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The nature of time as emergent for a system by separating it from its environment has been put
forward by Page and Wootters [D. N. Page and W. K. Wootters, Phys. Rev. D 27, 2885 (1983)]
in a quantum mechanical setting neglecting interaction between system and environment. Here, we
add strong support to the relational concept of time by deriving the time-dependent Schrödinger
equation for a system from an energy eigenstate of the global Hamiltonian consisting of system,
environment and their interaction. Our results are consistent with concepts for the emergence of
time where interaction has been taken into account at the expense of a semiclassical treatment of the
environment. Including the coupling between system and environment without approximation adds
a missing link to the relational time approach opening it to dynamical phenomena of interacting
systems and entangled quantum states.

The nature and role of time to decipher the physical
world is a basic and persisting research topic, in particu-
lar the question, if time is fundamental or emergent. For
the latter, the starting point is a static description of the
world. Time emerges from singling out a system from
the rest of the world, its environment. As such, time
is a meaningful tool to describe the relation of system
and environment, both governed by Hamiltonians distin-
guished in physical or abstract (Hilbert) space. This has
lead to two strands of research for the relational approach
to time. One strand, initiated by Page and Wootters [1–
5] deals with abstract state vectors in Hilbert space and
is analytically exact, but remains to date unable to deal
with general couplings of system and environment. The
second strand uses a semiclassical approach typically in
position space, arguing that the environment is “large
enough” to allow for semiclassical approximations [6–14].
By these means, time also emerges as relation between
system and environment which may be arbitrarily cou-
pled.

Here, we will show how time emerges quantum me-
chanically in the relation between system and envi-
ronment without approximations, more specifically, by
retaining arbitrary couplings between them and with-
out the need to resort to semiclassical approximations.
That is, starting from a static global state encom-
passing system and environment we derive the time-
dependent Schrödinger equation including an arbitrary,
time-dependent potential for the system in a few trans-
parent steps. To this end, we will re-formulate the sta-
tionary (timeless) Schrödinger equation for the global
state as an invariance principle and single out a pure
state of the system from its inevitable embedding in the
environment by projecting a specific state of the envi-
ronment onto the global state. As a by-product our ap-
proach constitutes a concept for analytical solutions of
complicated time-dependent interaction potentials [15].

The invariance principle for the global state |Ψ⟩⟩ as an
eigenstate of the Hamiltonian Ĥ with global eigenenergy

E reads

exp
[
iλ(Ĥ − E)

]
|Ψ⟩⟩ = |Ψ⟩⟩ (1)

for all complex λ with dimension of inverse energy, where
⟨⟨.|.⟩⟩ stands for the scalar product in the global Hilbert
space. Differentiating (1) w.r.t. λ gives the (timeless)
Schrödinger equation (Ĥ − E) |Ψ⟩⟩ = 0, often referred
to as TISE. In the following, we will only consider real-
valued λ in (1) which is sufficient to demonstrate the
emergence of time. Purely imaginary λ finds its natu-
ral application in the emergence of temperature [16]. In
order to single out a system state from the global state,
we first partition the global Hamiltonian Ĥ into that of
the system ĤS, its environment ĤC and their possible
interaction V̂ ,

Ĥ = ĤS ⊗ 1̂C + 1̂S ⊗ ĤC + V̂ . (2)

We will use environment and clock as synonyms to re-
late to the aforementioned two strands of research on
the emergence of time. While the partition (2) of the
global Hamiltonian is natural to define a system in the
first place, it is not obvious how to single out a system
state from the global, entangled state |Ψ⟩⟩. From a quan-
tum mechanical point of view, the system is inevitably
embedded in its environment on which it is therefore con-
ditioned. Hence, a system state |φ⟩S is created by pro-
jecting the global state onto a state of the environment,
|φ⟩S = ⟨χ|Ψ⟩⟩ [17]. Here and in the following we use the
convention that ⟨.|.⟩ and ⟨⟨.|.⟩⟩ denote scalar products in
environment and full Hilbert space, respectively, while
|φ⟩S and |χ⟩ stand for states of system and environment,
respectively and |Ψ⟩⟩ is reserved for the global state. A
sketch of this relational approach is shown in Fig. 1.
Singling out the system by projection reduces the cor-

relations and in particular breaks the global symmetry
such that the system state does not obey the global in-
variance principle. Rather, the state becomes dependent
on the symmetry parameter λ. This can be seen by pro-
jecting the invariance equation (1) onto ⟨χ0|, which gives
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Figure 1. Sketch of the relational state formalism. A
one-dimensional environment state χ(x) projects out a two-
dimensional system state φ(y, z) ∝

∫
dxχ∗(x)Ψ(x, y, z) from

the three-dimensional global state Ψ(x, y, z). Schematically,
the clock wavefunction is multiplied to each vertical column
of Ψ and subsequently integrated along this direction to yield
each value of φ. With such an inherent clock dependence, the
system state generally differs for different clock states.

for the interaction free case, V = 0,

⟨χ0|eiλ(ĤC−E)|Ψ⟩⟩ = e−iλĤS ⟨χ0|Ψ⟩⟩ , (3)

where we may write

|χλ⟩ = e−iλ(ĤC−E) |χ0⟩ ≡ ÛC(λ) |χ0⟩ . (4)

The states |χλ⟩ from the environment serve as markers
to tag the system state with λ,

|φ(λ)⟩S ≡ ⟨χλ|Ψ⟩⟩ . (5)

Consistent with |φ(0)⟩S = ⟨χ0|Ψ⟩, we arrive at

|φ(λ)⟩S = e−iλĤS |φ(0)⟩S ≡ ÛS(λ) |φ(0)⟩S (6)

for all symmetry parameters λ. Hence, we have derived
from the global invariance (1) without reference to any
differential equations how states of the system (6) and
the environment (4) evolve. This implies a peculiar con-
sequence on the fundamental level: states with different
λ do not have to be related, admitting also discrete sym-
metries with λ replaced by a set of parameters {λn}.

Using the property Û†(λ) = Û(−λ) of the unitary
transformations in (4) and (6) we can rewrite the pro-
jected invariance equation (3) as

⟨χ0|Ψ⟩⟩ = ÛS(−λ) ⟨χ0|ÛC(−λ)|Ψ⟩⟩
= ÛS(−λ) ⟨ÛC(λ)χ0|Ψ⟩⟩ , (7)

which has the same form as the invariance for more
familiar symmetry transformations, e.g., the invariance

of a state |ψ⟩ in coordinate space ⟨r|ψ⟩ if it is rotated
by an angle θ about a vector u with the unitary op-

erator D̂(θ) = e−iθu·Ĵ/ℏ while the coordinate system
is rotated backwards with the rotation matrix R(θ):
D̂(θ) ⟨R(−θ)r|ψ⟩ = ⟨r|ψ⟩. This opposite behavior of
states of the system and environment as a consequence of
the global invariance was dubbed by Zurek “envariance”
and used to motivate, why probabilities correspond to
measurements, colloquially known as the Born Rule [18].

In our context of letting time emerge by projection
of a globally static state, we may conclude that for the
projected global invariance (3) the state |χ⟩ from the en-
vironment plays the role of a coordinate which is trans-
formed with ÛC(λ) to compensate the transformation of
the system state |φ⟩S with ÛS(−λ).
Since λ in (1) is a continuous symmetry, (6) can be

interpreted as the solution of the differential equation

i
d

dλ
|φ(λ)⟩S = ĤS |φ(λ)⟩S (8)

with initial condition |φ(0)⟩S = ⟨χ0|Ψ⟩⟩. Obviously, (8)
is equivalent to the TDSE if time t is introduced through
λ = t/ℏ. What we have described so far is a short cut
derivation of the Page-Wootters relational time approach
[1] made possible by recognizing the crucial role of the
invariance principle (1).

Strictly speaking, λ is only a label without physi-
cal meaning: Any re-parametrization λ = f(λ̃) leaves
the relations between environment and system invari-
ant. However, one can tag the system’s evolution with
a reparametrization invariant observable of the environ-
ment, AC(λ) ≡ ⟨χλ|ÂC|χλ⟩ : HC 7→ R. Although ÂC

operating on the environment is arbitrary apart from
being Hermitian, a good choice is one for which the
relation between λ and AC is simple, for example lin-
ear, if the environment is used as a clock. This idea
goes back to Poincaré [19]. For instance, the mean
position R(λ) = λP(0)/M + R(0) of a free particle of
mass M with ĤC = P̂ 2/2M can reliably track dynam-
ics for non-vanishing mean momentum P(0) ̸= 0 since
we can replace λ = M [R(λ) − R(0)]/P(0) which repre-
sents a physical property of the environment, respectively
clock. For a state |χλ⟩ to clock the system, it must
first of all have overlap with the global state (see Fig.
1). To provide a high resolution in λ, the clock state
|χλ⟩ ∝

∑
k ake

−iλEC,k |EC,k⟩ must be distributed over

many eigenstates |EC,k⟩ of ĤC, with ideally |ak| ≈ const
[3, 4, 20]. This is easy to realize, if the (physical) dimen-
sion of the clock is much larger than that of the system,
which also has the effect that the global state can accom-
modate more complex system dynamics.

We also re-emphasize that the entanglement in |Ψ⟩⟩
with respect to the states of system and environ-
ment is crucial for non-trivial system dynamics and re-
quires without interaction V̂ the existence of degenerate
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eigenspaces of the global Hamiltonian. Otherwise, sys-
tem and environment fulfill separately a “global” invari-
ance principle with λS and λC, respectively, which leaves
the relation λS(λC) undetermined.
Finally, it is remarkable that despite the global in-

variance having been broken by an arbitrary but specific
choice of |χ0⟩, the properties of the latter do not influence
the evolution of the system state other than specifying
its initial condition. Hence, the standard procedure of
getting rid of properties of the environment to achieve a
universal system evolution, namely tracing over the en-
vironment, is not necessary. While it is contained in the
present description (we could use any kind of mixed state
for |χ0⟩), choosing a rather structureless |χ0⟩ is not suit-
able for serving the purpose of a clock as just discussed.

So far we have provided a clarification and short-cut to
the TDSE for a system not interacting with its environ-
ment, enabled by recognizing the power of the invariance
principle (1) which was not invoked in [1]. We have de-
tailed our approach since we need it in the following to
derive the TDSE for a system interacting with the envi-
ronment.

In reality, the environment, will inevitably interact
with the system. This automatically ensures that the
global state |Ψ⟩⟩ is generically entangled. Hence, we
should derive the TDSE for the system with interaction
V̂ ̸= 0. To this end, we use |χ(λ)⟩ = e−iS(λ) |χλ⟩ with

|χλ⟩ from (4) and the complex scalar S(λ) =
∫ λ

dλ′E(λ′),
which can be viewed as a λ−dependent phase and nor-
malization. Projected onto this state, the global TISE
can be written as

(
−ĤS + E(λ) + i

d

dλ

)
⟨χ(λ)|Ψ⟩⟩ = ⟨χ(λ)|V̂ |Ψ⟩⟩ . (9)

As a next step we decompose ⟨χ(λ)|V̂ |Ψ⟩⟩ into a Hermi-
tian potential V̂S(λ) for the system and a c-number which
is an expectation value over the global state. The decom-
position is facilitated with the operators P̂Ψ ≡ |Ψ⟩⟩⟨⟨Ψ|,
P̂χ ≡ 1̂S ⊗ |χ(λ)⟩⟨χ(λ)| and P̂Ψχ = P̂ΨP̂χ/Nλ, where

P̂Ψχ |Ψ⟩⟩ = |Ψ⟩⟩ since Nλ = ⟨⟨Ψ|P̂χ|Ψ⟩⟩. We obtain

⟨χ|V̂ |Ψ⟩⟩ = ⟨χ|V̂ P̂Ψχ|Ψ⟩⟩

=
[
V̂S(λ)− ⟨⟨Ψ|V̂ P̂χ|Ψ⟩⟩ /Nλ

]
⟨χ(λ)|Ψ⟩⟩

(10a)

where

V̂S(λ) =
⟨χ|

(
V̂ P̂Ψ + P̂ΨV̂

)
|χ⟩

⟨⟨Ψ|P̂χ|Ψ⟩⟩
. (10b)

Inserting (10) into (9), setting E(λ)≡⟨⟨Ψ|V̂ P̂χ|Ψ⟩⟩ /Nλ

and rearranging terms gives the TDSE for the system
with interaction,

[
ĤS + V̂S(λ)

]
|φ(λ)⟩S = i

d

dλ
|φ(λ)⟩S . (11)

Ψ(x, y)

−

0

+x

λ

χ(x, λ)
λ

y

ϕ(y, λ) ∝ ∫ dxχ∗(x, λ)Ψ(x, y)

Figure 2. Emergence of system dynamics by means of the re-
lational formalism. Unitary changes in the clock state induce
the system evolution through the correlations contained in
the global state. The invariance (1) of Ψ ensures the concur-
rent system motion, which is governed by an effective clock-
dependent system Hamiltonian. Moreover, the entanglement
in the global state admits intricate system evolutions even for
relatively simple wavefunctions of the environment.

The effective system potential V̂S from (10b) depends ex-
plicitly on λ and implicitly on the state of the environ-

ment, |χ(λ)⟩ = e−iλ(ĤC−E)−iS(λ) |χ0⟩. One can easily
retrieve the original TISE (Ĥ − E) |Ψ⟩⟩ = 0 by inserting
the explicit expression for |φ(λ)⟩S = ⟨χ(λ)|Ψ⟩⟩ into (11),
performing the differentiation w.r.t. λ followed by a func-
tional derivative δ/(δ⟨χ|) with respect to the state of the
environment.
Equation (11) is the main result of this work and rep-

resents, to the best of our knowledge, the first derivation
of the time-dependent Schrödinger equation with a fully
general, Hermitian time-dependent potential V̂S from a
static global state. A pictorial representation of our for-
malism is shown in Fig. 2.
To stay as general as possible, we have made no fur-

ther assumptions regarding the interaction potential V̂ .
Of course, it is reasonable (although we have seen not
necessary!) to assume that the interaction potential has
negligible influence on the state |χ⟩ of the environment.
Formally, this can be expressed by [V̂ , P̂χ] ≈ 0. Thereby,
|χ⟩ becomes approximately an eigenstate of the interac-
tion V̂ , turning |χ⟩ essentially into what has been de-
scribed as a “pointer state” by Zurek [21]. Then we can
write

⟨χ|V̂ |Ψ⟩⟩ = ⟨χ|P̂χV̂ |Ψ⟩⟩/⟨χ|χ⟩ = ⟨χ|V̂ P̂χ|Ψ⟩⟩/⟨χ|χ⟩

=
⟨χ|V̂ |χ⟩
⟨χ|χ⟩

⟨χ|Ψ⟩⟩ = ⟨χ|V̂ |χ⟩
⟨χ|χ⟩

|φ⟩S . (12)

The global state |Ψ⟩⟩ no longer appears and renders the
calculation of V̂S less involved. Moreover, Im(E(λ)) =
⟨⟨Ψ|[V̂ , P̂χ]|Ψ⟩⟩ /(2iNλ) = 0, which reflects the negligible
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influence of the interaction on the environment state.
We close with the promised concept for analytical so-

lutions of TDSEs involving complicated, time-dependent
potentials. The following, very simple example of coupled
two-level systems gives a flavor for the general strategy.
We consider a global Hamiltonian (2) with ĤS = 0, ĤC =
ECσ̂C,z and the interaction V̂ = V0 (σ̂S,x + σ̂S,z) ⊗ σ̂C,x,
where σ̂x, σ̂y, σ̂z are the three Pauli matrices, with the
additional label for system or environment. Setting for
simplicity EC = V0 ≡ 1, we explicitly get

Ĥ =




1 1 0 1
1 −1 1 0
0 1 1 −1
1 0 −1 −1


 (13)

with eigenvalues E± = ±
√
3, where both of them are

doubly degenerate. One eigenvector of E− in the basis
{ |↑S↑C⟩⟩, |↑S↓C⟩⟩, |↓S↑C⟩⟩, |↓S↓C⟩⟩}, we take for the global
state, Ψ = (1, 0,−1,−a)T, where a = 1 +

√
3. Here, we

use S(λ) =
∫ λ

dλ′ Im E(λ′) without loss of generality to
simplify expressions. With

|χ(λ)⟩ = eiE−λ

2
√
1 + a cos2(λ)

[
e−iλ |↑C⟩+ eiλ |↓C⟩

]
(14)

we obtain from (10b) the effective potential

V̂S = VS(λ) · σ̂S (15a)

which enters the Schrödinger equation (11), where

VS,x = VS,z ≡ cos(2λ) + a cos2(λ)

1 + a cos2(λ)
(15b)

VS,y ≡ − (a/2) sin(2λ)

1 + a cos2(λ)
, (15c)

and σ̂S ≡ (σ̂S,x, σ̂S,y, σ̂S,z)
T . A physical realization

would be the interaction of an electronic spin-system
and a magnetic field, V̂S = −B(λ) · µ̂, with magnetic
moment µ̂ = (−eℏ/2me)σ̂S or simply µ̂ = −σ̂S/2 in
atomic units. The magnetic field has different time-
dependent behavior along different directions, B0 =
2[cos(2λ) + a cos2(λ)](ex + ez)/[1 + a cos2(λ)] and B1 =
−a sin(2λ)ey/[1 + a cos2(λ)].

By construction, we know that the solution of the
TDSE with the potential V̂S(λ) is

|φ(λ)⟩S ≡ ⟨χ(λ)|Ψ⟩⟩

=
eiaλ

2
√
1 + a cos2(λ)

[
|↑S⟩S −

(
a e−2iλ + 1

)
|↓S⟩S

]
. (16)

Although the system for which we have constructed the
time-dependent potential and the analytical solution of
the ensuing TDSE is very simple, it admits, nevertheless,
an entire class of time-dependent potentials and corre-
sponding solutions by changing the state |χ(λ)⟩ of the
environment.

Replacing the environment with a multi-level system
is a straightforward extension with a semiclassical limit
if the density of states of the environment in the energy
interval defined by the two levels of the system becomes
large. This renders the environment “large” as compared
to the system and provides a direct link between the two
research strands for the emergence of time as discussed in
the introduction. One can also construct a more general
semiclassical limit without reference to a specific (multi-
level) system with a semiclassical state |χ(λ)⟩ from the
environment and subsequent application of the station-
ary phase approximation, breaking implicitly the sym-
metry of environment and system [22].

While these semiclassical limits are consistent with the
corresponding strand for the emergence of time, the semi-
classical approach cannot uncover quantum roots of time,
as we have worked them out here in form of two condi-
tions: (i) a global state exists which respects the invari-
ance principle (1) with the global Hamiltonian and (ii)
the global Hamiltonian can be decomposed into a Hamil-
tonian ĤS for the system, its environment ĤC, and their
interaction V̂ . With projecting the invariance principle
onto an arbitrary state of the environment and all its
λ−dependent variants generated by “rotating” the state
with ĤC, these two conditions suffice to formulate a time-
dependent Schrödinger equation for the system with a
time-dependent potential. Thereby, we advance the rela-
tional approach to time by the crucial inclusion of inter-
action of system and environment, which so far has been
possible only under very special circumstances [20].

Since projection and separation of system and envi-
ronment as well as entanglement and interaction are also
major elements of decoherence, it it is not surprising that
our theory has points of contact with Zurek’s decoher-
ence theory [18] as we have mentioned before. However,
decoherence requires time as a prerequisite: the literal
meaning of decoherence reveals it as a process in time.
The successful inclusion of interaction into the emergence
of time as lined out here renders our framework suitable
to ask if decoherence can be established along with emer-
gent time in the interaction of system and environment,
a question we will pursue in future work.
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