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We investigate the prospect of performing a null test of binary black hole (BBH) nature using
spin-induced quadrupole moment (SIQM) measurements. This is achieved by constraining a devi-
ation parameter (δκ) related to the parameter (κ) that quantifies the degree of deformation due to
the spin of individual binary components on leading (quadrupolar) spin-induced moment. Through-
out the paper, we refer to κ as the SIQM parameter and δκ as the SIQM-deviation parameter.
The test presented here extends the earlier SIQM-based null tests for BBH nature by employing
waveform models that account for double spin-precession and higher modes. We find that waveform
with double spin-precession gives better constraints for δκ, compared to waveform with single spin-
precession. We also revisit earlier constraints on the SIQM-deviation parameter for selected GW
events observed through the first three observing runs (O1–O3) of LIGO-Virgo detectors. Addition-
ally, the effects of higher-order modes on the test are also explored for a variety of mass-ratio and
spin combinations by injecting simulated signals in zero-noise. Our analyses indicate that binaries
with mass-ratio greater than 3 and significant spin precession may require waveforms that account
for spin-precession and higher modes to perform the parameter estimation reliably.

I. INTRODUCTION

There have been over 90 statistically significant detec-
tions of binary coalescence events during the first three
observing runs (O1-O3) of current interferometric grav-
itational wave (GW) detectors [1–5]. These include the
LIGO [6, 7] and Virgo [8, 9] detectors, as well as KA-
GRA [10, 11] which has recently joined the network.
Upon detection, an elaborate analysis is undertaken to
deduce essential characteristics of the binary system, en-
compassing properties like masses, spins, orientation and
location in the sky. This necessitates the utilization of ac-
curate waveform models in conjunction with an efficient
parameter inference algorithm to guarantee the accurate
estimation of binary parameters [12]. Each of these ob-
servations engender many significant follow-up analyses.
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One such endeavour involves determining the true na-
ture of the compact objects in the binary system. For
instance, the nature of the secondary object in the binary
coalescence event GW190814 [13] is still a topic of discus-
sion as the secondary’s mass is consistent with the light-
est black holes (BHs) and heaviest neutron stars (NSs),
along with other, more exotic composition stars [14–19].

Various methods exist for investigating the true na-
ture of the compact object in a binary system [20–34].
An analysis based on the spin-induced multipole mo-
ments is one among them. Spin-induced multipole mo-
ments arise due to the spins of individual compact ob-
jects in the binary [20]. From observations, one can
measure these spin-induced multipole moments and then
use that information to distinguish black hole binaries
from binaries composed of other compact objects. The
method based on the leading order spin-induced mul-
tipole moment, the spin-induced quadrupole moment
(SIQM) measurement, has been explored in detail [35–
39] and applied to the observed GW events from the
first three observing runs of advanced LIGO-Virgo de-
tectors [40, 41]. Moreover, the possibility of measur-
ing spin-induced quadrupole using future detectors, and
simultaneous measurement of spin-induced quadrupole
and octupole moment parameters [36, 42] have also been
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studied. A template bank for binaries of exotic com-
pact object searches has recently been developed, ac-
counting for the spin-induced quadrupole moment and
tidal effects [43]. References [35, 40, 41] report the
tests of binary black hole nature using spin-induced
quadrupole moments using a phenomenological waveform
model, IMRPhenomPv2 [44–46], containing only the dom-
inant modes (ℓ = 2, |m| = 2) in the co-precessing frame
and an effective spin parameter. Recently, Ref. [47] came
up with a fully precessing waveform implementation of
SIQM test for low-mass binaries, focusing on binaries
in which at least one object is in the lower mass gap
(< 3M⊙) [48].

A. Current work

The effects of spin-precession and higher-order modes
have been extensively studied in the context of test-
ing general relativity (TGR) using binary BHs (see,
for instance, Refs. [49–55]). By injecting the most
up-to-date phenomenological waveform models with
full spin-precession (IMRPhenomXP) and higher modes
(IMRPhenomXHM, IMRPhenomXPHM [56–58]) for binary
black hole signals of varying masses and spins, we in-
vestigate the effects of spin-precession and higher modes
on δκ measurements. Specifically, our injections include
binaries with mass ratios (q = m1/m2, where m1 and m2

are the detector-frame component masses and m1 > m2)
in the range q ∈ [1, 5] and in-and-out-of-plane spin ef-
fects for a fixed mass binary (M = 30M⊙). We observe
the difference in the bounds of δκ between IMRPhenomXP
(doubly spin-precessing) and IMRPhenomPv2 (singly spin-
precessing waveform model) in three scenarios: vary-
ing mass ratio, varying effective aligned spin parameter
(χeff), and varying effective spin-precession parameter
(χp). We note that in all cases IMRPhenomXP outper-
forms IMRPhenomPv2. Next, we employ the higher mode
waveform models IMRPhenomXHM and IMRPhenomXPHM to
study the effect of HMs on δκ. We observe that for
higher mass ratios, the higher mode waveform models
perform better compared to the dominant mode model
IMRPhenomXP. Following the TGR analyses on the sec-
ond and third GW transient catalogs (GWTC-2 [40] and
GWTC-3 [41]), we measure δκ of the binary systems us-
ing IMRPhenomXP and IMRPhenomXPHM. We find that to-
gether with the effect of spin-precession, the inclusion of
higher modes plays a critical role when analysing bina-
ries with mass-asymmetries similar to that in the event
GW190412 [59] (mass ratio q ≈ 3.7). For GW190412,
the bounds on δκ obtained with IMRPhenomXPHM are con-
strained enough to rule out the boson star binaries, sub-
ject to the assumptions in the current work. We also re-
port the revised bounds on δκ from selected GW events
observed through the first three observing runs of the
LIGO-Virgo detectors. This paper is organized as fol-
lows. In Sec II, we detail the waveform model and pa-
rameter estimation method. Our results from simulated

GW events are shown in Sec. III, and real GW observa-
tions are reported in Sec. IV. We conclude with Sec. V.

II. ANALYSIS SETUP

In this section, we review the details of waveform mod-
els used and the basics of Bayesian parameter estimation
and hypothesis testing. Typically, the evolution of an
inspiralling compact binary can roughly be divided into
three stages: an early inspiral, late inspiral & merger,
and the final ringdown. During the early inspiral stage,
the separation between the compact objects in the bi-
nary is large, and hence, their evolution can be modeled
as a perturbation series in the velocity parameter. The
post-Newtonian (PN) theory provides an analytic expres-
sion for the inspiral phase incorporating various physical
effects such as the spin-orbit effects, self-spin effects, cu-
bic and higher order spin-effects, spin-precession effects,
orbital eccentricity effects, etc. (see, for instance, [60–
62]). On the other hand, one needs to invoke numerical
relativity techniques to model the highly non-linear rela-
tivistic merger phase (see [63] for a review on numerical
relativity modeling techniques). Further, the ringdown
part can be modeled perturbatively using the BH per-
turbation theory techniques [64, 65].
In the inspiral phase, the effect of spin-induced

quadrupole moment starts to appear at 2 PN, together
with the other spin-spin terms. More precisely, the lead-
ing order PN coefficient is of the schematic form [66]
Q = −κχ2m3, where the negative sign indicates the
oblate deformation due to the spinning motion. The pro-
portionality constant, κ, can take different values for dif-
ferent compact objects. For black holes, κBH is 1. Slowly
spinning neutron stars can have κ values in the range
κNS ∼ 2 − 14 [20, 67, 68], whereas for more exotic stars
like boson stars, this range can be κBS ∼10−100 [21] de-
pending on internal composition. There also exist gravas-
tar proposals where the value κGS can match the BH
value but also allows for negative values and prolate de-
formations [69]. Measuring the SIQM parameter from
GW observations can thus provide unique information
about the nature of the compact object.
For a binary system composed of two BHs with κi,

following [37], we define κi = 1 + δκi, where i = 1, 2,
and δκi = 0 gives the BH limit. Since the simultaneous
measurements of both δκi lead to uninformative results,1

we stick to the proposal of [37], where a symmetric com-
bination of δκi is measured keeping the anti-symmetric
combination (δκa) to zero. We call this symmetric com-
bination SIQM deviation parameter henceforth and use
the definition δκs = (δκ1 + δκ2)/2.

1This is with reference to the current detector sensitivities and dom-
inant mode waveform models. A detailed investigation can be
carried out using future detector sensitivities and/or higher mode
waveform models, but it is beyond the scope of this paper.



3

A. Waveform models used for the test

GW data analysis has routinely employed phenomeno-
logical waveform models with varying properties. For
instance, the SIQM analysis in the past was carried out
using the precessing dominant mode phenomenological
waveform model IMRPhenomPv2 [70]. The two spin pa-
rameters, one for the out-of-plane spin effects – the ef-
fective spin parameter (χeff) [71, 72], and another for
the in-plane spin effects – the spin-precession parameter
(χp) [46, 73, 74], are among the best-measured spin pa-
rameters in the parameter estimation of a GW signal. It
has been demonstrated that χeff captures the spin effects
along the direction of the angular momentum axis [71],
and χp measures the spin effects in the orbital plane of
the binary [74]. The effective spin parameter for a binary

with dimensionless spin components, χi = (S⃗i · L̂)/m2
i ,

can be defined as

χeff =
χ1m1 + χ2m2

m1 +m2
. (1)

Here, S⃗i is the individual spin angular momentum vector
of the compact object in the binary with mass mi, and L̂
represents the unit vector along the angular momentum
axis of the binary. In terms of the perpendicular spin

vectors, Si⊥ = |L̂×(S⃗i×L̂)|, the effective spin-precession
parameter can be written as

χp =
1

A1m2
1

max(A1S1⊥, A2S2⊥), (2)

where A1 = 2+(3/2q) and A2 = 2+(3q/2) are mass pa-
rameters defined in terms of the mass ratio q = m1/m2 >
1.

With recent developments in phenomenological mod-
eling, it is now possible to describe quasi-circular bi-
naries involving generic spin components. Specifically,
the waveform IMRPhenomXP is the current state-of-the-
art phenomenological model where the two-spin effects
are introduced [57]. Further, the IMRPhenomXPHM model
(which is also fully precessing) includes higher order
modes (ℓ, |m|) = (3, 3), (4, 4), (2, 1), (3, 2) in the co-
precessing frame, in addition to the dominant mode
(ℓ, |m|) = (2, 2) [56, 58]. We modify the inspiral phase
coefficients of these waveform models at 2 PN and 3 PN
orders by introducing explicit dependence on SIQM pa-
rameters, and study the measurement probabilities for
simulated GW signals from BBHs and the detected GW
events.

B. Brief overview of Bayesian parameter
estimation

Bayesian stochastic sampling algorithms are routinely
employed to perform parameter estimation of detected
compact binary signals [75–77]. To review the details

of parameter estimation, we start with the definition of
likelihood function assuming Gaussian noise,

L(d|θ) ∝ exp

(
−1

2
⟨d− h(θ)|d− h(θ)⟩

)
, (3)

where the inner product ⟨a|b⟩ is defined as

⟨a|b⟩ = 4

∫ ∞

0

a∗(f)b(f)

Sn(f)
. (4)

Here, Sn is the noise power spectral density of the detec-
tor. The posterior distribution on model parameters (θ),
given the data (d) and likelihood (L), is

p(θ|d) = L(d|θ)π(θ)
p(d)

. (5)

Here p(d) is the Bayesian evidence or marginalized like-
lihood and is a normalization constant obtained by inte-
grating the likelihood over the entire prior region for the
set of parameters, θ. A generic binary is characterised
by a set of intrinsic and extrinsic parameters. Adding
to this parameter set, in the current analysis, we include
δκs as a free parameter to be constrained from the data.
We can extract the δκs posterior by marginalizing over
all other parameters θBBH from the multi-dimensional
posterior samples as

p(δκs|d) =
∫
p(θ|d)dθBBH. (6)

We use LALSimulation [78] for generating all wave-
forms and the nested sampling algorithm [79] imple-
mented through dynesty [80] sampler in bilby [81] and
bilby pipe [82] for parameter estimation throughout the
analysis.

III. RESULTS FROM THE SIMULATIONS

We demonstrate the importance of using a waveform
model with double spin-precession and higher modes for
analysing binary black hole signals with varying prop-
erties. Specifically, we look into different binaries of
varying mass asymmetries and in-plane & out-of-plane
spin parameters, while fixing all other parameters, to
look into the effect of mass and spin variations in the
δκs measurements. We consider four waveform mod-
els, IMRPhenomXPHM (waveform with two-spin effects and
higher modes), IMRPhenomXP (waveform with two-spin
effects and dominant mode),2 IMRPhenomXHM (waveform
with no spin-precession effects but higher modes), and

2The solutions employed in IMRPhenomX family are precession-
averaged.
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FIG. 1. The violin plots show the posterior distributions for the SIQM-deviation parameter for various injection studies. Top:
Four different mass ratio cases are chosen, q = (1, 1.5, 3, 5); the spin magnitudes and related angles are fixed to the values
included in Table I. Bottom Left: Three different values for the effective spin parameter are chosen, χeff = 0.3, 0.5, 0.7 (see
Table II for complete information); mass ratio is taken to be q = 1.5 and χp = 0.3. Bottom right: Three different values for
spin-precession parameter are chosen, χp = 0.3, 0.5, 0.7 (see Table III for information on other spin parameters); mass ratio
is taken to be q = 3 and χeff = 0.5. The total mass is fixed to M = 30 M⊙, and the network SNR is 40 for all cases. The
injections are performed using the fully spin-precessing dominant mode waveform (IMRPhenomXP) and recovered with the same
(orange) as well as with single spin-precessing dominant mode waveform IMRPhenomPv2 (grey). The horizontal black-dashed
lines denote the injected value, and the coloured lines inside the violins indicate the 90% credible intervals for the respective
posterior distributions. The legend follows the pattern “injected waveform – recovery waveform”.

IMRPhenomPv2 (waveform model with single-spin preces-
sion approximation and dominant mode).

For injections, we fix the total mass of the binary to
be 30 M⊙ and vary mass ratios and spins. All the bi-
naries are placed in such a way that the network signal-
to-noise ratio (SNR) is 40 in a three-detector network
consisting of two advanced LIGO [83–85] and one ad-
vanced Virgo [86, 87] detectors with advanced sensitiv-
ity [88]. All the injections considered in this section are
zero-noise injections and represent BBH mergers (i.e.,
δκs = 0). The GW signal from a binary system with
spin-precession is characterized by component masses
(m1,m2), dimensionless spin magnitudes (a1, a2), spin
angles (Φ1,Φ2,Φ12,Φjl), luminosity distance (dL), angles
measuring the location of the source in the sky and the
orientation of the source with respect to the line of sight
(ι, θ, ϕ, ψ), and the SIQM deviation parameter (δκs). We
assume a uniform prior ranging [-500, 500] on δκs. More
details about the definition of these parameters and cor-
responding prior ranges are given in Appendix A and
Table IV.

A. Comparison of δκs estimates: IMRPhenomXP and
IMRPhenomPv2

The effect of χeff on the posteriors of δκs is well es-
tablished and was explored in Ref. [37], albeit using
IMRPhenomPv2. In this section, we wish to compare
the bounds on δκs obtained from IMRPhenomXP (dou-
bly spin-precessing waveform) and IMRPhenomPv2 (single
spin-precession waveform). Furthermore, while the study
in [37] was performed for aligned-spin systems, here, we
choose systems with precessing spins and hence also ex-
plore the effect of varying χp on δκs. We consider three
cases:

• Fixed spins with varying mass ratio to investigate
the effect of mass ratio on δκs.

• Fixed masses and spin-precession parameter (χp),
varying effective spin parameter (χeff).

• Different spin-precession values, keeping the masses
and aligned-spin components fixed.
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For all cases, we inject binary black hole (δκs = 0)
signals with precessing spins using IMRPhenomXP model
and recover these with IMRPhenomXP and IMRPhenomPv2.
We present the results in the form of violin plots in Fig.
1.

1. Effect of mass ratio variation on δκs

To see the effect of mass ratio on the δκs measure-
ments, we inject binaries with fixed spin magnitudes and
angles, and vary the mass ratio as q = 1, 1.5, 3, 5. The
spin parameter values are listed in Table I. The injection
signals are created using IMRPhenomXP and are analysed
with both IMRPhenomPv2 and IMRPhenomXP.
For all the cases, we observe that IMRPhenomXP outper-

forms IMRPhenomPv2, especially for binaries with higher
mass asymmetry. Moreover, we observe from the top
panel of Fig. 1 that an increase in mass ratio results in
better constraints on δκs. This is consistent with the
findings of Ref. [36] where the dependence of mass ratio
on the errors of SIQM parameter (∆κs) are discussed in
detail [see Fig. 2 and the discussion around Eqs. (4.2)–
(4.4) there]. Moreover, the values of χeff also increase
gradually as we go from equal mass case to unequal mass
while keeping spin magnitudes and angles fixed. Both of
these effects result in improvement of δκs bounds with
increasing mass ratio. We also show the corresponding
corner plots on various parameters in Fig. 5 in the Ap-
pendix.

2. Effect of χeff variation on δκs

Here we choose a nearly equal-mass binary, with mass
ratio q = 1.5 and χp = 0.3. Since we are not exploring
the effect of HMs in this injection set, a nearly equal-
mass system serves the purpose well. We vary the χeff

parameter as χeff = 0.3, 0.5, 0.7. This is done by fixing
the x− and y− components of the two spin vectors and
varying the z− components χ1z and χ2z to obtain three
values of χeff as 0.3, 0.5, and 0.7 (see Table II).

As observed in Ref. [37], the estimates on δκs improve
as we choose large positive χeff values. Also, for all val-
ues of χeff , the bounds obtained using IMRPhenomXP are
better than IMRPhenomPv2. These improvements can be
explained by looking at correlations between χeff and δκs
shown in Fig. 6 in the Appendix.

3. Effect of χp variation on δκs

Here we choose a mass ratio of q = 3 and a moderate
value of χeff = 0.5. A slightly larger mass ratio is cho-
sen here compared to Sec IIIA 2 to avoid the uninforma-
tive inference on the analyses due to unconstrained spin-
precession effects for near-equal mass binaries. Keeping
the z− component of spin vectors the same, we vary the

x− and y− components to obtain three distinct values of
χp as 0.3, 0.5, and 0.7 (see Table III).
As the values of χp increase, the bounds on δκs

with IMRPhenomXP become tighter, enhancing the dif-
ferences between IMRPhenomXP and IMRPhenomPv2 wave-
forms. The IMRPhenomPv2 bounds shift away from the
injected value as we move from low to high χp values,
excluding 0 from the 90% credible interval for χp = 0.7.
Additionally, they become increasingly worse (the poste-
riors become broader) compared to IMRPhenomXP as we
go to higher values of χp. We suspect that the doubly
spin-precessing model IMRPhenomXP is helping to break
certain degeneracies between the SIQM parameter and
the spins leading to a more symmetric estimate of δκs for
all the χp values compared to the IMRPhenomPv2 wave-
form model.

q = m1

m2
χ1x χ1y χ1z χ2x χ2y χ2z χeff χp

1 0.0992 0.1008 0.6 0.3343 0.3397 0.35 0.48 0.48

1.5 0.1013 0.0987 0.6 0.3414 0.3326 0.35 0.5 0.3

3 0.1015 0.0984 0.6 0.3422 0.3318 0.35 0.54 0.14

5 0.0997 0.1003 0.6 0.3359 0.3381 0.35 0.56 0.14

TABLE I. Values of dimensionless spin components
(χ1x...χ2z), effective spin parameter (χeff), and precessing-
spin parameter (χp) for different mass ratios when the di-
mensionless spin magnitude and spin angles have been fixed
as follows: a1 = 0.6164, a2 = 0.5913, θjn = 0.4606, Φjl =
3.7926, Φ1 = 0.2315, Φ2 = 0.9374, Φ12 = 0.0. This has been
used for studying the effect of higher modes (Sec. III B) and
the effect of mass ratio variation (Sec. IIIA 1).

χeff χ1x χ2x χ1y χ2y χ1z χ2z

0.3

0.1013 0.3414 0.0987 0.3326

0.4 0.15

0.5 0.6 0.35

0.7 0.8 0.55

TABLE II. Here we fix the mass ratio q = 1.5, inclination
angle ι = 0.5162 rad, and x− and y− components of dimen-
sionless spin vectors while varying the z− components in order
to obtain different values of χeff. The value of χp remains con-
stant at 0.3. This has been used to study the effect of χeff on
δκs (Sec. IIIA 2).

B. Effect of higher modes and possible systematic
biases

In Fig. 2, the δκs posteriors are shown for simu-
lated binary signals with a total mass of 30 M⊙ and
mass ratios q = 1, 1.5, 3, 5. We fix the spin magni-
tudes (a1 = 0.6164, a2 = 0.5913), spin angles (Φjl =
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FIG. 2. Posterior distributions of the SIQM deviation parameter for various mass ratios q = 1, 1.5, 3, 5. The total mass is fixed
to M = 30 M⊙, and network SNR is 40 for all cases. The spin magnitudes and angles are fixed (see Table I). We use fully
spin-precessing, higher mode waveform model IMRPhenomXPHM for injections and recover using the same (orange), aligned spin
higher mode waveform IMRPhenomXHM (grey), and fully spin-precessing dominant mode waveform model IMRPhenomXP (blue) to
study the effect of higher modes on δκs measurements. The vertical black-dashed lines denote the injected value. The legend
follows the pattern “injected waveform – recovery waveform”.

χp χ1x χ2x χ1y χ2y χ1z χ2z

0.3 0.2792 0.1 0.11 0.1

0.56 0.320.5 0.4 0.2 0.3 0.2

0.7 0.5524 0.3 0.43 0.3

TABLE III. Here we fix the mass ratio q = 3, inclination angle
ι = 0.5149 rad, and z− components of the dimensionless spin
vectors while varying the x− and y− components in order
to obtain different values of χp. The value of χeff remains
constant at 0.5. This has been used to study the effect of
precession on δκs (Sec. IIIA 3).

3.7926, Φ1 = 0.2315, Φ2 = 0.9374, Φ12 = 0.0), and in-
clination angle (θjn = 0.4606), taking a different mass
ratio in each case, leading to different values for the di-

mensionless spin components (χ1x, χ1y, χ1z, χ2x, χ2y, χ2z)
and hence different values of χeff and χp as listed in Ta-
ble I. The histograms in each plot correspond to the dif-
ference in the waveform model used in analysing these
signals. For instance, we generate simulations assuming
IMRPhenomXPHM model and analyse them using the same
(orange), IMRPhenomXHM (grey), and IMRPhenomXP (blue)
as shown in Fig. 2. The aim is to demonstrate the im-
portance of using a waveform model with higher modes
in measuring δκs and to examine the possible biases that
could arise by not including them.

We see the significance of higher modes when we
go to higher mass ratio binaries. More precisely, the
posteriors are tightly constrained to the true value
(δκs = 0) as the binary becomes asymmetric, and the
90% bound on δκs improves from 1.3 to 0.18 (nearly
seven times) when moving from near-equal mass binary
(q = 1.5) to the most asymmetric binary (q = 5) when
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using the higher mode waveform IMRPhenomXHM. For
comparison, the improvement is only three times when
we use the dominant mode waveform IMRPhenomXP. For
both q = 3 and q = 5 cases, IMRPhenomXHM constraints
are better than the other models. This is because the
relative contribution from the higher modes increases for
higher mass ratios, and hence IMRPhenomXHM performs
better than IMRPhenomXP. While IMRPhenomXPHM is also
a higher mode waveform, the six spin parameters of the
binary system increase the dimensionality of the param-
eter space. This is not the case with IMRPhenomXHM as it
is an aligned-spin waveform model and has only two spin
parameters. Since the system is only mildly precessing
(χp ∼ 0.14),3 the additional spin parameters do not
contribute much toward improving the bounds on δκs,
and the four extra parameters in IMRPhenomXPHM add a
disadvantage compared to recovery with IMRPhenomXHM.
We have already discussed the effects of spin-precession
in detail in Sec. III A 3.

While all three waveforms are unable to recover
the injected δκs = 0 value for q = 1 case, we believe that
this is because of the prior railing effect, which arises
when the injection is exactly at q = 1. Since nearly the
entire posterior volume lies outside the injected value of
mass ratio (see Fig. 7), this causes a bias in the recovery
of the chirp mass parameter. Given that both χeff and
δκs are correlated with chirp mass, it causes a bias in
both of these parameters, and the injected value of δκs
is not recovered. These correlations can be seen in the
corner plot (Fig. 7) where we see biases in the values
of M and χeff, resulting in a biased δκs posterior.4

Note also that the δκs posteriors are well constrained
on the positive side compared to the poorly constrained
(with a long tail) negative side. This is likely due to
our choice of aligned spin systems (i.e, with χeff > 0)
in our investigations, and reverse trends are expected
for anti-aligned systems (χeff < 0) as was observed in
Ref. [37] (see Sec. III B 1 there for a detailed discussion).

IV. EFFECT OF SPIN-INDUCED ORBITAL
PRECESSION AND HIGHER MODES ON REAL

EVENTS

We compare the performance of different waveform
models in constraining δκs from the GW transient cat-
alogs in Fig. 3. We choose the events with best bounds
on δκs from GWTC-1, 2, and 3 to demonstrate the effect
of waveform models on constraining the δκs parameter.
The IMRPhenomPv2 results [40, 41] are shown in blue dot-
dashed lines along with the IMRPhemomXPHM (orange) and
IMRPhemomXP (grey) results.

3See Table I for values of other spin parameters.
4In fact, by fixing q=1 for recovery waveforms, we see that the
IMRPhenomXPHM injections are recovered with both IMRPhenomXP and
IMRPhenomXPHM templates.

For events with nearly equal mass (q ≈ 1.4 - 1.7) and
slow spins (χeff ≈ 0.05 - 0.2), GW151226 and GW170608,
even if we use the more informed models IMRPhemomXPHM
and IMRPhemomXP, the bounds do not alter consider-
ably compared to IMRPhenomPv2. On the other hand,
the posteriors show a considerable difference from the
IMRPhenomPv2 counterpart for GW190412. Note that
GW190412 is the first asymmetric BBH event (q ≈ 3.75)
with an indication for moderate spins [59] and higher
modes. Hence, we expect the most noticeable effect on
the bounds of δκs from this event. The requirement of
using waveform models with higher modes is also evi-
dent from the IMRPhemomXPHM and IMRPhemomXP com-
parison for GW190412 as shown in Fig. 3. This can also
be seen in the corner plot shown in Fig. 4, where the
bounds on mass ratio and χeff are considerably differ-
ent for IMRPhenomXPHM compared to the dominant mode
waveform models. As discussed in the previous sections,
bounds on δκs strongly depend on these parameters, and
hence, for an event with non-negligible higher mode con-
tent, we observe that IMRPhenomXPHM performs much bet-
ter. In fact, the bounds for GW190412 obtained using
IMRPhenomXPHM exclude boson star binaries as the source,
subject to the assumptions made in our study (such as
neglect of the tidal corrections, assumption that δκa = 0,
and that spin-induced effects are accounted for only in
the inspiral part of the waveform).

V. SUMMARY

Spin-induced multipole moment-based tests were rou-
tinely employed to determine the nature of compact bi-
nary signal during the first three observing runs of the
advanced LIGO and advanced Virgo detectors [40, 41].
In this study, we extend the applicability of the test to
binaries with spin-precession effects not considered in
previous versions of the test and discuss the possible
improvements in the measurement of the SIQM devia-
tion parameter using a more informed waveform model
containing two spin-precession effects and higher modes.
Starting with a simulation study, we demonstrate the ap-
plicability of the SIQM test on binaries with large spin-
precession and moderate mass asymmetries. We find that
there are considerable differences in the bounds of δκs
obtained using IMRPhenomPv2 compared to IMRPhenomXP
for highly spinning systems. We also report on the im-
provements and biases observed in the δκs bounds with
the choice of different mass ratios and compare them be-
tween IMRPhenomXP and IMRPhenomPv2 waveform mod-
els. Further, by injecting higher mode spin-precessing
signals, we find that higher mode waveforms are essen-
tial when analysing GW signals with high mass asymme-
tries. Finally, we re-analyse selected events from GWTC-
1, 2, and 3 with the most up-to-date waveform models
including two-spin precession effects and higher modes.
Our findings show that IMRPhemomXPHM may be preferred
for analysing GW events such as GW190412 [59], where
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FIG. 3. Posterior distributions on SIQM-deviation parameter for observed GW events. The curves labeled with IMRPhenomPv2

(blue) correspond to the previous results [40, 41] using IMRPhenomPv2 waveform model. These are being compared with the new
models IMRPhenomXP (grey) and IMRPhenomXPHM (orange). The vertical dotted line indicates the BBH limit δκs = 0, and the
numbers written inside the plots denote the 50% quantiles with error bounds at 5% and 95% quantiles for different waveform
model recoveries in respective colours.

there is evidence for mass asymmetry and non-negligible
spin effects. While the current paper studies waveform
systematics on the SIQM tests for various spin and mass
ratio configurations by injecting BBH waveforms consis-
tent with GR, a detailed follow-up study with non-GR
injections may be carried out in a future work.
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Appendix A: Additional information for injection
runs

The parameter space for precessing spin recoveries
includes the following parameters: inverse mass ratio
(qinv = m2/m1),

5 chirp mass (M), luminosity distance
(dL), cos of inclination angle (cos θjn),

6 geocentric time
(tc), phase angle (ϕc), dimensionless spin magnitudes (a1,

5We use the word inverse here to indicate that this is inverse of the
mass ratio we have used throughout the paper. Please note that
bilby uses the term mass ratio for this.

6Please note that this is the inclination angle as observed in the
detector frame, i.e. the angle between the line-of-sight n⃗ and total
orbital momentum vector j⃗ of the binary. For precessing systems,
value of θjn is different from ι which is the angle between the orbital

angular momentum vector l⃗ and normal vector n⃗.



10

a2), spin angles (Φ1, Φ2, Φ12, Φjl), right ascension (α),
declination (δ), polarization angle (ψ), and symmetric
combination of SIQM deviation parameter (δκs). The
priors for chirp mass have been modified according to the
injection value such that the lower limit is ∼ 0.5 times
the injected value, whereas the upper limit is ∼ 3 times
the injected value. Accordingly, we have put constraints
on component masses. The priors for the rest of the pa-
rameters are given in Table IV. For aligned spin recovery,
instead of the six spin parameters mentioned above, we
use the parameters χ1 and χ2 using the AlignedSpin
prior mentioned in bilby, which puts a uniform range
of [0,0.99] on the spin magnitudes. For real event anal-
yses, we have used the same priors as were used for the
respective analyses of the events in GWTC-2 [40] and
GWTC-3 [41] TGR papers. All the injection runs men-
tioned in this paper are for a binary black hole system
(δκs = 0 = δκa) with total mass of 30 M⊙. The distance
has been scaled in each case such that we get a fixed net-
work SNR of 40. We have arbitrarily chosen the angles
α, δ, ψ, and ϕc as 0, and tgps = 1126259462 s.

Parameter Prior Range

qinv Uniform 0.125 - 1

dL
Uniform

Source Frame
100 - 1000 Mpc

cos θjn Uniform −1 - 1

tc Uniform tgps + (−2 - 2) s

ϕc Uniform 0 - 2π

a1, a2 Uniform 0 - 0.99

Φ1, Φ2
7 Uniform sine 0 - π

Φ12 Uniform 0 - 2π

Φjl Uniform 0 - 2π

α Uniform 0 - 2π

δ Uniform cos −π/2 - π/2

ψ Uniform 0 - π

δκs Uniform −500 - 500

TABLE IV. Priors for parameters used in precessing spin re-
coveries.

7Denoted by the spin angles tilt1 and tilt2 in bilby [81].
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FIG. 7. Corner plot for the equal-mass case (q = 1) showing posterior on the SIQM deviation parameter (δκs), chirp mass (M),
mass ratio (q), the effective spin parameter (χeff), and the spin-precession parameter (χp). We have used a fully spin-precessing
waveform model including HMs (IMRPhenomXPHM) for both injection and recovery. The histograms shown on the diagonal of the
plot are 1D marginalized posteriors for the respective parameters with vertical dashed lines denoting 90% credible intervals. The
contours in the 2D plots are also drawn for 90% credible interval. The black lines denote the injected value of the parameters,
and the titles on the 1D marginalized posteriors for respective parameters indicate 50% quantiles with error bounds at 5% and
95% quantiles.
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