during the detection process, meaning

σH,T → ∞, thenX2 = T should be integrated out in Eq. (4.13) before looking at the SD term. In

this case, after the approximation given in Eqs. (3.24)-(3.27) and including terms up to O(m2),

the Gaussian example in Eq. (3.12), leads to

ηjk(x̄, p̄;L,E)|L=L0,E=E0
= i

∆m2
jk

2E0

[
(∆x̄− L0)

p̄

E0
−∆ η x̄

]
. (4.23)
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As illustrated in the left plot of Fig. 4.2. Furthermore, the time-independent SD weighting

function is

Djk(x̄, p̄;E0) ≃ exp

−2x̄2σ2
p̄ −

(
p̄− E0 + (m2

j +m2
k)/2E0

)2
2σ2

p̄

−

(
∆m2

jk

√
∆σx̄

2
√
2E2

)2

p̄2

 . (4.24)

In the left panel of Fig. 4.2, we illustrate the PWO effect based on the aforementioned phase

structure and weighting functions. In this visualization, we set η = 1, σx̄ = 0, and amplify

∆m2
jk to be one order smaller than E0 for clarity. However, when ∆m2

jk ≪ E0, the integration

over x̄ has a negligible contribution to S3,jk. Consequently, the SD term can be approximated

as follows:

S3,jk(L0, E0) ≃ exp

(
i
∆m2

jkL0

2E0

) ∫
dp̄Djk,σp̄(p̄;E0) exp

(
−i∆m

2
jkL0

2E2
0

p̄
)

∫
dp̄Djk,σp̄

(p̄;E0)
. (4.25)

Here, Djk,σp̄
represents a product of three Gaussian distributions. Furthermore, for E0 ≫ m2

j

E0
,

the dominant contribution comes from the distribution with a width of
σp̄

2 centered at E0.

The phase structure becomes approximately ηjk ≃ −∆m2
jk,p̄,L0

2E2
0

. This behavior is evident from

the upper row in the left panel of Fig. 4.2, where phase averaging primarily results from the

integration over p̄. Consequently, SD is mainly determined by the Wigner distribution with

respect to p̄, and we can refer to this as Dp̄-induced decoherence. It’s worth noting that the

resulting SD term, S3,jk, arising from this type of PWO effect not only aligns with the standard

decoherence formula in Eq. (3.35) but also underscores that the dependence on L0 and E0 is a

consequence of the phase structure.

Furthermore, although we have illustrated the case where all weighting functions follow

Gaussian distributions, it’s important to note that the phase structure remains applicable to

arbitrary distributions, provided the saddle point approximation is employed in Eq. 3.18. Hence,

since the phase structure essentially implies a Fourier transformation from p̄ to αjk =
∆m2

jkL0

2E2
0

,

we have depicted the damping term and phase shift term resulting from SD for various typical

distributions in Fig. 4.3. In particular, the single Gaussian case represents a standard statistical

distribution for a single process. The two-Gaussian case takes into account neutrinos that

are simultaneously produced by two distinct processes, each with slightly different expectation

values for momentum. The other two distributions are better suited for describing an HL-

induced PD effect, which we will delve into in the subsequent subsection. A more comprehensive

discussion of this plot will be provided alongside the HE-induced PD effect. Nevertheless, since

both decoherence effects can be characterized by Fourier transformations, albeit with different

spatial mappings, we present both effects within the same plot. This demonstrates that distinct

sources of decoherence can be discerned based on their dependencies on (L0, E0), which stem

from differences in their underlying phase structures.

In summary, while SD characterizes the separation of two mass eigenstates on the physical

layer, quantified by the overlapping area between them (as illustrated in Fig. 4.1), the situation
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changes when we shift our focus to the Wigner-PS. As depicted in Fig.3.3, we observe that

the width of P1̄,jk does not decrease as the two mass eigenstates, P1̄,jj and P1̄,kk, move apart.

However, the phase density increases as these two mass eigenstates separate, resulting in a

stronger PWO effect. This ultimately yields the same outcome as calculating the extent of

overlap between two mass eigenstates on the physical layer. Furthermore, from the colored

background in Fig.4.2, it’s evident that the phase structure varies with the PS variables on the

third layer, namely T0, L0, and E0. However, the width of the overlapping weighting function

remains constant. In the case of the left plot, which represents the time-independent scenario

with σH,T → ∞, it is clear that there is no dependence on T0. Conversely, in the time-dependent

scenario shown in Fig.3.3, it emerges that there is no dependence on L0. This happens because

in Lj −Lk, the common factor L cancels out, as shown in Eq. (3.19) or directly from Eq. (4.20).
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Figure 4.3: Decoherence damping terms (second row) and phase shift terms (third row) for
different shaped weighting functions (first row) ofHL-induced orDp̄-induced decoherence. While
both types of decoherence are described by Fourier transformation, the former transfers from
L space to the αjk = ∆m2

jk/(2E0) corresponding to Eq. (4.30); and the later from p̄ to αjk =

∆m2
jkL0/(2E

2
0) relates to Eq. (4.25). In particular, the same coloured lines represent weighting

functions with the same widths.
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4.1.3 Phase Decoherence

In this section, we will demonstrate that the primary factors governing the influence of PD are

the macroscopic uncertainties, which are outlined as follows:

• σL (coordinate uncertainty on the relativistic-PS ∋ layer 2): This uncertainty primarily

arises from the macroscopic spatial uncertainties of the entire process, with its dominant

contribution coming from the production profile of the neutrino source, especially in cases

of vacuum propagation. Unlike σx, σL does not factor into the Feynman diagram (Fig. 2.2)

for calculating the transition amplitude. Instead, it reflects the uncertainty associated with

the transition probability on the second layer. For example, σL could be determined by

factors such as the size of the reactor core (around 3-5 meters) for reactor neutrinos or

the distance traveled by mesons/muons before they decay into neutrinos in accelerator

experiments. In the case of Gaussian-distributed PDFs, the damping term in Eq. (4.3)

can be well-approximated as

γL ∝ σLE
−1
0 , (4.26)

especially when the mass splitting is small, as observed when integrating out the energy

variable E in Eq. (3.42). In other words, this damping term is nearly independent of the

traveling distance. Therefore, it is advantageous to search for such effects close to the

neutrino source to achieve higher statistics. In Fig. 4.3, we illustrate the effects of PD for

various production profiles:

– The one Gaussian PDF is suitable for neutrinos produced at rest, such as reactor

neutrinos and DAR neutrinos.

– The two Gaussian PDFs are shown for scenarios with multiple sources and/or detec-

tors.

– The box PDF is appropriate when experimental constraints, like the geometry of

accelerator or reactor components, dictate a simplified box-shaped production profile.

– The exponential decaying PDF is suitable for neutrinos produced by decaying parti-

cles in flight, such as accelerator neutrinos and atmospheric neutrinos.

However, if the propagation process itself contributes to σL, then σL will accumulate over

distance. This can occur due to matter effects [60] or some exotic effects [16,21,22,51], as

mentioned in the literature. In such cases, σ2
L can be proportional to L0, in agreement with

the dependence on the traveling distance in the damping term calculated by the Lindblad

equation, which is often used in the studies mentioned above.

• σE (energy uncertainty on the relativistic-PS ∋ layer 2): This uncertainty is primarily

determined by the energy resolution of the experimental apparatus and the reconstruction

model employed in the experiment. Typically, in the case of neutrinos detected using

photomultiplier tubes, the energy resolution is characterized by σE = σ0
E

√
E0, where σ

0
E

typically falls within the range of approximately O(0.1)
√
MeV. Furthermore, different
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Figure 4.4: Phase decoherence by the macroscopic energy uncertainty σE on the physical layer
as a phase wash-out effect. Including a damping term and a phase shift term in Eq. (4.1) for
different shapes of HE with the same widths (σE/

√
E0 = 0.1

√
MeV for the blue line, σE/

√
E0 =

0.2
√
MeV for the red line), at energy E0 = 10 MeV.

sources contribute to the uncertainty related to the energy reconstruction model. For

instance, factors like the degree of quasi-elastic scattering, as discussed in [44] and [45],

can lead to a tail in the energy distribution HE . Additionally, the 1/E dependence in ψjk

causes the energy resolution σE to be asymmetric with respect to the phase structure,

resulting in a phase shift even for a Gaussian-distributed PDF. Numerical simulations, as

depicted in Fig. 4.4, illustrate this effect. These numerical results allow us to see how σE

behaves concerning E0 and L0. For example, Fig. 3.5 demonstrates that the impact of σE

increases with L0 in a manner comparable to the behavior of σp̄.

Similarly to SD, PD also characterizes a PWO effect, which becomes evident from its defi-

nition:

Φ3,jk(X3) = e−iψjk(X3)

∫
dX2Y

′
2,jk(X2;X3)e

ψjk(X2). (4.27)

In this equation,

Y ′
2,jk(X2;X3) =

S2,jk(X2)Φ2,jk(X2)H(X2;X3)∫
dX2S2,jk(X2)Φ2,jk(X2)H(X2;X3)

(4.28)
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represents a real and normalized PDF, with the primary influence coming from the macroscopic

weighting function HX2
for X2 = L,E on the second layer. In cases where σH,T ≪ σS,T , σΦ,T ,

Y ′
2,jk is predominantly shaped by the macroscopic weighting functions. In this scenario, the

phase structure is described by:

ψ′
jk(T,L, E) = −i(Ej − Ek)T + i(Pj −Pk)L. (4.29)

Conversely, if temporal information is unavailable, one should integrate over the time variable T

before examining the decoherence effect. For the time-dependent scenario, the phase structure

up to O(m2) is given by Eq.(3.30), while for the time-independent case, it is represented by

Eq.(3.33).

When the factorization condition is satisfied for integrating out L, Eq. (4.27) becomes:

Φ3,jk(L0, E0) ≃ e−i2∆m
2
jk

L0
E0

∫
dLHL(L;L0)e

i∆m2
jk

L
E0

∫
dEHE(E;E0)e

i∆m2
jk

L0
E . (4.30)

This factorization is valid for the time-independent case, where both HL(L;L0) and HE(E;E0)

are normalized PDFs. Consequently, we can consider the (macroscopic) coordinate and energy

uncertainties on the second layer as distinct PWO effects. We refer to the former as HL-induced

PD and the latter as HE-induced PD. In Fig. 4.3 and Fig. 4.4, we illustrate these two PWO

effects, respectively, using weighting functionsHL andHE modeled as PDFs with the same width

for the same-colored lines. In other words,
∫
dX2HX2

= 1 and maxHX2
(X2) = 1/(σX2

√
2π),

following our definition of “width” in Appendix A. The sole parameter for the two figures

depicting the PWO effect on the second layer is the width σX2
, for a given L0 or E0. For

instance, we use σL = 1 m for the blue and yellow lines, and σL = 2 m for the red line in Fig.4.3,

at a distance L0 = 10 m. For Fig. 4.4, we employ σE/
√
E0 = 0.1

√
MeV for the blue line, and

σE/
√
E0 = 0.2

√
MeV for the red line, at an energy E0 = 10 MeV.

In particular, much like the Dp̄-induced SD, HL-induced PD takes the form of a Fourier

transformation from L to αjk = ∆m2
jk/(2E0), as shown in Fig. 4.3. For example, a Gaussian

PDF transforms into a Gaussian distribution in the ∆m2
jk/E0 space; the box PDF transforms

into a sinc function; and the PDF representing exponential decay (for neutrinos produced by

decaying charged leptons) is transformed into a Lorentzian function. Regarding the phase shift

term, Appendix B reveals that only the asymmetric functions (the yellow-lined two Gaussian

PDF and the exponential decaying PDF) have a non-zero and non-π phase shift. For symmetric

ones, although there is no phase shift for a single Gaussian PDF, the phase ranges shift from

0 to π (still with no imaginary part) for the box PDF and the symmetric two-Gaussian PDF

due to negative values of the function resulting from the Fourier transformation. However, due

to the smallness of the neutrino mass splitting, αjk is typically small for both Dp̄-induced and

HL-induced decoherence effects. Consequently, the range of interest lies within a small range

around αjk → 0, where the phase is zero for asymmetric cases. On the other hand, irrespective

of how “symmetric” the weighting PDF spectrum may appear, it is not symmetric with respect

to 1/E. As a result, there will always be a non-trivial HE-induced phase shift, even for a
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Gaussian-distributed PDF. Furthermore, it is evident that the larger the width of the PDF,

the more significant the decoherence effect becomes, both in terms of the damping term and

the phase shift term. Ultimately, if we observe any phase structure dependence in the damping

term and/or the phase shift term, such as those in Fig.4.3 and Fig.4.4, we should be able to

reconstruct the production profile and cross-verify the energy reconstruction model.

Comparing PD with SD, both phenomena originate from the PWO effect, but they exhibit

distinct phase structures denoted as:

case phase structure PDF

time-dependent SD η′jk D′
jk

time-dependent PD ψ′
jk HT , HL, HE

time-independent SD ηjk Djk ≃ Dp̄

time-independent PD ψjk HL, HE

In particular, for SD, both the phase structure and the PDF vary with L0 and E0, while in the

case of PD, only the mean of the PDF does. This structural difference is shown in the right

panel of Fig. 4.2, where the phase structure in the background solely depends on the second

layer PS variables, L and E, without any dependence on the third-layer PS variables, L0 and

E0. This implies that the second and third layers share the same coherent phase structure,

but not with the first layer. The third-layer phase space only determines the centering of the

weighting functions, and when it occurs in a region of higher phase density (at lower energy or

greater distance), the PWO effect becomes stronger. To illustrate the PWO effect for the time-

independent case, Fig. 4.2 is presented in a manner similar to Fig. 3.3 and Fig. 3.4. Additionally,

it showcases the phase structures on the Wigner-PS and the relativistic-PS, respectively, in the

colored background. The final observable effects on the measurement layer due to SD, HL-

induced PD, and HE-induced PD are further depicted in Fig. 4.3 and Fig. 4.4.

The advantage of framing the SD and PD effects in terms of the PWO effect lies in the

ability to numerically estimate decoherence using only the weighting functions as input. The

steps for numerically estimating SD/PD effects are straightforward:

1. Determine the weighting functions on the Wigner-PS and the relativistic-PS.

2. Multiply these functions by the corresponding phase structures.

3. Integrate out the respective phase space variables.

These integration steps are guaranteed to converge because the weighting functions are local-

ized and concentrated around the next level of phase space variables. Even for the simplest

phase structure, such as the time-independent case on layer 2, the PD terms can be evaluated

numerically, as demonstrated in Fig. 4.4. In principle, by analyzing the waveform and spectrum

of neutrino oscillations, it should be possible to reconstruct the weighting functions once their

corresponding phase structure is identified.



58 4.2. Spectral Analysis

4.2 Spectral Analysis

From the previous section, we have established that neutrino decoherence effects fall into two

categories: SD and PD, both arising as a consequence of a PWO effect. Consequently, both of

these effects yield damping terms and phase shift terms, with the latter being significant only

when the weighting function lacks symmetry with respect to the phase structure. To be specific,

SD is primarily determined by the (microscopic) uncertainties of the first layer, characterized

by σx and σp, whereas PD is controlled by the (macroscopic) uncertainties of the second layer,

encompassing σT , σL, and σE . However, only σp̄ from the first layer uncertainties is observable,

given that σx̄ is much smaller than σL. Furthermore, in this section, we exclusively consider the

time-independent scenario since contemporary experiments, as shown in Fig. 4.5, continuously

emit neutrinos over a sufficiently extended duration, thereby making σT tend towards infinity.

In addition, as awe parameterize the uncertainties of the first layer as σx̄ and σp̄, only σp̄

remains as a valid observational parameter, because σx̄ is absorbed by σL. In this section, we

aim to estimate our experimental proximity to achieving a 90% confidence level sensitivity for

the detecting damping signatures, as outlined in Eq. (4.1), stemming from the Dp̄-induced SD,

HL-induced PD, and HE-induced PD. Such analysis would not be sensitive to the phase-shift

signature, as we will show in the next section.

Concerning the damping signatures, we assume that all weighting functions follow single

Gaussian distributions. Consequently, the damping term can be parameterized by σp̄, σL, and

σE as expressed in the equation below:

ϕjk = exp

−(∆m2
jkσp̄L0

2
√
2E2

0

)2

−

(
∆m2

jkσL

2E0

)2

−
(
∆m2

jkγE(L0, E0;σE)
)2 , (4.31)

The first two terms are derived from Eq.(4.12) and Eq.(4.26), while the last term can only be

determined numerically, as demonstrated in Fig. 4.4. Furthermore, we assess the sensitivity to

the three uncertainty parameters through a χ2-analysis employing the traditional rate measuring

method (RMM). This analysis aims to detect unexpected disappearance or appearance signals

resulting from SD and/or PD. Moreover, since neutrino decoherence is more pronounced at low

energy, as indicated in Fig. 4.5, we observe that current experiments involving reactor neutrinos

possess a higher sensitivity. Therefore, in the following, as a benchmark experiment to evaluate

our progress in detecting neutrino decoherence via the damping term, we select the RENO

experiment. This choice is based on the experiment’s lower level of uncertainty compared to the

Double Chooz experiment and its simpler configuration of reactors and detectors in comparison

to the Daya Bay experiment. The latter complexity would introduce non-trivial effects on the

damping signature through σL, as discussed in more detail in Appendix ??. Additionally, we

discuss the different dependencies on L0 and E0 in the damping signatures within neutrino

oscillation, as explored in prior studies like [7, 63].

To detect the damping term ϕjk, which typically arises from various sources of decoherence,

we conduct an analysis of the total neutrino count rate in ground-based neutrino experiments.
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This analysis involves fitting our theoretical models for SD using σp̄ and PD using σL and σE

to oscillation data. We define the χ2 function as follows:

χ2(σn) = min
α⃗

∑
i bins

(Ri(σn, α⃗)−Rdata
i )2

Ui
+
∑
j

(
bj − b0j
σj

)2

. (4.32)

In this equation, Ri can represent either the observed rate or the ratio of the detected rates of

near and far detectors. The term bj corresponds to the pull parameters, which encompass both

the oscillation parameters and the experimental uncertainties related to the rate. Additionally,

Ui accounts for the statistical uncertainty associated with each bin.
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Figure 4.5: This figure is plotted to give us an idea on where to find neutrino decoherence effect
among current ground-based experiments. The red, blue and yellow lines represent contours of
|P (σn ̸= 0)− P (σn = 0)| = 10−6 for the solid lines and 10−4 for the dashed lines, for n = L,E
and p̄, respectively, where the sensitivity would be higher below the lines. We set σL = 3 m
σE = 0.1

√
E0 MeV and σp̄ = 0.1 MeV as an example. Additionally, experiments (see [64] for a

review) with their corresponding baseline and typical neutrino energies are labeled on the plot,
for accelerator neutrinos (blue), decay-at-rest neutrinos (pink) and reactor neutrinos (green).

With the purpose of determining what experiments are more sensitive for each decoherence

parameter, we plot Fig. 4.5, in which the red, blue and yellow lines represent contours of |P (σn ̸=
0) − P (σn = 0)| = 10−6 for the solid lines and 10−4 for the dashed lines, for n = L,E and p̄
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respectively, giving us a hint of what experiments to look at for a certain σn. For simplicity, P

represents the FTP on the third layer for ν̄e → ν̄e in this section. We can see from the figure that

for all decoherence effects, the influence would be larger at lower energies, because the oscillation

structure is denser along the p̄ and E axes, so the PWO effect is enhanced. Therefore, reactor

neutrinos having the lowest energies for ground-based experiments would be the best candidate.

Additionally, for vacuum oscillation, the decoherence effect by σL is small and does not depend

on L0, hence, it is suitable for experiments near the source where the statistics are high, whereas

σp̄ and σE are more pronounced at larger distance. Moreover, a more realistic version of Fig. 4.5

for reactor neutrinos is plotted in Fig. 4.6 for the each σn, where the contour lines represent the

rate difference between decoherent and coherent fluxes, |Φ(σn ̸= 0) − Φ(σn = 0)|, considering
the energy spectrum of neutrinos for RENO and also the diffusion over distance by

Φ(σn;E0, L0) =
√
N(E0) |P (σn ̸= 0)− P (σn = 0)| Lbm

L0
, (4.33)

where Lbm/N(E0) is the average distance/spectrum of the near detector for the RENO experi-

ment.

To determine the sensitivity of different experiments to each decoherence parameter, we

have created Fig. 4.5. In this figure, one can observe the red, blue, and yellow lines representing

contours of |P (σn ̸= 0) − P (σn = 0)| = 10−6 for the solid lines and 10−4 for the dashed lines,

where n denotes L, E, and p̄, respectively. This figure provides valuable insights into which

experiments are most suitable for detecting specific values of σn. For simplicity, we use P to

denote the FTP on the third layer for the ν̄e → ν̄e channel in this section. From this figure,

it is evident that decoherence effects are more pronounced at lower energies due to the denser

oscillation structure along the p̄ and E axes, enhancing the PWO effect. Consequently, reactor

neutrinos, which have lower energies in ground-based experiments, are more ideal candidates

for detecting these effects. Furthermore, for vacuum oscillation, the influence of σL is minimal

and independent of L0, making it suitable for experiments conducted close to the source with

high statistical precision. Conversely, σp̄ and σE effects become more pronounced at greater

distances.

4.2.1 Reactor Neutrinos

For a more realistic representation of the sensitivity for reactor neutrinos, we have plotted Fig. 4.6

for each σn. In this figure, contour lines represent the rate difference between decoherent and

coherent neutrino fluxes, denoted as |Φ(σn ̸= 0) − Φ(σn = 0)|. We have taken into account

the energy spectrum of neutrinos for the RENO experiment and considered the diffusion over

distance using the following expression:

Φ(σn;E0, L0) =
√
N(E0) |P (σn ̸= 0)− P (σn = 0)| Lbm

L0
, (4.34)
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Figure 4.6: The contour plot of the flux difference, |Φ(σn ̸= 0)−Φ(σn = 0)| for reactor neutrinos,
where the energy spectrum and the decrease with traveling distance for reactor neutrinos are
taken into account. The formalism is given in Eq. (4.34).

Here, Lbm represents the average distance, and N(E0) represents the energy spectrum of the

near detector for the RENO experiment.

We chose the RENO experiment as a benchmark to evaluate the amount of additional sta-

tistical data required for achieving sufficient sensitivity to each of the three decoherence param-

eters. Our sensitivity analysis was performed by fitting the decoherence parameters using the

current RENO far-to-near ratio data from [65], following the approach outlined in Eq. (4.32).

The results of our sensitivity analysis, obtained by fitting the decoherence parameters to the

current RENO far-to-near ratio data [65], are presented in the three left plots of Fig.4.7. In line

with the formalism detailed in previous RENO publications [65–67] and in correspondence with

Eq. (4.32), we define Rdata
i as the observed far-to-near ratio of inverse beta decay candidates

in the i-th energy bin after background subtraction, as provided in the supplementary material

of [65]. The theoretical input for our analysis is given by:

Ri(σn, α⃗) = (1 + ϵ+ f)
1 + bF

1 + bN
NMC
i (τ)

∑6
l=1 Pi(L

far
0,l , sin

2(2θ13),∆m
2
ee;σn)∑6

l=1 Pi(L
near
0,l , sin

2(2θ13),∆m2
ee;σn)

, (4.35)

In this equation, f , ϵ, τ , bF , and bN represent the pull terms accounting for systematic un-

certainties. Specifically, they address the uncorrelated reactor-flux systematic uncertainty, the

uncorrelated detection uncertainty, the timing veto systematic uncertainty, and the background
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uncertainties for the near and far detectors, respectively, as reported in [66]. The parameter τ

denotes the uncorrelated energy-scale systematic uncertainty, introduced by scaling the energy

as E0 → (1 + τ)E0. The term NMC
i represents the near-to-far ratio without oscillation, derived

from Monte Carlo data available in [65]. Additionally, Lnearl and Lfarl stand for the distances to

the l-th near and far detectors, and sin2(2θ13) and ∆m2ee are coherent oscillation parameters,

where

∆m2
ee = cos2 θ12∆m

2
31 + sin2 θ12∆m

2
32 (4.36)

Finally, the three left plots in Fig. 4.7 were generated by minimizing the χ2-function using

the Python package“iminuit” over two sets of parameters, α⃗ = (sin2(2θ13),∆m
2
ee, f, ϵ, τ, b

F , bN )

and β⃗ = (α⃗, σn), according to the equation:

∆χ2(σn) = min
α⃗
χ2(σn)−min

β⃗
χ2. (4.37)

To effectively marginalize the oscillation parameters, β⃗ is first minimized to obtain the best-fit

values s0 = 0.087 and m0 = 2.66 × 10−3 eV2, along with corresponding errors σs = 0.023 and

σm = 0.12× 10−3 eV2 for sin2(2θ13) and ∆m2
ee, respectively. Two additional pull terms,

χ2 → χ2 +

(
sin2(2θ13)− s0

σs

)2

+

(
∆m2

ee −m0

σm

)2

, (4.38)

are then added to the χ2-function.

The results of the fitting process are presented in the three left plots of Fig. 4.7, and we

consider the corresponding 90% CL limits as benchmark points. These benchmark values are

as follows: σbm
E = 0.12

√
E0 MeV, σbm

L = 548 m, and σbm
p = 1.6 MeV. Notably, the value of

σbm
p̄ = 1.6 MeV aligns with the analysis for the RENO experiment in [53, 54]. However, it is

evident that σbm
L remains significantly larger than realistic values, which should be on the order

of a few meters. In contrast, σbm
E appears to be in close agreement with the energy resolution,

given by σE/
√
E0 = 0.08

√
E0(MeV) + 0.3 [66].

Additionally, in order to estimate the amount of additional statistical data required to achieve

the desired sensitivity for a reasonable σn, we make the assumption that the statistical uncer-

tainty will increase by a factor of
√
Ni for each energy bin. Moreover, if the uncertainties

associated with the pull parameters are sufficiently small and the signal count significantly out-

weighs the background count, it is feasible to consider only the statistical uncertainties in the

χ2 function. In such a scenario, we have:

∆χ2(σn) ≃
∑
i bins

Ni |Pi(σn)− Pi(σn = 0)|2

=
∑
i bins

λNRENO
i

L2
RENO

L2
0

|Pi(σbm
n )− Pi(σn = 0)|2 |Pi(σn)− Pi(σn = 0)|2

|Pi(σbm
n )− Pi(σn = 0)|2

.
(4.39)

Here, λ represents the factor by which we need to enhance the statistics to achieve a 90%



Chapter 4. Neutrino Decoherence Signatures 63

1 2 3 40.1 0.2
0

1

2

3

4

5

6

7

8

9

200 600 1000

10
10

100
100

100

100

1000

1000

1000

10000

10000

10000

100000

100000

100 101 102
10-3

10-2

10-1

10 100

100

1000

1000

1000

1000
0

10000

10000

1000
00

100000 1000
000

10-3 10-2 10-1 100
10-1

100

101

1
1

10

10

10
10

100

100

100

1000

1000
1000

10000

10-1 100 101 102
10-3

10-2

10-1

Figure 4.7: Taking RENO as a benchmark experiment for reactor neutrinos, the left three plots
present the constraints on different decoherence parameters from a fit to RENO data. The right
plot takes the obtained 90% CL limit on σn from the left plots. It shows the contour lines for
evaluating how-many-times statistics compared to the current RENO data are needed to achieve
a 90% CL sensitivity for some decoherence parameter and baseline, which is λ in Eq. (4.39).
The while area in the middle figure is cut out since it would indicate that the detector is inside
the reactor core.

confidence level signal for a specific value of σn. Moreover, when λ = 1, Eq. (4.39) implies

summing over all the energy bins shown in Fig. 4.6 for a given σbm
n .

Therefore, using the benchmark values obtained from the three left plots in Fig. 4.7 and

incorporating the flux difference from Fig. 4.6 into Eq. (4.39), we can examine the right plot

in Fig. 4.7. This plot illustrates the extent to which we require additional statistical data

(λ in Eq. (4.39)) compared to RENO in order to achieve a 90% confidence level sensitivity.

Achieving this increment (λ) can be accomplished by several means, such as lowering the energy

threshold for neutrino detection, increasing the reactor power, or simply allowing more data to

accumulate over time. It is not surprising that we exhibit greater sensitivity to σE and σp̄ at

larger distances, despite the statistical decrease of 1/L2
0, while σL is more favorable for shorter

propagation distances. Consequently, the ranges for L0 have been selected accordingly in the

plots. Furthermore, note that L0 cannot be smaller than σL, which is why the triangular area

in the upper left corner is left blank, and the edge of that area would be when the detector is

located right by the source.

4.3 A Phase Measuring Proposal

In this section, we present a method for directly measuring the oscillation phase, which we refer

to as the Phase Measuring Method (PMM). This method not only aims to quantify asymmetries
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in the weighting functions but also provides a cleaner approach to measure neutrino oscillation

signatures, as we will elaborate on in Section 4.3. Specifically, the measurement involves deter-

mining the shift of the coherent phase ψjk on the measurement layer by βjk(σ⃗) as defined in

Eq. (4.1) when there is an asymmetry in the weighting function. Technically, the key ingredient

of this potentially realistic method, is to pinpoint the location of an oscillation extremum on the

third layer. In terms of theoretical considerations, only the HE-induced phase decoherence (PD)

will make a non-negligible contribution for Gaussian-distributed weighting functions. Therefore,

we assume a two-Gaussian distribution for Dp̄ to introduce an asymmetry in the quantum un-

certainties, while neglecting HL-induced PD, as it has only a negligible impact on ground-based

experiments. Finally, after introducing the PMM and evaluating the theoretical inputs and

parametrizations (such as an asymmetry parameter denoted as ”a” for the quantum uncertain-

ties and the width σE for the energy uncertainty), we estimate the statistical and systematic

uncertainties required to achieve a 90% confidence level (CL) sensitivity in the parameter space.

This estimation is carried out while considering a πDAR neutrino source.

4.3.1 The Set Up

For some neutrino energy E0, the key point is to search for the deviation in distance (1Lmin-Losc)

cased by the phase shift. For the two-neutrino mixing scenario, we measure Lmin = Ljkmin in the

equation

ψjk(L
jk
osc, E0) = 2nπ → ψjk(L

jk
min, E0) + βjk(L

jk
min, E0; σ⃗n) = 2nπ, (4.40)

and observe how it deviates from Ljkosc =
4πnE0

∆m2
jk

due to an asymmetry in the decoherence effect.

Furthermore, we can pinpoint the location of an extremum, and consequently, the signal is con-

centrated at a specific Lmin, rather than spanning an entire distribution. One notable advantage

of this method is that, since we are seeking an extremum, the non-oscillating component of the

event rate has minimal influence on the signal. Therefore, as long as other factors such as pro-

duction rate, detection rate, background, etc., do not exhibit an extremum within the (L0, E0)

range of interest, their contribution to the signal will be negligible.

In the context of a two-neutrino oscillation scenario, we focus on the first oscillation minimum

and examine:

∆Ljkmin(E0; σ⃗n) = Ljkmin(E0; σ⃗n)− Ljkosc(E0) ≃ − 2E0

∆m2
jk

βjk(E0, σ⃗n). (4.41)

The above approximation of taking β(Ljkmin, E0; σ⃗n) ≃ β(Ljkosc, E0; σ⃗n), is justified as we have

verified that higher-order terms in the expansion of the left-hand side around the right-hand

side can be safely neglected. For the three-neutrino mixing paradigm, in cases where we search

around L13
osc, the total Lmin corresponds to L13

min, because of the large difference between the

atmospheric and solar mass splitting. As a result, complexities arising from interference between

different mass splittings, including those from the damping terms, become negligible. However,

1We will shortly explain why the local minimum would be more suitable for this method, therefore, we write
Lmin as the extremum for now.
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we still consider a complete three-neutrino mixing scenario in our simulations, even for the

fully coherent case. Furthermore, in a similar manner, it is possible to find a specific Emin

for a given L0 using Eq. (4.40). Nevertheless, attempting to discern effects by σE through

∆Emin or σL through ∆Lmin is often infeasible, as the former is usually much larger than the

latter. Consequently, while the uncertainties induce a phase shift, they are likely to diminish

the sensitivity of the corresponding variable even further. Since σL is exceedingly small for

ground-based neutrino sources, even with regard to ∆Emin, we do not include it in this section.

For the purpose of this thesis, our focus is on the phase shift resulting from decoherence

effects. However, it is important to note that the PMM exclusively measures the (effective)

neutrino oscillation phase, encompassing measurements such as the neutrino mass splitting,

CP phase, mass hierarchy, or even the presence of an additional sterile neutrino. Therefore, a

comprehensive analysis of all pertinent experiments, incorporating decoherence effects, may be

necessary. Fortunately, as we will demonstrate, the contributions to ∆Lmin from mass splitting

uncertainties (which can also indicate the mass hierarchy) scale with E0, while those stemming

from the asymmetry in intrinsic quantum uncertainties saturate to a constant value for E0 above

approximately 5-10 MeV. Consequently, these contributions exhibit distinct dependencies on E0.

Additionally, we will show that the phase shift term resulting from quantum decoherence effects

is insensitive to traditional measurements of the neutrino spectrum, whereas other fundamental

oscillation parameters are determined with increasing precision through these measurements.

As a simplification and for illustrative purposes, we adopt fixed neutrino masses determined

by global analyses [52], assume a three-flavor oscillation with normal mass ordering, and set

δCP = π in this section.

In practical terms, the process of finding Lmin involves scanning over L0 (e.g., by adjusting

the detector’s position) around the expected location of the first local minimum for a given

neutrino energy E0. To achieve this, we consider the counting of neutrinos within position bins

of width ∆Lbin:

Ni(E0; σ⃗n) = N(E0)

∫ Li+∆Lbin/2

Li−∆Lbin/2

dL0
1

4πL2
0

Pνα→νβ (L0, E0; σ⃗n), (4.42)

where N(E0) represents the number of produced neutrinos multiplied by the detection rate,

which remains independent of the travel distance L0. While we have assumed no neutrino loss

or gain during propagation, accounting for such effects would only trivially impact the signal

of Lmin, provided they do not create significant bumps or dips at specific L0 values within our

region of interest. To determine Lmin, we examine when the normalized numerical derivative of

Ni, given by

Fi(E0; σ⃗n) =
1

N̄i

Ni+1(E0; σ⃗n)−Ni(E0; σ⃗n)

Li+1 − Li
, (4.43)

reaching zero.

The red dots in Fig. 4.8 represent Fi, while the vertical dashed lines denote the position

bins, Li ± ∆Lbin/2. Here, N̄i = (Ni+ 1(E0; σ⃗n) + Ni(E0; σ⃗n))/2 serves as the normalization
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factor, eliminating correlated uncertainties between position bins, similar to the role of near-far

detectors. It is important to note that the bin size must be much smaller than Losc to observe

a “local” minimum.

Consequently, Lmin corresponds to the point where the blue line connecting all dots (F (L0))

intersects with the black line F (L0) = 0, with the uncertainty indicated by the red horizontal

bars in Fig. 4.8. To determine this uncertainty:

1. Propagate the uncertainty of the count numbers Ni (both systematic and statistical, de-

noted as ∆sys/∆stat) to the uncertainties of Fi using the relation in Eq.(4.43), as shown

by the blue error bars in the left plot of Fig.4.8. This step retains only uncorrelated

uncertainties due to the normalization factor N̄ .

2. Connect (or fit) the error bars of Fi (i.e. , Fi ±
√
∆2

sys +∆2
stat) and create an uncertainty

band, as demonstrated in the left plot of Fig. 4.8.

3. The uncertainty of Lmin is determined by the intersection between the uncertainty band

and F (L0) = 0, marked as red error bars in the left plot of Fig.4.8. In some cases, this

intersection can be infinite if the error of the maximal |Fi| exceeds its value, as illustrated
in the right plot of Fig.4.8, where the sensitivity of ∆Lmin becomes infinite when the

statistics are too low.

Moreover, the uncertainties depend on the chosen bin size, as depicted in the middle plot of

Fig. 4.8. When ∆Lbin ≪ Losc, increasing the position bin size decreases the uncertainty. This is

a two-fold reason for this effect: 1) the statistics within each bin increase, reducing the statistical

uncertainty, and 2) the bin size enhances Fi, reducing the uncertainty of Lmin. In fact, for an

oscillatory function such as sin(L/Losc) (analogous to the FTP), its discrete derivative due to

binning (corresponding to Fi) is:

F̃i =
1

Losc

∫ Li+∆Lbin/2

Li−∆Lbin/2

dL cos

(
L

Losc

)
≃ ∆Lbin

Losc
. (4.44)

This approximation is valid when (Li ± ∆Lbin)/Losc ∼ 2nπ for some integer n, which is well

justified since we only search around the oscillation minimum. As such, we see that for a fixed

bin size, the signal is smaller at higher energies, leading to larger uncertainties. For example,

with ∆Lbin = O(10) m and ∆sys = O(1), the energy range with finite sensitivity typically spans

a few MeV. Furthermore, even though α0 in the expansion Ni =
∑
i αiL

i
0 is canceled out for

the signal, it still carries uncorrelated uncertainties. Therefore, in cases where α0 ≪ αi for

some i ̸= 0, the uncertainty of Lmin significantly increases. This situation arises when observing

neutrinos around the maximum oscillation value or when searching for disappearing neutrinos.

Consequently, rare event measurements of appearance channels at minimum oscillation phases

would be the preferred choice for our method.
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Figure 4.8: The left plot shows how we determine Lmin for neutrinos with 30 MeV energy and its
uncertainty (red error bars) from Eq. (4.43) (blue error bars) considering two different systematic
uncertainties labeled in the plot. Here we consider the JSNS setup by taking Eq. (4.45) forN(E0)
in Eq. (4.42), and each bin is separated by the black dashed lines, hence the parameters which
would influence the uncertainty of Lmin are the systematic uncertainty (∆sys), the statistical
uncertainties (λ: increment w.r.t. the JSNS set up) and the bin size (∆Lbin). The middle
and right plot show how these parameters would influence the sensitivity for ∆Lmin through
simulating the uncertainties of Lmin. In particular, the middle plot corresponds to Eq. (4.44),
and the right plot shows when systematic/statistic uncertainties dominate over one another.
Specific steps to determine Lmin and more discussions on the plots are given in the text.

4.3.2 Decay at Rest Neutrinos

By taking a 50 m (around the detector size of Hyper-K [68] and the DUNE far detector [69])

bin size, only reactor neutrinos and DAR neutrino are in the energy range which leads to an

appripriate oscillation length. In particular, the monochromatic neutrinos from πDAR are most

suitable for the PMM with just one measurement, due to the following reasons:

• The monochromatic neutrinos are produced sharply around 30 MeV, which is suitable for

a 50 m bin size as we have demonstrated in Fig. 4.8.

• It provides a detectable appearance channel by producing νµ which could oscillate into

νe. On the other hand, reactors only produce ν̄e, hence its appearance channels are not

detectable since ν̄µ will be below the Cerenkov threshold in the sub MeV range.

• Since we consider a fixed E0, the monochromatic feature automatically satisfies the con-

dition without wasting any neutrinos spread out in the spectrum. Hence, statistics-wise,

on top of the bright spallation source, it would be better than having µDAR neutrinos if

we only consider measurements of Lmin at a single E0.

• The systematic uncertainty would also be strongly reduced for πDAR neutrinos. First of

all, the timing structure of DAR experiments [70–72] would enable identification between

πDAR neutrinos and µDAR neutrinos. In fact, ν̄µ → ν̄e from µDAR would suffer from

an intrinsic uncertainty since the ν̄µ and ν̄e production are indistinguishable [70–72]. Sec-
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ondly, the energy reconstruction would be highly accurate for monochromatic neutrinos.

Discussions on this topic can be found in [73].

Similar to what we did for RMM, we consider a benchmark experiment, and ask how far

we are to having enough sensitivity for some decoherence parameters. In particular, we take

numbers from the existing JSNS experiment [70], i.e. 1.114 × 1023 proton-on-targets for 1

MeV power within 3 year, from which 64% would contribute to a πDAR process, producing

monochromatic νµ which would oscillate into νe and be detected by a 17-ton gadolinium loaded

liquid scintillator. Hence, for Eq. (4.42), we obtain

N(E0)

4πL2
0

≃ 0.43
1

m2

(
P

1MeV

)(
T

3 yr

)(
MD

17 ton

)(
31829m

L0

)2

. (4.45)

Here, we adopted the cross-section for quasielastic scattering of νe on proton from [74] as 7.5×
10−41 cm−2 at 30 MeV, and assume that the detector is moved to the oscillation minimum (the

actual JSNS detector is placed 24 m from the source). In Fig. 4.8 we adjust the equation above

by moving L0 around its first oscillation minimum, then increase it λ times. In addition, similar

to other DAR channels [70, 75], the systematic uncertainties should be dominated by intrinsic

uncertainties, i.e. the ν̄e produced by µDAR, which take up approximately 3% of total amount of

neutrinos produced at 30 MeV. Furthermore, one could also identify whether a neutrino comes

from πDAR from the timing structure, for instance, in the JSNS setup, ν̄e from µDAR takes

up only < 10% of the early time bin which is dominated by νe from πDAR [70]. Hence, we

take various systematic uncertainties in the range of 0.1-2% in Fig. 4.8. From the middle and

right plot of Fig. 4.8, we find the sensitivity for some ∆Lmin by first estimating the uncertainty

of Losc (i.e. when ∆Lmin=0) for some systematic and statistical uncertainty (from ∆sys and

λ), then further identify what values of ∆Lmin would be rejected by such data at 90% CL.

Theoretical estimates for decoherence effects which lead to such ∆Lmin will be shown in the

following paragraph.

The phase shift from decoherence effect for ground-based neutrinos would mainly come from

the asymmetry of quantum uncertainties decided by the weighting function Dp̄ and the classical

(statistical) energy uncertainty with weighting functionHE . In particular, we considerHE being

dominated by the energy resolution (i.e. HE is Gaussian distributed) and Dp̄ as a two-Gaussian

distribution generically formalised as

Dp̄(p̄ ≡ | ¯̄p|;E0) =
1

2
√
πσ′

p̄(1 + rs)

{
exp

(
−(p̄− E0 + dE0)

2

4σ′2
p̄

)
+ r exp

(
−(p̄− E0 − dE0)

2

4(sσ′
p̄)

2

)}
,

(4.46)

where the width is σp̄ = (1 + rs)σ′
p̄, according to the definition in Appendix A. This formal-

ism represents scenarios such as neutrino produced or detected with two types of interactions

simultaneously, with different probabilities and widths (r, s) and have slightly different expec-

tation values for E0 (E0 ± dE0, in particular). Moreover, with the phase structure given in

Eq. (4.25), the decoherence term is simply the Fourier transformation of D(p̄;E0) from p̄ to



Chapter 4. Neutrino Decoherence Signatures 69

10 20 30 40 50
-50

-40

-30

-20

-10

0

10

10 20 30 40 50
9

10

11

12

13

14

15

16

17

18

19

5 10 15 20 25
-150

-100

-50

0

50

100

150

200

250

2 4 6 8 10
-150

-100

-50

0

50

100

150

200

250

5 10 15 20 25
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

10 20 30
0

0.1

0.2

0.3

0.4

10 20 30 40 50
60

80

100

120

10 20 30 40 50
60

80

100

120

10 20 30 40 50
60

80

100

120

σpdE0 s

I - 1 0.2 2 4 0.2
I - 2 0.2 0.5 1 0.2
II - 1 0.1 2 4 0.2
II - 2 0.1 0.5 0.5 0.2
III - 1 -0.1 2 4 0.2
III - 2 -0.1 2 4 0.5

r

10 20 30 40 50
60

80

100

120

10 20 30 40 50
60

80

100

120

10 20 30 40 50
60

80

100

120

 MeV

σE
= 0.08 E0

Phase shift by a two-Gaussian σp Phase shift by a two-Gaussian σp + Limit σp ≤ σE Phase shift by a Gaussian σE

a r s σp̄

I - 1

I - 2
II - 1

II - 2

III - 1

III - 2

I - 1

I - 2

II - 1

II - 2

III - 1

III - 2

I - 1

I - 2

II - 1

II - 2

III - 1

III - 2

A B C D

Figure 4.9: Plot A (B, C) shows the variation of E13
min (L13

min) for a number of quantum
uncertainty parameters for Eq. (4.46). The labels for each line (as well as its colour and style)
on all three plots (and also in Fig. 4.10) correspond to the table on Plot A, while Plot A and
C consider a constrain by σE = 0.08

√
E0 MeV (blue area in Plot A) in addition. Plot D shows

the variation of L13
min caused by σE from a Gaussian distributed energy resolution.

αjk = ∆m2
jkL0/(2E

2
0), and the phase shift is

βjk(E0, σp̄) = tan−1

(
1− r s e−(s2−1)α2

p̄,jkσ
′2
p̄

1 + r s e−(s2−1)α2
p̄,jkσ

′2
p̄

tan(αp̄,jk dE0)

)
αp̄,jk≪1−−−−−→ 1− rs

1 + rs

∆m2
jkL0

2E2
0

dE0.

(4.47)

Furthermore, the fact that we search around the first minimum (ψ = 2π) and βjk ≪ Losc
min

implies that ∆m2
jkL0/(2E0) ≃ 2π, hence

∆Ljkmin ≃ 2π

2.53∆m2
jk

a, (4.48)

at high energies, where

a =
1− rs

1− rs
dE0. (4.49)

This can be seen in Fig. 4.9, where lines having the same a merge to one constant value at higher

energies which is independent of both E0 and σp̄. Such property is not generic for all sources

of decoherence effect, in fact, only αp̄,jk from the phase structure ηjk = iαp̄,jkp̄, cancels out the

energy dependence with Ljkosc in Eq. (4.41) exactly. For instance, in Plot D of Fig. 4.10, ∆L13
min

increases with energy only because σE does as well. In fact, if σE is not energy dependent, it

would approach zero at large E0. Moreover, from Eq. (4.48) we can see that when s = 1, i.e.

the two bumps have the same width, σp̄ would have no role in the phase shift. In addition, the

variance of HE (∆E , weighting function on the second layer with width σE) must be larger or

equal to that of Dp̄ (∆p̄). In fact, when they are equal to one another, the energy would be

measured to a quantum level. Hence if one keeps on lowering ∆E , ∆p̄ would be forced to lower

accordingly and the uncertainty of x̄ would increase in order to fulfil the uncertainty principle.

In this case, if we consider σE = 0.08
√
E0, and scale Dp̄ by scaling σp̄ and dE0 simultaneously

to fit the constrain ∆p̄ = ∆E , we find a change from Plot B to Plot A and C in Fig. 4.9. Plot B,
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on the other hand, assumes that σE is large enough (in this case, σE ≥ 0.17
√
E0) such the the

quantum uncertainties are un-squeezed. Furthermore, we can see that the dashed lines are more

influenced by the constraint from ∆E than the solid lines, since they either have a larger dE0 or

σp̄, both indicating a larger ∆p̄. From plot A, we can see that if σE is small, it would squeeze

Dp̄ and lower the phase shift; on the other hand, if σE is large, then the blue area covers all the

lines and there will not be enough sensitivity. Therefore, while there is still a little space out

of the sensitivity line, ∆Emin it is also not a suitable approach to measure a Dp̄-induced phase

shift.

Finally, we estimate the sensitivity for the benchmarks in Fig. 4.9 for the PMM in the

right plot of Fig. 4.10. Furthermore, in the left plot, we demonstrate how the RMM is not as

sensitive to the phase shift term compared to the damping term. The blue band is the range

of Dp̄-induced state decoherence which is not constrained by the combined analysis of reactor

experiments from [54], i.e. the upper edge of the band represents Wp̄ as a Gaussian with width

σp̄ = 0.47 MeV. On the other hand, while having O(100) m of ∆Lmin for the PMM, the colored

lines (with the same parameter as those in Fig. 4.9) do not vary the FTP to an extend that is

close to the limit set by the combined analysis (not to mention for just one single experiment).

Moreover, while the RMM significantly depends on how the neutrino spectrum would be without

oscillation, the phase shift, which slightly shifts the FTP, does not change the shape of the

spectrum as the damping term does, hence, it can be easily compensated by non-oscillation

related models. On the contrary, for the PMM, the signal is amplified by the oscillation length

and is nearly independent of non-oscillation related models. The main disadvantage is the

lack of statistics since we aim at searching for appearing flavors at the oscillation minimum.

Nonetheless, from the right plot in Fig. 4.10, we see that with the increment mainly by the

detector size, the statistics would be enough for a 90% CL sensitivity for a range of decoherence

asymmetry parameters of the quantum and classical uncertainties. Specifically, compared to

the 17 T detector mass and a cross section of 7.5 × 10−41 cm2 of JSNS, the DUNE detector

would have an increased detector mass of 40 kT, and the liquid argon material of the detector

also enhances the cross section to 2.5 × 10−40 cm2 at 30 MeV [76], hence λ ≃ 7.8 × 103 in

this case (red lines). As for the ESS setup proposed in [77], while using a water Cherenkov

detector implies a lower cross section (3× 10−42 cm2 at 30 MeV [78]), the detector mass would

be increased to 538 kT, and the spallation source is also brighter by having 2.7× 1023 POT per

year.
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Figure 4.10: The left plot shows how the phase shift term is not sensitive to the rate measur-
ing method compared to the damping term: The upper edge of the blue band represents the
transition probability for σp̄ at its upper limit given in [54] for a Gaussian distributed Dp̄, and
the lower edge is the fully coherent case. The colour code of the lines corresponds to the same
decoherence parameters given in Fig. 4.9, which are within the parameter space in the right
plot. The right plot shows values of λ in Eq. (4.45) required to achieve a 90% CL sensitivity
for the decoherence parameter space by the colour bar. The red line labeled “J-PARC+DUNE”
gives the required λ by assuming a J-PARC-like source combined with a DUNE-like detector;
and similarly, the blue line labeled “ESS (proposed)” considers one year of data taking of the
ESS source and the water Cherenkov detector proposed in [77]. Both cases are assumed to have
the baseline L0 at the first oscillation minimum at 30 MeV (31829 m).
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In this chapter, we investigate the phenomenon of helicity flip due to the neutrino magnetic

moment (νMM) effect, as introduced in Sec. 2.1.2. By paying particular attention to neutrinos

with energies exceeding 100 TeV, an astrophysical source is indicated. In such cases, it is

anticipated that neutrinos at these extreme energies experience a significant magnetic field

environment at their production sites, leading to the sizeable magnetic moment effects. Within

this thesis, we investigate a simple yet heuristic model concerning neutrinos originating from a

single source to illustrate this phenomenon.

In Section 2.1.3, we explore the characteristic length scales governing phenomena like neu-

trino mass splitting, MSW effect, and the νMM effect. We specify the conditions under which

these effects can be considered independent of another. In particular, we find that the νMM

effect can be considered decoupled from mass splitting.More specifically, within the upper bound

imposed by current experimental constraints (µν ≲ 10−12µB , represented by the red line) and

the benchmark point arising from standard model loop effects for SM extended massive Dirac

neutrinos (µν ∼ 10−19µB , indicated by the purple line), there exist two length scales, denoted

as L1 and L2, such that the νMM effect dominates when ℓ < L1, the state remains constant

when L1 < ℓ < L2, and mass splitting becomes dominant beyond L2 < ℓ. Here, ℓ denotes

the neutrino’s propagation distance. If µν ≪ 10−19µB , the decouple condition would still hold,

however, the νMM effect might be negligible. This situation applies to neutrinos produced by a

single source with a strong dipolar magnetic field, which decreases by ℓ−3, such as those emitted
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by neutron stars. Thus, as long as neutrinos are generated within a distance of approximately

107 km above the star, the transition from L−1
mag ≫ L−1

mass to L−1
mag ≪ L−1

mass will occur within

region (I) of the neutrino propagation. Consequently, the νMM effect will dominate in region

(I), while mass splitting will dominate in region (II) up to the decoherence length scale, where

the transition probability remains constant over time in region (III).

Having established that the decouple limit is reached for Majorana neutrinos from Fig. 5.1,

Eq. (2.15) can be adopted as:

Phh
′

αβ ≃
∑
δ

Phh
′

αδ (H = HνMM)× Ph
′h′

δβ (H = Hmass). (5.1)

Since neutrinos are fully decoherened upon the arrival at earth, the latter term is Ph
′h′

δβ =∑
j,k U

∗
δjUβjUδkU

∗
βk when h′ denotes neutrinos, and Ph

′h′

δβ =
∑
j,k UδjU

∗
βjU

∗
δkUβk when h′ de-

notes anti-neutrinos. As for the former term in Eq. (5.1), we will adopt the results obtained in

Eq.2.23, restating them here for convenience:

PHC
αβ =

∑
j,k

Ũ∗
αjŨβjŨαkŨ

∗
βkϕ

HC
jk cos θj cos θk, (5.2)

PHF
αβ =

∑
j,k,γ,δ

µ̂∗
αγ µ̂αδŨ

∗
γjŨβjŨδkŨ

∗
βkϕ

HF
jk sin θj sin θk, (5.3)

where “HC” means helicity is conserved (h = h′), and “HF” stands for heliciry filliped (h ̸= h′).

For a closed quantum system, ϕHC
jk = ϕHF

jk = 1 for all , j, k, and the effect will be determined by

the oscillation phase:

θν = µν

∫ Lcut

0

dℓB⊥(ℓ)e
iϕ(ℓ), (5.4)

for any L1 < Lcut < L2. Here, θ2 = θ3 = θν while θ1 = 0, and the mixing matrix, Ũ , determines

the flavour structure plotted in Fig. 2.1.

As for Dirac neutrinos, there will be modes where ∆m2
jk = 0 from the cancellation between

H11/22 and H33/44 in Eq. (2.6) and Eq. (2.8). Therefore, νMM effect could be relevant in all

regions. However, the νMM effect for Dirac neutrino can only cause a loss of the neutrino flux,

ϕα → ϕα(1− fα), since only left handed neutrinos (νL and ν̄L) are visible to detection via weak

interaction. Therefore, since we only look at the flavour and/or helicity ratio for neutrino above

100 TeV in the adiabatic limit, this effect would cancel out if either 1) µαβ is symmetric 2)

fα ≪ 1 or 3) the νMM is large enough such that fα → 1/2. In other words, the parameters

would have to lie in a sweet spot: being both non-symmetric and within a certain range of

values, to have a detective effect from the ratio. Nonetheless, if one goes to a lower energy

where there will be some interplay between the mass-splitting and/or matter effect, then there

could be signature in the spectrum [79]. However, this is not the focus of this thesis, as we

concentrate on high-energy neutrinos and examines ratios rather than full spectra. It should be

mentioned that there is a possibility of detecting flavor ratio signatures from Dirac neutrinos at

high energies, as demonstrated in [79]. This phenomenon is induced by the galactic magnetic
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Figure 5.1: Length-scales for νMM effect (colorful solid lines
, mass-splitting(left vertical line), and decoherence (right vertical line) as functions of

propagation distance of neutrinos ℓ.

field under specific conditions: 1) there exists an asymmetry in the νMM matrix (e.g., only

νµ is non-zero), 2) the evolution is not entirely adiabatic, and 3) the neutrinos come solely

from a single source. However, this scenario is not the primary focus of this work since we

examine νMM induced by the magnetic field at the source, which, as we will discuss in the next

section, may be considered as adiabatic. Naturally, there may be additional contributions from

the galactic magnetic field after region (III); however, due to the flavor ratio’s accumulation of

contributions from multiple sources, such effects tend to cancel out as demonstrated in [79].

5.1 Production of High Energy Neutrinos

To fuel a neutrino to a PeV level or more, the powering sources are expected to be highly

dynamical at least over the period when the neutrinos are produced. Relativistic protons p are

long-thought as triggers of processes producing such high-energy neutrinos via p − p or p − γ

collisions [80]. Although the sources as well as the acceleration mechanism for such high energy
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particles are still unknown, there is a requirement that the protons be confined in region to be

accelerated sufficiently. Such requirement is dictated as the Hillas condition [81,82], protons in

an acceleration region with the comoving size of R, threaded by a magnetic field with a strength

of B, could acquire energy up to the upper limit given by

Epmax = η−1eBLΓ ≃ 105
( η

102

)( B

3× 105G

)(
R

105km

)
PeV (5.5)

where η is the acceleration efficiency which depends on acceleration mechanism and the velocity

of the moving source (i.e., the Lorentz factor).

On top of the above necessary condition, the energy acquisition of the rendered ν’s is limited

by various cooling processes experienced by protons as well as the mesons during hierarchical

decays. In systems threaded by a strong magnetic field and the collision of particles is active, as

the scenario considered here, the most relevant ones are the synchrotron and adiabatic coolings

with the timescales [83]

tsyn =
q4B2E

9πm4
, (5.6)

and

t−1
ad =

R

v
, (5.7)

respectively. Here q, m, and E are the charge, mass, and the energy of the particle, v is the

characteristic speed of the generation site, and B is the characteristic magnetic strength. The

dissipation time is then defined through

t−1
dis = t−1

syn + t−1
ad + . . . , (5.8)

where the dots symbolically denote other minor contributions, e.g., hadronic processes. It

shall be explained later that the synchrotron cooling, which scales with the square of magnetic

strength, plays the major role for the present study (cf. Fig. 5.2).

The generation channel of neutrinos can be divided into three possibilities depending on the

acceleration (tacc) and cooling (tdis,p) timescales of protons, and the cooling (tdis,m) and decay

(tdecay) timescale of the mesons: (i) For tacc > tdis,p, the protons are unable to be sufficiently

accelerated, thus no high energy neutrino is expected. (ii) For tacc < tdis,p, and tdecay > tdis,m,

protons can be highly accelerated then generate mesons through p–p and/or p–γ collisions, while

the mesons will not have enough time to pass over their energy to daughter particles before being

cooled down. (iii) For tacc < tdis,p, and tdecay < tdis,m, protons can be energetic to render mesons,

and the latter decays to create neutrinos with a portion of its energy. For each of aforementioned

scenarios, the balance between several time scales will amount to a suppression in neutrinos’

energy, which we phenomenologically describe as an efficiency parameter f = fpfm(< 1) that

are a combination of factors of proton acceleration, fp, and meson decay, fm. The introduced
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Figure 5.2: Adiabatic (black dashed) and synchrotron (colorful solid) cooling timescales for
secondary mesons, viz. µ±, π±, and K+. Their decay timescales are overplotted (colorful dash-
dotted). We assume that neutrinos are produced on a shell surrounding a magnetar (see the
main text for details) with radius Rmax = 105 km, and the magnetar is embedded with a dipolar
magnetic field with the magnetic strength at the pole being B⋆ = 1016 G. The geometry of the
scenario can be found in Fig. 5.3.
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f accounts for the cutoff in the higher end of the spectrum, while the flavour and neutrino-

antineutrino ratios are mutually decided by both fp and fm (e.g., [84]).

Our main goal here is not to simulate a realistic flux including due details, but rather to

illustrate qualitatively how a non-trivial NMM nature (anti)neutrinos can adjust the pattern

of signal on triangle plots. To this end, we specify ourselves to the ramnant systems of BNS

mergers, where the SGRB may be lauched at radius r = 105 km assuming the fireball model

[REFs]. It is generally assumed that the dominant dissipations in proton’s energy are the

adiabatic loss due to the expansion of the shell and the synchrotron loss of the protons due to

the magnetic fields present in the shells. Considering that the remnant system harbors a dipolar

magnetic field with the strength B⋆ = 1016 G at the pole of the central massive NS, and taking

the radius Rmax of the neutrino’s generation site, we plot the timescales of the above two cooling

effects, where we have assumed that the shell expands at the speed of light to obtain the most

conservative bound while noting the realistic value should be a fraction of this. We see that µ’s

with energy ≳TeV will be damped by synchrotron radiation before their decay, while π’s upto

≲ 10TeV can run out their lifetime before cooled. Due to their much higher decay rate, on the

other hand, decay channel of K’s can manifest unless the energy is ≳ 100TeV.

Without specifying a particular system, we can gain insight into the magnetic environment

experienced by high-energy neutrinos near their source by examining the acceleration require-

ments, decay time scales, and cooling effects. In Section 5.2, our investigation will focus on the

magnetic moment effects induced by such environments, aiming to answer the question of ”how

likely is it for a high-energy neutrino to exhibit such an effect”. In this section, we consider

a class of the systems obeying the Hillas condition with a large but localized magnetic field,

particularly those involving a magnetar as listed below. In Section 5.1.2, we will introduce a

simplified model that provides scanning parameters. This model serves the purpose of estimat-

ing the probability density function (PDF) of θν as defined in Eq. (5.4) for neutrinos originating

from such point sources.

5.1.1 Systems involving a magnetar

Among possible emitters, we consider scenarios where a magnetar is involved. Some candidates

are summarised below:

1. Young magnetars tend to bear a rapid, and differential rotation, and possess a strong

magnetic with non-trivial multipolar structure. It can therefore be imagined that the spin

axis may defer from the magnetic axis. The unipolar induction of a rotating, magnetised

NS will render a electric potential, which can possibly reach a magnitude of

Φmax =
Ω2B⋆R

3
⋆

2c2
(5.9)

in the vicinity of the stellar surface [85]. Here Ω denotes the stellar spin, B⋆ sets the

magnetic strength, and R⋆ is the radius of the NS. The associated electromotive force

then accelerates the charge particles that constitute a plasma. For the cases where the
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magnetic field B and the stellar spin Ω satisfy the condition B ·Ω < 0, the positive charge

particles will be unleashed along the open field lines in the polar regions [86], including

protons [87,88]. In particular, the injection rate of protons to the stellar wind [89] may be

approximated by the Goldreich-Julia rate [90]. Depending on the surface temperature of

the pulsar, the relativistic protons are expected to hit photons and generate high-energy

neutrinos via ∆-resonance [91,92],

pγ → ∆ → nπ+ → nνµµ
+ → nνµe

+νeνµ, (5.10)

whereby protons loss their energy and get “cooled” down (among other cooling mecha-

nisms, e.g., synchrotron and inverse Compton scattering [93,94]). It should be noted also

that the pions and muons in the middle stages will also undergo several cooling effect

thus only able to hand over a friction of the energy to the resulted neutrinos [93] (see also

below). The authors of [91, 92] also pointed out that the production site of neutrinos via

this effect should be near the stellar surface since the collision angle is less for increasing

distance thus higher the required energy of proton’s.

2. Within fireballs [80, 95] that scintillate gamma-ray bursts – both long and short ones –

protons and electrons will undergo the Fermi acceleration by the threading magnetic field.

If the protons can be sufficiently expedited, proton-photon (p-p) collisions may compose

mesons that then decay to produce neutrino transients [96–99] while depending on the

properties of fireballs (see, e.g., [100] and the references therein). This p-p collisions mainly

lead to pion productions with production other mesons (e.g., kaons) on the side [101,102].

The majority of pions however does not necessarily imply that they are the main source

for neutrinos; the less efficient radiative cooling and the shorter lifetime of kaons arguably

make them more important source of neutrinos with a energy larger than TeV [103] (see

however below for the charmed mesons). In addition, the proton-photon (p-γ) collisions

are also at play for production of photomesons. On top of the process (5.10), kaons may

also serve as a proxy for producing high-energy neutrinos through the process [103,104],

pγ → Λ0K+, Σ0K+, Σ+K0. (5.11)

3. At the early stages of millisecond magnetars, ensuing either a binary merger or a supernova,

the relativistic wind spewed from the central remnant will be braked by its interaction with

ejecta, producing shocks heating up the ponderable medium. Within these pulsar wind

nebula, inelastic p-p collisions are expected to effectively operate, giving rise to a copious

of mesons [105], e.g., neutral and charged pions [106, 107]. These volatile mesons may, at

least in principle, decay to generate high-energy neutrinos after enjoying their temporal

lifetime, while no such event has been detected so far [108].

4. The p-p collisions within cocoon systems, formed atop the remnant magnetar of binary

merger [109], or of supernova [110], will seed middle stage mesons such as pions and kaons.
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The decay of them into highly energetic neutrinos may however be stagnated considerably

since the accelerated mesons will be cooled via several mechanism (e.g., [93, 103]) thus

dissipating away their energy. Owing to the longer cooling times and shorter lifetime of

charmed mesons, therefore, some study speculate that charm contribution to the neutrino

population may be more important than expected [90]. Adding to that, the non-production

of charm-involve particles is empirically shown to be unlikely [111].

5. On top of the aforementioned proton-involved collision, neutrons in the relativistic outflow

may activate production of metastable mesons (e.g., [112]). Such event may be detected

in a recent outburst, GRB221009A, from a supernova [113].

Although it is definitely inconclusive that magnetar is an essential engine to power neutrinos

to Eν = [0.1, 100] PeV, systems harboring a magnetar seem to be tied to production of high

energy neutrinos. In this thesis, our main goal is not to investigate one of the listed systems in

a realistic manner, which will be too involved given the complexity of modeling the post-merger

system and the magnetosphere of pulsars. Instead, we aim to illustrate qualitatively how the

flavor ratio of high energy neutrinos will be adjusted by the νMM effects. To this end, we

adopted a simple model for NSs processing a dipolar magnetic field (Sec. 5.1.2), which may

approximate to some extent magnetars that are isolated or in a close binary.

5.1.2 Magnetic Field Structure and Numerical Results

In this section, we consider neutrino being produced by a source with a dipolar structured

magnetic field. As illustrated in Fig. 5.3, the neutrinos are produced at distance Rmax above

the source on the dark and light blue shell then propagates along ℓ⃗, where |ℓ⃗| = ℓ, towards

earth at an angle θE relative to the axis of the magnetic field. Therefore, neutrino produced on

the upper (lower) shell will be in-going (out-going) with respect to the star. Furthermore, the

production site of neutrinos can be projected along the direction of ℓ⃗ on to an plane crossing the

stellar center (orange region). The projected point can be expressed through the angle θB to

an arbitrary reference axis on the plane, and the radius Ri = Rmax cos θR to the stellar center.

In other words, Rmax determines the maximum value of Ri, and since, in general, the magnetic

field strength is larger for smaller Ri, Rmax roughly decides the minimal νMM effect for in-going

neutrinos. To summerize, for a certain magnetic field structure, the parameters which determins

θν in Eq. (5.4), aside from the νMM, would be θE , θB , θR and Rmax. Furthermore, from the

previous section, we learn that high energy neutrinos are typically produced far above the star

surface, such as Rmax = 104–106 km, to acquire acceleration as well as to avoid significant

cooling effects. Therefore, the Rmax and θR dependence in B⊥ would be governed by a R−3

relation, where R denotes the distance from the center source. On the other hand, the θE and θB

dependence in θν would reflect on the specific magnetic field structure. In the following, we will

demonstrate the case for a slowing rotating magnatar, which can be analytically approached.

Additionally, note that for a specific source, θE and Rmax would, in principle, be fixed, but

all possibilities of θB and θR would still be included. For multiple sources having a similar
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Figure 5.3: Model for single source produced neutrinos. The neutrinos are produced on the shell
at distance Rmax above the stellar surface, described by θB and Ri = Rmax cos θR on the orange
plane for both in-going and out-going cases. The magnetic field axis is relative to earth by θE .

system, Rmax may still be fixed, but θE becomes arbitrary in addition to θB and θR. In the case

where multiple systems for multiple sources are included, Rmax would also gain arbitrariness.

For signatures from diffusive high energy neutrinos, we only consider the latter two cases. Fur-

thermore, we consider neutrinos produced uniformly on the shell in Fig. 5.3, and at each point on

the shell, the neutrinos are isotropically emitted. The former assumption, which may describe

shock accelerated systems such as the first example in Sec. 5.1.1, leads to θR being arbitrary

within (0 , π/2] and θB within a full 2π range. Here, θR ̸= 0, since we consider neutrinos being

fully absorbed once it enters the (neutron) star. For systems where neutrinos are not uniformly

produced on the shell, one may limit the range of θR and θB . The angular-distribution of the

neutrino emission is sensitive to the collision processes, and it is extremely involved to model

the precise procedure. We assume an isotropic emission, i.e., we consider the same amount of

in-going and out-going neutrinos. Varying the in-going to out-going ratios could account for the

anisotropy of emission.

We take the magnetic field structure for a slowly rotating source where the magnetic energy

density is significantly smaller than the gravitational binding energy (e.g., a slowing rotating

NS) as an example. In this case, the magnetic field can be treated as perturbations over a

spherically-symmetric equilibrium, where the spacetime can be described by the line element,

ds2 = −e−2Φdt2 + e2λdr2 + r2dθ2 + r2 sin2 θϕ2, (5.12)

in the rest-frame of the star (cf. Fig. 5.3), where Φ is the lapse function and λ is connected to
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the mass of the remnant M⋆ via

e−2λ = 1− 2M⋆

r
(5.13)

outside the star. In fact, NS provide systems aligned with such condition. Denoting the unit

vector normal to a space-like hypersphere as na, the contravariant, dipolar magnetic field inside

a NS can be expressed as [114,115]

Ba ≡ 1

2
ncϵ

cabdFbd = B⋆

(
0,

e−λ

r2 sin θ

∂ψ

∂θ
,− e−λ

r2 sin θ

∂ψ

∂r
,−ζ(ψ)ψe

−Φ

r2 sin2 θ

)
, (5.14)

which is associated with the 3-vector

B⃗ =
√
giiB

i =
B⋆
sin θ

(
1

r2
∂ψ

∂θ
,−e

−λ

r

∂ψ

∂r
,−ζ(ψ)ψe

−Φ

r

)
, (5.15)

with γ being the trace of the spatial metric γab = gab+nanb. Here B⋆ sets the canonical strength

of magnetic field, R⋆ is the radius of the remnant NS, and the stream function ψ for dipolar

field has the form [116,117],

ψ = f(r)Y ′
20(θ) sin θ (5.16)

with f(r) being some function to be catered to certain boundary conditions, and Y20 being the

ℓ = 2, m = 0 components of spherical harmonics. The exterior part is characterised by the

stream function

ψ2(r, θ) =
3R3

⋆

8M3
⋆

[
r2 ln

(
r

r − 2M⋆

)
− 2M⋆r − 2M2

⋆

]
sin2 θ. (5.17)

The form admits that the field is force-free and has zero-current on the stellar surface. There

remains a function ζ to be determined, which controls the toroidal component of the magnetic

field. We consider ζ = 0 for simplicity in this work. In addition, such magnetic field structure

indicates that the adiabatic condition, |∇ϕ/ϕ| ≪ µB⊥, where ϕ = tan−1(Bx/By), is met. This

is because the self similarity of dipole field lines (in the Newtonian limit, the field strength is

∝ sin2 θ) gives that the largest field gradient along some unit vector is |∇ϕ/ϕ| scales as r−1. The

transverse component, on the other hand, decreases at the third power of radius. Therefore,

the νMM effect will hardly have enough time to ‘feel’ such non-adiabatic evolution before it is

weakened to a negligible extent. As a result, eiϕ in Eq. (5.4) can be factored out, leaving no

physical influence.

In the considered scenario of Fig. 5.3, the strength of the magnetic field transverse to the

neutrinos’ propagation is plotted in Fig. 5.4. Here, ℓ̃ = ℓ−Rmax sin θR, denote a shifted ℓ, such

that ℓ̃ = 0 when the neutrino falls on the orange plane in Fig. 5.3. The structural dependence

on θE shows the symmetry of a dioplar magnetic field with respect to the pole (Bz in Fig. 5.3),

while the dependence on θB demonstrates that the antipodal (i.e., θB and π − θB) trajectories

undergo patterns that are symmetric about ℓ̃ = 0. For three canonical θE , the dependence of
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Figure 5.4: The perpendicular component of the magnetic field as a function of ℓ̃ for the head-
on (left panels) and edge-on (right panels) emissions, and the case in between (middle panels).
Here Rmax may be arbitrary as long as it is larger than Ri = Rmax cos θE . In all plots, different
colour tones represent different Ri, while different colour gradient are for different θB . We
assume B⋆ = 1016 G and M⋆ = 2.5M⊙.

B⊥ on Ri is observed through different colour patches in the upper panels. When θE ̸= 0, aside

from the dip caused by B being parallel to ℓ⃗, there is no significant change when ℓ̃ ≲ Ri, and

converges to a line ∝ ℓ−3 once ℓ̃ ≳ Ri. Furthermore, the dependence on θB is illustrated in the

bottom panels. In all subplots of Fig. 5.4, the color gradation reflects the magnitude of θB (the

lighter the larger θB , as given in the lower panels) for any colour patch.

Fig. 5.5, Fig. 5.6 and Fig. 5.7 show the probability distribution function (PDF) of θν set at a

benchmark point: µν = 3.7×10−11µB . This values is only chosen for the sake for demonstration

in this section, and will be varied in the next. In particular, Fig. 5.5 is determined by the

magnetic field structure for a slowly rotating magnatar for Ri = Rmax = 105 km. Furthermore,

at different Ri ≳ 100 km, one can adopt the fitting result of scaling:

θν(θE , θB ;Ri) = θν(θE , θB ; , Ri = R0)

(
Ri
R0

)−2.0457

. (5.18)

This fit has uncertainty σ2 = 0.0022, where,

σ2 =
1

N

∑
θE ,θB ;Ri

[
θnumν (θE , θB ;Ri)− θfitν (θE , θB , Ri)

]2
, (5.19)

N = 2×104 points, and θfitν denotes Eq. (5.18) for R0 = 100 km while θnumν denotes the numerical

result for the same θE , θB , Ri parameters. Therefore, for different Ri ≳ 100 km, θν in Fig. 5.5
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Figure 5.5: Magnetic field structure. The left plot shows the structure of θν when µν = 3.7 ×
10−11µB for Ri = Rmax = 105 km. The right plot shows the probability distribution function of
each θν when θE and θB is scanned over within the range from the left plot. At other Ri ≳ 100
km, θν can be re-scaled according to the fit result in Eq. (5.18).

can be re-scaled according to Eq. (5.18), leaving the structure unchanged. In other words, the

magnetic field structure can be described through a dependence θE and θB as show in the left

plot of Fig. 5.5.

In addition, we scan over θR for Ri = Rmax cos θR for the in-going contribution in Fig. 5.6.

The grey lines denote the case for a fixed Rmax, as labeled on the plot, while the red line

demonstrates a scan over 104 ≤ Rmax ≤ 106 km. Note that since θν includes an integration

over ℓ, the expectation value ⟨θν⟩ ∝ R−2
max, and the distributions are also shifted accordingly.

Finally, Fig. 5.7 demonstrates the full scan of parameters by considering the out-going (blue

line) contributions in addition to the in-going ones given in Fig. 5.6. Since B⊥ converges to a

value ∝ ℓ̃−3 when ℓ̃ ≳ Ri, as show in Fig. 5.4, the out-going neutrinos would have

θν ≃ µνB
shell
⊥

∫ ∞

Rmax

dr

(
r

Rmax

)−3

=
1

2
µν ×Bshell

⊥ ×Rmax, (5.20)

when the neutrino is produced on a certain point on the shell of some Rmax, on which B⊥ =

Bshell
⊥ . In this case, the scan over the shell would be equivalent to scanning over θE and θB ,

therefore, the distribution shown in Fig. 5.5 would inherit the shape in Fig. 5.7 for out-going

neutrinos.

5.2 Neutrino Magnetic Moment Effect

The Hillas condition in Eq. (5.5) provides a B ×R condition for the production of high energy

neutrinos. At the same time, the B × Rmax value would also determine the expectation value

of θν , explicitly though Eq. (5.20) for out-going neutrinos, and also for in-going neutrinos, as

shown in Fig. 5.7. Since Rmax represents the height at which the neutrinos are produced, it
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Figure 5.6: Same as Fig. 5.5 but also scanning θR for certain Rmax for in-going neutrinos.
The solid lines are for when θE and θB are also scanned over, while the dashed lines is when
θν(θE , θB , Ri = 105km) is fixed to the mean value in Fig. 5.5 at 0.75.

would roughly coincide with the comoving length of where the protons accelerate in, namely,

R. In addition to the acceleration (Hillas) condition, there are other factors influencing the

νMM effect. Incorporating cooling limits as well as specific systems, we include lines where

the νMM effect is optimized in Fig. 5.8. These lines, which denotes the value of µν such that

θν(µ
opt
ν ) = π/2, where

θν ∼ π

2

(
µν

3× 10−12µB

)(
B

5× 105G

)(
R

105km

)
, (5.21)

would overlap with the acceleration lines.

Nonetheless, the value of µν only shows when θν = π/2 for the case where the magnetic field

is uniformly distributed over a distance R, or when θν = π/4 for the out-going case a specific

θE and θB in Fig. 5.8. For a single source with a dipoplar magnetic field structure, a scan of

parameters, leading to a PDF such as Fig. 5.7, is necessary according to the previous section. In

fact, with the distribution in Fig. 5.7, we have plotted the PDF of θν for different values of µν in

the left plots of Fig. 5.9. The darker purple lines correspond to the values labeled on the Hillas

plot, for instance, when Rmax = 105 km, ⟨Bshell⟩ = 0.75×3.6×105 G, this correspond to the red

dot in Fig. 5.8 where µν = 3× 1012µB would result in θν = π/2 according to Eq. (5.21). Since

θν results in an oscillation phase in Eq. (5.4), we plot the PDF of the remainder of θν divided by

2π, denoted as θν ,eff in Fig. 5.9. From plot (a), we can see that 4.5× the point on the Hillas plot

(µν = 1.0× 1011µB) results in the PDF to peak at θν = π/2. However, we can also see that the
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Figure 5.7: The red lines in the upper plots correspond to the red line in Fig. 5.6. The red
lines in the lower plot correspond to the sold grey lines in Fig. 5.6. The blue lines show the
distribution from out-going neutrinos, which inherent the shape from the distribution in Fig. 5.5.
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decay, as well as the secondary muon decay, would start to suffer from a significant cooling effect.
The yellow regions show two of the typical candidates for producing high energy neutrinos,
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Figure 5.9: The upper plots are for Rmax fixed at 105 km (the case for plot (c) in Fig. 5.7). The
lower plots scan over 104 ≤ Rmax ≤ 106 km (the case for plot (a) in Fig. 5.7). The labels for
different colored lines represent µν in νB in the left plots. The right plot takes Eq. (5.4) into
consideration, showing the probability of obtaining an helicity flip from νMM effect.

probability of having other values of θν are all non-zero once µν ≥ 2.3× 10−12µB (i.e., the red

dot on Fig. 5.8 for θν = 1). This is due to the in-going contribution in Fig. 5.7 where θν would

cause a rapid oscillation at large values. Therefore, taken into account that the in-going and

out-going each contributes 50%, the νMM we can probe may be two orders of magnitude smaller

then what we have expected from the Hillas plot. However, for this same reason, the probability

of having an helicity flip would not reach the optimal value: sin2(π/2) = 1 but it saturates

to 0.5 instead. This feature is shown in plot (b) where the red region is non-zero because of

the in-going contributions, and the purple and blue region saturates to 0.5. As expected, such

smearing phenomenon is even more pronounced when a range of Rmax is taken into account, as

we can see from the plot (d) in Fig. 5.9. In fact, this would imply that although we have assumed

the magnetic field structure of a slowly rotating NS, the resulting probability of helicity flip due

to νMM would not be sensitive to such structure once various values of Rmax are considered.
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5.2.1 Signatures at IceCube

Finally, in Fig. 5.10–5.12, we show how the νMM would affect the flavour and/or helicity ratio

for five types of initial state (νe : νµ : ντ : ν̄e : ν̄µ : ν̄τ ):

• pp (blue, dashed): Neutrinos are produced through p− p collision followed by pion decay

and muon decay. The initial state would be (1:2:0:1:2:0).

• pγ (blue): Neutrinos are produced through p−γ collision followed by pion decay and muon

decay. The initial state would be (1:1:0:0:1:0).

• pp-damped (green, dashed): Neutrinos are produced through p − p collision followed by

pion decay, but the cooling time scale is smaller than the muon decay time scale, resulting

in neutrinos from muon decay having energy smaller 100 TeV. The initial state would be

(0:1:0:0:1:0).

• pγ-damped (green): Neutrinos are produced through p−γ collision followed by pion decay,

but the cooling time scale is smaller than the muon decay time scale, resulting in neutrinos

from muon decay having energy smaller 100 TeV. The initial state would be (0:1:0:0:0:0).

This scenario has currently been disfavoured the Glashow resonance event observed at

IceCube []. In this work we show that such observation can be explained by νMM effect,

as shown in Fig. 5.10.

• n (pruple): Neutrinos are produced through neutron decay, which would, in general, be

produced at a lower energy compared to the above cases. However, it barely suffers from

cooling effects. The initial state would be (0:0:0:1:0:0). This scenario has currently been

disfavoured at a 90% confidence level by the flavour ratio observed at IceCube [118]. In

this work we show that such observation can be explained by νMM effect, as shown in

Fig. 5.12 and Fig. 5.11.

In fact, from Fig. 5.11 and Fig. 5.12, we can see the flavour ratio being pulled to the center as

µν increase as a rule, while having some dependence on the νMM’s mixing matrix (or flavour

structure) shown in Fig. 2.1. Note that the pγ-damped scenario is particularly motivated for

high energy neutrino as listed in Sec. 5.1.1, because not only would it involve processes such

as the ∆–resonance in Eq. (5.10), it is also in a strong magnetic field environment which cause

muons to be damped. However, without helicity flip, no electron anti-neutrino is expected for

observation at earth, hence, the even observing one Glashow resonance event would disfavor

this scenario. Therefore, the explaining the detected Glashow resonance event is particularly

motivated. To sum up, the flavour ratio and Glashow resonance detection has been used to trace

back the initial state (and hence the production mechanism) of the neutrinos [119]. However,

we have shown that the νMM effect should also be taken into account if the neutrino has a

Majorona nature, since 1) it overlaps with the Hillas condition as shown in Fig. 5.8 2) the

non-zero neutrino mass indicates a non-zero µν .
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Figure 5.10: The fraction of anti-electron neutrino relevant for detection through Glashow res-
onance. Plots (a)-(d) show case for different mixing matrix of νMM demonstranted in Fig. 2.1.
The different colored lines represent different initial states for different production processes
listed in the text.

As for the theoretic interest in particle physics, of determining the value of µν ,mixing matrix

Ũ in Eq. (5.2) and the Dirac/Majonona nature of the neutrinos, we also look at Fig. 5.10-

5.12. Following the previous discussion, if the high energy neutrinos are generated through a

pγ-damped process, then the observation of one Glashow resonance event already point towards

neutrinos having a Majorona nature with µν ≳ O(10−15) with µeµ ̸= 0 and/or µeτ ̸= 0 for the

mixing matrix. Similar argument may be applied for different initial states as well as for the

flavour triangles in Fig. 5.11 and 5.12. However, the pγ-damped case would be the best channel

for Glashow resonance detection since zero events are expected when µν = 0 or when only µµτ

is non-trivial. Similarly, for a positive signature, the n-decay be the best channel for the flavour

rations, since a nontrivial νMM effect would pull the ratio towards the middle. On the other

hand, if future observation, such as IceCube Gen2, show a significant asymmetry among flavors

and/or helicity, it would indicate that neutrinos either have a Dirac nature or set a bound on

µν and Ũ for the Majorona neutrinos.
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Figure 5.11: The flavour ratio for different ranges of µν for neutrinos produced at the red dot
in Fig. 5.8 and magnetic field structure modeled in Sec. 5.1.2. This corresponds to plot (a) and
(b) in Fig. 5.9. The νMM mixing matrix include all four benchmark points listed in Fig. 5.10.
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Figure 5.12: The flavour ratio for different ranges of µν for neutrinos produced at the region
circled by the red line in Fig. 5.8, and magnetic field structure modeled in Sec. 5.1.2. This
corresponds to plot (c) and (d) in Fig. 5.9. The νMM mixing matrix include all four benchmark
points listed in Fig. 5.10.
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Chapter 6

Conclusions

The unique properties of neutrinos make them an exceptional portal to quantum effects. In

this thesis, we have explored how quantum effects may leave imprints on neutrino decoherence

signatures in terrestrial experiments, and how specific coherence effects of high-energy neutrinos

from astrophysical environments can be observed. The relevant quantum coherence and deco-

herence framework is outlined in Chapter 2. Coherent effects of neutrinos, including neutrino

oscillations and those resulting from interactions with low momentum transfer, are described

by a closed quantum system in Section 2.1, where coherence is fully preserved. However, all

observable effects of mixed quantum states, coherence is expected to be lost at some point. This

leads us to Section 2.2, where an open quantum system is considered and incorporated into a

Quantum Field Theory framework.

Thanks to the increasing precision of neutrino oscillation experiments, the study of neu-

trino decoherence effects may become feasible in future experiments, opening up a new av-

enue for probing new physics. In Chapter 3, we introduce the ”layer structure” (illustrated in

Fig. 3.1), which incorporates the concept of an open quantum system and classical statistics

while maintaining Quantum Field Theory as the fundamental theory. This structure is particu-

larly useful for understanding mechanisms behind decoherence signatures in neutrino oscillation

experiments. We demonstrate that decoherence effects arise from distributions that characterize

uncertainties, referred to as ”weighting functions” at each layer. At the quantum level (layer

1), the sources of these weighting functions are categorized into two groups: those carried by

external on-shell particles, such as the lifetimes of these particles, and those originating from

internal off-shell processes, such as loop effects. To quantify the decoherence effect as a pa-

rameter, we consider the widths of these distributions. Consequently, external uncertainties are

combined and parameterized as σp, representing the uncertainty arising from the wavepacket

sizes of external particles. Internal uncertainties are parameterized as σx, accounting for coor-

dinate uncertainties around the vertices. Since the uncertainty distributions are rearranged on

the Wigner-PS, so will the uncertainty parameters. On the other hand, classical uncertainties
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resulting from a lack of knowledge also contribute to decoherence signatures. These uncertain-

ties include factors such as the production profile of neutrinos, energy resolution, and errors

in the energy reconstruction model. Similar to the weighting functions in layer one, we can

also parametrize these distributions based on their width. In this context, production profile

dominates the uncertainty parameter σL while the energy resolution, and errors in the energy

reconstruction model are included in σE .

In Section 4.1, we show that decoherence effects from all the uncertainty distributions (or

uncertainty parameters) come from phase wash-out effects, which are determined by a phase

structure and some distribution. For each uncertainty parameter, there is a certain phase struc-

ture and some localized distribution with width as the corresponding parameter, resulting in

a phase wash-out effect suppressing and/or causing a phase shift in the oscillation signature.

The phase structure also characterises dependence on the traveling distance (L0) and energy

spectrum (E0) for each uncertainty parameter, hence, enables us to identify the mechanisms

behind decoherence signatures by analysing these parameters in the neutrino detection profile

and/or spectrum. The phase structures are given in Eq. (4.17) and Eq. (3.30) (Eq. (4.23) and

Eq. (3.33)) for uncertainties on the Wigner phase space and the relativistic phase space, re-

spectively, for the time dependent (independent) case. Furthermore, we have classified neutrino

decoherence in terms of its mechanism as state decoherence and phase decoherence. The former

represents the separation of superposition (mass) states, and is dominated by quantum uncer-

tainties; while the latter indicate averaging effect due to the information loss, and is mainly

decided by macroscopic classical uncertainties. In particular, we calculate the case of Gaussian

distributed weighting functions and estimate how much more statistics we need for certain σp̄,

σL and σE , to be sensitive to them at 90% CL in Fig. 4.7, by taking the RENO experiment as a

benchmark in Section 4.2. In addition, the requirement of systematic uncertainties can be seen

by whether we will be able to identify decoherence signatures between quantum uncertainties

and classical uncertainties. For instance, in recent literature [120, 121], it has been shown that

quantum decoherence from WP separation cannot be observed for reactor neutrinos since the

damping factor approximately have the same L and E dependence for that from the energy

resolution within current the baselines. Therefore, as they have estimated that the WP size

from the uncertainties of the nuclear fission are orders of magnitude larger than that required to

be able to compete with the energy resolution, they reach the non-observational conclusion. In

our framework, this result would translate to: the decoherence scale from nuclear fission would

not result in a signature distinguishable to σE (energy resolution) within the range (in terms of

L0 and E0) of interest.

Furthermore, we propose a novel method in Section 4.3, the phase measuring method, to

measure the asymmetry of weighting functions by searching an oscillation minimum. Partic-

ularly, we estimate the sensitivity of this method for a two-Gaussian distributed, Dp̄-induced,

quantum mechanical uncertainty as well as the statistical uncertainty from the energy resolution

in Fig. 4.10. While the energy resolution ranges typically from 1− 10%/
√
E0(

√
MeV) for neu-

trino detectors, the asymmetry parameter a, could be caused by the quantum effect of having



Chapter 6. Conclusions 95

a superposition of different processes. For instance, having simultaneously quasi-elastic scat-

terings and inelastic scatterings for neutrinos scattering on nucleons, or by nuclear effects such

as the Fermi motion [122]. In fact, quantitative estimation of the asymmetry parameter would

need further investigation. To sum up, while the four uncertainty parameters σx, σp, σL and

σE in our structure can be determined by some theoretical mechanisms, such as the wavepacket

size of the external particles, the type of collisions, matter effect, exotic effects like space-time

fluctuation, etc; it could also be potentially measured experimentally through rate or phase mea-

suring methods. Our considerations presented here provide the theoretical background for such

analyses and can be applied to any experiment. Experimental improvements are necessary, for

instance via better energy resolution or larger event numbers, or by other detection techniques

made possible by e.g. developments in coherent elastic neutrino-nucleus scattering.

Taking advantage of the extreme magnetic field environment required to accelerate particles,

we study the coherence effect from neutrino magnetic moment (νMM) of high energy neutri-

nos in Chapter 5. The Hillas condition, as expressed in Eq. 5.5, indicates the magnetic field

environment necessary for the acceleration of protons. These accelerated protons subsequently

participate in proton-proton or proton-photon collisions, ultimately giving rise to the produc-

tion of neutrinos. Such condition would roughly overlap with the νMM effect in the Hillas

plot as shown in Fig. 5.8. For a more detailed analysis, we constructed a model illustrated

in Fig. 5.3. This model incorporates various parameters, including Rmax, which specifies the

distance relative to the star’s surface where neutrinos are generated, and θE representing the

relative position of Earth. These two parameters together with θB determines the trajectory of

neutrinos’ across the magnetic field. Additionally, varying in-going to out-going ratio accounts

for the configuration of neutrino production; for the considered simple model, we assume an

isotropic production of neutrinos (i.e., in-going to out-going ratio is unity). For the νMM effect,

the crucial parameter is Rmax, which is restricted by the Hillas condition and the cooling effects

shown in Fig. 5.2. We computed the anticipated flavor ratio (Fig. 5.12) and the anti-electron

neutrino fraction (Fig. 5.10) for a variety of νMM values for diffusive neutrinos originating from

gamma-ray-burst sources by scanning over the aforementioned parameters within the framework

of an analytical dipolar magnetic field structure.
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Appendix A

Fourier Transformation and

Convolution Properties

We review some useful properties of Fourier transformation (FT) and convolution in this section.

These properties are particularly useful in our structure, for the layer moving operators involve

integrations of complex functions, which can be parameterized as a plane wave term exp(iη(x, p))

and a normalized-real probability density function (PDF) term. In particular, we will show

how the layer variables are connected with each other via FT properties, how two sources of

uncertainties are combined to an effective one with convolutional properties, and demonstrate

the phase washout effect. Below, we will outline the properties in bold front followed by a more

detailed demonstration.

• Property 1: The FT of an even function is real, while that of an odd function

is purely imaginary. For an even function f(x),∫ ∞

−∞
dx e−ipxf(x) =

1

2

∫ ∞

−∞
dx e−ipx {f(x) + f(−x)}

=
1

2

∫ ∞

−∞
dx e−ipxf(x)− 1

2

∫ ∞

−∞
dx eipxf(x) =

∫ ∞

−∞
dx f(x) cos (px) ∈ R,

(A.1)

and similarly for odd functions being imaginary after Fourier transformation.

• Property 2: For any probability density function (PDF), W (x;L), the FT can

be written as

P (L, p) =

∫ ∞

−∞
dx e−ipxW (x;L) = e−ipLW̃ (p) ≡ e−i(pL−β(p))|W̃ (p)|, (A.2)

where the damping term |W̃ (p)| ≤ W̃ (0) = 1 and the phase shift term β(p) is

non-zero and non-π only when W (x;L) is symmetric w.r.t. L. If the shape of

W (x) is symmetric, W (x + L) would be even for L =
∫
dxxW (x). Then, after shifting
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x → x + L, we obtain Eq. (A.2) with W̃ (p) ∈ R and no phase shift, i.e. β = 0. On the

other hand, if the shape of W (x) is not symmetric, we can always write it in terms of a an

even function and an odd function, i.e. W (x+ L) = Weven(x+ L) +Wodd(x+ L). Hence

on top of the even part, which is treated in the same manner as the symmetric case, the

odd part would give rise to an imaginary part in W̃ (p), or in terms of rotation coordinate,

a phase shift β(p) ̸= 0 and π relative to the oscillation phase, pL, on the next layer.

Moreover, W (x) being a PDF indicates that
∫
dxW (x) = 1, and W (x) ≥ 0, therefore,

|W̃ (p)| ≤
∫
dxW (x) = W̃ (0) = 1. A list of examples is given in Table 4.3, showing how

the asymmetry of the PDF induces a non-zero and non-π phase shift. Additionally, it

is also clear from the plots that, in most cases, the larger the width (labeled as σn, for

n = {p, L,E}) is for the PDF, the smaller will the width of W̃ (p) be. Henceforward, since

|W̃ (p)| ≤ W̃ (0) = 1, the larger σn is, the smaller |W̃ (p)| will be, for some p ̸= 0, and

the more suppressed P (L, p) will be. Another way to look at this effect is that a wider

width of the PDF indicates that there is a wider range for eipx to be averaged out upon

the integration over x, namely, the PWO effect.

• Property 3: The PWO effect is the generic case of Eq. (A.2), for a complex

function Γ(x;L) ≡ |Γ(x;L)|eiη(x), and Eq. (A.2) is simply when η(x) is linear in x.

The PWO effect is written as∫
dxΓ(x;L)∫
dx |Γ(x;L)|

= ei(η(x)|x=L−β)Φ(L), (A.3)

where L is the central value of Γ(x), such that Γeven(x+ L) is even. In fact, according to

the layer structure presented in the main text, L would also be the next level PS variable

in our structure corresponding to x. Hence, similar to property 2, |Φ| ≤ 1 and β is non-

zero only when Γ(x;L) is symmetric w.r.t. L. In fact, this is why we call Φ the damping

term and β the phase shift term in this paper. Moreover, the wider Γ(x) is relative to the

wavelength for the phase structure η(x), the smaller will Φ become.

• Property 4: For two distributions f(x) and g(x) with width σf and σg, respec-

tively, the width of (f ∗ g)(L), σf∗g is larger than either σf or σg, where “∗”
represents the convolution of two distributions. Whenever two function are related

with the form ∫
dx f(x)g(x− L) ≡ (f ∗ g)(L), (A.4)

there is a convolution between these two functions. This usually occurs when there are

multiple sources of uncertainties taken into consideration, for instance, the total uncer-

tainties of the PS variables from both the initial state and the final state (Eq. (2.32)), the

production site and the detection site (Eq. (2.39)), or the external process and the internal

process (Eq. (2.53)). The width of an arbitrary localized function f(x) is defined here as

σf =
1

2
√
π

∫
dx |f ′(x)|, (A.5)
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where f ′(x) is the normalized function of f(x), and f ′(x) = f(x)/max{|f(x)|}, such that

its global maximum is unitary. Also, 1/2
√
π is inserted such that width of a Gaussian

distributed function would have the width at one standard deviation and the other distri-

butions are then defined accordingly. On the other hand, the width of the product of two

function, σfg, will be smaller than the individual widths of the functions σf and σg, since

4πσfg =

∫
dx |f ′(x)g′(x)| ≤

∫
dx |f ′(x)||g′(x)|

≤
∫
dx |f ′(x)| = 2

√
πσf and

∫
dx |g′(x)| = 2

√
πσg, (A.6)

for |f ′(x)| ≤ 1 and |g′(x)| ≤ 1. Moreover, by the convolution theorem,

f ∗ g = FT −1[FT (f)FT (g)], (A.7)

we can see that comparing to the trivial case where g is a delta function, and we have

f = FT −1[FT (f)], the width of FT (f)FT (g) would decrease when the width of g is no

longer zero, and hence σf∗g would increase. For example, if f(x) and g(x) are Gaussian

distributions, then σ2
f∗g = σ2

f + σ2
g .

• Property 5: Convolution of a complex function, h(x) = f(x) eipx, and a real

function, g(x), is

(h ∗ g) (y) =
∫
eip

′y f̃(p′ − p) g̃(p′) ≡ eipY (y)I1(y)I2(p), (A.8)

where f̃ = FT [f ], g̃ = FT [g] and the width of I(y) ∈ R is the same as that of

(f ∗ g)(y).

By the convolution theorem,

FT [h ∗ g] = FT [h]FT [g] =

∫
dxf(x)e−i(p

′−p)x
∫
dxg(x)e−ip

′x = f̃(p′ − p)g̃(p′). (A.9)

Then by doing an inverse Fourier transformation from p′ to y on Eq. (A.9), we arrive

at Eq. (A.8). Furthermore, the width of the product of two functions, f̃(p′ − p)g̃(p′) is

independent of the parallel shift from p, i.e. the width of f̃(p′ − p)g̃(p′) is the same as

f̃(p′)g̃(p′), which is the case where the convolution is between f and g. For example, if

f(x) and g(x) are Gaussian distributed, i.e.

f(x) = exp

[
−(x− µf )

2

4σf

]
, g(x) = exp

[
−(x− µg)

2

4σg

]
, (A.10)
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Type (notation for σh) Function relation Width relation Gaussian case
FT type (σ̃f ) h = FT (f) NC σh = 1

2σf

Product type (σfg) h = f × g PC, σh < {σf , σg} 1
σ2
h
= 1

σ2
f
+ 1

σ2
g

Convolution type I (σf∗g) h = f ∗ g PC, σh > {σf , σg} σ2
h = σ2

f + σ2
g

Table A.1: Properties of the width of the function h in terms of the original real function(s) f
(and g). Here NC/PC means that σh is negatively/positively correlated to σf (and σg).

Function (width notation), Type Width relation Gaussian case
H(y) (σH), Convolution type I PC , σH > {σf , σg} σH = σf∗g
I(p) (σI), Convolution type II NC σI = 1/σfg

Table A.2: Properties of the width of functions H and I for convolution with an addition
complex phase in terms of their origin functions f and g, giving rise to an additional term I(p).

then f̃(p′) = exp
(
−ip′µf − p′2σ2

f

)
, g̃(p′) = exp

(
−ip′µg − p′2σ2

g

)
, and

f̃(p′ − p)g̃(p′) = e−ip
′(µf+µg) exp

[
−
(
σ2
f + σ2

g

) (
p′ − p

∆

)2
− σ2

fp
2

(
1− 1

∆

)]
, (A.11)

where ∆ = (σ2
f +σ

2
g)/σ

2
f . We can see that the width of Eq. (A.11) w.r.t. p′ is independent

of p. Therefore, according to Eq. (A.8), the convolution of h and g is then to do a Fourier

transformation from p′ to y − (µf + µg), giving us

(h ∗ g)(y) = ei
p
∆ (y−µf−µg) exp

[
− (y − µf − µg)

2

4(σ2
f + σ2

g)
− σ2

fp
2

(
1− 1

∆

)]
. (A.12)

Hence, the width w.r.t. y is σ2
f + σ2

g , which is the same the width of (f ∗ g)(y) shown in

Property 4. Moreover, when σf = 1/σp and σg = 2σx, it follows ∆ = 1 + 4σ2
xσ

2
p, which

agrees with Eq. (3.13).

• Property 6: In Table A.1 & A.2 we classify how the width would evolve after

Fourier transformation, product of functions, convolution of real functions and

convolution of complex functions as in “property 5”. By the properties above,

we summarize the width evolution of the first three types in the Table A.1, specifying

its relation with the original function(s) and give the example of assuming all original

functions are Gaussian distributed.

As for the last type, two functions are generated under such combination, namely, H(y)

and I(p) in ∣∣∣∣ ∫ dxf(x)eipxg(x− y)

∣∣∣∣ = H(y)I(p). (A.13)

By property 5, we see that the width of H(y) and I(p) has properties shown in Table A.2.
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Appendix B

Factorization Condition

In this appendix, we derive the conditions under which a function can be factorized out of some

integration, i.e. ∫ ∞

−∞
dX2S(X2)Y (X2;X3) ≃ S(X3)

∫ ∞

−∞
dX2Y (X2;X3), (B.1)

where S(X2) and Y (X2;X3) are both localized, i.e. S(X2) = Y (X2) = 0 as X2 → ±∞. This is

useful for describing state decoherence as a phase wash-out effect on the Wigner-PS in Eq. (4.18),

and disentangling σE and σL in Eq. (4.30). Intuitively, the condition where S(X2) can be

factorized out of the integral as Eq. (B.1) is when the width of S(X2) is much larger then

Y (X2), since the product of the two functions would be dominated by the function which is

more localized. Nevertheless, in order to see if this condition is sufficient and to have a more

concrete idea, we derive Eq. (B.1) as follows:

LHS =−
∫ ∞

−∞
dX2

dS(X2)

dX2

∫ X2

−∞
dX ′

2Y (X ′
2;X3) (B.2)

≃−
∫ ∞

X3−Λ

dX2
dS(X2)

dX2

∫ X2

X3−Λ

dX ′
2Y (X ′

2;X3) (B.3)

≃−
∫ ∞

X3−Λ

dX2
dS(X2)

dX2

∫ ∞

−∞
dX ′

2Y (X ′
2;X3)

+

∫ X3+Λ

X3−Λ

dX2
dS(X2)

dX2

∫ X3+Λ

X2

dX ′
2Y (X ′

2;X3) = RHS. (B.4)

Eq. (B.2) is achieved by doing integration by parts with the boundary terms vanishing due

to the localization property of S(X2). In Eq. (B.3) and Eq. (B.4), we use the localization

property of Y (X2) to make a cut at Λ w.r.t. X3 such that the cumulative distribution func-

tion
∫X3−Λ

−∞ dX ′
2Y (X ′

2;X3) = 0 and
∫X3+Λ

−∞ dX ′
2Y (X ′

2;X3) converges to a constant, so that∫∞
X3+Λ

dX ′
2Y (X ′

2;X3) = 0, as shown in Fig. B.1. Finally, if S(X2) varies slowly in the in-

terval (X3 − Λ, X3 + Λ), i.e. the width of S(X2)(σS), is much larger than that of Y (X2)(Λ),
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Figure B.1: The cumulative distribution function (CDF) of Y (X2;X3 = 50) as a Gaussian
PDF with width = 2 AU (arbitrary units of X2), centered at 50 AU: N(X2) for the red line;
a delta function centered at 50 AU for the blue line; and N(X2) cos(X2)/N(X2) cos(X2/2) for
the yellow/purple line; Λ is the cutoff value in Eq. (B.3).

then the latter part in Eq. (B.4) can be neglected and we arrive at the RHS of Eq. (B.1), where

S(X3 −Λ) → S(X3) can be taken out of the integral if X3 ≫ Λ. Furthermore, Y (X2;X3) could

be any distribution as long as it is localized, even if it includes a non-zero phase term, as we can

see from the orange and purple lines in Fig. B.1.
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Appendix C

Phase Decoherence for Discrete

Neutrino Sources

In this section, we show the formalism of phase decoherence effect including a damping term

and a phase shift term for neutrino detection coming from multiple sources. In other words,

we formulate the case where the weighting function on layer 2 for the coordinate uncertainty is

composed of multiple delta functions discretely scattered. We start with the simple case where

there are only two point-like sources located at x1 and x2, contributing neutrino flux A and B,

then the phase decoherence term in Eq. (4.27) is simply

Φjk = e−iαjkL3
(
a eiαjkx1 + b eiαjkx2

)
≡ ϕ(1) eiαjk(x

(1)
eff −L3), (C.1)

where a = A/(A+B), b = B/(A+B) and 0 ≤ c ≤ 1, are real. This requires

A sin (αjkδ1) +B sin (αjkδ2) = 0, (C.2)

where x1 = x
(1)
eff +δ1 and x2 = x

(1)
eff +δ2. Hence, by solving Eq. (C.2) for ∆x(1) = x1−x2 = δ1−δ2,

we have

δ1 ≡ fjk(∆x,
a

b
) =

1

αjk
tan−1

[
− sin(αjk∆x)
a
b + cos(αjk∆x)

]
, (C.3)

and thus

x
(1)
eff = x1 + fjk(∆x

(1),
a

b
),

ϕ(1) = a cos
[
αjkfjk(∆x

(1),
a

b
)
]
+ b cos

[
αjk(fjk(∆x

(1),
a

b
) + ∆x(1))

]
, (C.4)

indicating that the damping term ϕ ≤ 1 as excepted since a + b = 1. In the case where the

detector is placed far from all the sources, x1, x2 ≫ ∆x, then xeff = x2, and c = a+ b cos(∆x).
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Similarly, if there are three point like neutrino sources,

Φjk = e−iαjkL3
(
a eiαjkx1 + b eiαjkx2 + c eiαjkx3

)
≡ ϕ(2) eiαjk(x

(2)
eff −L3), (C.5)

the damping term (ϕ(2)) and the phase term (x
(2)
eff ) are obtained by replacing x1 → x

(1)
eff , ∆x→

x
(1)
eff − x3, a→ ϕ(1) and b→ c in Eq. (C.4), and so on for more point-like sources.
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