

View

Online

Export
Citation

CrossMark

RESEARCH ARTICLE | SEPTEMBER 28 2023

wfl Python toolkit for creating machine learning interatomic
potentials and related atomistic simulation workflows
Special Collection: Software for Atomistic Machine Learning

Elena Gelžinytė ; Simon Wengert ; Tamás K. Stenczel ; Hendrik H. Heenen ; Karsten Reuter ;
Gábor Csányi ; Noam Bernstein

J. Chem. Phys. 159, 124801 (2023)
https://doi.org/10.1063/5.0156845

 31 January 2024 10:19:04

https://pubs.aip.org/aip/jcp/article/159/12/124801/2913657/wfl-Python-toolkit-for-creating-machine-learning
https://pubs.aip.org/aip/jcp/article/159/12/124801/2913657/wfl-Python-toolkit-for-creating-machine-learning?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/jcp/article/159/12/124801/2913657/wfl-Python-toolkit-for-creating-machine-learning?pdfCoverIconEvent=crossmark
https://pubs.aip.org/jcp/collection/1349/Software-for-Atomistic-Machine-Learning
javascript:;
https://orcid.org/0000-0002-8625-1497
javascript:;
https://orcid.org/0000-0002-8008-1482
javascript:;
https://orcid.org/0000-0003-2922-8706
javascript:;
https://orcid.org/0000-0003-0696-8445
javascript:;
https://orcid.org/0000-0001-8473-8659
javascript:;
https://orcid.org/0000-0002-8180-2034
javascript:;
https://orcid.org/0000-0002-6532-1337
javascript:;
https://doi.org/10.1063/5.0156845
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2291284&setID=592934&channelID=0&CID=842343&banID=521636251&PID=0&textadID=0&tc=1&scheduleID=2211497&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fjcp%22%5D&mt=1706696344028668&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjcp%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0156845%2F18281561%2F124801_1_5.0156845.pdf&hc=8ecd41a2f85b630cce5918710d5c096aaa4f6300&location=

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

wfl Python toolkit for creating machine learning
interatomic potentials and related atomistic
simulation workflows

Cite as: J. Chem. Phys. 159, 124801 (2023); doi: 10.1063/5.0156845
Submitted: 3 May 2023 • Accepted: 10 July 2023 •
Published Online: 28 September 2023 • Publisher Corrected: 04 October 2023

Elena Gelžinytė,1,a) Simon Wengert,2 Tamás K. Stenczel,1 Hendrik H. Heenen,2 Karsten Reuter,2

Gábor Csányi,1 and Noam Bernstein3

AFFILIATIONS
1 Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
2Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
3Center for Materials Physics and Technology, U. S. Naval Research Laboratory Code 6393, 4555 Overlook Ave. SW, Maryland,
Washington, DC 20375, USA

Note: This paper is part of the JCP Special Topic on Software for Atomistic Machine Learning.
a)Author to whom correspondence should be addressed: eg475@cam.ac.uk

ABSTRACT

Predictive atomistic simulations are increasingly employed for data intensive high throughput studies that
take advantage of constantly growing computational resources. To handle the sheer number of individ-
ual calculations that are needed in such studies, workflow management packages for atomistic simulations
have been developed for a rapidly growing user base. These packages are predominantly designed to han-
dle computationally heavy ab initio calculations, usually with a focus on data provenance and reproducibility.
However, in related simulation communities, e.g., the developers of machine learning interatomic potentials
(MLIPs), the computational requirements are somewhat different: the types, sizes, and numbers of compu-
tational tasks are more diverse and, therefore, require additional ways of parallelization and local or remote
execution for optimal efficiency. In this work, we present the atomistic simulation and MLIP fitting work-
flow management package wfl and Python remote execution package ExPyRe to meet these requirements.
With wfl and ExPyRe, versatile atomic simulation environment based workflows that perform diverse pro-

cedures can be written. This capability is based on a low-level developer-oriented framework, which can be utilized to construct
high level functionality for user-friendly programs. Such high level capabilities to automate machine learning interatomic potential
fitting procedures are already incorporated in wfl, which we use to showcase its capabilities in this work. We believe that wfl
fills an important niche in several growing simulation communities and will aid the development of efficient custom computational
tasks.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0156845

I. INTRODUCTION

It is common to perform a large number of expensive calcu-
lations in computational chemistry and materials science. In many
cases, these tasks are embarrassingly parallel, i.e., each calcula-
tion can be performed completely independently of the rest. Some

examples include single point calculations, geometry optimization,
spectra and similar prediction of large databases of atomistic struc-
tures, high-throughput screening (e.g., random structure search),
or generating reference data for fitting machine-learning or con-
ventional interatomic potentials. Due to the throughput enabled
by modern High Performance Computing (HPC), it is no longer

J. Chem. Phys. 159, 124801 (2023); doi: 10.1063/5.0156845 159, 124801-1

© Author(s) 2023

 31 January 2024 10:19:04

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/5.0156845
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0156845
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0156845&domain=pdf&date_stamp=2023-September-28
https://doi.org/10.1063/5.0156845
https://orcid.org/0000-0002-8625-1497
https://orcid.org/0000-0002-8008-1482
https://orcid.org/0000-0003-2922-8706
https://orcid.org/0000-0003-0696-8445
https://orcid.org/0000-0001-8473-8659
https://orcid.org/0000-0002-8180-2034
https://orcid.org/0000-0002-6532-1337
mailto:eg475@cam.ac.uk
https://doi.org/10.1063/5.0156845

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

practical for these calculations to be launched and monitored man-
ually, and a number of packages to manage such workflows have
recently been developed.

Most of the workflow packages focus on building ab initio
material property databases.3,10,11,13,14,19,27 The frameworks define
workflows to calculate certain structural and electronic proper-
ties, for example, band structures, spectra, or dielectric constants,
and are themselves made up of modular steps, e.g., geometry opti-
mization, structure perturbations, and single point calculations.
These packages provide a consistent way to build and extend
large databases, e.g., Materials Project,12 Open Quantum Materials
Database,31 Aflow,9 and pay particular attention to reproducibil-
ity and data provenance. To go in hand with large projects, most
of the existing packages tend to provide a relatively structured
and user-focused interface for (re-)running the workflows, analyz-
ing, and querying the results. Such packages need to efficiently
carry out the same workflow over many structures but may also
execute related ab initio workflows for a given structure, for exam-
ple, to screen different density functional theory (DFT) settings
for convergence or calculate different electronic properties for a
given ground state. Table I compares some of the popular atom-
istic workflow managing packages, paying particular attention to
the points relevant to our applications, as discussed further in
Sec. II.

Machine-learning interatomic potentials (MLIPs) have recently
flourished and are also enabled by the large amounts of data pro-
ducible by modern HPC resources. These models are fitted to
electronic structure data to approximate the reference potential
energy surface (PES) at a much lower computational cost. In addi-
tion to relatively few (100–1000 s) but computationally expensive
(hours–months) reference data evaluations, such workflows also
require considerably cheaper (micro–milliseconds) but substantially
more numerous (10 000–100 000 s) energy and force evaluations,
which is a mode of operation not targeted by the currently existing
packages. Filling this niche, in this work, we introduce the wfl and
ExPyRe packages.

The aim of the wfl package is to support high-throughput exe-
cution of the wide variety of tasks encountered in MLIP fitting and
atomistic simulation workflows. The ExPyRe package handles the
(remotely) queued execution of Python functions, and while used
extensively in wfl, it is independent and can be applied to any
Python function. In our projects, we rely extensively on the broad
range of tools available through the Atomic Simulation Environ-
ment17 (ASE) and, thus, have built wfl as a lightweight extension to
ASE-based scripts with a low barrier of entry for researches already
used to developing atomistic simulations with Python and ASE.
The focus of wfl is less on reproducibility and more on flexibil-
ity and ease of development. The main tools, namely input/output
abstraction, autoparallelization, and remote execution, are lower-
level than those in most of the existing packages and are more
developer rather than user-focused. To facilitate this, we select for-
mats that allow workflow steps to be human-inspectable and do not
rely on the client–server databases for ease of operation on restrictive
centrally managed HPC clusters. While wfl includes a substantial
number of modular functions already wrapped in wfl functional-
ity, we emphasize that any MLIP fitting framework with a Python
or command line interface can be integrated into wfl-based work-
flows. They are also easily extendable with new operations, which can

then automatically gain wfl’s autoparallelization and, via ExPyRe,
remote execution functionalities.

In Sec. II, we describe key principles guiding the design of
wfl and give a general outline of the main types of tools pro-
vided by wfl. Section III contains a number of code snippet
examples for using various higher-level functions already imple-
mented in wfl. Finally, Sec. IV shows how to implement new
operations by wrapping functions using the low-level wfl function-
ality. The online documentation (libatoms.github.io/workflow) and
docstring-based documentation have more complete examples and
include an exhaustive list of available functionalities and optional
arguments.

II. OVERVIEW
A. Design principles

Machine-learning interatomic potentials are increasingly
widely used in atomistic simulations, providing ab initio accuracy at
a dramatically lower computational cost. One of the components in
building MLIPs is high-throughput ab initio evaluations to collect
reference data, a task that is catered to by most of the existing atom-
istic workflow packages. Indeed, a number of such packages have
been used to build ab initio databases for fitting MLIPs.5,15,18,20,29

However, other tasks, while also embarrassingly parallel and/or
computationally expensive, are particular to MLIP-building work-
flows and require somewhat different considerations, not yet
generally catered to by the existing packages. These include, but are
not limited to, fitting the MLIP and using it to drive simulations
that yield new atomic structures that need to be sub-selected for
further processing. Likewise, atomistic simulation workflows that
use MLIPs operate in a somewhat different throughput regime
due to the much lower computational cost of MLIPs compared to
electronic structure codes.

In the case of ab initio reference data collection, each evaluation
is expensive enough to take up anywhere from one to potentially
hundreds of nodes of an HPC and from minutes to hours of wall
time. The other end of the scale is the evaluation of significantly
computationally cheaper operations over many orders of magnitude
more configurations (e.g., evaluate the fitted interatomic potential,
or calculate a descriptor), where each calculation may take only a
fraction of a second on a single central processing unit (CPU) core.
The third type is “one–off” expensive tasks, such as fitting an MLIP
or sub-selecting the most diverse structures from the database with
potentially complex algorithms, e.g., CUR decomposition. In many
cases, the codes that carry out these tasks are themselves parallelized
but have high memory requirements or are run on graphics process-
ing units (GPUs), for example. Finally, there are often other ASE
Atoms-based project-specific ad hoc tasks that need parallelization
or remote execution, which should be easy to add to the workflow
management package.

From a practical point of view of the developer, code often
grows organically over the life of a project, so modularity is of the
essence when adding functionality as the project develops. Further-
more, it is helpful if the workflow is easy to prototype and then
also easy to scale-up from run to run, for example, to develop and
quickly test the code locally on a small database with a cheap stand-
in reference method and easily change to a large databases, expensive
electronic structure codes, and execution on a HPC cluster. When

J. Chem. Phys. 159, 124801 (2023); doi: 10.1063/5.0156845 159, 124801-2

© Author(s) 2023

 31 January 2024 10:19:04

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

TABLE I. Key features and dependencies of packages for automated atomistic simulations workflows. “CLI” indicates the command-line interface. “File” indicates a format
specific to the package unless otherwise specified in parentheses. “Autoparallelize over configs” refers to the capacity to readily parallelize custom operations with a wide range
of computational requirements (microseconds–days) and over a wide range in the number of atomic structures (10–100 000 s).

Package
Atomistic
structures Data on disk

Autoparallelize
over configs

Queued
execution Interface

Interface with
remote cluster

wfl ASE17 File (ase.io) Yes Yes (ExPyRe) Python SSH
ASR10 ASE17 ASE DB, file – Local only (MyQueue22) CLI, Python –
Atomate19 Pymatgen25 MongoDB – Yes (FireWorks11) CLI, Python Network to central DB
AiiDA27 Own SQL – Yes CLI, Python Daemon on cluster
PyIron13 Own File, SQL, HDF5 – Yes (Pysqa) Python SSH
Aflow4 Own File – – CLI –
Icolos21 RDKit16 File – Local only CLI –
qmpy14 Own File, MySQL – Yes CLI, Python SSH
JARVIS3 Own File – Local only Python –

running, it is desirable to have enough control over each of the
resources for each modular part—for example, submitting expen-
sive MLIP fitting to a cluster, but evaluating the cheap potentials and
analyzing the results locally. Finally, once the code has stabilized and
the workflow is applied to a production problem, the computational
time is often long, and it is helpful if the process can be restarted
after interruptions without repeating all of the already completed
computations.

B. Technical requirements
Alongside the modular, developer-oriented package design

principles, we had a number of technical requirements. First, we
choose compatibility with ASE, which was the basis of most of our
simulation workflows. ASE is widely used for atomistic simulations
and supports a wide range of tasks (from the equation of motion
integrators to building atomic structures) and has a unified interface
to many electronic structure (first principles and semi-empirical)
codes and force field libraries. Some of the current atomistic
workflow packages (see Table I) are based on ASE,17 Pymat-
gen,25 and RDKit,16 but a considerable number of them imple-
ment custom data structures and interfaces with electronic structure
codes.

Second, the package was not to rely on client/server-based
databases or daemons because HPC clusters often prohibit setting up
unmanaged background processes or opening network ports. This
requirement is in contrast to how many of the other workflow frame-
works manage the large number of calculations running on the HPC
clusters.

Third, the data (simulation results, notes on executed code, etc.)
are often similarly stored in databases, whereas we preferred human-
readable files to facilitate manual inspection of atomic structures,
debugging, and error-detection. In principle, any ase.io format
may be used in wfl, but, in practice, extxyz is recommended
because the package assumes that arbitrary per-configuration
(Atoms.info) and per-atom (Atoms.arrays) quantities for each
Atoms object are stored.

Finally, wfl needed to have a low barrier to entry for simulation
workflow developers familiar with Python and ASE. Therefore, the

provided extensions are designed to be modular, have a lightweight
interface, and still maintain a good amount of flexibility. As a result,
it is straightforward to modify ASE-only code to take advantage of
wfl functionality.

C. Key tools wfl provides
The primary tools wfl provides are low-level functions for

extending ASE-based scripts. A core concept in wfl is an opera-
tion—a Python function that acts on or creates a number of atomic
structures. Most of the ASE functionalities are focused on handling
one structure (i.e., Atoms object) at a time, whereas with wfl oper-
ations can be parallelized over Atoms and/or executed remotely
and mixed-and-matched to create a complex MLIP fitting, simu-
lation, or analysis workflow. That is because the key utilities of
wfl are practically entirely generic. The parallelization functional-
ity is function-agnostic: any operation on a single Atoms object, for
example, evaluation with any ASE-supported Calculator, can be
parallelized over a set of them. In a similar way, virtually any Python
function can be executed remotely by ExPyRe—a separate package
for submitting Python functions as jobs to a cluster’s queueing sys-
tem. The tools together are designed to make it straightforward to
use wfl for small tasks or to prototype simulations and then to
scale them up to complex and task-heterogeneous workflows. See
Sec. III for examples that use the abstracted input/output classes
and autoparallelized functions and Sec. IV for detailed examples of
how to add wfl functionality to existing ASE-based operations and
scripts.

While the low level wfl components (file I/O, autoparalleliza-
tion, and remote execution) are designed to be easily integrated with
ASE-based Python scripts, wfl also covers a number of higher-level
operations that already take advantage of these capabilities. First,
applying any ASE Calculator to a set of Atoms objects can be par-
allelized via wfl.calculators.generic.calculate. This covers
a wide variety of codes supported by ASE and ML potentials, which
often have an interface via ASE’s Calculator class. A special case
is electronic structure codes, which are almost exclusively file-based.
Therefore, the corresponding wfl wrappers have to be modified so

J. Chem. Phys. 159, 124801 (2023); doi: 10.1063/5.0156845 159, 124801-3

© Author(s) 2023

 31 January 2024 10:19:04

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

that parallel instances do not interfere with each other. Thus, wfl-
parallelization-compatible derived classes are included for ORCA,
CASTEP, VASP, Quantum ESPRESSO, and FHI-Aims codes.

Additional common per-Atoms-parallelizable operations are
also included. Structures can be generated from SMILES and AIRSS
buildcell,26 perturbed by normal-mode or phonon displace-
ments, selected with simple or complex criteria, and evolved with
molecular dynamics, and global or local geometry optimization.
Other operations that are not embarrassingly parallel include the
selection of structures via farthest point sampling or CUR decom-
position on atomic descriptors, as well as interfaces with Gaussian
Approximation Potential (GAP)2 and Atomic Cluster Expansion
(ACE)6,8 fitting codes for the full data-fit-repeat cycle.

Together, these features provide a versatile collection of mod-
ular tools to mix-and-match for building interatomic potentials
beginning-to-end and running complex atomistic simulations. The
principal focus of wfl is on making ASE and Python-based atomistic
simulation scripts easier to develop and scale up by parallelization
and remote execution.

III. USING wfl BY EXAMPLE
We illustrate the concepts that motivate the design of wfl

through a series of simple examples that demonstrate their usage.
We begin with the basic Python classes that facilitate operations
on a sequence of configurations, ConfigSet and OutputSpec, and
control the parallelization of this computation on a single com-
puter using the AutoparaInfo class. We then use an example of
a more computationally demanding calculation to show how the
work can be further parallelized over multiple nodes by submitting
independent jobs to a queuing system with ExPyRe and the wfl
RemoteInfo class. We also include an example of a command to
fit a GAP potential—a computationally expensive task that is dis-
patched by wfl but parallelized in the gap_fit code itself. Finally,
we highlight how multiple operations can be daisy-chained into a
workflow by passing outputs of one operation as inputs to another
and briefly describe a more complex workflow given as an example
in the supplementary material and online documentation.23

A. Atomic configuration input and output abstraction
The basic operation that wfl is designed to facilitate is an

embarrassingly parallel application of the same task on each of a
large number of configurations, resulting in a set of output con-
figurations that maps one-to-one with the input set. The input
for such an operation is specified using the ConfigSet class. The
configurations can be stored in one file,

multiple files,

or a pre-existing list of configurations in memory, here created on-
the-fly via ASE,

For files, since wfl uses ase.io.read to read the configurations,
any compatible file format is allowed, and optional arguments
can be passed in read_kwargs. The output of the operation is
specified using the OutputSpec class. If the output configura-
tions only need to be saved in memory, without being backed up
by persistent file storage, the constructor can be called without
arguments,

Passing one or more filenames results in the output configu-
rations being stored in file-based storage, which is non-volatile
and, therefore, available for inspection by the user or for a
restart of the workflow. The basic syntax is identical to that of
ConfigSet,

or

Note that the output can always be written to a single file, but because
of the one-to-one mapping, if multiple output files are specified, the
number must match the number of input files.

This range of possible input and output targets makes it pos-
sible to write workflows that are relatively independent of how
the initial, intermediate, and final configurations are stored. For
any combination, the operation that performs the embarrassingly
parallel operation on each configuration and returns a resulting con-
figuration is called with the same syntax. For example, if the energy
with ASE’s effective medium theory (EMT) is needed, the most basic
call would use

ASE stores calculated properties in the Atoms.calc
Calculator object, which has two shortcomings for the uses
we envision. The first is that the Calculator is not preserved when
Atoms are written to a file. The second is that only one calculator,
and hence, one set of results can be associated with an Atoms object,
so it is not possible to keep, e.g., both DFT reference and tested
potential results. Therefore, the wfl wrapper generic.calculate
saves the properties in the resulting configurations’ Atoms.info
(per-config) and Atoms.arrays (per-atom) dictionaries. The
keys include a prefix to distinguish evaluations with different
calculators, which defaults to the name of the calculator class but,
in this example, is overridden by the optional property_prefix
argument “evaluated_,” so the keys will be evaluated_energy
and so on. The returned value of the evaluated_configs variable
is a ConfigSet object pointing to the resulting configurations,
regardless of whether the outputs OutputSpec indicated memory,
single file, or multiple file storage. This new ConfigSet can then
be passed as the inputs to the next step in the workflow, with a new
OutputSpec indicating where the next step’s results will be stored
(see Sec. III E).

J. Chem. Phys. 159, 124801 (2023); doi: 10.1063/5.0156845 159, 124801-4

© Author(s) 2023

 31 January 2024 10:19:04

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

One advantage to storing intermediate steps in files is that they
can be used to recover from a partially complete sequence of oper-
ations. To facilitate this possibility, the default behavior for wfl
operations is to skip over the actual operation if OutputSpec indi-
cates file storage and all the files already exist. To avoid mistaking
partially complete operations for successfully completed ones, the
low level routines initially write the output to temporary filenames
and only rename them to the intended final names once the opera-
tion is complete. Note that this mechanism is very simple, relying
only on the existence of files with particular names, so it is not
aware of changes in the code. As a result, during development, it
is necessary for the user to manually delete any output files created
by functions that have been modified since the previous run. Also,
writing the intermediate results to file storage does lead to a small
additional computational cost. For example, the simple workflow
example discussed in Sec. III F is about 4% (23 s) slower if all of
the OutputSpecs write to an extended xyz file instead of keeping
the structures in-memory.24

B. Simple autoparallelization
Since this interface is designed for operations that can be done

independently for each configuration, it is trivial to parallelize,
as illustrated in Fig. 1. The implementation has been encapsu-
lated by a Python wrapper defined in wfl.autoparallelize, but
a full description of its details is beyond the scope of this arti-
cle. Using this automatic parallelization is very simple and can
be controlled by a combination of an AutoparaInfo object and
an environment variable, both optional. In the simplest case, the
Python calling syntax is as shown above, and the only additional
requirement for activating the parallelization is to set the environ-
ment variable WFL_NUM_PYTHON_SUBPROCESSES=“N”, where N is
the number of Python processes to parallelize over. It is also pos-
sible to set this value from Python, by passing an AutoparaInfo
object,

The autoparallelize wrapper ensures that all autopar-
allelized functions take inputs and outputs as their first
two arguments and the autopara_info keyword argument.
The sequence of configurations given as inputs is broken up
into chunks and passed to a number of Python processes
(defined by the environment variable or AutoparaInfo argument),
which execute the low-level function implementing the operation.
Returned configurations are reassembled according to the orig-
inal inputs sequence and written to the location indicated by
outputs.

One limitation of this design is that all arguments passed to
and results returned from the function must be pickleable because
Python’s multiprocessing.pool, which we use, depends on the
pickle module to communicate with the subprocess running the
called function. One important use case, GAP ASE calculator class
Potential defined in quippy.potential, does not satisfy this
requirement. As a result, the generic.calculate wrapper will also

accept a three-element tuple, instead of an instantiated Calculator
object, with the structure

where the first element is the constructor method, the second is a
list of positional arguments, and the third is a dictionary of keyword
arguments.

C. Parallelizing expensive operations over
independent queued jobs

In addition to facilitating parallelization over Python subpro-
cesses, the autoparallelize wrapper also makes it easy to break
up the work into a set of independent jobs for execution with a
queuing system, as illustrated in Fig. 2. This capability is especially
important for operations where the cost of application to a single
configuration is substantial, e.g., single-point DFT evaluations of a
potential fitting database. This functionality is provided using the
new ExPyRe Python package for Executing Python Remotely. From
the point of view of the wfl user, the only additional requirement is
to specify information about the remote job in the AutoparaInfo
argument, including the computer system where it will run and the
resources required. ExPyRe is designed for HPC facilities with a
queuing system—PBS, SLURM, and SGE are currently supported.
The computer where the script using wfl runs (but not necessarily
the HPC system where the jobs will run) must have a configuration
file describing the available systems and resources where the queued
jobs can be submitted, as well as the wfl and ExPyRe Python pack-
ages. This workflow-running machine can be a login node of the
HPC system, or a different computer whose job submission node
is accessible via ssh. The HPC system compute nodes must have
Python and wfl installed, but no other Python packages are required
except what is necessary to carry out the actual desired computation,
e.g., quippy or phonopy.

The configuration information is, by default, stored at
“ ∼/.expyre/config.json” and contains a dictionary with a
systems key with entries, such as

This example describes a system with no remote host (i.e., jobs
will be submitted on the machine where the wfl-using script runs),
using the SGE queuing system with one optional queued job header

J. Chem. Phys. 159, 124801 (2023); doi: 10.1063/5.0156845 159, 124801-5

© Author(s) 2023

 31 January 2024 10:19:04

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 1. Illustration of the autoparallelization mechanism. Colors indicate the status of each configuration: gray for unprocessed and blue for completed operation.

FIG. 2. Illustration of autoparallelization mechanism with remote execution (colors as in Fig. 1). Within each queued job, further parallelization can be carried out, as described
in Sec. III B and Fig. 1.

line and a single conda command to run at the start of any job. The
system has only one partition type, named “standard,” which has the
specified node core count, memory, and time limit. ExPyRe will use
this information to create the job script, including the mandatory
header lines, which will be submitted for each remote job.

With this configuration in place, breaking up the inputs into
groups to be run in a series of queued jobs requires only a small
addition to the generic.calculate calling syntax, an optional
argument to the AutoparaInfo constructor,

The RemoteInfo object specifies the system name from the
“∼/.expyre/config.json” file, an arbitrary name for labeling the
submitted job, and the number of configurations from the inputs
iterable to the group for each queued job. In addition, the object
specifies the required queuing system resources for each job, one
node for one hour on the partition named “standard” (match-
ing the configuration file entry for this system), and finally, the
“pseudopotentials” subdirectory will be copied for each remote
job by ExPyRe.

The DFT single-point evaluation use case also has other impli-
cations for the way wfl manages the calculations. Because ASE
does most DFT calculations using third-party software that relies
on files for input and output, wfl wraps DFT calculators, such

as ase.calculators.espresso.Espresso to make them more
applicable to their intended use. It runs each instance of the
DFT program in a separate subdirectory so multiple side-by-side
runs do not overwrite each other and can automatically select
a distinct Γ-point-only executable for nonperiodic configurations.
The calculator that will be passed to generic.calculate is defined
by a class inheriting from the underlying ASE calculator, with some
additional optional arguments to control the directories and files
created during the calculation. Note however, that, in general, we
do not introduce any new functionality (such as DFT convergence
checks) in addition to what is provided in the underlying ASE inter-
face and only extend the ASE’s Calculators to not interfere across
parallelized instances,

All of the arguments used here are standard
ase.calculators.espresso.Espresso constructor argu-
ments, without any of our subclass-specific arguments that would
modify the default behavior of running in a subdirectory named
“./run_QE_<RANDOM_STR>,” and keeping only files required for
NOMAD7 upload, i.e., “∗.pwo.”

The call to do the DFT evaluations is simply

J. Chem. Phys. 159, 124801 (2023); doi: 10.1063/5.0156845 159, 124801-6

© Author(s) 2023

 31 January 2024 10:19:04

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

This call to generic.calculate will break up the inputs into
groups of one configuration each, prepare and submit each job, and
wait for them to be finished before assembling the returned configu-
rations and storing them in the location specified by the outputs
argument. Except for the need to wait, executing this script with
remote execution should be entirely equivalent to running the same
sequence of function calls locally. An optional timeout argument to
the RemoteInfo constructor specifies the maximum waiting time. If
this time is exceeded and an exception is raised, or the user aborts the
script before all the jobs are complete, rerunning the wfl script will
automatically resume by looking for the previously submitted jobs,
gathering their results if they are now complete (or waiting for the
rest), and continuing with any further actions in the script. Note that
as for the reuse of output files generated by any autoparallelize
operation (Sec. III A), this job caching mechanism is not aware of
changes to the code, and the user must manually wipe the staged
jobs if the underlying code has been modified.

Given the possibility of many nested types and levels of
parallelism, there can be many ways to distribute the work
of each operation among jobs, nodes, and cores. The num-
ber of configurations grouped into each job is specified by
RemoteInfo.num_inputs_per_queued_job, which divides the
number of configurations in the input ConfigSet to deter-
mine the number of jobs that are created and submitted to
the HPC queue. The number of nodes allocated for each job
is set by the RemoteInfo.resources.num_nodes argument.
Within each job, the number of operations executed in par-
allel is given by AutoparaInfo.num_python_subprocesses.
Since controlling the full range of possible parallelism in the
remote job would add a lot of complexity, we recommend
two simpler configurations. One is to use single-node jobs (i.e.,
num_nodes = 1) with multiprocessing.pool-based autoparal-
lelization, where multiple configurations are evaluated in paral-
lel, each using a single core (the default behavior). The other
is to use multi-node jobs with MPI-aware operations (e.g., DFT
evaluation executables) without autoparallelizing over configura-
tions (i.e., set RemoteInfo.num_inputs_per_queued_job = 1
or AutoparaInfo.num_python_subprocesses = 1).

D. Non-parallelized operations
Some operations that are computationally expensive but not

embarrassingly parallel have also been wrapped in wfl, in particular
the actual fitting of MLIPs. For example, fitting a GAP model can be
done with

This function is a wrapper of the gap_fit executable,
which is aware of, but does not abstract away, its interface. The
gap_fit_cli_params argument is a dictionary that is converted
to the command line parameters for the gap_fit executable. The
wrapper can detect if the GAP fit appears to have been completed

and skips the task if skip_if_present is set to True, but unlike
autoparallelized operations, this is implemented manually in the
run_gap_fit function. The remote_info argument specifies the
queuing system resources required to run this GAP fit, e.g., a large
memory node if the fitting database is large, or a remote cluster if
using the MPI parallel version of the GAP fit.

Since the output of this function is not a set of atomic con-
figurations, it does not return a ConfigSet but only saves the
resulting GAP MLIP to a file. The name of the resulting GAP model
file is specified by the standard gap_fit command line argument
“gap_file,” which should be included in gap_fit_cli_params.

E. Daisy-chaining operations
One important aspect of the design of wfl autoparal-

lelized operations for workflow applications is that they return a
ConfigSet, so the output of each function can be used as the input
argument of the next. For example, evaluating the reference energy
for a set of configurations and then selecting only the ones with low
energy/atom can be done with

The selection call does not depend on where the output of the
first call is stored since that information is abstracted in the
ref_eval_configs object. The simple selection just assumes that
Atoms.info[”REF_energy”] is defined for the configurations in
ref_eval_configs, and the OutputSpec specifies that configu-
rations returned in low_REF_E_configs will be stored only in
memory. Any number of steps in the workflow can be chained
similarly, and the user can have access, even after the script is com-
plete, to any intermediate result that was specified by a file in an
operation’s OutputSpec object.

F. Combining elements into a workflow
An example of a more complex multi-step workflow is shown

in Fig. 3, and a runnable Jupyter Notebook implementing it is avail-
able in the supplementary material and online. After importing the
needed symbols, the workflow defines the xTB tight-binding method
as the reference calculator. It creates isolated atom configurations
for each species (not shown in Fig. 3), as well as molecules defined
from SMILES strings, and uses those molecules as initial configura-
tions for a finite temperature molecular dynamics run with the xTB
calculator. The resulting trajectories are subsampled by computing
SOAP descriptors for each configuration and selecting among them
with leverage score CUR on the descriptor vectors. A fitting set is
used to fit a GAP MLIP, and the predictions of the resulting poten-
tial for the fitting set as well as an independent test set are computed.

J. Chem. Phys. 159, 124801 (2023); doi: 10.1063/5.0156845 159, 124801-7

© Author(s) 2023

 31 January 2024 10:19:04

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 3. Schematic representation of a more complex daisy-chained workflow. The corresponding Jupyter notebook is available online at
https://libatoms.github.io/workflow/examples.daisy_chain_mlip_fitting.html.

These predictions are then formatted into a printed error table and
corresponding parity plots.

It is worth noting, however, that even though extending the
new functions with wfl tools may make them more efficient and
better integrate with other wfl-wrapped functions (see Sec. IV),
any Python function may be used in a wfl-based workflow. For
example, to make use of a new MLIP framework, only a Python
function that performs the fitting and an ASE-type Calculator
are needed. As a result, it should be straightforward to use other
MLIP frameworks or packages with related functionality, such as
FitSNAP,30 FLAME,1 and BenchML,28 within wfl-based scripts, and
similarly, wfl’s tools may be useful for doing operations in such
frameworks.

IV. WRAPPING NEW FUNCTIONS
Section III highlighted the key functionality of wfl with a num-

ber of simple examples that use functions already written to take
advantage of the key functionality. These included atomic struc-
ture input and output via the ConfigSet and OutputSpec classes,
controlling automatic parallelization and executing the functions
remotely. However, it is impossible, and we do not aspire, to main-
tain a full library of wfl-wrapped operations to support all atomistic
simulation needs. Instead, we designed wfl so its tools can be easily
plugged into any ASE-based script. Below, we show examples of how
to parallelize a function with wfl.map or wfl.autoparallelize.
We also show how to use ExPyRe to remotely execute any function
not limited to those already in wfl or ASE.

A. Parallelizing a new function
1. wfl.map

The simplest way to parallelize a new function over multi-
ple Atoms objects, including taking advantage of ConfigSet and
OuptutSpec and remote execution, is via wfl.map.map.

As an example, suppose we already have a cap_bonds function
which takes a single Atoms object and adds an atom to any dangling
bond,

wfl.map.map takes such a function, with its arguments and
keyword arguments, and applies it to each structure in the input
ConfigSet and writes to the output OutputSpec,

The parallelized function has to be pickleable, has to take a sin-
gle Atoms structure as the first positional argument, and return an
Atoms structure or None. Just like examples in Sec. III, paralleliza-
tion and remote execution of wfl.map.map are controlled by an
AutoparaInfo object.

This way of parallelizing a function is suitable in cases where
starting the parallelized function is computationally inexpensive
because wfl.map calls the function separately for each Atoms object.

2. wfl.autoparallelize

In some cases, the initialization step of the parallelized func-
tion is significantly more computationally expensive than exe-
cuting it on a single Atoms object. For example, initializing a
GAP Calculator via quippy.potential.Potential in extreme
cases can take minutes (because a large parameter file has to be
read in and parsed), while evaluation on a single configuration
may require only a few seconds. With large numbers of atomic

J. Chem. Phys. 159, 124801 (2023); doi: 10.1063/5.0156845 159, 124801-8

© Author(s) 2023

 31 January 2024 10:19:04

https://pubs.aip.org/aip/jcp
https://libatoms.github.io/workflow/examples.daisy_chain_mlip_fitting.html

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

structures to be evaluated, it makes sense to load the poten-
tial once per tens or hundreds of structures. Furthermore, the
iterable to be parallelized over may not be an atomic structure
itself but rather an instruction for generating one, as is the case
in wfl.generate.smiles and wfl.generate.buildcell sub-
modules. The wfl.autoparallelize wrapper supports both of
these scenarios.

Functions wrapped in wfl.autoparallelize have to take
and return a list of Atoms; hence, we define a new function,

We can autoparallelize this function simply by calling

or define a new, parallelized version of the function,

Here, before returning the wrapped function, we additionally
set the default value for num_inputs_per_python_subprocess.
The new autopara_saturate_db can then be used as in the exam-
ples in Sec. III. To work with autoparallelize, the operation
must take in an iterable and return a list (or nested lists) of Atoms
objects or None. In most cases, iterable corresponds to a list of input
Atoms objects but can, in principle, be anything, for example, a list of
SMILES strings (e.g., SMILES string ”CCO” corresponds to ethanol)
used to generate Atoms structures, as in wfl.generate.smiles.

The signature of the parallelized autopara_saturate_db is
modified from that of saturate_db. The iterable is replaced by
inputs (a ConfigSet) and outputs (an OutputSpec), and it
accepts an AutoparaInfo object that controls parallelization,

B. Execute Python remotely
Running remote jobs in wfl is done using ExPyRe, which

wraps individual Python functions, executes them in remote
jobs, and returns their results. It is inspired by MyQueue,22

but designed with somewhat different limitations and capabili-
ties motivated by our functionality and computational resource
use cases. The autoparallelizing wrapper ensures that all autopar-
allelized functions interface with ExPyRe. In addition, some

FIG. 4. Illustration of steps performed by ExPyRe when executing functions
remotely. The pictogram indicates actions that may be executed on a remote
cluster.

non-autoparallelize-able yet computationally expensive tasks,
such as fitting GAP and ACE interatomic potentials, are an impor-
tant part of atomistic workflows and are also interfaced with ExPyRe
directly. The key steps performed by ExPyRe are illustrated in Fig. 4.

To execute any function with ExPyRe (let us continue with the
cap_bonds example), a couple of extra Python objects need to be
defined, as illustrated in the following script. Note that RemoteInfo
is not applicable here, because it combines wfl-specific options with
ExPyRe arguments,

First, an ExPyRe instance is created in which we specify the
function that will be executed remotely, as well as its positional and
keyword arguments. Together with xpr.start, these steps write

J. Chem. Phys. 159, 124801 (2023); doi: 10.1063/5.0156845 159, 124801-9

© Author(s) 2023

 31 January 2024 10:19:04

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

input files for the job, write a queue-specific job submission script,
and submit the job. In this step, job-specific resources (required
time, number of nodes or cores, and queue or partition) are also
provided and used to specify the correct resources in the job sub-
mission script. As in the examples from Sec. III, the cluster-specific
configuration file must be present.

At the xpr.get_results stage, ExPyRe periodically queries
the queueing system for the status of the job while waiting for
its completion. At this point, the Python script may be killed and
restarted to continue without re-submitting the jobs. The jobs and
their status are tracked in a file-based SQLite database, which can be
queried via a convenience command line interface, xpr.

File copying and job queue querying are executed via pass-
wordless ssh, for example, by using public/private keys, Kerberos
authentication, or multiplexing SSH connections to reuse previously
established password- or multifactor-authenticated connections.

There are several files associated with the remote execution pro-
cess used for communication between the local Python script and
the remote queued job. These files include the pickled input func-
tion and its output, the job submission script and outputs, as well as
files used by ExPyRe to track and report on the job’s progress. Nor-
mally, the user does not need to be concerned with these files, but it
is useful to be aware of the behind-the-scenes working of ExPyRe for
occasional debugging since we expect these tools to be used in devel-
oping a wide variety of projects and scripts. These auxiliary files can
also be deleted using the command line interface, xpr.

One consequence of the pickle-based remote execution
mechanism is that the function to be executed remotely (e.g.,
cap_bonds or saturate_db) must be imported into the script that
wraps it with wfl.autoparallelize or wfl.map (or any other
way that results into passing it to ExPyRe). This is because pickling
a function does not save the function’s content, only its full name
including package information, which is used to import it when the
pickled data are unpickled by the remotely executed job. The solu-
tion is to define the original function either in a Python package that
is installed on both the local and remote machines or in a separate
file that is included in RemoteInfo.input_files and, therefore,
copied over to the run directory on the remote machine.

V. SUMMARY
In summary, we introduced the Python-based workflow man-

agement package wfl and the remote execution package ExPyRe,
which are designed to support the versatile requirements of com-
putations commonly used in atomistic simulation and MLIP fitting
processes. wfl is designed as a lightweight platform to provide
efficient parallelization capabilities for various numbers and sizes
of embarrassingly parallel tasks with computational demands that
range from milliseconds on a single core up to hours on several
nodes. These parallel tasks can optionally be executed on a HPC
queueing system via the general-purpose Python remote execu-
tion framework ExPyRe. The two packages provide a few low-level
functions—input and output abstraction classes, an autoparalleliza-
tion wrapper, and a remote execution functionality—to wrap any
operation, as well as wrapped versions of a number of commonly
used operations. Using this developer-oriented functionality, high
level user-friendly functions can be easily produced by combining
these and other operations to construct reproducible calculation

workflows. Some common instances of such high level functions
are already present in the wfl package, and we provide examples
of how to make use of wfl’s functionality for custom functions and
workflows.

In contrast to other material simulation workflow packages that
focus on ab initio data generation and provenance, wfl is designed
to provide low-level support for efficiently parallelizing and inte-
grating a wide variety of operations for atomistic simulations. One
distinctive feature is its focus on using human-readable formats and
storage, and on minimizing the need for system infrastructure, such
as remotely accessible database servers. Another is the use of a small
number of Python classes to abstract atomic configuration storage
and to support the efficient execution of embarrassingly parallel
operations, whether they are computationally demanding individ-
ually or only in the aggregate. The package is developer-oriented
and intended for use in research areas where the development of
the particular sequence of computational operations to be done is
a complex and significant part of the overall research task.

We believe that wfl will fill an important niche in the atomistic
simulation communities that develop new computational proce-
dures with tools that implement them using Python libraries such
as ASE. While the basic functionality of ASE has already revolution-
ized the way atomistic simulation software is being developed, wfl
will extend its range of applicability further by abstracting the details
of atomic configuration and providing easy to use automatic paral-
lelization and remote execution. Its design principles of lightweight,
modularity, and human-inspectability should make it easy to incor-
porate into existing ASE-based scripts. We hope that it will prove
useful for a wide range of atomistic simulations.

SUPPLEMENTARY MATERIAL

See the supplementary material for the full Python Notebook
discussed in Sec. III F and illustrated in Fig. 3.

ACKNOWLEDGMENTS
We are grateful for computational support from the UK

national high-performance computing service, ARCHER2, for
which access was obtained via the UKCP consortium and funded
by EPSRC Grant Reference Nos. EP/P022596/1 and EP/X035891/1.
N.B. acknowledges support by the U.S. Naval Research Laboratory’s
6.1 fundamental research base program, and computer time support
from the DOD HPCMPO at the AFRL, ERDC, and ARL MSRCs.
E.G. acknowledges support from the EPSRC Center for Doctoral
Training in Automated Chemical Synthesis Enabled by Digital
Molecular Technologies with Grant Reference No. s EP/P022596/1
and EP/X035891/1. T.K.S. acknowledges support from the European
Union’s Horizon 2020 Research and Innovation Program under
Grant Agreement No. 957189 (BIG-MAP project). S.W., H.H., and
K.R. gratefully acknowledge the Max Planck Computing and Data
Facility (MPCDF) for providing computing time.

For their contributions to code development, the authors want
to acknowledge Nikhil Bapat, Lars Schaaf, Nicolas Bergmann, Xu
Han, and Felix Riccius. We also thank Olga Vinogradova and Felix
Riccius for creating the logo.

For the purpose of open access, the authors have applied a
Creative Commons Attribution (CC BY) license to any Author
Accepted Manuscript version arising from this submission.

J. Chem. Phys. 159, 124801 (2023); doi: 10.1063/5.0156845 159, 124801-10

© Author(s) 2023

 31 January 2024 10:19:04

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Elena Gelžinytė: Software (equal); Writing – original draft (equal);
Writing – review & editing (equal). Simon Wengert: Software
(equal); Writing – review & editing (equal). Tamás K. Stenczel:
Conceptualization (equal); Software (equal); Writing – review &
editing (equal). Hendrik H. Heenen: Supervision (equal); Writing –
original draft (equal); Writing – review & editing (equal). Karsten
Reuter: Funding acquisition (equal); Supervision (equal); Writ-
ing – review & editing (equal). Gábor Csányi: Conceptualization
(equal); Funding acquisition (equal); Supervision (equal); Writing –
review & editing (equal). Noam Bernstein: Conceptualization
(equal); Funding acquisition (equal); Software (equal); Supervision
(equal); Writing – original draft (equal); Writing – review & editing
(equal).

DATA AVAILABILITY
The wfl and ExPyRe codes are available in the GitHub

repositories at https://github.com/libAtoms/workflow and
https://github.com/libAtoms/ExPyRe. Additionally, documentation
including examples and API are accessible at https://libatoms.
github.io/workflow and https://libatoms.github.io/ExPyRe.

REFERENCES
1M. Amsler, S. Rostami, H. Tahmasbi, E. Khajehpasha, S. Faraji, R. Rasoulkhani,
and S. A. Ghasemi, “Flame: A library of atomistic modeling environments,”
Comput. Phys. Commun. 256, 107415 (2020).
2A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, “Gaussian approximation
potentials: The accuracy of quantum mechanics, without the electrons,” Phys. Rev.
Lett. 104(13), 136403 (2010).
3K. Choudhary, K. F. Garrity, A. C. E. Reid, B. DeCost, J. Biacchi, A. R. H. Hight
Walker, Z. Trautt, J. Hattrick-Simpers, A. G. Kusne, A. Centrone et al., “The joint
automated repository for various integrated simulations (JARVIS) for data-driven
materials design,” npj Comput. Mater. 6(1), 173 (2020).
4S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepulskii, R. H.
Taylor, S. Wang, J. Xue, K. Yang, O. Levy et al., “AFLOW: An automatic frame-
work for high-throughput materials discovery,” Comput. Mater. Sci. 58, 218–226
(2012).
5D. Dragoni, T. D. Daff, G. Csányi, and N. Marzari, “Achieving DFT accuracy
with a machine-learning interatomic potential: Thermomechanics and defects in
bcc ferromagnetic iron,” Phys. Rev. Mater. 2(1), 013808 (2018).
6R. Drautz, “Atomic cluster expansion for accurate and transferable interatomic
potentials,” Phys. Rev. B 99(1), 014104 (2019).
7C. Draxl and M. Scheffler, “The nomad laboratory: From data sharing to artificial
intelligence,” J. Phys.: Mater. 2(3), 036001 (2019).
8G. Dusson, M. Bachmayr, G. Csányi, R. Drautz, S. Etter, C. van der Oord, and
C. Ortner, “Atomic cluster expansion: Completeness, efficiency and stability,”
J. Comput. Phys. 454, 110946 (2022).
9M. Esters, O. Oses, D. Divilov, H. Eckert, R. Friedrich, D. Hicks, M. J. Mehl, F.
Rose, A. Smolyanyuk, C. Arrigo et al., “aflow.org: A web ecosystem of databases,
software and tools,” Comput. Mater. Sci. 216, 111808 (2023).
10M. Gjerding, T. Skovhus, A. Rasmussen, F. Bertoldo, A. H. Larsen, J. Mortensen,
and K. Thygesen, “Atomic simulation recipes: A python framework and library for
automated workflows,” Comput. Mater. Sci. 199, 110731 (2021).

11A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman, P.
Petretto, G.-M. Rignanese, G. Hautier et al., “Fireworks: A dynamic workflow sys-
tem designed for high-throughput applications,” Concurr. Comput.: Pract. Exp.
27(17), 5037–5059 (2015).
12A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D.
Gunter, D. Skinner, G. Ceder et al., “Commentary: The materials project: A mate-
rials genome approach to accelerating materials innovation,” APL Mater. 1(1),
011002 (2013).
13J. Janssen, S. Surendralal, Y. Lysogorskiy, M. Todorova, T. Hickel, R. Drautz,
and J. Neugebauer, “pyiron: An integrated development environment for
computational materials science,” Comput. Mater. Sci. 163, 24–36 (2019).
14K. Scott, E. JamesSaal, B. Meredig, A. Thompson, J. W. Doak, M. Aykol, S. Rühl,
and C. Wolverton, “The open quantum materials database (OQMD): Assessing
the accuracy of DFT formation energies,” npj Comput. Mater. 1(1), 15010 (2015).
15J. Kloppenburg, L. B. Pártay, H. Jónsson, and M. A. Caro, “A general-purpose
machine learning Pt interatomic potential for an accurate description of bulk,
surfaces, and nanoparticles,” J. Chem. Phys. 158(13), 134704 (2023).
16G. Landrum, Rdkit: Open-source cheminformatics, https://www.rdkit.org.
17A. H. Larsen, J. Jørgen Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M.
Dułak, J. Friis, M. N. Groves, B. Hammer, C. Hargus et al., “The atomic simula-
tion environment—A python library for working with atoms,” J. Phys.: Condens.
Matter 29(27), 273002 (2017).
18D. Marchand, A. Jain, A. Glensk, and W. A. Curtin, “Machine learning for met-
allurgy i. a neural-network potential for al-cu,” Phys. Rev. Mater. 4(10), 103601
(2020).
19K. Mathew, J. H. Montoya, A. Faghaninia, S. Dwarakanath, M. Aykol, H. Tang,
I.-h. Chu, T. Smidt, B. Bocklund, M. Horton et al., “Atomate: A high-level inter-
face to generate, execute, and analyze computational materials science workflows,”
Comput. Mater. Sci. 139, 140–152 (2017).
20H. Mirhosseini, H. Tahmasbi, S. R. Kuchana, S. A. Ghasemi, and T. D. Kühne,
“An automated approach for developing neural network interatomic potentials
with flame,” Comput. Mater. Sci. 197, 110567 (2021).
21J. H. Moore, M. R. Bauer, J. Guo, A. Patronov, O. Engkvist, and C. Margreit-
ter, “Icolos: A workflow manager for structure based post-processing of de novo
generated small molecules,” Bioinformatics 38, 4951 (2022).
22J. J. Mortensen, M. Gjerding, and K. S. Thygesen, “MyQueue: Task and
workflow scheduling system,” J. Open Source Software 5(45), 1844 (2020).
23See https://libatoms.github.io/workflow/examples.daisy_chain_mlip_fitting.html
for the full Python Notebook discussed in Sec. III F and illustrated in Fig. 3.
24The comparison is made on the example workflow script, appropriate steps
parallelized over 16 cores with no remote execution, and 10 times more starting
SMILES strings and structures in the training and testing sets.
25S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter,
V. L. Chevrier, K. A. Persson, and G. Ceder, “Python materials genomics (pymat-
gen): A robust, open-source python library for materials analysis,” Comput.
Mater. Sci. 68, 314–319 (2013).
26C. J. Pickard and R. J. Needs, “Ab initio random structure searching,” J. Phys.:
Condens. Matter 23(5), 053201 (2011).
27G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, and B. Kozinsky, “AiiDA:
Automated interactive infrastructure and database for computational science,”
Comput. Mater. Sci. 111, 218–230 (2016).
28C. Poelking, F. A. Faber, and B. Cheng, “BenchML: An extensible pipelining
framework for benchmarking representations of materials and molecules at scale,”
Mach. Learn.: Sci. Technol. 3(4), 040501 (2022).
29M. Poul, L. Huber, E. Bitzek, and J. Neugebauer, “Systematic atomic structure
datasets for machine learning potentials: Application to defects in magnesium,”
Phys. Rev. B 107(10), 104103 (2023).
30A. Rohskopf, C. Sievers, N. Lubbers, C. Cusentino, J. Goff, J. Janssen, M.
McCarthy, D. Montes Oca de Zapiain, S. Nikolov, K. Sargsyan et al., “FitSNAP:
Atomistic machine learning with LAMMPS,” J. Open Source Software 8(84), 5118
(2023).
31J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, “Materials design
and discovery with high-throughput density functional theory: The open quantum
materials database (OQMD),” JOM 65, 1501–1509 (2013).

J. Chem. Phys. 159, 124801 (2023); doi: 10.1063/5.0156845 159, 124801-11

© Author(s) 2023

 31 January 2024 10:19:04

https://pubs.aip.org/aip/jcp
https://github.com/libAtoms/workflow
https://github.com/libAtoms/ExPyRe
https://libatoms.github.io/workflow
https://libatoms.github.io/workflow
https://libatoms.github.io/ExPyRe
https://doi.org/10.1016/j.cpc.2020.107415
https://doi.org/10.1103/physrevlett.104.136403
https://doi.org/10.1103/physrevlett.104.136403
https://doi.org/10.1038/s41524-020-00440-1
https://doi.org/10.1016/j.commatsci.2012.02.005
https://doi.org/10.1103/physrevmaterials.2.013808
https://doi.org/10.1103/physrevb.99.014104
https://doi.org/10.1088/2515-7639/ab13bb
https://doi.org/10.1016/j.jcp.2022.110946
https://doi.org/10.1016/j.commatsci.2022.111808
https://doi.org/10.1016/j.commatsci.2021.110731
https://doi.org/10.1002/cpe.3505
https://doi.org/10.1063/1.4812323
https://doi.org/10.1016/j.commatsci.2018.07.043
https://doi.org/10.1038/npjcompumats.2015.10
https://doi.org/10.1063/5.0143891
https://www.rdkit.org
https://doi.org/10.1088/1361-648x/aa680e
https://doi.org/10.1088/1361-648x/aa680e
https://doi.org/10.1103/physrevmaterials.4.103601
https://doi.org/10.1016/j.commatsci.2017.07.030
https://doi.org/10.1016/j.commatsci.2021.110567
https://doi.org/10.1093/bioinformatics/btac614
https://doi.org/10.21105/joss.01844
https://libatoms.github.io/workflow/examples.daisy_chain_mlip_fitting.html
https://doi.org/10.1016/j.commatsci.2012.10.028
https://doi.org/10.1016/j.commatsci.2012.10.028
https://doi.org/10.1088/0953-8984/23/5/053201
https://doi.org/10.1088/0953-8984/23/5/053201
https://doi.org/10.1016/j.commatsci.2015.09.013
https://doi.org/10.1088/2632-2153/ac4d11
https://doi.org/10.1103/physrevb.107.104103
https://doi.org/10.21105/joss.05118
https://doi.org/10.1007/s11837-013-0755-4

