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Abstract

We introduce ‘single-particle-exact density functional theory’ (1pEx-DFT), a novel density func-
tional approach that represents all single-particle contributions to the energy with exact functionals.
Here, we parameterize interaction energy functionals by utilizing two new schemes for construct-
ing density matrices from ‘participation numbers’ of the single-particle states of quantum many-
body systems. These participation numbers play the role of the variational variables akin to the
particle densities in standard orbital-free density functional theory. We minimize the total energies
with the help of evolutionary algorithms and obtain ground-state energies that are typically accu-
rate at the one-percent level for our proof-of-principle simulations that comprise interacting Fermi
gases as well as the electronic structure of atoms and ions, with and without relativistic corrections.
We thereby illustrate the ingredients and practical features of 1pEx-DFT and reveal its potential of
becoming an accurate, scalable, and transferable technology for simulating mesoscopic quantum
many-body systems.
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1. Introduction

The many variants of density functional theory (DFT) have been developed predominantly for
calculating observables in position space—fueled by the decades-long success story of DFT appli-
cations in chemistry and materials science, see Refs. [1, 2, 3] and references therein—alongside a
mere handful of scholarly articles devoted to density functionals in momentum space [4, 5], which
target, for instance, Compton profiles [6] or momentum distributions in ultracold quantum gases
[7]. The ever increasing demand of high-quality solutions to specific quantum many-body prob-
lems from across scientific disciplines has been inciting DFT developers to refine the established
methods and codes as well as to develop approaches that differ distinctly from prevailing ones in
the hope of discovering a methodology that is superior at least for a subset of problems—typically
by sacrificing one of the competing objectives of accuracy, scalability, and transferability (in the
sense of universal applicability), see Fig. 1. While the Schrödinger equation is, by definition,
entirely accurate and transferable, its numerical solution is typically limited to a few interacting
particles. By neglecting inter-particle correlations beyond the exchange energy, Hartree–Fock (HF)
theory offers much better scalability at the expense of accuracy, and quantum chemistry methods
like the coupled cluster technique fall in between HF and the Schrödinger equation. In contrast to
these Hamiltonian-based approaches, the interaction energy for typical formulations of DFT like
Thomas–Fermi-DFT (TF-DFT) and Kohn–Sham-DFT (KS-DFT) has to be constructed explicitly
for any given interaction. This reduces transferability in practice. The TF kinetic energy func-
tional offers unsurpassed scalability but is not accurate enough for predicting even the existence of
molecular bonds. The most widely used KS-DFT often comes close to chemical accuracy, at the
expense of transferability, but is typically limited to hundreds of particles.

1pEx–DFT

scalability

transferabilityaccuracy

TF KS–DFT

HFSE

Figure 1: The trade-off between accuracy, scalability, and transferability is inherent to all quantum many-body
methods and also provides a means of classifying them, with the Schrödinger equation (SE) at one end of this scale.
Though orbital-free in spirit, our proposed ‘single-particle-exact-DFT’ (1pEx-DFT) sits at the intersection of wave-
function-based methods and density-based methods. While the current implementation of 1pEx-DFT (orange solid-
line triangle) is completely transferable like HF, it is not yet as accurate and scalable as other established many-body
methods. However, we discuss remedies that would let 1pEx-DFT complement orbital-free DFT as well as KS-DFT
in significant ways (dash-dotted line). This is no small feat, but even if only partially successful, such a program
could eventually supersede HF. We emphasize, however, that this enterprise is speculative at present. Square brackets
indicate objectives that are typically out of reach for the respective methods with common computational resources.
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Historically, the search for alternatives to KS-DFT produced successful approaches like density
matrix functional theory [8, 9, 10, 11, 12, 13], which aims at chemical accuracy and transferability
across electronic structure problems—and whose technical aspects are very much related to our
agenda in the present article—as well as modern orbital-free DFT in all its variety, e.g., density-
potential functional theory (DPFT) [14, 15, 16, 17, 18], which aims at scalability toward large
particle numbers and transferability across interactions and dimensionality. Still, these alternative
methods are currently implemented in position space. But the Levy–Lieb constrained search [8,
19], which constitutes the fundamental justification of modern DFT, invites us to consider density
functionals beyond the familiar configuration- and momentum-space representations. Here, we
may hope to find new and promising many-body methods off the beaten path.

Reference [20] delivers a unified view of these possibilities through a second-quantized per-
spective and proposes one particular DFT formulation based on ‘participation numbers’ (referred
to as ‘occupation numbers’ in Ref. [20]) of the eigenstates of the single-particle part of quan-
tum many-body systems. This ‘single-particle-exact-DFT’ (1pEx-DFT) presents a stark departure
from the established formulations of DFT. Here, we introduce the details of the general 1pEx-DFT
formalism and showcase applications to atomic gases and electronic structure that communicate
the practical aspects of 1pEx-DFT. Although 1pEx-DFT is universally applicable, its current im-
plementation may not capture beyond-HF correlations efficiently enough, see Ref. [21]. While
Hartree–Fock-level accuracy is usually considered insufficient for most chemistry applications, it
is adequate for describing mesoscopic quantum gases [22], for which we believe 1pEx-DFT could
prove particularly useful.

In Sec. 2, we derive the explicit formulation of the Levy–Lieb constrained search over the
single-particle participation numbers (Sec. 2.1). For the proof-of-principle examples studied in
this work, we parameterize the interaction energy in Dirac approximation [23] (or Hartree’s and
Fock’s [24, 25, 26], if you like): we omit correlations beyond the HF exchange energy (see also
Appendix A) and develop two new constructions of one-body reduced density matrices from
participation numbers (Sec. 2.3); details are provided in Appendix B. In Sec. 2.4 we discuss our
explicit implementation of the Levy–Lieb constrained search. To minimize the total energy, we
deploy stochastic evolutionary algorithms, specifically, particle swarm optimization [27, 28, 29]
and a genetic algorithm [30], see Appendix C for details. The required interaction tensor elements
(known as two-electron integrals in the case of Coulomb interactions) are derived in Appendix D.
Our results on energies, participation numbers, and single-particle densities of Fermi gases and
atomic systems in Sec. 3 demonstrate the numerical feasibility of 1pEx-DFT. We benchmark our
1pEx-DFT predictions against HF results. In Sec. 4, we discuss fundamental as well as technical
challenges of 1pEx-DFT—regarding accuracy, scalability, and transferability—that ought to be
overcome for realizing its prospective advantages over existing many-body methods.
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2. 1pEx-DFT

In this section we derive the exact ground-state energy functional in terms of the single-particle
participation numbers. Aiming at a first illustration of 1pEx-DFT, we also develop an explicit
scheme that encodes the interaction energy in Dirac approximation and carries out the Levy–Lieb
constrained search. We then show how to construct the required density matrices from an iterative
algorithm and, alternatively, from a TF-inspired derivation in rotor phase space.

2.1. General formalism

We denote the position and momentum operators of the jth particle by R j and P j, respectively,
and consider many-particle Hamilton operators of the generic form

Hmp =

N∑
j=1

1
2m

P 2
j +

N∑
j=1

Vext
(
R j

)
+

1
2

N∑
j,k=1
( j,k)

Vint
(
R j −Rk

)
=

N∑
j=1

H1p
(
P j,R j

)
+ Hint , (1)

with a sum of single-particle contributions and a sum over pairs for the interaction contribution.
The one-particle Hamilton operator H1p (the ‘core Hamiltonian’) consists of the kinetic energy of
a particle with mass m and the potential energy in the external potential Vext that traps the particles,

H1p(P ,R) =
1

2m
P 2 + Vext(R) . (2)

The system is composed of N identical spin- 1
2 particles, with symmetric pair interaction energy

Vint
(
R j −Rk

)
= Vint

(
Rk −R j

)
. More complicated situations are thinkable, such as an external

electric or magnetic field and a corresponding change in H1p, a spin-dependent interaction, or
alternative dispersion relations.

The eigenstates of H1p constitute a complete orthonormal set of orbital states (the ‘1pEx-
basis’),

H1p(P ,R)|a⟩ = |a⟩Ea , ⟨a|b⟩ = δa,b ,
∑

a

|a⟩⟨a| = 1 , (3)

here written for discrete quantum numbers a. More generally, there could also be a continuous
part of the spectrum (scattering states) with corresponding modifications of the orthonormality and
completeness relations. For the sake of notational simplicity, we will employ the conventions of
Eq. (3) while keeping in mind that there could be adjustments if H1p has scattering states, which
are commonly disregarded in DFT calculations.

The H1p-induced single-particle density n = (n1, n2, . . . ) is the list of ‘participation numbers’

na =

〈 N∑
j=1

(
|a⟩⟨a|

)
j

〉
, (4)
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evaluated in the applicable many-particle state. The jth term
〈(
|a⟩⟨a|

)
j

〉
is the probability of finding

the jth particle in the ath orbital state. For simplicity we restrict ourselves in the following to
unpolarized systems with even N. Hence,

0 ≤ na ≤ 2 (5)

as there can be at most two spin- 1
2 particles in the same orbital state. The completeness of the

orbital states for each particle ensures that the sum of all na is equal to the particle count,

∑
a

na =

〈 N∑
j=1

1
〉
= N . (6)

Since we have

H1p(P ,R) =
∑

a

|a⟩Ea⟨a| , (7)

it follows that

E1p =

〈 N∑
j=1

H1p(P j,R j)
〉
=

∑
a

naEa , (8)

the sum of the single-particle energies Ea weighted by the participation numbers na. Equation (8)
will typically entail that a large part of the total energy is treated exactly and that characteristic
consequences of the external potential, such as the electron cusp in atoms, are automatically built
in through the 1pEx-basis.

The ground-state energy Egs of the many-particle Hamilton operator in Eq. (1) is the minimum
of all expectation values of Hmp,

Egs = Min
ρmp

{
tr
(
ρmpHmp

)}
, (9)

where all N-particle statistical operators ρmp participate in the competition. While it would be
sufficient to consider pure-state ρmps, there is no need for this restriction. In the spirit of the Levy–
Lieb constrained search in standard DFT, we regard this minimization as a two-step process: first
we minimize over the ρmps that yield a prescribed single-particle density n, then we minimize over
all permissible ns,

Egs = Min
n

{
Emp[n]

}
(10)

with

Emp[n] = Min
ρmp→n

{
tr
(
ρmpHmp

)}
, (11)
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where, as a consequence of Eq. (8),

Emp[n] =
∑

a

naEa + Min
ρmp→n

{
tr
(
ρmpHint

)}
=

∑
a

naEa + Eint[n] (12)

is the single-particle-exact density functional.
Indeed, the contribution from the sum of single-particle energies is exact and simple in Emp[n],

whereas the contribution from the pair interactions requires a minimization over all permissible
ρmps. Usually, we cannot find this minimum and have to be content with a suitable approximation.
We will work with one such approximation in Sec. 2.2 below.

For a given ρmp, we have the single-particle-orbital density matrix in position space

n(1)(r; r′) = tr

ρmp

N∑
j=1

(
r′

〉〈
r
)

j

 , (13)

here expressed in orbital states and normalized to the particle count
∫

(dr) n(1)(r; r) = N. We also
have the two-particle orbital-density matrix

n(2)(r1, r2; r′1, r
′
2) =

1
2

tr

ρmp

N∑
j,k=1
( j,k)

(
r′1

〉〈
r1

)
j
⊗

(
r′2

〉〈
r2

)
k

 , (14)

which is symmetric under particle exchange, n(2)(r1, r2; r′1, r
′
2) = n(2)(r2, r1; r′2, r

′
1), and related to

the single-particle density by∫
(dr2) n(2)(r, r2; r′, r2) =

1
2

(N − 1) n(1)(r; r′) . (15)

It follows that the full trace of n(2) is the count of pairs,∫
(dr) (dr′) n(2)(r, r′; r, r′) =

1
2

N(N − 1) . (16)

As indicated these are orbital densities, that is, the spin variables are traced out. This is fine under
the given circumstances as we have no spin dependence in H1p and Hint.

The constraint ‘ρmp → n’ in Eqs. (10)–(12) means

na = tr

ρmp

N∑
j=1

(
|a⟩⟨a|

)
j

 = ∫
(dr) (dr′)ψa(r)∗ n(1)(r; r′)ψa(r′) , (17)

where ψa(r) = ⟨r|a⟩ is the wave function of the ath eigenstate of H1p. We introduce the effective
(orbital) single-particle statistical operator ρ through

n(1)(r; r′) =
〈
r ρ r′

〉
or ρ =

∫
(dr) (dr′) |r⟩ n(1)(r; r′) ⟨r′| , with ρ ≥ 0 , tr(ρ) = N , (18)
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and then Eq. (17) reads

na = ⟨a| ρ |a⟩ . (19)

Since na ≤ 2, the eigenvalues of ρ cannot exceed 2, ρ ≤ 2. It follows that the rank of ρ is 1
2 N or

larger.
Since

tr
(
ρmpHint

)
=

∫
(dr) (dr′) Vint(r − r′) n(2)(r, r′; r, r′) , (20)

the minimization in Eq. (12) requires us to consider all n(2)s that yield, via Eq. (15) and Eq. (18),
a ρ that obeys Eq. (19) for the given nas. We do not have a generic parameterization of n(2) that
is suitable for this purpose and, therefore, resort to approximations, that is, rather than minimiz-
ing over all permissible n(2)s, we minimize over a smaller set and then work with the resulting
approximation for Eint[n].

2.2. Implementation of an exchange-only 1pEx-DFT

Dirac’s approximation (that is, the Hartree–Fock approximation [24, 25, 26]) for the two-
particle density matrix in terms of the single-particle density matrix [23],

n(2)(r1, r2; r′1, r
′
2) =

1
2

n(1)(r1; r′1) n(1)(r2; r′2) −
1
4

n(1)(r1; r′2) n(1)(r2; r′1) , (21)

has a very good track record, and we employ it. This is exact for pure-state ρmps that are single
Slater determinants and yield single-particle density matrices with a 2 × 2 spin matrix that is a
multiple of the identity; the particle number N has to be even for that, hardly a restriction as we are
mostly interested in situations with very many particles. For Dirac’s n(2), the integral in Eq. (15)
states

1
2

N n(1)(r; r′) −
1
4

∫
(dr2) n(1)(r; r2) n(1)(r2; r′) =

1
2

(N − 1) n(1)(r; r′) , (22)

That is, ∫
(dr2) n(1)(r; r2) n(1)(r2; r′) = 2n(1)(r; r′) (23)

or

ρ2 = 2ρ , (24)

when expressed as a property of the statistical operator. Accordingly, in Dirac’s approximation, ρ
has 1

2 N eigenvalues equal to 2 and all other eigenvalues are zero. Any two such ρs are related to
each other by a unitary transformation, and the constraints in Eq. (19) require that the subspaces
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specified by an na value are invariant under the unitary transformation. In other words, the mini-
mization in Eq. (12) needs to be carried out over all unitary transformations that leave the diagonal
elements ⟨a| ρ |a⟩ of the single-particle statistical operator

ρ =
∑
a,b

|a⟩ ϱab ⟨b| (25)

unchanged. Here, with the emphasis on the dependence on n, it is natural to use the 1pEx-basis
{|a⟩} for the parameterization of ρ.

One family of suitable unitary transformations multiplies each |a⟩ by a phase factor

|a⟩ → |a⟩ eiϕa . (26)

Taking into account all admissible transformations that preserve individually the diagonal elements
in 2 × 2 sectors of ϱ, that is, more general transformations than those in Eq. (26), we find no
further improvement in the ground-state energies of Eq. (10), see Appendix B for details. For
the purpose of this work we are thus content with optimizing the phases ϕa in Eq. (26) and will
attend elsewhere to the expansion of the search space toward all permissible density matrices. We
want to emphasize, however, that we deem the use of density matrices an auxiliary measure that
is straightforward but comes with an inflated number of parameterization variables. Here, these
are the phases ϕa on top of the participation numbers na. Ultimately, we hope to construct more
efficient functionals Eint[n] without introducing an excessive number of parameterization variables
(not to be confused with free, adjustable parameters).

Upon using Dirac’s approximation, viz., Eq. (21), in Eq. (20) and recalling Eq. (18), we have

tr
(
ρmpHint

)
=

1
2

∫
(dr) (dr′) Vint(r − r′)

(
n(1)(r; r) n(1)(r′; r′) −

1
2

n(1)(r; r′) n(1)(r′; r)
)

=
1
2

∫
(dr) (dr′) Vint(r − r′)

(
⟨r | ρ |r⟩ ⟨r′ | ρ |r′⟩ −

1
2
⟨r | ρ |r′⟩ ⟨r′ | ρ |r⟩

)
,

(27)

where we exploit the Fourier integral for

Vint(r − r′) =
∫

(dk)
(2π)D u(k) eik · re−ik · r′ (28)

for D spatial dimensions to factorize the r and r′ dependence; since Vint(r) is real and even, so
is u(k). Then, with ∫

(dr) eik · r ⟨r | ρ |r⟩ = tr
(
ρ eik ·R

)
, (29)

for example, we arrive at

tr
(
ρmpHint

)
=

1
2

∫
(dk)
(2π)D u(k)

( ∣∣∣∣∣tr(ρ eik ·R
)∣∣∣∣∣2 − 1

2
tr
(
ρ eik ·R ρ e−ik ·R

))
. (30)
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In Eq. (12), we minimize this over all ρ that are permitted by Eqs. (19) and (24).
With Eq. (25) we have

tr
(
ρ eik ·R

)
=

∑
a,b

ϱab
〈
b eik ·R a

〉
(31)

and

tr
(
ρ eik ·R ρ e−ik ·R

)
=

∑
a,b

∑
c,d

ϱab
〈
b eik ·R c

〉
ϱcd

〈
d e−ik ·R a

〉
. (32)

Then,

tr
(
ρmpHint

)
=

1
2

∑
a,b

∑
c,d

ϱabHab,cd ϱcd (33)

withHab,cd = Iabcd −
1
2 Iadcb, where

Iabcd =

∫
(dr)(dr′) Vint(r − r′)ψa(r)ψ∗b(r)ψc(r′)ψ∗d(r′)

=
1

(2π)D

∫
dk u(k)

〈
a eik ·R b

〉 〈
c e−ik ·R d

〉
(34)

is a set of interaction-energy tensor elements (commonly known as two-electron integrals in the
case of coulombic electron–electron interactions), which are completely determined by the inter-
action potential Vint and the orbital eigenstates of the single-particle Hamilton operator H1p.

We have thus explicitly formulated the constrained search in Eq. (11) over ρmp as a constrained
search over density matrices ϱ in the 1pEx-basis, where ϱ derives from ρmp through Eqs. (25), (18),
and (13). In any particular application, we need

(i) to find the values of theHab,cd coefficients;
(ii) to write down one ϱ(0) matrix for ρ with

ϱ(0)
aa = na and

(
ϱ(0)

)2
= 2 ϱ(0);

and (iii) to minimize the right-hand-side of Eq. (33) with
ϱab = eiϕaϱ(0)

ab e−iϕb over all phases ϕ = (ϕ1, ϕ2, . . . ).

(35)

The resulting density functional Emp[n] can then be minimized over all permissible n. In practice,
we minimize over n and ϕ simultaneously—the concrete implementation of Eq. (35) is described
in the next Secs. 2.3 and 2.4.

2.3. Interaction tensor elements and density matrices

For any practical computation, the program outlined in Eq. (35) comes with two approxima-
tions. First, the Dirac approximation of the interaction energy in terms of the one-body density
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matrix ϱ—we leave for future work the inclusion of correlation energy expressed in terms of ϱ.
Second, the incomplete set of matrices ϱ that enters the competition in Eq. (11), which can be
improved by (i) going beyond the transformations with phase factors eiϕa (toward all admissible
ϱ, that is, toward full HF), (ii) considering different seed matrices ϱ(0), and (iii) increasing the
dimension L of ϱ, which has to be finite in practice. Additional approximations may stem from
the interaction tensor elements Iabcd in Eq. (34) if the orbital eigenstates and energies of H1p can
only be obtained numerically or approximately. For the systems considered in the present work,
however, these ingredients are analytical or quasi-exact, see Appendix D for details. Hence, for
the purpose of this article, we are content with approximating the ground-state energy assembled
from Eqs. (10)–(12) and Eq. (33) by

Egs ≈ Min
Θ,ϕ

 L∑
a=1

(1 + cos θa) Ea +
1
2

L∑
a,b,c,d=1

ϱ(0)
ab ϱ

(0)
cd

(
Iabcd −

1
2

Iadcb

)
ei (ϕa−ϕb+ϕc−ϕd)

 , (36)

where we incorporate the Dirac approximation of Eq. (21) and take into account the finite number
L of 1pEx-basis states. We write na = 1 + cos θa with angles Θ = (θ1, . . . , θL), such that we satisfy
0 ≤ na ≤ 2 automatically and only need to enforce the particle count of Eq. (6). Finally, in general
we have Iabcd = I∗badc and ϱab = ϱ

∗
ba, while for the case studies in this work, Vint(r − r′) = Vint(r′ − r),

and both Iabcd and ϱ(0)
ab are real. Therefore, we may replace the phase factor in Eq. (36) by

cos(ϕa − ϕb + ϕc − ϕd).
We obtain a seed matrix ϱ(0) = ϱit with admissible entries by iteratively transforming the diag-

onal matrix with diagonal (2, 2, . . . , 2, 0, 0, . . . , 0) and trace N. In each step of this matrix mixer
algorithm introduced in Ref. [31] we apply a unitary operation that produces one target diagonal
element ϱit

aa = na. That is, after at most L − 1 steps, we arrive at a proper density matrix (obeying
ϱ2 = 2ϱ, cf. Eq. (24)) with prescribed diagonal elements and non-zero off-diagonal elements, see
Appendix B for details.

If we take into account enough 1pEx-basis states, then any discrepancies between 1pEx-DFT
results (obtained using ϱit) and those from HF reported in this work stem from the incomplete
parameterization of the density matrices. In such cases, improvements of the 1pEx-DFT energies
toward the HF energies have to come from transformations beyond those that individually preserve
the diagonal elements in 2 × 2 sectors of the density matrices. It is an open problem to determine
for which systems such more general transformations would make our current 1pEx-DFT imple-
mentation equivalent to HF.

As an alternative for 1D systems, we use the approximate density matrix

ϱtf
ab =

g sin ((a − b)σ)
π(a − b)

, (37)

with degeneracy factor g (for unpolarized spin- 1
2 fermions, g = 2) and cotσ = 1

2

[
cot

(
π
2 na

)
+

cot
(
π
2 nb

) ]
. We obtain Eq. (37) from an approximate Wigner function in rotor phase space, in-

spired by the classical-phase-space argument that yields the TF-approximated spatial density ma-
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trix ϱTF(x; x′). That is, ϱ(0) = ϱ(0)(n) in Eq. (36) stands for either ϱit or ϱtf, which are derived in
Appendix B.

2.4. Energy minimization

The angles θa and phases ϕa form the search space for the minimization of Egs in Eq. (36)
and are only constrained by Eq. (6), which spans an (L − 1)-dimensional hypersurface within
the L-dimensional space of participation numbers n. Suitable choices of global optimizers for
constrained non-convex functions in high-dimensional spaces are problem-dependent. We opt
for stochastic algorithms, especially evolutionary algorithms, which are efficient in optimizing
our constrained high-dimensional non-convex energy functions for two reasons: first, stochastic
optimization allows us to project (improper) randomly requested vectors n onto the constraining
hypersurface before we evaluate the energy. Second, evolutionary algorithms can be easily tuned
to escape even deep local optima efficiently and can optimize highly deceptive objective functions
such as Eq. (36).

We consulted two evolutionary algorithms: a particle swarm optimization (PSO) [27, 28, 29]
and a genetic-algorithm optimizer (GAO) [30], see Appendix C for the details of our implemen-
tations, which outperformed—on average, for the test cases we considered—coupled simulated
annealers, adapted from Ref. [32]. As an alternative to genuinely stochastic optimizers, we used
multi-start linearly-constrained conjugate gradient optimization, based on the C++ implementation
of the ALGLIB project at www.alglib.net. In our test cases, all four aforementioned algorithms
produced virtually the same numerical values for the ground-state participation numbers n. How-
ever, PSO proved superior among our implementations of optimizers regarding the convergence
speed toward the optima of our case studies; all results of optimizations reported in this work are
obtained with PSO, unless explicitly stated otherwise.

3. Results on energies, participation numbers, and spatial densities

We applied the 1pEx-DFT program entailed in Eq. (35) and Secs. 2.3 and 2.4 to harmoni-
cally confined fermions in 1D, subjected to contact interaction (Sec. 3.1) and harmonic interaction
(Sec. 3.2). Moreover, in Sec. 3.3 we extract the electronic structure of atoms and ions from 1pEx-
DFT, both with and without relativistic corrections from spin-free exact two-component Dirac the-
ory [33, 34, 35, 36]. With our choice of the Dirac approximation for the interaction energy Eint[n],
HF theory is the natural choice for benchmarking our simulations: Like in HF theory, the Dirac
approximation is the only physical approximation that enters our current 1pEx-DFT implementa-
tion, such that both methods must produce the same results if the energy minimization covers all
admissible density matrices, which is the case when minimizing Eq. (36) with ϱ(0) = ϱit for N = 2,
cf. Tables I and II below. Future implementations of 1pEx-DFT along the same lines of the present
work may exceed HF accuracy if we use approximations of the interaction energy that include at
least some correlation but can still be expressed in terms of the one-body density matrix. While HF
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theory is reasonably accurate and transferable, it is orbital-based and, hence, of limited scalability.
Therefore, keeping in mind 1pEx-DFT applications to mesoscopic systems, we also compared with
a variant of orbital-free DPFT that is scalable and transferable. While this semiclassical method
tends to become (relatively) accurate only for larger particle numbers, it comes with an established
track record across systems and disciplines [14, 15, 16, 17, 37, 18, 22, 38, 39, 40].

3.1. Harmonically trapped contact-interacting fermions

We begin with N spin- 1
2 fermions in 1D harmonic confinement and pair interaction energy

Vint(x − x′) = c δ(x − x′) . (38)

The corresponding interaction tensor elements Iabcd are derived in Appendix D.1. All numerical
values in Secs. 3.1 and 3.2 are given in harmonic oscillator units of energy ℏω and length

√
ℏ/(mω),

with particle mass m and oscillator frequencyω. That is, for example, an interaction strength c = 20
in Eq. (38) is implicit for c = 20 ℏω

√
ℏ/(mω).

As expected, the energies Etf
1pEx based on the TF inspired ϱtf are hardly accurate for small N, but

Table 1 suggests that they become relatively more accurate with increasing N. The energies Eit
1pEx

are more accurate for the cases considered here and approach the HF energies to within one or two
percent. By comparison, the DPFT energies are quite accurate when using the exact HF interaction
energy EHF

int = (c/4)
∫

dx
(
n(x)

)2, see Appendix B. However, unlike HF theory, the approximate
DPFT energy functionals are not variational and do not guarantee to deliver upper bounds to Egs—
here, the TF density nTF incidentally delivers an even lower energy than its quantum-corrected
successor n3′—and systematic improvements beyond n3′ can incur high computational cost [17,
38].

If we assume that the number L of single-particle levels required to converge the energy in
Eq. (36) scales like the particle number N, then the computational cost of the current implemen-
tation of 1pEx-DFT scales like O

(
N4), compared with the generic scaling of O

(
N3) for HF and

KS–DFT. The cost of the DPFT densities nTF and n3′ scales like O
(
N
)

and O
(
N2), respectively. Of

course, these scaling behaviors are really informative only in the limit of large N, and the same
scaling does not imply the same cost in practice, with HF and KS–DFT presenting a point in case.
Furthermore, the actually realized computational cost much depends on the system. For example,
we found the energies Eit

1pEx in Table I with 1 CPU-hour (for c = 1, N = 4, L = 20), 16 CPU-hours
(for c = 1, N = 10, L = 20), and 59 CPU-days (for c = 20, N = 10, L = 30), respectively. We list
these timings only for completeness, bearing in mind that our focus here is to illustrate the concepts
behind a new approach, not to optimize code and CPU time.

For N = 2, the density matrix ϱit obtained from the iterative algorithm of Sec. 2.3 is iden-
tical to the HF density matrix ϱHF—up to phases that are optimized anyway during the energy
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c N Eit
1pEx EHF

(
Eit

1pEx − EHF
)
/EHF Etf

1pEx
(
Etf

1pEx − EHF
)
/EHF EDPFT(nTF) EDPFT(n3′)

1

2 1.3790 1.3790 0.00% 1.3243 -3.97% 1.3648 1.4526

4 5.0642 5.0590 0.10% 4.9773 -1.62% 5.0451 5.2420

10 29.218 29.193 0.09% 29.053 -0.48% 29.181 29.353

20 111.97 111.91 0.05% 111.75 -0.14% 111.90 112.12

20

2 5.9695 5.9695 0.00% 6.3862 6.98% 5.9214 6.0391

4 19.416 19.083 1.75% 19.999 4.80% 19.031 19.211

10 90.572 90.031 0.60% 93.486 3.84% 89.974 90.155

20 298.60 294.75 1.31% 304.45 3.29% 294.69 294.89

Table 1: Comparison of E1pEx and HF energies EHF for N spin- 1
2 fermions in a 1D harmonic trap at contact-interaction

strengths c = 1 and c = 20. Since both 1pEx-DFT and HF are exact for noninteracting systems, it is not surprising
that the two methods agree better for weaker interactions. In contrast to ϱit, the TF-inspired density matrix ϱtf breaks
the variational character of Eq. (36) and can therefore yield energies smaller than EHF, as we see here for c = 1. Also
the density approximations nTF and n3′ breach the variational property of the general DPFT framework. Incidentally,
energies below EHF materialize here with the TF approximation, but not with the generically superior approximation
associated with the semiclassical density n3′ . Efficient implementations of n3′ from Ref. [17] are provided in Refs. [22,
39]. Here and in Table 2 below, we report HF energies calculated from the Roothaan equations for closed-shell systems
in the 1pEx-basis, with the level-shifting procedure of Ref. [41] to aid convergence in the case of strong interactions.

minimization—see Appendix B, such that 1pEx-DFT recovers HF exactly. However, HF is inad-
equate for modeling this particular system: with the exact ground-state wave function Ψ for two
spin- 1

2 fermions [42, 43] and

n(1)(x; x′) = ⟨x| ρ |x′⟩ = 2
∫

dx2 Ψ (x, x2)Ψ (x′, x2)∗ , (39)

we calculate the exact density matrix in the 1pEx-basis, ϱab =
∫

dxdx′ ⟨a| x⟩ ⟨x| ρ |x′⟩ ⟨x′ | b⟩, and
obtain Egs ≈ 1.92 for the true ground-state energy at c = 20, which deviates from EHF by a factor
of three—in other words, the correlation energy dominates the total energy—and explains the
large discrepancies between the exact and the HF/1pEx participation numbers shown in Fig. B.5
in Appendix B.

Figure 2 shows the converged participation numbers for N = 10 obtained with PSO and GAO,
respectively. We also present spatial densities extracted from the converged density matrix ϱ̂it

ab =

eiϕ̂a ϱ̂(0)
ab e−iϕ̂b , which comprises both the eventually successful seed matrix ϱ̂(0) and the phases ϕ

that are optimal for ϱ̂(0); see Appendix B for details. The participation numbers provide intuitively
accessible information, since we usually have painless access to (and a solid understanding of) the
noninteracting basis states (the 1pEx-basis)—we may imagine how unintuitive chemistry would
be if we could not refer to the noninteracting hydrogenic energy levels 1s, 2s, 2p, etc., when
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talking about the real (interacting) electrons in atoms. For noninteracting N-particle systems the
lowest N/2 levels of the 1pEx-basis are fully occupied (with participation numbers n1≤a≤N/2 = 2),
and all other levels are unoccupied (na>N/2 = 0), such that the deviations from this distribution of
participation numbers in the case of interacting systems are a measure of the interaction strength.
The participation numbers can also reveal nontrivial structures like the irrelevance of the odd-parity
states in Fig. B.5 in Appendix B (if ρit were taken to be the truth).
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1Figure 2: Participation numbers na for single-particle levels a = 1, . . . , 20 (top) and spatial densities of N = 10 spin- 1
2

fermions in a 1D harmonic trap at contact-interaction strength c = 20 (bottom). The participation numbers obtained
from PSO (and GAO, as a cross-check of our numerics) follow the same trend as those that originate in ϱtf . We
compute the spatial densities labeled ‘ϱit/tf’ from the converged density matrices, i.e., the seed matrices ϱ(0) combined
with the optimized phases ϕ, and get the characteristic quantum-mechanical oscillations in the center of the trap,
which are difficult to obtain with semiclassical orbital-free DFT methods like the DPFT implementation based on
Refs. [15, 16, 17, 22], which yields, for example, the TF density nTF and the quantum-corrected density n3′ shown
here.
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3.2. Harmonically trapped fermions with harmonic interaction

Next, we consider harmonically trapped fermions in 1D with the pair energy

Vint(x j − xk) =
m

2N
(Ω2 − ω2) (x j − xk)2 =

α − 1
2N

(x j − xk)2 , (40)

where α = Ω2/ω2 defines a dimensionless interaction strength. Equation (40) is expressed in the
oscillator units ℏω and

√
ℏ/(mω) of the noninteracting system (α = 1). In Appendix D.2 we derive

the interaction tensor elements for Eq. (40) via Eq. (34).
In Table 2, we benchmark the energies predicted by 1pEx-DFT for N = 2 and N = 20 with

α = 3/2 against HF results and compare with the exact energies as well as with DPFT energies.
The energies labeled ‘direct’ include only the direct (Hartree) part of the interaction energy, i.e.,
Hab,cd = Iabcd. Then, the exact energy is given by E(α)

d =
√
αN2/4 for even N, see Eq. (D.20) in

Appendix D.2—the energy of an effectively noninteracting harmonic oscillator with frequency
ω
√
α. We also note that Eq. (D.20) is a density functional and can be directly employed in DFT

variants such as DPFT—for example, in TF approximation, which is known to deliver the exact
energy for the noninteracting harmonic oscillator.

N E(α)
d Eit

1pEx EHF
Eit

1pEx

EHF
− 1 Etf

1pEx

Etf
1pEx

EHF
− 1 EDPFT(nTF) EDPFT(n3′)

direct
2 1.22474 1.22474 1.22474 0.00% 1.13746 -7.13% 1.22474 1.51236

20 122.474 123.865 122.474 1.14% 124.156 1.37% 122.474 122.752

direct &
exchange

2 — 1.11803 1.11803 0.00% 0.99835 -10.7% — —

20 — 123.605 122.368 1.01% 123.907 1.26% — —

Table 2: Like in Table 1, we compare the optimized energies E1pEx with the self-consistent energies EHF for N spin- 1
2

fermions in a 1D harmonic trap, but here for a harmonic interaction of strength α = 3/2. The exact energies for N = 2
and N = 20 at α = 3/2 are 1.11237 and 122.362, respectively [44]. The direct (direct & exchange) contributions to the
interaction energy comprise about 20% (10%) of the total energy.

3.3. (Non-)relativistic atoms and ions

We have emphasized transferability across quantum-mechanical systems as one advantageous
feature that sets 1pEx-DFT apart from other DFT variants. While we believe that simulations
of ultracold quantum gases will dominate the applications of 1pEx-DFT, single atoms and ions
comprise an important point of departure for any novel quantum many-body method whose scope
includes, in principle, atomic systems from molecules to nanoparticles to materials. As our last
case study we therefore calculate the electronic structure of atoms and ions. We also extract bind-
ing energies of highly charged ions by using the (numerical) eigenfunctions of a relativistic core
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Hamiltonian. The latter is an example of the most general situation for the usage of 1pEx-DFT,
where eigenstates and eigenenergies of the core Hamiltonian are only available in numerical form.

The Coulomb interaction energy for a pair of electrons at positions r and r′ is Vint(r − r′) =
1/|r−r′|. Accordingly, all numerical values in Sec. 3.3 are given in units of Hartree (Ha) and Bohr
radius (a0). The electrons are subjected to the external potential Vext(r) = −Z/|r| of the nucleus
with nuclear charge Z at the origin of the spatial coordinate system, which makes the hydrogenic
states our 1pEx-basis; details are provided in Appendix D.3.

In Fig. 3 we benchmark the total binding energies of atoms and ions. We obtained the ener-
gies in Fig. 3 by composing the 1pEx-basis solely of the hydrogenic bound states, see Appendix
D.3.1. When constrained to these states, HF indeed delivers the 1pEx energies for the two-electron
systems reported in Fig. 3. However, the scattering states associated with the continuous part of
the spectrum of the nuclear Coulomb potential need to be taken into account to recover the exact
HF energies in the case of atomic systems with two electrons. In fact, with the scattering states
completing the 1pEx-basis, 1pEx-DFT results should gain accuracy for electronic structure cal-
culations in general; we leave this potentially fruitful enterprise for future work. In its current
implementation with (i) the Dirac approximation and (ii) the incomplete search over density ma-
trices, 1pEx-DFT yields energies that are accurate at the 1–2% level when compared with HF,
which itself provides the same level of accuracy when compared with the NIST Atomic Spectra
Database [45]. As expected, the accuracy of E1pEx improves as we increase the number L of states
of the 1pEx-basis that enter the competition in Eq. (36); as an illustration, we report binding en-
ergies for carbon with L = 7, L = 15, and L = 31. Furthermore, E1pEx becomes relatively more
accurate as the ion-electron interaction intensifies. Then, deviations of the participation numbers
n from the Fermi–Dirac distribution incur a penalty that increases, for example, along the helium
isoelectronic sequence. In other words, the contributions of H1p in highly charged ions dominate
over the interaction energy, such that both the single Slater-determinant of HF theory and the exact
single-particle treatment of 1pEx-DFT provide an increasingly accurate description, if relativistic
effects are included when called for. This observation is also in line with our results for the carbon-
like Xe48+ and the neon-like Xe44+. Also the diminishing influence of the scattering states on the
binding energies along the helium isoelectronic series helps align our 1pEx energies with the HF
benchmark in Fig. 3, see Appendix D.3.1 for details. By design, however, EHF is a lower bound
to the currently implemented E1pEx—which is also true when accounting for relativistic effects.
They become more important with increasing nuclear charge; see Ref. [46] for a review on the
theory of complex atoms. Since 1pEx-DFT handles the nuclear singularity exactly for any Z by
adopting the 1pEx-basis, 1pEx-DFT can be directly applied to large-Z atoms and ions—provided
that we supply the relativistic hydrogenic states as 1pEx-basis. These states are known analyti-
cally from four-component Dirac theory [47], but for simplicity we will stay within the confines
of the nonrelativistic algebra that underpins the specific 1pEx-framework laid out in Sec. 2.1; see
Ref. [20] for the more general perspective on DFT from a second-quantized point of view. Since
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electron–positron pair production is irrelevant for chemistry, we can fully take into account the
relativistic corrections using the Schrödinger-like exact two-component quasi-relativistic method
(X2C) [33, 34]. In fact, its spin-free approximation (sf-X2C) is accurate enough for our purposes,
see Appendix D.3.2 for details.

We use the sf-X2C Hamiltonian for calculating the relativistic HF energies that provide the
benchmarks for our 1pEx(sf-X2C) energies in Fig. 3. The sf-X2C Hamiltonian also determines
our relativistic 1pEx-basis and the associated interaction tensor elements; see Appendix D.3.2 for
an outline of our numerical procedures. This application of 1pEx-DFT is an example of the generic
situation, in which the eigenstates of H1p can only be determined numerically.
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Figure 3: Total binding energies EB of atoms and ions relative to the nonrelativistic HF energies EHF. The latter are
an upper bound to the exact nonrelativistic energies and a lower bound to (our current implementation of) the nonrela-
tivistic E1pEx. Smaller ordinates correspond to lower total ground-state energies (viz., negative binding energies). The
connecting lines guide the eye. The absolute values of the energies displayed here are listed in Table D.4 in Appendix
D.3.2.

Since Fig. 3 displays relative deviations to the nonrelativistic EHF, the relativistic effects we
extract from 1pEx(sf-X2C) are visible (to the eye) only for the highly charged ions. We also
compare our results with a (nonrelativistic) approximation for the binding energy of neutral atoms:
the ‘statistical atom’ denotes a semiclassical approximation that includes the Scott correction as
well as quantum corrections upon the TF approximation and becomes relatively more accurate as
the atomic number increases [48, 49, 18]. The binding energies calculated with 1pEx(sf-X2C)
tend to approach the NIST data for highly charged ions, where relativistic energy corrections can
dominate over correlation energy and other effects (such as QED effects) that are not taken into
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account here. In fact, both 1pEx(sf-X2C) and HF(sf-X2C) deliver essentially the exact reference
value for helium-like Ar16+. This contrasts with the cases of neutral helium and the hydrogen
anion. For the latter, HF underestimates the experimental binding energy by more than 7% [50].

4. Discussion and conclusions

We introduced 1pEx-DFT, a novel generic quantum many-body method in the spirit of orbital-
free DFT, where the energy functional depends on the particle density (in whichever representa-
tion), viz., the diagonal of the density matrix. This contrasts with density matrix functional theory,
where the single-particle part is also exact but depends on the entire density matrix. 1pEx-DFT
is as transferable as other explicitly Hamiltonian-based methods, for example, HF theory or the
Schrödinger equation itself. Here, we gave first illustrations of the broad scope of 1pEx-DFT by
simulating interacting Fermi gases in one-dimensional confinement and by extracting relativistic
corrections in the electronic structure of atoms and ions.

The proof-of-principle implementation of 1pEx-DFT in this work can reach HF accuracy by
design, although full equivalence with HF in all cases will require an extension of the currently
implemented constrained search toward all one-body density matrices compatible with the HF
approximation. And since our analysis in Appendix A, see also Ref. [21], indicates that the
evaluation of cumulant-based corrections to the HF approximation in the 1pEx-basis is costly, the
accuracy of 1pEx-DFT could often be limited in practice to that of HF. This restriction is, however,
minor for an important class of systems that we think should be targeted by 1pEx-DFT, namely
ultracold atomic gases of mesoscopic size, for which the cost even of HF calculations is usually
prohibitive. Figure 1 illustrates our take on the trinity of transferability, accuracy, and scalability
of 1pEx-DFT, and we argue that the latter poses the primary challenge for 1pEx-DFT in becoming
a complementing approach to today’s workhorses among quantum many-body methods. In the
following we propose several routes to attacking this issue of scalability.

The figure of merit for judging the efficacy of traditional optimizers for minimizing the energy
in Eq. (36) is the number of function (or gradient) evaluations required to reach a targeted threshold
for the function value. As a rule, this number grows sharply with the dimension D of the search
space. In addition, the computational cost of a single evaluation of Eq. (36), where D = 2L, scales
like O

(
D4), such that our currently implemented objective-function-based optimizers, including

PSO, are too costly for systems that require us to consider hundreds of single-particle levels. As
an alternative to PSO, we may employ stochastic gradient descent (SGD) or its refinements [51],
which forfeit objective function evaluations and can escape local optima by descending along ap-
proximate gradients. The prototypical application of SGD is the minimization of functions that
are sums like Eq. (36), such that the computational cost for a single gradient evaluation can be
reduced from O

(
D4) to O

(
1
)
—at the expense of a potentially large number of descent steps, but

with the promise of the same efficiency gains that also enable large-scale machine learning ap-
plications based on automatic differentiation. In particular, SGD on graphical processing units
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could prove promising since the interaction tensor elements Iabcd of Eq. (34) cannot all be stored in
memory and have to be (re-)calculated during runtime anyway if, say, D ≳ 1000. This would also
circumvent another caveat of 1pEx-DFT, namely that Iabcd has to be recalculated when the exter-
nal potential changes, for example, during the search for the ground-state geometry of molecules.
A third and somewhat counterintuitive type of optimizer disregards both gradients and function
values: ‘novelty search’ contrasts with traditional optimizers as it escapes local optima by guiding
the optimizer into unexplored regions of the search space—a heuristic that can optimize highly
deceptive objective functions [52]. We acknowledge that no strategy can guarantee finding the
global optimum g of a black-box function and that g can only be found if the optimizer happens
to arrive—ultimately by sheer luck, but hopefully accelerated via tried-and-tested heuristics—in
the optimizer-specific attractor region of g. Hence, we can only hypothesize that combining a
pool of optimizers will give us the means to minimize Eq. (36) across physical systems even in
high-dimensional (D ≳ 1000) spaces. We also leave for future work the embedding of a suitable
optimizer into a divide-and-conquer strategy for large-scale global optimization [53, 54, 55].

Maybe the greatest potential for scalability lies in explicit closed-form functionals Eint[n] with
computational cost ∼ O

(
D
)
, similar to E1p in Eq. (8), which could make all the optimization strate-

gies mentioned above feasible for systems with thousands of particles. As the most important
quest in this regard we deem the search for a TF-type approximate functional that works at least
for trapped atomic gases. Furthermore, when approaching a continuum of single-particle levels as
N increases, it may be possible to approximate the four-dimensional sum of Eq. (33) by interaction-
specific integrals that can be evaluated more efficiently than the sum. Independent of the functional
form of the interaction energy or choice of optimizer, we may also fully occupy the low-lying levels
and optimize in the remaining ‘active space’ of partially occupied levels—we already implicitly
impose vanishing participation numbers of levels beyond L, just like any other method that im-
poses energy cutoffs. This reduces the optimization cost, especially for weakly interacting systems
and, for example, for heavier atoms. Such a ‘frozen-core approximation’ of 1pEx-DFT does not
require ad-hoc assumptions or fits to data and is thus a natural ab-initio alternative to the use of
pseudopotentials that approximate the Coulomb potential in traditional DFT methods. Of course,
1pEx-DFT calculations could also benefit directly from the use of pseudopotentials, if the implied
uncertainties are tolerable, but the appeal of 1pEx-DFT comes in particular from the exact and un-
problematic treatment of external potentials. For example, 1pEx-DFT naturally accounts for (and
supersedes) the Scott correction [48, 18], the leading correction to the Thomas–Fermi model of
atoms with singular nuclear potential.

We are confident that the list of aforementioned issues—and their remedies—is by no means
complete. And all our suggestions for increasing the efficiency of 1pEx-DFT are uncharted terri-
tory at present. But, taking the cue from the history of the quantum many-body problem in general
and the history of DFT in particular, we may hope to resolve over time many of the technical
challenges that initially accompany a novel method like 1pEx-DFT.
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Appendix A. Perturbation theory for the correlation energy in the 1pEx-basis

In this appendix we derive a perturbative approximation of the correlation contribution to the
exact interaction energy. To that end, we calculate the contribution of the 2-cumulant—the differ-
ence between the exact and the HF two-body density matrix—to second-order perturbation theory
along the lines of Ref. [56]. This allows us, in the limit of weak interactions, to gauge how fast
we approach the exact energies and participation numbers as we increase the number L of single-
particle states that determine the perturbative energies and participation numbers. Unfortunately,
we find that the energies converge rather slowly with L, which suggests that the 1pEx-basis can be
inefficient, compared with natural orbitals—at least as far as correlations beyond HF exchange are
concerned, see also Ref. [21].

The expectation value of the many-particle Hamilton operator, cf. Eq. (9), corresponding to
some (not necessarily ground-state) wave function Ψ reads

E = ⟨Ψ |Hmp|Ψ⟩ =
∑

pq

1Γpq hqp +
∑
pqrs

2Γpqrs grspq , (A.1)

where hpq = ⟨p(1)|H1p |q(1)⟩ and gpqrs = ⟨p(1)| ⟨q(2)|Vint(R1 −R2) |r(1)⟩ |s(2)⟩, with |q(1)⟩ refer-
ring to the spin-orbital ϕq(1) for a particle labeled ‘(1)’. That is, in what follows, the participation
numbers are constrained by 0 ≤ nq ≤ 1, and the spin-orbitals

{
ϕq( )

}
define the creation and anni-

hilation operators
{
ϕ+p

}
and

{
ϕ−p

}
that enter the one-body reduced density matrix (‘1-matrix’) with

elements

1Γpq = ⟨Ψ |ϕ
+
q ϕ
−
p |Ψ⟩ (A.2)

and the 2-matrix with elements

2Γpqrs =
1
2
⟨Ψ |ϕ+r ϕ

+
s ϕ
−
q ϕ
−
p |Ψ⟩ . (A.3)

Their normalizations are ∑
r

2Γprqr =
N − 1

2
1Γpq and

∑
p

1Γpp = N . (A.4)
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In conventional approaches to DFT, the total energy in Eq. (A.1) is the functional

E[ρ(1)] = min
{2Γpqrs}→ρ(1)

∑
pqrs

(
2 hrp δqs

N − 1
+ grspq

)
2Γpqrs , (A.5)

where {2Γpqrs} → ρ(1), with the single-particle density ρ(1), denotes both the constraint∑
pq

1Γpq ϕ
∗
q(1) ϕp(1) = ρ(1) (A.6)

and the N-representability of {2Γpqrs}. It is instructive to compare Eq. (A.5) with its analog

E
(
{1Γpq}

)
=

∑
pq

1Γpq hqp + min
{2Γpqrs}→{1Γpq}

∑
pqrs

2Γpqrs grspq (A.7)

in density matrix functional theory, where {2Γpqrs} → {1Γpq} denotes both the constraints in
Eq. (A.4) and the N-representability of {2Γpqrs}. There are two advantages of density matrix func-
tional theory over conventional DFT. First, the obvious one, which is shared with 1pEx-DFT,
namely the exclusion of the single-particle part from the constrained minimization. Second, the
less obious one, which is only revealed upon the introduction of the 2-cumulant with the elements

2
Gpqrs =

2Γpqrs −
1
2

(
1Γpr

1Γqs −
1Γps

1Γqr

)
, (A.8)

which obey 2Gpqrs =
2G∗rspq = −

2Gpqsr =
2Gqpsr = −

2Gqprs and

∑
r

2
Gprqr =

1
2

∑
k

1Γpk
1Γkq −

1Γpq

 . (A.9)

Then, Eq. (A.7) reads

E({1Γpq}) =
∑

pq

1Γpq hqp +
1
2

∑
pqrs

(
1Γpr

1Γqs −
1Γps

1Γqr

)
grspq + min

{2Gpqrs}→{1Γpq}

∑
pqrs

2
Gpqrs grspq ,

(A.10)

where {2Gpqrs} → {
1Γpq} denotes both the constraint (A.9) and the N-representability of {2Gpqrs}.

As a result, the minimization is now over a contribution to the total energy that vanishes for uncor-
related systems and is small in general.

In 1pEx-DFT we choose the spin-orbitals
{
ϕp( )

}
specifically to diagonalize H1p. That is, each

1pEx mode introduced in Eq. (3) is effectively made up of two spin-orbitals ϕp( ), and the total
energy functional reads

E({np}) =
∑

p

np hpp + min
{2Γpqrs}→{np}

∑
pqrs

2Γpqrs grspq , (A.11)
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where np =
1Γpp, ϵp = hpp (in the case of a spin-unpolarized system, ϵ1 = ϵ2 = E1, ϵ3 = ϵ4 = E2,

and so forth, with the energies Ea of Eq. (3)), and {2Γpqrs} → {np} denotes both the constraint
2

N−1

∑
r

2Γprpr = np for all p, according to Eq. (A.4), and the N-representability of {2Γpqrs}.
A perturbative treatment of the interaction energy in Eq. (A.11) yields

1Γpq =
1Γ(0)

pq + λ
1Γ(1)

pq + λ
2 1Γ(2)

pq + ... (A.12)

with parameter λ, as done in Ref. [56], where

1Γ(0)
pq = νp δpq , (A.13)

1Γ(1)
pq =

νp − νq

ϵp − ϵq
Gpq , (A.14)

and

1Γ(2)
pq =

∑
i

ηp ηq νi − νp νq ηi

(ϵp − ϵi) (ϵq − ϵi)
Gpi Giq + P̂

†
pq

∑
i

ηq νp νi − νq ηp ηi

ϵq − ϵi

Gpi Giq

ϵp − ϵq

+
∑

i j

νp − νq

ϵp − ϵq

νi − ν j

ϵi − ϵ j
Gi j g jpiq +

1
2
P̂†pq

∑
i jk

ηq νp νi ν j ηk − νq ηp ηi η j νk

ϵq + ϵk − ϵi − ϵ j

gkpi j gi jkq

ϵp − ϵq

+ 2 (ηp ηq − νp νq)
∑
i jk

2
G

(1)
ip jk

2
G

(1)
jkiq . (A.15)

Here, νp and ηp = 1 − νp are the indicator functions for the core ({νp}) and virtual ({ηp}) subsets
of the spin-orbitals {ϕp(1)}, i.e., νp = 1 if np is close to one and νp = 0 otherwise. For the pur-
pose of the present work, we set νp = 1 for p = 1, ...,N in the case of N particles. Fractions with
vanishing numerators in Eqs. (A.14) and (A.15) are assumed to be zero, even if ϵp = ϵq. We de-
fine gpqrs = gpqrs − gpqsr and Gpq =

∑
i νi gpiqi, and the operator P†pq acts on two-index quantities

according to the prescription P†pq Apq = Apq + A∗qp.
The 2-cumulant has no zeroth-order term and we shall approximate it by its first-order term

λ 2
G

(1)
pqrs =

1
2
νp νq ηr ηs − ηp ηq νr νs

ϵp + ϵq − ϵr − ϵs
gpqrs , (A.16)

see Ref. [56]. With Eqs. (A.8), (A.12), and (A.16) the first two terms in the expansion

Vee({np}) = min
{2Γpqrs}→{np}

∑
pqrs

2Γpqrs grspq = λV (1)
ee ({np}) + λ2 V (2)

ee ({np}) + ... (A.17)

are readily available:

V (1)
ee ({np}) =

∑
pqrs

2Γ
(0)
pqrs grspq =

1
2

∑
pqrs

(
1Γ(0)

pr
1Γ(0)

qs −
1Γ(0)

ps
1Γ(0)

qr

)
grspq =

1
2

∑
pq

νp νq gpqpq (A.18)
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and

V (2)
ee ({np}) =

∑
pqrs

2Γ
(1)
pqrs grspq

=
1
2

∑
pqrs

(
1Γ(1)

pr
1Γ(0)

qs −
1Γ(1)

ps
1Γ(0)

qr +
1Γ(0)

pr
1Γ(1)

qs −
1Γ(0)

ps
1Γ(1)

qr

)
grspq +

∑
pqrs

2
G

(1)
pqrs grspq

=
∑

pq

νp − νq

ϵp − ϵq
|Gpq|

2 +
1
2

∑
pqrs

νp νq ηr ηs − ηp ηq νr νs

ϵp + ϵq − ϵr − ϵs
|gpqrs|

2 , (A.19)

such that (λ is now dropped)

Vee({np}) =
1
2

∑
pq

νp νq gpqpq +
∑

pq

νp − νq

ϵp − ϵq
|Gpq|

2 +
1
2

∑
pqrs

νp νq ηr ηs − ηp ηq νr νs

ϵp + ϵq − ϵr − ϵs
|gpqrs|

2 (A.20)

is correct up to second order in the pair interaction strength. Accordingly, we determine the partic-
ipation numbers by setting p = q in Eqs. (A.13)–(A.15):

np =
1Γpp ≈ νp +

∑
i

ηp νi − νp ηi

(ϵp − ϵi)2 |Gpi|
2 +

1
2

(ηp − νp)
∑
i jk

ηp ηi ν j νk + νp νi η j ηk

(ϵi + ϵp − ϵ j − ϵk)2 |gip jk|
2 . (A.21)

Figure A.4 illustrates for N = 2 contact-interacting unpolarized spin-1
2 particles that the total en-
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1Figure A.4: Energies and participation numbers for N = 2 contact-interacting unpolarized spin- 1
2 particles at three

different interaction strengths c. The connecting lines guide the eye. Left: we compare the quasi-exact energy Eex

(where ‘quasi-exact’ refers to a numerically approximate evaluation of the exact expression that is accurate at the level
of machine precision, here achieved for L = 60) with the total energy E1p + Vee (as a function of L) to second-order
perturbation theory, viz., Eq. (A.20), with 2L spin-orbitals taken into account. For illustrative purposes we rescale the
ordinate for c = 0.1 (c = 0.001) by a factor of 102 (106). Right: the participation numbers {na} of (doubly occupied)
1pEx modes labeled a = 1, 2, ..., L according to Eq. (3). We compare the quasi-exact participation numbers with the
participation numbers derived from Eq. (A.21), where the summation indices span {1, 2, ..., 2L}.

ergy in second-order perturbation theory converges rather slowly as the number L of single particle
orbitals increases (Fig. A.4, left panel). As expected, the perturbative treatment becomes very ac-
curate as the contact interaction strength c decreases from c = 1 to c = 0.001. But the convergence
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behavior for c = 0.001 still matches that for c = 1. Similarly, we find a slow decay of the 1pEx
participation numbers {na} toward zero as a increases (Fig. A.4, right panel). If this example is
prototypical, then a high energy cutoff in the 1pEx-basis is required for very precise calculations
that include correlations beyond HF exchange.

Appendix B. Approximate density matrices

In this appendix we (i) obtain the seed matrices for the 1pEx-DFT program in Eq. (35) from
the matrix mixer algorithm introduced in Ref. [31] and from a TF-inspired Wigner function, re-
spectively, (ii) derive the Hartree–Fock density matrix in the 1pEx-basis for N = 2 particles, (iii)
express the spatial and momental densities through the converged seed matrix and phases, (iv)
write the exact HF interaction energy for the contact-interaction as a density functional, and (v)
discuss transformations of the seed matrix beyond the phase transformations in Eq. (26).

Seed matrix from a matrix mixer algorithm. To generate a valid density matrix ϱ, which
obeys

ϱaa = na (B.1)

and

ϱ2 = 2ϱ (B.2)

for a prescribed vector n of participation numbers, we start from a matrix ϱ0 with diagonal entries
(2, 2, . . . , 2, 0, 0, . . . , 0) that add up to N. Note that ϱ0 is itself a proper density matrix and obeys
the constraint of Eq. (B.2). We aim at an iterative transformation of ϱ0 by unitary transformations
(leaving both the trace and the spectrum unchanged), such that the diagonal of the final matrix is
n. This is accomplished by a sequence of unitary transformations

M =
cos θ sin θ
sin θ − cos θ

 , (B.3)

which transform diagonal 2 × 2 matrices into

M(η)
a 0
0 b

 M(η)† =
 ηa + (1 − η)b

√
η(1 − η)(a − b)√

η(1 − η)(a − b) (1 − η)a + ηb

 . (B.4)

Here, the parameter η = cos2 θ can be adjusted for the first diagonal element of the matrix in
Eq. (B.4) to equal any prescribed value between a and b. In particular, since the participation
numbers are all bounded between zero and two, we can apply a sequence of suitable transfor-
mations M on the initial matrix ϱ0, such that the final density matrix ϱit obeys the constraint in
Eq. (B.1).
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The matrix mixer algorithm has been proven to work in all cases [31]. The proof consists of
inductively showing that, for a given na, there is always a 2 × 2 diagonal sub-matrix, associated
with indices (i, j), such that ϱii ≥ na ≥ ϱ j j, hence permitting the application of the matrix mixing
operation M of Eq. (B.4). As an illustration, we consider N = 4 particles on L = 4 levels and target
n =

(
6
4 ,

5
4 ,

3
4 ,

2
4

)
. The sequence

ϱ0 =


2 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0


η1=3/4
−→
(1,3)

ϱ1 =


3
2 ∗

2
∗ 1

2

0


η2=1/2
−→
(2,3)

ϱ2 =


3
2 ∗ ∗

∗ 5
4 ∗

∗ ∗ 5
4

0


η3=3/5
−→
(3,4)

ϱ3 =


3
2 ∗ ∗ ∗

∗ 5
4 ∗ ∗

∗ ∗ 3
4 ∗

∗ ∗ ∗ 1
2


(B.5)

of matrix mixing operations M(ηi), each operating in the 2 × 2 sector of indices (a, b) as indicated,
yields one target entry on the diagonal in each step i. Off-diagonal elements, here summarily
denoted by an asterisk (∗), are thereby introduced and modified. The final density matrix ϱ3 then
satisfies both conditions of Eqs. (B.1) and (B.2). The exploration of alternative mixer algorithms
is left for future study.

In the simplest case of N = 2 particles on L = 2 levels, i.e., na + nb = 2 (without loss of gener-

ality, na ≥ nb), we begin with ϱ0 =

2 0
0 0

 and apply Eq. (B.4) with weight η = na
2 to obtain

ϱit =

 na
√

nanb
√

nanb nb

 . (B.6)

That is, for N = 2 particles, the matrix mixer algorithm reproduces the Hartree–Fock density ma-
trix in the 1pEx-basis: the spin-orbital density matrix γN=2

HF (r; r′) of the Hartree–Fock spin-singlet
ground-state wave function

ψN=2
HF

(
r1 = (r1, σ1), r2 = (r2, σ2)

)
=

1
√

2
ϕ(r1) ϕ(r2) ⟨σ1σ2|

(
|↑↓⟩ − |↓↑⟩

)
(B.7)

for two particles in the normalized spatial orbital ϕ( ) is

γN=2
HF (r; r′) = 2

∫
dr2 ψ

N=2
HF (r, r2)ψN=2

HF (r′, r2)∗ = ϕ(r) ϕ(r′)∗
(
⟨σ| ↑⟩ ⟨↑|σ′⟩ + ⟨σ| ↓⟩ ⟨↓|σ′⟩

)
.

(B.8)

Upon integrating out the spin degrees of freedom, we obtain the orbital density matrix

γN=2
HF (r; r′) =

∑
σ,σ′∈{↑,↓}

γN=2
HF (r; r′) = ⟨r | ρN=2

HF |r
′⟩ , (B.9)

with ρN=2
HF = 2|ϕ⟩⟨ϕ|, such that ϱHF,N=2

ab = ⟨a| ρN=2
HF |b⟩ = 2 ca c∗b, with coefficients ca = |ca| eiϕa of the

expansion ϕ(r) =
∑

a caψa(r) in the orthonormal 1pEx-basis. Since ϱHF,N=2
aa = 2|ca|

2 = na, we get

ϱHF,N=2
ab =

√
na nb ei

(
ϕa−ϕb

)
≡ ϱit,N=2

ab = eiϕaϱ(0),it,N=2
ab e−iϕb , (B.10)

25



with optimal phases {ϕ̂a} to be found, see Eq. (35).
In Fig. B.5 we compare the optimized participation numbers for this case with the exact results

and display the spatial densities calculated from the converged density matrix: if the 1pEx-basis
states can be chosen real, as is the case for the harmonic oscillator eigenstates, the spatial (momen-
tal) densities are

n(·) =
∑
a,b

cos
(
ϕ̂a − ϕ̂b

)
ψa(·) ϱ̂(0)

ab ψb(·) , (B.11)

where (·) stands for position r (momentum p). We can also use Eq. (B.11) in the case of the hy-
drogenic states after separating from {ψa} the ϕ-dependence (with corresponding quantum number
ma) of the spherical harmonics in Eq. (D.23), such that the remainder of {ψa} is real, and adding
ϕ (ma − mb) to the argument of the cosine in Eq. (B.11), with ϕ the azimuthal angle of r (or p).

Using the density matrix in Eq. (B.8) and the pair potential Vint in Eq. (38), we reduce the exact
HF interaction energy

EHF
int [γ] =

1
2

∫
(dr1)(dr2) Vint(r1 − r2)

n(r1)n(r2) −
∑
σ1,σ2

γN=2
HF (r1; r2) γN=2

HF (r2; r1)

 (B.12)

to

EHF
int,1D-contact[n] =

c
2

∫
dx

((
n(x)

)2
−

1
2
(
n(x)

)2
)
=

c
4

∫
dx

(
n(x)

)2
, (B.13)

which is actually the exact expression of the HF interaction energy for any even N (and generalizes
to contact-interaction in 2D and 3D). We use Eq. (B.13) as the interaction functional for producing
the DPFT energies in Table 1 and the DPFT densities in Figs. 2 and B.5.

Seed matrix from a Thomas–Fermi inspired density matrix. With the ingredients listed in
Table B.3, we produce the density matrix ϱtf in Eq. (37) in analogy to the TF-approximated spatial
density matrix through an ansatz for an approximate Wigner function [F]W of an operator F in the
rotor phase space. The basic observables of the rotor are (i) the unitary ε = eiΦ for the azimuth
with bras ⟨φ| = ⟨φ + 2π| andε|φ⟩ = eiφ|φ⟩, and (ii) the hermitianA for the angular momentum with
kets |a⟩. The inversion operator is I =

∑∞
a=−∞ |−a⟩⟨a| =

∫
(2π)

dφ
2π |−φ⟩⟨φ|, η( ) is the step function, and

ν =
√

2m
ℏ2

[
µ − V

(
x+x′

2

)]
+
, with chemical potential µ, potential energy V( ), and [z]+ = z η(z). We

express F(A, ε) with the help of the Fourier representation of η( ), where the contour integration
crosses the imaginary axis in the lower half-plane, and define f (A)|a⟩ = f (a)|a⟩ = cot

(
π
2 na

)
|a⟩.

The operators P and X that appear in W(x, p; X, P) as powers of (P; X) are ordered such that all P
stand to the left of X.
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Figure B.5: Participation numbers na for single-particle levels a = 1, . . . , L = 10 (top) and spatial densities (bottom)
for N = 2 spin- 1

2 fermions in a 1D harmonic trap at contact-interaction strength c = 20, analogous to Fig. 2. We
obtain the participation numbers from 1pEx-DFT using the HF density matrix, which coincides with ϱit for N = 2. For
this system, HF overestimates the exact ground-state energy by a factor of three. Hence, the quantitative differences
between the (Dirac-approximated) participation numbers and their exact counterparts obtained from Refs. [42, 43] are
not surprising. The same holds for the spatial 1pEx-densities labeled ‘ϱit/tf’, which align more with the DPFT densities
nTF and n3′ than with the exact density. As any approximate density, also n3′ does not have all the properties of the
exact density. The oscillations of n3′ into negative numbers occur in the classically forbidden region and become less
pronounced for larger N, see Fig. 2 and Ref. [38]. For applications that strictly rely on positive densities everywhere,
positive n3′ can be enforced in an ad hoc fashion at the level of the self-consistent calculation that yields n3′ , see
Ref. [22]. A similar measure is standard in the TF approach, where the spatial density is manually made to vanish in
the classically forbidden region. We report exact results for completeness, but our actual objective is to validate our
1pEx-DFT implementation by comparing with HF results.
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classical phase space {x ∈ R, p ∈ R}
rotor phase space {a ∈ Z, φ ∈ [−π, π)}

operator basis of Wigner type W(x, p; X, P) = 2 e
2i
ℏ

(P − p); (X − x)

W(a, φ;A, ε) = εa e−iφA I (1 + ε) eiφAε−a

operator representation
F(X, P) =

∫
dXdP
2πℏ [F]W(x, p) W(x, p; X, P)

F(a, φ) =
∑

a

∫
(2π)

dφ
2π [F]W(a, φ) W(a, φ;A, ε)

ansatz
[F]W(x, p) = g η

(
µ − 1

2m p2 − V(x)
)

[F]W(a, φ) = g η
(

cotφ − f (a)
)

operator corresponding to [F]W

F(X, P) = g η
(
µ − 1

2m P2 − V(X)
)

F(A, ε) = g
∫

................ . ............... ........................... .... .... ............·

dt
2πit eit [cotΦ − f (A)]

approximate density matrix
ϱTF(x; x′) = ⟨r | F |r′⟩ = g sin[2(x−x′) ν]

2π(x−x′)

ϱtf
ab = ⟨a| F |b⟩ =

g sin[(a−b)σ]
π(a−b) = Eq. (37)

Table B.3: Key ingredients for the derivation of the density matrix ϱtf in rotor phase space—in analogy to the TF-
approximated density matrix ϱTF in classical phase space, see also Refs. [15, 16, 17].

As an example, we give ϱit and ϱtf for n = (2, 1.5, 0.3, 0.2):

ϱit ≈


2 0 0 0
0 1.5 0.67 0.55
0 0.67 0.3 0.24
0 0.55 0.24 0.2

 , ϱtf ≈


2 0 0 0
0 1.5 0.57 0.32
0 0.57 0.3 0.23
0 0.32 0.23 0.2

 . (B.14)

Alternative transformations of the seed matrix. We consider a 2 × 2 sector at the diagonal
of ϱ (in general, the 2 × 2 sector associated with an index pair (a, b)), of the form

. . .
...

...

· · · x γ · · ·

· · · γ∗ y · · ·
...

...
. . .


, (B.15)

where the unitary transformation afforded by

U =
[
(x − y)2 +

(
γ∗eiφab + γe−iφab

)2
]− 1

2
 (x − y) eiξa

(
γ + γ∗e2iφab

)
eiξb(

γ∗ + γe−2iφab
)

eiξa (y − x) eiξb

 (B.16)

yields

U†
 x γ

γ∗ y

 U =
 x γ∗ei(2φab − ξa + ξb)

γe−i(2φab − ξa + ξb) y

 , (B.17)
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so that the diagonal entries are unchanged, while the off-diagonal entries are affected—in fact,
Eq. (B.16) parameterizes all 2×2 unitary transformations with this property. Our numerical analy-
ses show, however, that the inclusion of the 3L(L−1)/2 parameters {φab, ξa, ξb}, three for each index
pair (a, b), does not yield lower energies in the global minimization of Eq. (10) compared with op-
timizing over the L phases of Eq. (26) only. Although every unitary transformation that leaves
the diagonal elements of a matrix unchanged can be decomposed into a sequence of L(L − 1)/2
transformations in 2 × 2 sectors, we have so far only covered those cases in which each of these
transformations in 2 × 2 sectors individually preserve the diagonal elements. We leave the explo-
ration of more general unitary transformations for future study.

Appendix C. Evolutionary algorithms

Appendix C.1. Particle swarm optimization

Particle swarm optimization (PSO) is an evolutionary algorithm that draws inspiration from
how an ‘intelligent’ swarm, such as a flock of birds, moves toward beneficial conditions [27, 28,
29]. Aiming at the global optimizer x̂ = arg min

x∈X
f (x) of the objective function f , each swarm

particle s ∈ {1, . . . , S } updates its coordinate vector xs =
(
xs,1, . . . , xs,d, . . . , xs,D

)
∈ X in an iterative

random walk through the D-dimensional search space X. The core principle of PSO is the stochas-
tic guidance of this random walk by (i) the so far encountered personal best position ps of s and
(ii) the global personal best position pg—or, alternatively and more generally, the personal best
position pgs from a randomly selected group Gs of particles that are intermittently linked to s.

Figure C.6a illustrates the work flow of our PSO implementation. We start each PSO run by
uniformly drawing S random particle ‘positions’ x(0)

s and particle ‘velocities’ v(0)
s from X. Then,

in the ith iteration of the run, each position coordinate x(i−1)
s,d receives the update

x(i−1)
s,d −→ x(i)

s,d = x(i−1)
s,d + v(i)

s,d (C.1)

according to the velocity update

v(i)
s,d = w(i) v(i−1)

s,d + c(i)
1

(
p(i−1)

s,d − x(i−1)
s,d

)
+ c(i)

2

(
p(i−1)

gs,d
− x(i−1)

s,d

)
(C.2)

with inertia w(i) and random coefficients c(i)
1/2 ∈ [0,C(i)

1/2]. We initialize these dynamic parameters
with w(1) = 0.42 and C(1)

1/2 = 1.55, respectively, as recommended in Ref. [57], see also Ref. [28],
and optionally modify them according to an adaptive schedule during the course of optimization.
Once we have moved the whole swarm, we enforce all constraints, which poses no problem since
the position update is random anyway, and then make the velocities consistent with the constraints.
For example, in the case of Eq. (36), we enforce the constraint

∑L
i=1 ni = N of Eq. (6) as illustrated

with Fig. C.6b. There, nreq is first rescaled to ñ = N
Nreqn

req if Nreq =
∑L

i=1 nreq
i , N. Then, we ob-

tain n by adding a rescaled σ = ñ − nc, which is parallel to the constraining line, to nc =
N
L (1, 1),

which points to the center of the intersection of the constraining line with the square that encodes
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0 ≤ ni ≤ 2. We rescale σ using the maximal excess |δσ| = maxi
{
max{ni − 2,−ni}

}
, here inciden-

tally realized by |δσ2|, among all participation numbers beyond their allowed values in [0, 2]. The
generalization to larger L is straightforward. As an alternative to rescaling nreq to ñ on the con-
straining (hyper-)plane defined by

∑L
i=1 ni = N, we may project onto the plane, which generally

results in a different ñ on the plane. In fact, we alternate between both options, rescaling and
projection, in a random fashion. Note that the PSO never requests participation numbers outside
[0, 2] since the participation numbers are constructed as ni = 1 + cos

(
θi
)
, but some ni can exceed

2 after rescaling if Nreq < N, and the projection can even result in negative excess δσ. After the
constraints are enforced, we calculate f

(
x(i)

s

)
for all s and prepare to move the swarm in the next

iteration. We monitor the swarm by collecting the best function values fg =
(

f (i)
g , . . . , f (i−λ+1)

g

)
of

the λ most recent iterations. We declare convergence and terminate the PSO run once the current
variance C(i) of fg falls below a chosen target variance T ; our default settings are λ = min(30,D)
and T = 10−12D. Since PSO is stochastic and can, despite all our efforts, get stuck in local optima,
it is prudent to judge the quality of an alleged global optimum with the aid of a histogram of the
optima from several (e.g., 10 to 1000) PSO runs, see Fig. C.6c.

We designed several adaptations to this general scheme to aid the exploratory capability of the
swarm in the initial phase of each run, the convergence in the final phase, and the swarm’s ability
to avoid premature convergence to local optima in the intermediate phase. We choose the number
of elements in each group Gs to about S/4 and randomly re-initialize this grouping, together with
the associated inter-particle links, if the current iteration does not improve upon the best function
value encountered during the current PSO run. In other words, there are effectively four concurrent
swarms with populations that interchange their members in an adaptive fashion. In our experience,
40 ≲ S 0 ≲ 10D is a suitable range for the initial swarm size S = S 0, with a problem-dependent
trade-off between swarm size and required iterations/runs. Our PSO code is parallelized with
openMP, and each swarm particle is processed in a separate thread. With decreasing difference
between current and target variance, we decrease S down to max(10, t), where t is the number
of available parallel-processing threads. The worst particles (in terms of their personal best) are
thereby discarded according to the schedule S (i) = min

{
S 0,max

[
t, t + S 0

(
1 − log10C(i)/log10T

)]}
at iteration i. This procedure removes inferior and/or superfluous particles as long as the variance
drops and hastens the convergence in the later optimization stages.

Furthermore, much has been said about the curse of dimensionality, viz., the exponential
growth of the search space with D, which lies at the heart of so many real-world problems, not
least the quantum many-body problem. But there is also a blessing of dimensionality, namely that
reducing the search interval in a single dimension by 50% removes half of the total search space,
irrespective of D. We therefore implemented an adaptive search space, where search space inter-
vals Id shrink in all those dimensions d, for which the coordinate of a newly encountered global
best lies close to the center of Id. In turn, we shift Id, to the extent the constraints allow, whenever
the dth coordinate of a new global best comes close to a boundary of Id. Optionally, the so adapted
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Figure C.6: a, Schematics of our implementation of PSO. b, An illustration of how to enforce the particle number
constraint

∑L
i=1 ni = N in the case of L = 2 levels by replacing an improper nreq, the participation numbers for which

the optimizer requests a function value, with n = nc +
(
ñ − nc

)∣∣∣|σ2| − |δσ2|
∣∣∣/|σ2|, which obeys all constraints and

is a proper vector of participation numbers close to nreq. c, Histogram of 1000 PSO runs (totaling ∼ 108 energy
evaluations) for N = 4 harmonically confined spin-1/2 fermions with contact interaction strength c = 20 on 20 single-
particle levels (hence, the dimension of the search space is D = 40), cf. Sec. 3.1 and Table 1. The lowest (highest)
converged energy found by PSO is 19.416 (21.564). About 36% of the runs yield energies below the red dashed line,
which marks two percent excess over the HF energy of 19.154 (green dashed line).

search space can be inherited by subsequent runs. If active, this procedure eases the computational
load by focusing on more promising regions—at the expense of potentially sacrificing superior re-
gions that can be reached only after sustained uphill exploration; but in practice, we find essentially
the same high-quality optima with or without an adaptive search space, just more efficiently in the
former case.

By default, we make the dynamic PSO parameters w and C1/2 self-adapting: every time a
significantly better global best is found, we draw a new, say, w from a Gaussian distribution with
variance of 0.0025, centered at wc, which is itself updated according to wc → I ∗wc + (1− I) ∗ ⟨w⟩,
with inertia I = 0.8 and the mean ⟨w⟩ of previously successful (in finding a significantly better
global best) parameters w. Each particle holds its own parameters w and C1/2, independent from
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the other particles. Hence, at any given iteration, the swarm’s individuals span a self-adapting
distribution of search capabilities.

Finally, we note our unsuccessful attempts to improve the PSO performance through self-
adaption of the PSO hyperparameters (w, C1, C2, S , λ, T , etc.) by adding them to the search
space X or through ‘fuzzy self-tuning’ [58]. Also of little effect was our attempt to counter pre-
mature convergence by maintaining diversity among the swarm particles in the intermediate opti-
mization stage: we replaced the worst fraction σ of particles (five times per run on average) with
randomly re-initialized ones. We reckoned this to have little effect in the very early exploratory
stages, which are reminiscent of random search anyway, or in the final stages, where the pull of
many near-optimal particles dominates the swarm behavior. Convergence can also be accelerated
through elitism, where the global best particle informs all others with a finite probability. However,
we found it expedient to deactivate elitism by default to better escape local optima.

Appendix C.2. Genetic algorithm

Genetic algorithms (GAs) are a class of evolutionary algorithms that resemble Darwinian evo-
lution. The principles of natural selection are mimicked through crossover, mutation, and selection
operators that act on a population of ‘chromosomes’, each being a vector of variables (‘genes’)
from the search space of the objective function. While many different flavors of GAs have been
studied and countless heuristics proposed for augmenting these GAs [30], the following procedure
is typically iterated: given a number of ‘parents’ whose fitness (viz., objective function value) has
been determined, two parents are chosen for breeding a ‘child’ by exchanging genes according to
a crossover rate, followed by randomly altering genes of the child according to a mutation rate and
enforcing problem-specific constraints on the genes. In a subsequent selection process, children (or
random invaders according to an invasion rate) may then replace parents based on a fitness com-
parison. For multi-modal deceptive objective functions, this selection pressure commonly homog-
enizes the population too quickly [59, 60], with a large part of the population representing the same
local optimum—although mutations and invasions allow, in principle, the exploration of the whole
search space. We thus built our genetic algorithm optimization (GAO), which we used to validate
the results obtained with PSO, by augmenting an otherwise prototypical GA with three heuris-
tics. First, we select new generations of parents akin to the fitness uniform selection scheme [59],
which guarantees a high diversity among chromosomes throughout the entire evolution, though we
skew the selection toward fitter parents and always preserve the fittest chromosome. Second, we
let many small subpopulations evolve in parallel, with inter-population breeding that begins with
neighboring populations according to a dispersal parameter and extends to all populations toward
the end of a chosen maximum number of generations. Finally, we also shrink the population sizes
to accelerate the convergence toward the end of the optimization, analogous to our procedure for
PSO that is controlled by the history of encountered objective function values.
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Appendix D. Interaction tensor elements

The interaction tensor elements Iabcd of Eq. (34) for the specific physical systems simulated in
this work are available in analytical form (except for the results on relativistic atoms presented in
Sec. 3.3), see Appendix D.1–Appendix D.3 below. For the small-scale systems that are addressed
in this work with objective-function-based optimizers, it is expedient to precompute the elements
Iabcd and store them in compact form by making use of their system-dependent symmetries.

Appendix D.1. Contact interaction (1D)

We compute the interaction tensor elements Iabcd of Eq. (34) for unpolarized contact-interacting
spin- 1

2 fermions of mass m in a one-dimensional harmonic oscillator of frequency ω with the aid
of the generating function

fK(x, y) =
∞∑

a=0

∞∑
b=0

xa

√
a!

yb

√
b!
⟨a|eiK(a + a†)|b⟩ = exyeiK(x + y)e−

K2

2 , (D.1)

where K = k
√

ℏ
2mω and a + a† =

√
2mω
ℏ

R, such that

⟨a|eikR|b⟩ = ⟨a|eiK(a + a†)|b⟩ =
1
√

a!

1
√

b!

( ∂
∂x

)a( ∂
∂y

)b
fK(x, y)

∣∣∣∣∣∣
x=y=0

= e
−K2

2

√
a!
√

b!
(iK)b−aL(b−a)

a (K2) ,

(D.2)

which is symmetric in the nonnegative integers a and b; hence, b ≥ a without loss of generality.
For the contact interaction in Eq. (38), we have u(k) = c in Eq. (34). Then, expressing the gener-
alized Laguerre polynomials as Lαn (x) =

∑n
j=0

(
n+α
n− j

)
(−x) j

j! , while setting n = a (n = d) and α = b − a
(α′ = c − d), we write√

2ℏ
mω

π Iabcd =

∫
dK c ⟨a|eiK(a + a†)|b⟩⟨c|e−iK(a + a†)|d⟩

=

∫
dK c e−K2

√
a!d!
b!c!

(iK)b−a(−iK)c−dLαa (K2)Lα
′

d (K2)

=

∫
dK c e−K2

√
a!d!
b!c!

a∑
j=0

d∑
j′=0

(
b

a − j

)(
c

d − j′

)
(−K2)G

j! j′!
(−1)b−a , (D.3)

where G = 1
2 (b − a + c − d) + j + j′. Since Iabcd = Ibadc = Idcba = Icdba, it suffices to compute Iabcd

for index sets with a ≤ b ≤ c and c ≥ d, for which Eq. (D.3) reduces to

Iabcd =

c
√mω
ℏ

∑a
j=0

∑d
j′=0

1
√

2π

(−1)b−a
√

a!b!c!d!(− 1
4 )G(2G)!

(b−a+ j)!(a− j)!(c−d+ j′)!(d− j′)! j! j′!G! , a + b + c + d even

0 , a + b + c + d odd
. (D.4)

As an alternative to Eq. (D.4), we derive a recursion relation for

Habcd =
c
√

8πL

J(a, b, c, d)
√

2aa!2bb!2cc!2dd!
(D.5)

33



in Eq. (33). Here,

J(a, b, c, d) =

√
2
π

∫
dx e−2x2

Ha(x) Hb(x) Hc(x) Hd(x) , (D.6)

with the Hermite polynomial Hn(x) of order n, obeys the relation

∑
a, b, c, d

za
1

a!
zb

2

b!
zc

3

c!
zd

4

d!
J(a, b, c, d) = exp

[
1
2

(z1 + z2 + z3 + z4)2
−

(
z2

1 + z2
2 + z2

3 + z2
4

)]
, (D.7)

obtained from applying the generating function of the Hermite polynomials four times. Operating
with z1

∂
∂z2

on Eq. (D.7), we find

J(a − 1, b + 1, c, d) =


0 , a + b + c + d odd
(a − 1) J(a − 2, b, c, d) − b J(a − 1, b − 1, c, d)
+ c J(a − 1, b, c − 1, d) + d J(a − 1, b, c, d − 1)

, a + b + c + d even

(D.8)

with initial values J(a, 0, 0, 0) =
(
−1

2

)a/2 a!
(a/2)! [(a + 1) mod 2]. Following Ref. [61], we may also

write

J(a, b, c, d) =
Min {a+b,c+d}∑

q=0

δ(a+b),(c+d) δ(a+b),(q mod 2) αq (a, b)αq (c, d) 2qq! , (D.9)

where αq (a, b) =
∑Min {b,q}

n=Max {0,q−a} (−1)b−n+ a+b−q
2

[
2

a+b
2 q!

(
a+b−q

2

)
!
]−1 (

q
n

)(
a+b−q

b−n

)
.

The accurate numerical evaluation of the closed formulae in Eqs. (D.4) and (D.5) beyond L ≈
15 energy levels require high-precision arithmetic. Alternatively and as a means of validation, the
tensor elements Iabcd can be tabulated using double-precision arithmetic by directly evaluating the
integral in Eq. (D.3)—we produced and confirmed all tensor elements with indices up to L = 100
using an adaptive bisection algorithm with Boole quadrature.

Appendix D.2. Harmonic interaction (1D)

With the oscillator eigenfunctions ⟨x| a⟩ = ψa(x) and Vint(x j − xk) = E

L2 β̃ (x j − xk)2 = β (x j − xk)2

from Eq. (40), we get

Iabcd = Eβ̃

∫
dx̃ dx̃′ (x̃ − x̃′)2L2ψa(x)ψb(x)ψc(x′)ψd(x′) , (D.10)

with x̃ = x/L, for tr
(
ρmpHint

)
in Eq. (33). Here, we explicitly exhibit the harmonic oscillator units

of energy E = ℏω and length L =
√
ℏ/(mω), with particle mass m and oscillator frequency ω, i.e.,

the units of the noninteracting system (α = 1)). Then, we write

1
Eβ̃

Iabcd =
[
J(2)

ab δcd − J(1)
ab J(1)

cd

]
+ [a↔ d & b↔ c] , (D.11)
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where J(ν)
ab =

∫
dx̃ x̃ν ψ̃a(x̃)ψ̃b(x̃), with ψ̃ j(x̃) =

√
Lψ j(x) =

√
Lψ j(Lx̃).

The recurrence relation

H j+1(x̃) = 2x̃ H j(x̃) − 2 j H j−1(x̃) (D.12)

for the Hermite polynomials implies the recurrence relation

x̃ ψ̃ j(x) =

√
j + 1

2
ψ̃ j+1(x̃) +

√
j
2
ψ̃ j−1(x̃) (D.13)

for the Hermite functions ψ̃ j(x̃) = (2 j j!)−1/2π−1/4 exp
(
−x̃2/2

)
H j(x̃). Hence, with M = max(a, b)

and m = min(a, b), we get

J(1)
ab =

0 , both a & b even or odd (‘same parity’)∫
dx̃ x̃ ψ̃M(x̃)ψ̃m(x̃) =

√
M
2 δm,M−1 , a & b different parity

(D.14)

and

J(2)
ab =



0 , a & b different parity

1/2 , a = b = 0

3/2 , a = b = 1
1
2 (2a + 1) , a = b > 1
1
2

√
M(M − 1) δM−2,m , M & m same parity and M ≥ m + 2

, (D.15)

where the last two cases of (D.15) follow from

x̃2ψ̃M(x̃) =
1
2

( √
(M + 1)(M + 2)ψ̃M+2(x̃) + (2M + 1)ψ̃M(x̃) +

√
M(M − 1)ψ̃M−2(x̃)

)
, (D.16)

and the three central cases of (D.15) are summarized by 1
2 (2a + 1) for a = b.

Since n(−x) = n(x) for the ground-state density n(x), we write

tr
(
ρmpHint

)∣∣∣∣direct part
=

1
2

∫
dx dx′ β (x − x′)2 n(x) n(x′) =

∫
dx

1
2

2βN x2 n(x) , (D.17)

such that the total energy (with only the direct part of the interaction) for any α is

E(α)
d = Ekin +

∫
dx

1
2

(mω2 + 2βN) x2 n(x) . (D.18)

With β = E

L2 β̃, we have

mω2 + 2βN = ℏω
mω
ℏ
+ 2
E

L2 β̃N =
E

L2 (1 + 2β̃N)︸      ︷︷      ︸
=α

= ℏω
√
α

mω
√
α

ℏ
. (D.19)
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Hence,

E(α)
d = Ekin + E

∫
dx̃

1
2
α x̃2 ñ(x̃) , (D.20)

where ñ(x̃) = Ln(x̃). That is, (D.20) is the energy of a noninteracting harmonic oscillator with
frequency ω

√
α (in units of the oscillator with frequency ω) and can be directly utilized in DFT

calculations—e.g., for comparison between 1pEx-DFT and DPFT. The virial theorem then implies
E(α)

d = α E(1)
d , and the α-dependent dimensionless eigenfunctions

ψ̃(α)
j (x̃) = (2 j j!)−1/2π−1/4α1/8 exp

(
−

√
α

2
x̃2

)
H j

(
α1/4 x̃

)
(D.21)

yield (for even N) the exact dimensionless ground-state density

ñ(x̃) = 2

N
2 −1∑
j=0

|ψ̃(α)
j (x̃)|2 (D.22)

of the interacting system.

Appendix D.3. Coulomb interaction (3D)

Appendix D.3.1. Nonrelativistic atoms
We evaluate the interaction energy in Eq. (33) for atoms by calculating the tensor element Iabcd

of Eq. (34). First, we consider nonrelativistic atoms as a blueprint for and a comparison with the
relativistic case. Therefore, Iabcd takes the nonrelativistic hydrogenic wave functions

ψa(r) = ψna,la,ma(r, θ, ϕ) = γa Ra(r) Yla,ma(θ, ϕ) (D.23)

(and accordingly for the orbital indices b, c, d), where the orbital index a = 1, 2, . . . combines the
three hydrogenic quantum numbers {na = 1, 2, . . . ; la = 0, 1, . . . , na − 1; ma = −la,−la + 1, . . . , la}

in row-major order (. . . , a = 5↔ {na = 2; la = 1; ma = 1}, a = 6↔ {na = 3; la = 0; ma = 0}, . . .).
We choose the phase factors γa = 1. The radial wave functions are

Ra(r) =

√(
2Z
na

)3 (na − la − 1)!
2na (na + la)!

(
2Zr
na

)la

exp
(
−Zr
na

)
L2la+1

na−la−1

(
2Zr
na

)
, (D.24)

with the generalized Laguerre polynomials

Lαn (x) =
n∑

l=0

(α + l + 1)n−l

(n − l)! l!
(−x)l , (D.25)

where (z)n = z (z + 1) . . . (z + n − 1).
Then, we proceed along the lines of Ref. [62] with the help of the Laplace expansion

1
|r − r′|

=

∞∑
k=0

4π
2k + 1

k∑
m=−k

(−1)m rk
<

rk+1
>

Yk,−m(θ, ϕ) Yk,m(θ′, ϕ′), (D.26)
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where {r, θ, ϕ}
(
{r′, θ′, ϕ′}

)
are the spherical coordinates of r (r′), r< = Min {r, r′}, r> = Max {r, r′},

and Yk,m(θ, ϕ) are the spherical harmonics with the phase convention used in [63]. Using the relation
Y∗k,m(θ, ϕ) = (−1)m Yk,−m(θ, ϕ), we write

Iabcd = γaγ
∗
bγcγ

∗
d

∞∑
k=0

4π
2k + 1

k∑
m=−k

(−1)m+mb+md Rk(ac, bd) S̃ la,lb,k
ma,−mb,−m S̃ lc,ld ,k

mc,−md ,m (D.27)

with the dimensionless radial integrals

Rk(ab, cd) = Z Rk
H(ab, cd) =

∫ ∞

0
drdr′ r2 r′2

rk
<

rk+1
>

Ra(r) Rb(r′) Rc(r) Rd(r′) , (D.28)

where Rk
H(ab, cd) is independent of Z, and the Gaunt coefficients [63]

S̃ j1, j2, j3
m1,m2,m3

=

√
(2 j1 + 1)(2 j2 + 1)(2 j3 + 1)

4π

 j1 j2 j3

0 0 0

  j1 j2 j3

m1 m2 m3

 =:

√
(2 j3 + 1)

4π
S j1, j2, j3

m1,m2,m3

(D.29)

that include a product of two 3j-symbols and, hence, can be nonzero only if | j1 − j2| ≤ j3 ≤ j1 + j2,
m1 + m2 + m3 = 0, and j1 + j2 + j3 even. That is, Eq. (D.27) reduces to

Iabcd =

kmax∑
k=kmin

γabcd(k) Rk
H(ac, bd) S la,lb,k

ma,−mb,mb−ma
S lc,ld ,k

mc,−md ,md−mc
(D.30)

with kmin = Max {|la − lb|, |lc − ld|}, kmax = Min {la + lb, lc + ld}, and

γabcd(k) = Z γaγ
∗
bγcγ

∗
d(−1)ma+md δma−mb,md−mc [(la + lb + k + 1) mod 2] [(lc + ld + k + 1) mod 2] .

(D.31)

We precompute the radial integrals

Rk
H(ab, cd) = Gk

H(ac, bd) +Gk
H(bd, ac) (D.32)

after expanding the generalized Laguerre polynomials according to Eq. (D.25), with

Gk
H(ac, bd) =

1
Z

∫ ∞

0
dr r2−k−1Ra(r)Rc(r)

∫ r

0
dr′ r′2+kRb(r′)Rd(r′)

= τaτbτcτd

na−la−1∑
aa=0

σa(aa)
nb−lb−1∑

ab=0

σb(ab)
nc−lc−1∑

ac=0

σc(ac)
nd−ld−1∑

ad=0

σd(ad)

× gk(1 − k + aa + la + ac + lc,
1
na
+

1
nc

; 2 + k + ab + lb + ad + ld,
1
nb
+

1
nd

) , (D.33)

τa =

√(
2
na

)3 (na − la − 1)!
2na (na + la)!

(
2
na

)la

, (D.34)
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σa(aa) =
(2la + 2 + aa)na−la−1−aa

(na − la − 1 − aa)! aa!

(
−2
na

)aa

, (D.35)

gk(p, α; q, β) =
∫ ∞

0
dζ ζ p e−αζ

∫ ζ

0
dζ′ ζ′q e−βζ

′

=
p!
βq+2

 β q!
αp+1 −

(p + q + 1)!
βp (p + 1)! 2F1

 p + 1, p + q + 2
p + 2

; −
α

β

 , (D.36)

and the generalized hypergeometric function 2F1

 u, v
w

; z
 = ∑∞

k=0
(u)k (v)k

(w)k

zk

k! . Equation (D.36) de-

rives from changing the integration variable r in Eq. (D.33) to ζ = Zr. The numerical values we
obtain for Eq. (D.32) coincide with those reported in Refs. [64, 65, 66].

The core Hamiltonian H1p of atoms and ions has scattering states, which we disregarded when
using only the bound states defined in Eq. (D.23) for generating the 1pEx binding energies in
Sec. 3.3; cf. the discussion around Eq. (3). This omission is responsible for the discrepancies
between the energies from 1pEx-DFT and HF in the case of N = 2 electrons, see Fig. 3. Indeed, the
accumulated overlap

∑∞
s=1 | ⟨ϕ| s⟩ |

2 between the HF ground-state orbital |ϕ⟩, taken from Ref. [67],
and the hydrogenic s-states |s⟩ is less than one: approximately 0.994365 for H−, 0.994945 for He,
0.999156 for C4+, and 0.999898 for Ar16+. That is, in these cases a small part of |ϕ⟩ is composed
of scattering states.

Appendix D.3.2. Relativistic atoms
We reduce the program of the exact two-component quasi-relativistic theory (X2C) to a one-

component (viz., spin-free) quasi-relativistic theory (sf-X2C) along the lines of Ref. [33]. In sum-
mary, the resulting relativistic hydrogenic states ψk(r) = ⟨r | k⟩ =

∑M
µ=1 Cµk gµ(r), here expanded

in the nonrelativistic hydrogenic states {gµ} as given in Eq. (D.23), yield the associated relativistic
interaction tensor elements

Iabcd =

M∑
κ,λ,µ,ν=1

Cκa C∗λb Cµc C∗νd INR
κλµν . (D.37)

Here, INR
κλµν are the nonrelativistic interaction tensor elements given in Eq. (D.30), and M controls

the quality of this expansion; we choose M = L for simplicity. Although other bases such as Slater-
orbitals are thinkable, we opt for the nonrelativistic hydrogenic states in order to keep M small,
because the values

{
INR
κλµν

}
are already available in this case, and for convenient consistency checks

with light atoms, where Iabcd ≈ INR
abcd.

Defining the M × M-dimensional (unitless) matrices

S µν = ⟨gµ | gν⟩ = δµν , (D.38)

Tµν =
1

Ha
⟨gµ |

P 2

2me
|gν⟩ , (D.39)

Vµν =
1

Ha
⟨gµ |Vext(R) |gν⟩ , (D.40)
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and

Uµν =
1

me Ha2 ⟨gµ |
3∑

j=1

P j Vext(R) P j |gν⟩ , (D.41)

we find the coefficients Cµk as the matrix elements of C = S̃
1
2 A. Here, S̃ = S + 1

2me
X†T−1X is a

modified metric, and we adopt atomic units of Hartree (Ha), Bohr radius (a0), and electron rest
mass (me), see also Sec. 3.3. The matrix X = 2α

√
me Ha T BA−1, where α is the fine structure

constant, is built from the nonrelativistic kinetic energy matrix T as given in Eq. (D.39) and from
the matrices A and B, whose elements are found by solving the generalized eigenvalue problem
that is presented by the one-particle Dirac equation in (block-)matrix form, with energies shifted
by the electron rest-mass energy: V 2T

2T α2U − 4T

  ak

bk

 = Ek

Ha

 S 0
0 2α2T

  ak

bk

 , for all k = 1, . . . ,M . (D.42)

Here, the (unitless) vector ak = (A1k, A2k, ..., AMk), i.e., the kth column of A, defines the {gµ}-
expansion of the so-called large component φk(r) =

∑M
µ=1 Aµk gµ(r) of the Dirac spinor that solves

the Dirac equation for eigenenergy Ek/Ha. While φk is a two-component spinor in full four-
component Dirac theory, it is a scalar quantity in the sf-X2C employed here. The M electronic
eigenstates among the 2M eigenstates of Eq. (D.42) are associated with energies Ek > −mec2 [33],
where c is the speed of light, i.e., Ek/Ha > −1/α2. The key element of X2C is the matrix X: it
transforms between the small component χk of the Dirac spinor and φk, such that the contribu-
tions of χk to the electronic eigenstate, as encoded in the (unitless) vector bk = (B1k, B2k, ..., BMk),
can be merged with those of φk with the help of S̃ . Upon normalizing each of the so-obtained
vectors (C1k,C2k, ...,CMk), we obtain the Schrödinger-like orthonormal 1pEx-basis {ψk} and the
corresponding interaction tensor elements in Eq. (D.37).

Since spin-dependent contributions are not included in the matrix U of Eq. (D.41), the sf-X2C
employed here does not recover the (exactly known) hydrogenic eigenenergies of the one-particle
Dirac equation [47]. Typically, however, the deviations are small: for the example of nuclear
charge Z = 20 the lowest energy levels are −201.077 Ha (from four-component Dirac theory),
−201.055 Ha (from sf-X2C), and −200 Ha (from nonrelativistic quantum mechanics). Hence, in
this case, sf-X2C produces about 98% of the relativistic corrections of the exact Dirac theory.
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atomic
system Z N 1pEx-DFT HF

1pEx-DFT
(sf-X2C)

HF
(sf-X2C)

statistical
atom

reference
value

H− 1 2 0.48187 0.48793 0.48188 0.44883 — 0.527731(3)

He 2 2 2.83474 2.85583 2.83489 2.85583 2.73111 2.90339

C4+ 6 2 32.3146 32.3565 32.3305 32.3735 — 32.416

Ar16+ 18 2 312.809 312.828 314.166 314.143 — 314.092

Be 4 4 14.5096 14.5617 14.5129 14.5748 14.2453 14.6684

CL=7 6 6 37.3007 37.5646 37.3198 37.6109 37.6356 37.8558

CL=15 6 6 37.5097 37.5646 37.5268 37.6109 37.6356 37.8558

CL=31 6 6 37.5197 37.5646 37.5368 37.6109 37.6356 37.8558

Xe48+ 54 6 4197.74 4199.22 4348.14 — — 4379.7±0.4

O 8 8 74.1110 74.5883 74.1259 74.7173 75.0362 75.1098

Ne 10 10 126.064 128.353 126.140 128.625 128.149 129.053

Xe44+ 54 10 5361.70 5373.85 5538.51 — — 5558.4±1.0

Table D.4: The binding energies (in Hartree) as displayed in Fig. 3 relative to the (nonrelativistic) HF binding energies.
The nonrelativistic HF binding energy for H− is reported in Ref. [67]. We used the quantum chemistry package PSI4
[68, 69] to compute all other HF energies displayed in Fig. 3, with default PSI4 settings, except: unrestricted HF
and ‘dgauss-dzvp-autoabs-decon’ basis set for nonrelativistic HF; ‘cc-pvdz-dk’ basis set for relativistic HF; and we
omitted the relativistic HF simulations of the xenon ions for lack of a built-in basis set. The reference value for H−

is the experimental binding energy given in Ref. [50]. All other reference values are taken from Ref. [45]; where
uncertainties are omitted, they are negligible for the number of digits shown.

References

[1] A. D. Becke, Perspective: Fifty years of density-functional theory in chemical physics, J.
Chem. Phys. 140, 18A301 (2014).

[2] P. J. Hasnip, K. Refson, M. I. J. Probert, J. R. Yates, S. J. Clark, and C. J. Pickard, Density
functional theory in the solid state, Phil. Trans. R. Soc. A 372, 20130270 (2014).

[3] P. Okun and K. Burke, Semiclassics: The hidden theory behind the success of DFT,
arXiv:2106.07839, pp. 179–249 in: Density Functionals for Many-Particle Systems: Mathe-
matical Theory and Physical Applications of Effective Equations; B.-G. Englert, H. Sieden-
top, and M.-I. Trappe (eds.); Lecture Notes Series, IMS, World Scientific, Singapore (2023).

[4] G. A. Henderson, Variational theorems for the single-particle probability density and density
matrix in momentum space, Phys. Rev. A 23, 19 (1981).

40



[5] M. Cinal and B.-G. Englert, Energy functionals in momentum space: Exchange energy, quan-
tum corrections, and the Kohn-Sham scheme, Phys. Rev. A 48, 1893 (1993).

[6] Y. Sakurai, Y. Tanaka, A. Bansil, S. Kaprzyk, A. T. Stewart, Y. Nagashima, T. Hyodo,
S. Nanao, H. Kawata, and N. Shiotani, High-Resolution Compton Scattering Study of Li:
Asphericity of the Fermi Surface and Electron Correlation Effects, Phys. Rev. Lett. 74, 2252
(1995).

[7] K. Hueck, N. Luick, L. Sobirey, J. Siegl, T. Lompe, and H. Moritz, Two-Dimensional Homo-
geneous Fermi Gases, Phys. Rev. Lett. 120, 060402 (2018).

[8] M. Levy, Universal variational functionals of electron densities, first-order density matrices,
and natural spin-orbitals and solution of the v-representability problem, Proc. Natl. Acad.
Sci. 76, 6062 (1979).

[9] M. Levy and A. Görling, Correlation-energy density-functional formulas from correlating
first-order density matrices, Phys. Rev. A 52, R1808 (1995).

[10] A. Savin, Expression of the exact electron-correlation-energy density functional in terms of
first-order density matrices, Phys. Rev. A 52, R1805 (1995).

[11] S. Goedecker and C. J. Umrigar, Natural Orbital Functional for the Many-Electron Problem,
Phys. Rev. Lett. 81, 866 (1998).

[12] J. Ciosłowski (ed.), Many-Electron Densities and Reduced Density Matrices, Springer, New
York (2000).

[13] K. J. H. Giesbertz and M. Ruggenthaler, One-body reduced density-matrix functional theory
in finite basis sets at elevated temperatures, Phys. Rep. 806, 1 (2019).

[14] B.-G. Englert and J. Schwinger, Thomas–Fermi revisited: The outer regions of the atom,
Phys. Rev. A 26, 2322 (1982).

[15] M.-I. Trappe, Y. L. Len, H. K. Ng, C. A. Müller, and B.-G. Englert, Leading gradient cor-
rection to the kinetic energy for two-dimensional fermion gases, Phys. Rev. A 93, 042510
(2016).

[16] M. I. Trappe, Y. L. Len, H. K. Ng, and B. G. Englert, Airy-averaged gradient corrections for
two-dimensional fermion gases, Ann. Phys. (N. Y.) 385, 136 (2017).

[17] T. T. Chau, J. H. Hue, M.-I. Trappe, and B.-G. Englert, Systematic corrections to the Thomas–
Fermi approximation without a gradient expansion, New J. Phys. 20, 073003 (2018).

[18] B.-G. Englert, Julian Schwinger and the Semiclassical Atom, arXiv:1907.04751, Chapter 17,
pp. 261-269 in: Proceedings of the Julian Schwinger Centennial Conference; B.-G. Englert
(ed.); World Scientific (2019).

[19] E. H. Lieb, Density functionals for coulomb systems, Int. J. Quantum Chem. 24, 243 (1983).

41



[20] B.-G. Englert, J. H. Hue, Z. C. Huang, M. M. Paraniak, and M.-I. Trappe, Energy function-
als of single-particle densities: A unified view, arXiv:2206.10097, pp. 287–308 in: Density
Functionals for Many-Particle Systems: Mathematical Theory and Physical Applications of
Effective Equations; B.-G. Englert, H. Siedentop, and M.-I. Trappe (eds.); Lecture Notes
Series, IMS, World Scientific, Singapore (2023).

[21] J. Cioslowski, B.-G. Englert, M.-I. Trappe, and J. H. Hue, Contactium: A strongly correlated
model system, J. Chem. Phys. 158, 184110 (2023).

[22] M.-I. Trappe, P. T. Grochowski, J. H. Hue, T. Karpiuk, and K. Rzążewski, Phase Transitions
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