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Abstract. Early during the era of cosmic inflation, rotational invariance may have

been broken, only later emerging as a feature of low-energy physics. This motivates

ongoing searches for residual signatures of anisotropic space-time, for example in the

power spectrum of the cosmic microwave background. We propose that dipolar Bose-

Einstein condensates (BECs) furnish a laboratory quantum simulation platform for

the anisotropy evolution of fluctuation spectra during inflation, exploiting the fact that

the speed of dipolar condensate sound waves depends on direction. We construct the

anisotropic analogue space-time metric governing sound, by linking the time-varying

strength of dipolar and contact interactions in the BEC to the scale factors in different

coordinate directions. Based on these, we calculate the dynamics of phonon power

spectra during an inflation that renders the initially anisotropic universe isotropic. We

find that the expansion speed provides an experimental handle to control and study

the degree of final residual anisotropy. Gravity analogues using dipolar condensates

can thus provide tuneable experiments for a field of cosmology that was until now

confined to a single experiment, our universe.
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1. Introduction

The cosmological principle, the assumption that our universe is isotropic and

homogeneous on the largest length scales, is strongly supported by the isotropic thermal

microwave radiation field known as Cosmic microwave background (CMB). But as

we zoom in closer, we find several unexpected features [1–7] in the CMB, such as

the alignment of lowest multipoles [8, 9], a hemispherical power asymmetry [10, 11], a

preference for odd parity modes [12–14] and a large cold spot in the southern hemisphere

[15–17]. There are several mechanisms to explain their origin [18], one of which involves

primordial breaking of rotational invariance. In that case, anomalies could be the

imprints of a space-time anisotropy existing prior to inflation [19,20].

Theory discussing the evolution of CMB power spectra in an anisotropic inflation

[21–24] can presently be compared with just our one single universe, additionally

constrained to small residual asymmetries. We show that both limitations can be

overcome in analogue gravity experiments [25] with Bose-Einstein condensates (BEC)

of particles with permanent dipoles [26, 27].

Analogue gravity [25] evolved from Unruh’s seminal discovery of an analogue

Hawking effect [28] in a transsonic fluid flow [29], arising since quantum sound waves

propagate in an effective metric determined by the flow profile. The latter can give rise

to the sonic analog of a black hole event horizon, which has been realised and extensively

studied in BEC [30–51]. Similarly, rotating BEC can furnish analogs of rotating Kerr

black holes and the Penrose effect [52,53], while expanding BEC or those with changing

interaction strengths can mimic expanding universes [54–62] for the study of quantum

fields during cosmological inflation.

Dipolar condensates have been shown to enhance entanglement of phonons created

through the dynamical Casimir effect [63], allow studies of the impact of trans-Planckian

modes on black-hole radiation [30] and the interplay between dispersion relations and

scale invariance of power spectra following inflation [55]. However, only isotropic

expanding universes were explored in analogue gravity so far [57–61]. Our proposal

will overcome this limitation, and thus provide the field of cosmology in anisotropic

spacetimes with tuneable experiments to study power spectra after complex inflation

sequences, probe the effect of high frequency dispersion [64], initial vacua [65, 66]

conversion of inhomogeneities into anisotropies [67] or instabilities [68,69]. The dipolar

BEC platform will also enable interdisciplinary exchange with condensed matter and

atomic physics communities [70], exploring for example vacuum squeezing [62,71,72].

2. Foundation

In dipolar BEC, the speed of sound c(β) depends on the angle β between propagation

direction of phonons and the dipolar axis d of the condensate atoms, see Fig. 1 (b).

In the gravitational analogy, this implies that the metric governing the propagation of

sound waves acquires a preferred direction. In BEC this analogue metric can then be
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Figure 1. Inflation, with spacetime turning isotropic. (a) Scale factors a(t), b(t)

for two orthogonal spatial dimensions, evolving from anisotropy to isotropy while

expanding in laboratory time t. (b) In a dipolar BEC, the propagation speed c of

a phonon with wavevector k depends on the angle β with the dipole direction d. (c)

Scale factors are controlled via the strength of contact interactions, U(t) and dipolar

ones, Ud(t), until the metric is isotropic at tiso.

tuned from anisotropy to isotropy by control over the contact and dipolar interaction

strengths. This exploits Feshbach resonances [73, 74], to adjust the relative strength

of s-wave and dipolar interactions [75–77] and time-averaged control of the dipolar

interaction strength by rapidly rotating external fields [78–80]. Using both, the direction

and degree of anisotropy can be temporally controlled in experiments.

In cosmology, anisotropies prior to inflation would impact the evolution of

primordial density fluctuations in the inflaton field δ(k) [19], leading to residual

signatures in their power spectrum defined through ⟨δ(k)δ∗(q)⟩ = P (k)δ3(k− q). Here

k, q are wave vectors of fluctuating modes. A violation of rotational invariance during

the inflationary era can modify the power spectrum from an isotropic form P (k) = P (k)

to an anisotropic one:

P ′(k) = P (k) + (k̂ · n̂)2∆P (k), (1)

where n̂ is a unit vector along a preferred direction, k̂ = k/|k| [19], and ∆P (k) the

amplitude of the anisotropic component.

In our analog universe, made from an expanding dipolar BEC, the power
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spectrum of phonon vacuum fluctuations also starts anisotropically, and can then be

experimentally followed through its evolution while the universe expands and becomes

isotropic. To demonstrate this, we tackle the initial phase of an inflation with direction

dependent expansion rates as sketched in figure 1, analytically and through simulations,

focussing on the retention of anisotropy in fluctuation spectra even at the time where

the universe itself has become isotropic.

3. Anisotropic effective space-time for phonons

The Hamiltonian for a dipolar BEC with atoms of mass m is [81, 82]

Ĥ =

∫
d3r Ψ̂†(r, t)

[
− ℏ2∇2

2m
+
ϕ̂int(r, t)

2

]
Ψ̂(r, t), (2)

with interaction operator

ϕ̂int(r, t) =

∫
d3r′ Ψ̂†(r′, t)Vint(r− r′, t)Ψ̂(r′, t), (3)

where Vint(r − r′, t) = U(t)δ(3)(r − r′) + Udd(r − r′, t) includes contact interactions of

strength U(t) and long-range dipole-dipole interactions (DDI) Udd. For ψ = ⟨Ψ̂⟩, the
mean field approximation of Heisenberg’s equation, known as Gross-Pitaevskii equation

(GPE), is

iℏ
∂ψ

∂t
= − ℏ2

2m
∇2ψ +

(
U(t)|ψ|2 + Φdd(t)

)
ψ, (4)

with

Φdd(r, t) =

∫
|ψ(r, t)|2 Udd(r− r′, t) d3r′. (5)

Using the convolution theorem, the DDI can be expressed as Φdd(r, t) =

F−1[Ũdd(k, t)ñ(k, t)], where F denotes a Fourier transform, ñ(k, t) = F [|ψ(r, t)|2] and

Ũdd(k, t) = Ud(t)(cos
2 β(k)− 1/3) (6)

the dipole-dipole interaction in Fourier space. Writing Ud(t) = µ0µ(t)
2, with µ0 the

vacuum magnetic permeability, the dipole moment µ(t) of the atoms [82] is assumed

adjustable through external field averaging [78–80]. Here, β is the angle between

excitation wavenumber k and the constant polarization direction d, which we take

as our z-axis. The contact interaction strength U(t) = 4πℏ2as(t)/m is governed by

the scattering length as(t), which can also be varied in time using Feshbach resonances

[73,74].

Expressing the condensate wavefunction as ψ(r, t) =
√
n(r, t)eiθ(r,t) in (4), we

obtain two coupled partial differential equations

∂n

∂t
= − ℏ

m

[
(∇n) · (∇θ) + n∇2θ

]
, (7)

∂θ

∂t
= − ℏ

2m
(∇θ)2 − Un

ℏ
− Ud

ℏ
F−1

[
f(k)ñ

]
, (8)
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for real variables, density n(r, t) and phase θ(r, t). We then re-instate small fluctuations

on top of the mean field as n → n0 + n̂1 and θ → θ0 + θ̂1, where n̂1 and θ̂1 are

the fluctuations and n0 and θ0 are the background density and phase, respectively.

Linearizing in n̂1 and θ̂1, we can eliminate n̂1 as discussed in Appendix A, to obtain an

equation for phase fluctuations θ̂1 of the form

1√
−g

∂µ

(√
−g gµν ∂ν θ̂1

)
= 0, (9)

defining an effective anisotropic metric tensor gµν with

gµµ =
n0

mc(t)
[−c2(t), ā2(t), ā2(t), b̄2(t)] (10)

on the diagonal, and gµν = 0 for µ ̸= ν. Here c(t) =
√
n0U(t)/m is a fictitious speed of

sound ignoring dipole interactions, while scale factors ā(t) = [1− Ud(t)/3U(t)]
−1/2 and

b̄(t) = [1+2Ud(t)/3U(t)]
−1/2 now incorporate the direction dependence of the true sound

speed. We assumed a constant background density n0, no condensate flow and dominant

contact interactions Ud(t)/3U(t) < 1, refer to Appendix A. Inflation in (10) shall arise

dominantly through the time-dependence of contact interactions U(t) = U0f(t), where

U0 is the interaction strength at t = 0 and f(t) specified later. Meanwhile the relative

importance of dipolar interactions governs (an)isotropy. Defining c20 = n0U0/m, the line

element in the laboratory frame can then be written as

ds2 = −c20
√
f(t)dt2 +

ā2(t)√
f(t)

(dx2 + dy2) +
b̄2(t)√
f(t)

dz2. (11)

To see the analogy to cosmology more clearly, we employ the time transformation

dη2 =
√
f(t)dt2 to reach

ds2 = −c20dη2 + a2(η)(dx2 + dy2) + b2(η)dz2. (12)

with a2(η) = ā2(η)/
√
f(η) and b2(η) = b̄2(η)/

√
f(η). Now, we construct an

anisotropically expanding analogue inflationary universe, which evolves into an isotropic

one and calculate the expected phonon fluctuation power spectrum, starting from an

initial vacuum state. For this, we chose a(η) = a0e
Haη and b(η) = b0e

Hbη, with two

different (constant) Hubble parameters Ha = ȧ(η)/a(η) and Hb = ḃ(η)/b(η). We will

also refer to the average Hubble parameter H̄ = (2Ha + Hb)/3 and deviation from

dynamic isotropy as ϵH = 2(Hb − Ha)/3H̄. Together, our ansatz U(t) = U0f(t) for

the time variation of s-wave interactions and the target evolution of anisotropic scale

factors, a(η) and b(η), now fix the relation between conformal time and laboratory time

and required form of Ud(t) = µ0µ
2
mh(t)/4π with h(0) = 1, as shown in Appendix B.

4. Power spectrum of fluctuation correlations

A key observable that can record the imprint of a possible anisotropy in the early

universe is the fluctuation power spectrum, the analogue of which we propose to

experimentally probe in tuneable experiments with dipolar BEC. Here we define the
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power spectrum through P (k) = ⟨â†kâk⟩, as vacuum expectation value of plane wave

modes of the phase fluctuation field

θ̂1(r, t) =

∫
d3k

(2π)3

(
eik·rθ̃1(k, t)âk + e−ik·rθ̃∗1(k, t)â

†
k

)
, (13)

quantized here as usual by expanding in Fourier modes. The creation and annihilation

operators â†k and âk satisfy the standard Bosonic commutation relations.

The power spectrum can be found via∫
d3k

(2π)3
e−ik·(r−r′)P (k) = ⟨0|θ̂1(r, t)θ̂1(r′, t)|0⟩ (14)

as Fourier transform of the phase correlation function. Since we are considering a

homogenous system, the latter can only depend on the relative coordinate r− r′.

Condensate phase correlations can be measured through interference experiments

[83, 84], or phase fluctuations could first be related to density fluctuations [85]. Then

high resolution density-density correlations can be recorded in experiments [35,38,86].

Inserting θ̂1 into (9), the metric (11) implies

∂2θ̃1
∂t2

+ γ(t)
∂θ̃1
∂t

+ ω(t)2θ̃1 = 0, (15)

the equation of motion of a damped harmonic oscillator with time-dependent frequency

ω(t) = (k2n0Q/m)1/2 and damping rate γ(t) = Q(∂Q/∂t), using Q = Q(k, t) =

−U(t) − Ud(t)
[
cos2 β(k) − (1/3)

]
. We convert (15) into the equivalent Hamilton

equations,

q̇(t) = p(t), ṗ(t) = −γ(t)p(t)− ω(k, t)2q(t), (16)

from which we can construct complex mode amplitudes θ̃1(k, t) = q(k, t)+ ip(k, t)/ω(t).

In the vacuum âk| 0 ⟩ = 0, we then have P (k, t) = |θ̃1(k, t)|2. We solve (16) numerically

with initial conditions p(0) = 0 and θ̃(0) matched onto the Bogoliubov vacuum of the

initial state of the dipolar BEC, discussed in Appendix C. Finding P (k, t) = |θ̃1(k, t)|2,
using the initial conditions obtained from the Bogoliubov equations of the initial dipolar

BEC, the resultant k3P (k) is shown in figure 2.

For the demonstration, we assume a dipolar BEC of Erbium atoms [87, 88], each

of mass m = 2.8 × 10−25 kg, with initial magnetic dipolar moment µm = 1.897µB

already reduced compared to the usual µ̄m = 7µB, where µB is the Bohr magneton.

The initial modified s-wave scattering length is as = 0.599 nm and homogenous density

n0 = 5 × 1020 m−3, yielding an initial healing length ξ0 = 0.364µm. The inflationary

parameters are taken as a0 = 1.225, b0 = 0.775, Ha = (200/q)s−1 and Hb = (658/q)s−1,

where the factor q just scales the expansion rate. For these choices, the metric becomes

isotropic at a lab time tiso = q × 1.25 ms.

The evolving power spectrum thus obtained is shown in figure 2 for the case of

q = 10. Fourier components of correlations in different directions have different strength

initially, a signature of an anisotropic Bogoliubov vacuum. As the analogue universe

expands, it also becomes more isotropic, since the two scale factors approach each other.
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Figure 2. Phonon power-spectra during analogue inflation, at lab times t indicated.

We compare analytical spectra from (15) (dashed, empty symbols) with numerical

TWA simulations (solid, filled symbols), for wavenumbers kz along the z-axis (solid

orange, red dashed), and kx along the x-axis (solid green, blue dashed), which are scaled

with the initial healing length from contact interactions ξ0. The inset in (a) shows

the scale factors a(η(t)), b(η(t)) and the one in (b) the contact interaction strength

U(t) and dipolar strength Ud(t). Vertical dotted black lines indicate the the Hubble

wavenumber Kh = 1/Rh where Rh = c̄(t)/H̄ with c̄(t) =
√

n0(U(t) + Ud(t))/m, and

the vertical magenta dashed line the time evolving inverse healing length kξ = ξ(t)−1 =√
2mn0(U(t) + Ud(t))/ℏ. See also supplementary movies.

Consequently the power spectrum changes from strongly anisotropic to nearly isotropic.

At t = tiso, shown in panel figure 2(d), small imprints of the initial anisotropy still

remain, although the metric has become isotropic. Experiments could naturally handle

much more extreme inflation sequences than the one here, and probe additional topics

actively explored in cosmology, such as unstable modes [68, 69] and the conversion of

inhomogeneity into anisotropy [67].

5. Beyond mean field simulations

To confirm the analogue model, we numerically simulate the same inflation with the

Truncated Wigner Approximation (TWA) [89–95], which can provide the quantum field

evolution from (2) as long as fluctuations remain small. Unlike the calculations based

on the metric (10), these simulations also describe BEC excitations with wavenumbers

kξ(t) > 1 for which the analogy does not hold. They further would cover particle

creation [56], which is absent here, the interaction of quasiparticles, and can verify the

dynamical stability of the mean field background on time-scales of interest.
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In TWA, one generates an ensemble of stochastic fluctuations added to the

mean field, to sample the Wigner quasi-distribution function of the initial density

operator. The quantum field dynamics is then found from noisy GPE simulations. We

extract the power spectrum from phase fluctuation correlation functions via P (k, t) =∫
d3r0

∫
d3r′⟨θ̂1(r0, t)θ̂1(r0+r′, t)⟩e−ik·r′/V , as discussed in the Appendix C, and use the

same parameters as before, in a cubic box of volume V = (50µm)3 with (64)3 gridpoints

and Ntraj = 5120 stochastic trajectories. TWA power spectra confirm our analytical

results, as shown in figure 2, and thus verify that there is no disturbing effect of single

particle excitations at high wavenumbers and that dynamic instabilities of the mean

field are absent. These would only occur in dipolar BEC for larger dipolar interaction

strength [96–99].

Analog gravity has thus allowed us to map isotropisation during cosmic inflation

to continuous variations of a many-body Hamiltonian. The slower the Hamiltonian

changes, the better the system will be able to adiabatically follow the quantum ground-

state. The latter will be isotropic for an isotropic system, unless there is spontaneous

symmetry breaking. We thus expect final power spectra to be more isotropic at t = tiso
for slow evolution (large q). This is indeed what we find, as shown in figure 3.

We have defined the net anisotropy of a spectrum as A(q, t) = [P̄z − P̄x]/P̄z, with

P̄j =
∫ kmax

0
dkj kjP (kj, t), where the upper integration limit is the largest wavenumber

containing noise in TWA, kmax = 0.94 µm−1 for figure 3. The figure also shows more

detailed cuts through power-spectra from TWA in the (kx, kz) plane, illustrating that

|k|P only depends on β initially (see Appendix C), which is why we have chosen it

as integrand for A(q, t). During inflation, the function |k|P then acquires nontrivial

structure, shown in Fig. 3 (c).

An important dynamical scale during cosmic inflation is the Hubble radius Rh(t) =

c̄(t)/H̄ ∼ q (Hubble wavenumber Kh = R−1
h ). Only modes with wavelengths λ < Rh(t)

will be oscillating, while those with λ > Rh(t) freeze out [100]. The latter are situated

on the left of the vertical blue dotted lines in figure 2, but would contain most modes

shown for the lower q. Meanwhile, the analog metric (11) only describes long wavelength

modes with kξ(t) < 1, to the left of the magenta dashed vertical line in Fig. 2 (d), and

at larger k in other panels. We thus demonstrated that one can study both, frozen and

unfrozen modes, with wavenumbers for which the analogy is valid. Dipolar BEC can

have lifetimes of a few hundred milliseconds even while tuning interactions [78,79], and

all chosen isotropisation times tiso are shorter.

6. Conclusions and outlook

We have shown that dipolar Bose-Einstein condensates can provide an experimental

window on the dynamics of quantum fields during anisotropic cosmological inflation,

which was was hitherto experimentally inaccessible, except for observations of our one

single universe. Thus one can probe different residual anisotropies after a given inflation

sequence, conversion of inhomogeneities into anisotropies [67], instabilities [68, 69] or
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(c)

(b)
(a)

Figure 3. (a) Isotropisation in A(q, tiso) at tiso for different inflation rates ∼ q−1,

from (15) (black •) and TWA (black ♦). The horizontal dashed line is the initial

anisotropy A(q, 0). (b,c) show power spectra |k|P (k) at the initial time, t = 0 (b), and

final time, t = tiso (c), in the (kx, kz) plane from TWA simulations.

mode squeezing [62, 71, 72]. If the condensate is given a finite flow velocity, the same

experimental platform can also create analogue black holes in anisotropic space times.

By tuning the initial fluctuations, we can explore the analog of primoridal gravitational

waves and how these would later reflect an initial anisotropy of the universe, motivated

by Ref. [101] predicting that the detection of gravitational wave in the 10-100 MHz

regime would solidify the occurrence of anisotropic inflation. Instead of dipolar BEC,

anisotropic analogue space times could also be engineered using spin-orbit coupling

[53,102–104], and even more tunability might arise from combining the two.
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Appendix A. Derivation of the anisotropic metric

To investigate dipolar BEC, consider the Gross-Pitaevskii (GP) equation for the 3+1-D

case as

iℏ
∂ψ

∂t
= − ℏ2

2m
∇2ψ +

(
Vext + U |ψ|2 + Φdd

)
ψ, (A.1)

where Φdd is the dipolar mean field interaction

Φdd(r, t) =

∫
|ψ(r′, t)|2 Udd(r− r′) d3r′. (A.2)

Using the convolution theorem, (A.1) becomes

iℏ
∂ψ(r, t)

∂t
= − ℏ2

2m
∇2ψ(r, t) + U |ψ(r, t)|2ψ(r, t)

+ Ud

(∫
d3k

(2π)3
eik·rf(k)ñ(k, t)

)
ψ(r, t). (A.3)

Here, U = 4πℏ2as/m where as is the s-wave scattering length and m is the mass of

particles constituting the BEC. The dipolar interaction strength is Ud = µ0µ
2 where µ

is the dipole moment of the BEC particles and µ0 the permeability of the vacuum. The

function ñ(k, t) denotes the Fourier transform of the atomic number density |ψ(r, t)|2.
The interaction kernel f(k) is given by

f(k) =
3(k̂ · d̂)2 − 1

3
=

3 cos2 β − 1

3
, (A.4)

where β is the angle between the wavevector direction k̂ = k/|k| and the dipole

axis d̂ = d/|d|, which we choose to define the z-axis and keep constant. Now,

to obtain the metric from (A.3), we use the Madelung ansatz for the wavefunction

ψ(r, t) =
√
n(r, t)eiθ(r,t) to derive evolution equations for n(r, t) and θ(r, t) as

∂n

∂t
= − ℏ

m

[
(∇n) · (∇θ) + n∇2θ

]
, (A.5)

∂θ

∂t
= − ℏ

2m
(∇θ)2 − Un

ℏ
− Ud

ℏ
F−1

[
f(k)ñ

]
, (A.6)

where F−1 denotes the inverse Fourier transform and we have omitted the arguments

of n and θ for the purpose of compactness.

Next, we wish to obtain equation for fluctuations about the mean field and replace n

and θ as n→ n0+n1 and θ → θ0+θ1, where n1 and θ1 are small amplitude fluctuations.

We thus focus on fluctuations around the mean field
√
n0e

iθ0 . Further, we assume that

the mean field has no flow velocity associated with it, ∇θ0 = 0, and that the mean

density is constant over space, ∇n0 = 0. Both are well satisfied near the centre of a

large BEC in the Thomas-Fermi limit. With these assumptions and linearization in the
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small amplitude fields n1 and θ1, we turn Eqs. (A.5) and (A.6) into

∂n1

∂t
= − ℏ

m

[
n0∇2θ1

]
, (A.7)

∂θ1
∂t

= −Un1

ℏ
− Ud

ℏ
F−1

[
f(k)ñ1

]
. (A.8)

Taking the Fourier transform w.r.t. spatial dimensions of the above equation yields

∂ñ1

∂t
=

ℏ
m
[n0(k

2
x + k2y + k2z)θ̃1], (A.9)

∂θ̃1
∂t

= −Uñ1

ℏ
− Ud

ℏ

[
f(k)ñ1

]
, (A.10)

using the short hand θ̃1 and ñ1 for Fourier space fluctuations.

We can formally solve (A.10) for

ñ1 =
∂θ̃1
∂t

×
{
− U

ℏ
− Ud

ℏ

[
f(k)

]}−1

, (A.11)

and insert this into (A.9), using (A.4) to find:

∂

∂t

(∂θ̃1
∂t

×
{
− U − Ud

[−k2x − k2y + 2k2z
3k2

]}−1)
− n0

m
[k2θ̃1] = 0, (A.12)

which is an equation for the phase fluctuations alone.

To obtain the metric, we compare (A.12) with the Fourier transform of (9) and see

gµν =
n0

mc(t)


−c20 0 0 0

0 ā(t)2 0 0

0 0 ā(t)2 0

0 0 0 b̄(t)2


with ā(t), b̄(t) defined as

1

ā(t)2
=

(
1− Ud(t)

3U(t)

)
,

1

b̄(t)2
=

(
1 +

2Ud(t)

3U(t)

)
. (A.13)

Whenever the dipole interactions are absent and thus Ud = 0, the metric is isotropic as

expected.

Appendix B. Anisotropic analogue inflation in BEC

We can rewrite the metric (Appendix A) using c2(t) = n0U(t)/m, inserting the

parametrisation of time dependent contact interactions U(t) = U0f(t) and definitions

c20 = n0U0/m and Ω2
0 =

√
n0

mU0
as

gµν = Ω2
0


−c20

√
f(t) 0 0 0

0 ā(t)2√
f(t)

0 0

0 0 ā(t)2√
f(t)

0

0 0 0 b̄(t)2√
f(t)


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from which we remove the conformal factor Ω2
0 with the definition gµν = Ω2

0g̃µν and then

express the line element in terms of g̃µν

ds2 = −c20
√
f(t)dt2 +

ā(t)2√
f(t)

(dx2 + dy2) +
b̄(t)2√
f(t)

dz2. (B.1)

Now, we re-define the time-coordinate as

dη2 =
√
f(t)dt2, (B.2)

and write the line element in the new coordinates as,

ds2 = −c20dη2 + a2(η)(dx2 + dy2) + b2(η)dz2. (B.3)

For the analogue inflationary universe to expand anisotropically, we take a(η) = a0e
Haη

and b(η) = b0e
Hbη where Ha = ȧ(η)/a(η) and Hb = ḃ(η)/b(η), U(t) = U0f(t) and

Ud(t) = µ0µ
2
mh(t), where f(t) and h(t) contain the time dependent part of contact and

dipolar interactions respectively. Using these relations, we reach

f(t) =
{
[(2/a20)e

−2Haη(t) + (1/b20)e
−2Hbη(t)]/3

}2

(B.4)

and

h(t) = [(2/a20)e
−2Haη(t) + (1/b20)e

−2Hbη(t))]

× [(−1/a20)e
−2Haη(t) + (1/b20)e

−2Hbη(t)]/3. (B.5)

Now using (B.2) and (B.4), we find the relation between transformed time η and lab

time t, which we express in the form η(t) =
∑l

j=1 cjt
j where the coefficients cj depend

on Hubble parameters Ha,b and thus on the inflation rate control parameter q. This

dependence arises since f(t), h(t) depend on Ha and Hb, which in turn depend on q.

From η(t) we can insert (B.4) and (B.5) into U(t) = U0f(t) and Ud(t) = µ0µ
2
mh(t) to

generate a target inflationary scenario.

We have now provided a complete recipe for tuning the interactions such that one

obtains an anisotropically expanding universe in dipolar BEC. The same recipe can also

be used to implement a different functional form for scale factors in conformal time than

the one assumed above.

Appendix C. Truncated Wigner simulations

Here we describe how correlations of phase fluctuations can be obtained from TWA

averages. We start from the Bose field operator written as a sum of mean field and

quantum fluctuations. In the Madelung ansatz, Ψ̂(r, t) =
√
n0 + n̂1(r, t) e

i(θ0+θ̂1(r,t)),

where n̂1 and θ̂1 represent density and phase fluctuations respectively. Assuming that

fluctuations are small compared to the mean field, the field operator and consequently,

the fluctuations may be written as

Ψ̂(r, t) = Ψ0 + δΨ̂(r, t)

=
√
n0 +

√
n0

( n̂1(r, t)

2n0

+ iθ̂1(r, t)
)
, (C.1)
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n̂1(r, t) =
√
n0

(
δΨ̂(r, t) + δΨ̂†(r, t)

)
(C.2)

θ̂1(r, t) =
i

2
√
n0

(
− δΨ̂(r, t) + δΨ̂†(r, t)

)
. (C.3)

With this form of the phase fluctuations θ̂1 we can write the phase correlations as

⟨θ̂1(r, t)θ̂1(r+ r′, t)⟩ = 1

4n0

(
− ⟨δΨ̂(r, t)δΨ̂(r+ r′, t)⟩

+ ⟨δΨ̂(r, t)δΨ̂†(r+ r′, t)⟩+ ⟨δΨ̂†(r, t)δΨ̂(r+ r′, t)⟩

− ⟨δΨ̂†(r, t)δΨ̂†(r+ r′, t)⟩
)
. (C.4)

We know that truncated Wigner averages ⟨· · ·⟩W provide an approximation for

symmetrically ordered expectation values of field operators:

⟨α∗(r, t)α(r′, t)⟩W =
(
⟨Ψ̂†(r, t)Ψ̂(r′, t) + Ψ̂(r′, t)Ψ̂†(r, t)⟩

)
/2. (C.5)

Hence, the correlation of phase fluctuations can be expressed in terms of TWA averages

in position space as

⟨θ̂1(r, t)θ̂1(r+ r′, t)⟩ = 1

4

[
− ⟨α(r, t)α(r+ r′, t)⟩W

⟨α(r, t)⟩W ⟨α(r+ r′, t)⟩W

+
⟨α(r, t)α∗(r+ r′, t)⟩W

⟨α(r, t)⟩W ⟨α∗(r+ r′, t)⟩W
+

⟨α∗(r, t)α(r+ r′, t)⟩W
⟨α∗(r, t)⟩W ⟨α(r+ r′, t)⟩W

− ⟨α∗(r, t)α∗(r+ r′, t)⟩W
⟨α∗(r, t)⟩W ⟨α∗(r+ r′, t)⟩W

]
, (C.6)

where ⟨α(r, t)⟩W =
√
n0. Since we consider a homogeneous system, these correlation do

not depend on r and we average over that coordinate to increase statistics. The power

spectrum using the 3D correlation function is written as

P (k, t) =

∫
⟨θ̂1(r, t)θ̂1(r+ r′, t)⟩e−ik·rdr, (C.7)

where the integrand is given by (C.6). In our numerical TWA implementation, we

initialize the stochastic fields by adding noise to the mean field. The noise is added in

the Bogoliubov mode basis and the stochastic field α(r, t = 0) is initialized as

α(r, t = 0) =
√
n0 +

1√
V

∑
k,k<kmax

(
βkuke

ik·r + β∗
kvke

−ik·r
)
, (C.8)

with k = |k|, where √
n0 is the uniform initial wavefunction of BEC. Here kmax = K/2

is the largest wavenumber for which we add noise, chosen less than the maximum K

allowed by our Fourier domain, to avoid aliasing. The stochastic field α(r, t) is then

evolved according to (A.1) with ψ(r, t) → α(r, t).

The quantum fluctuations are captured by βk which are random numbers satisfying

the relation ⟨βk⟩ = 0, ⟨βqβk⟩ = 0 and ⟨β∗
qβk⟩ = δq,k, where δq,k is the Kronecker delta.
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In the simulation, the wavefunction is initialized at t = 0, and we can write

⟨α(r, 0)⟩W =
√
n0, Ek =

ℏ2k2

2m
,

ϵk =
ℏk√
2m

√
Ek +

[
U0 +

Ud(0)

3
(3 cos2 β − 1)

]
2n0,

uk =
1

2

Ek + ϵk√
ϵkEk

, vk =
1

2

Ek − ϵk√
ϵkEk

. (C.9)

Using (C.6)-(C.9) we can analytically find the initial power spectrum as

P (k, t = 0) =
1

4n0

[2(uk − vk)
2] =

1

2n0

ϵk
Ek

, (C.10)

which is also used to determine initial conditions for the analytical solutions of (15).
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[99] T. Lahaye, J. Metz, B. Fröhlich, T. Koch, M. Meister, A. Griesmaier, T. Pfau, H. Saito,

Y. Kawaguchi and M. Ueda; d-Wave Collapse and Explosion of a Dipolar Bose-Einstein

Condensate; Phys. Rev. Lett. 101 080401 (2008).

[100] S. Dodelson; Modern Cosmology ; Academic Press, Elsevier Science (2003).

[101] A. Ito and J. Soda; MHz Gravitational Waves from Short-term Anisotropic Inflation; JCAP 04

035 (2016).

[102] B. Padhi and S. Ghosh; Spin-orbit-coupled Bose-Einstein condensates in a cavity: Route to

magnetic phases through cavity transmission; Phys. Rev. A 90 023627 (2014).

[103] R. Kumar and S. Ghosh; Entanglement-like properties in spin–orbit coupled ultra cold atom and

violation of Bell-like inequality ; J. Phys. B: At. Mol. Opt. Phys 51 165301 (2018).

[104] I. Kaur and S. Ghosh; (2+1)-dimensional sonic black hole from a spin-orbit-coupled Bose-Einstein

condensate and its analog Hawking radiation; Phys. Rev. A 102 023314 (2020).


	Introduction
	Foundation
	Anisotropic effective space-time for phonons
	Power spectrum of fluctuation correlations
	Beyond mean field simulations
	Conclusions and outlook
	Derivation of the anisotropic metric
	Anisotropic analogue inflation in BEC
	Truncated Wigner simulations

