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We present a new method and implementation to obtain Bayesian posteriors on the amplitude
parameters {h0, cos ι, ψ, ϕ0} of continuous-gravitational waves emitted by known pulsars. This ap-
proach leverages the well-established F-statistic framework and software. We further explore the
benefits of employing a likelihood function that is analytically marginalized over ϕ0, which avoids
signal degeneracy problems in the ψ-ϕ0 subspace. The method is tested on simulated signals,
hardware injections in Advanced-LIGO detector data, and by performing percentile-percentile (PP)
self-consistency tests of the posteriors via Monte-Carlo simulations. We apply our methodology
to PSR J1526-2744, a recently discovered millisecond pulsar. We find no evidence for a signal and
obtain a Bayesian upper limit h95%

0 on the gravitational-wave amplitude of approximately 7×10−27,
consistent with a previous frequentist upper limit.

I. INTRODUCTION

Continuous gravitational waves (CWs) are long-lasting
periodic gravitational wave signals the detection of which
is one of the goals of gravitational wave astronomy.

The simplest way to produce continuous gravitational
waves that could be detected by the current generation
of detectors is through a varying mass quadrupole mo-
ment in a fast-rotating neutron star. In the absence
of precession, the signal is expected at twice the rota-
tion frequency and with twice the rotational spindown
of the star. The position and orientation of the neutron
star influence how the gravitational wave couples to the
detector, and the position also determines the observed
gravitational-wave phase, through the Doppler effect. All
in all the signal is described by p + 4 parameters: the
p so-called phase evolution parameters (frequency and
its first k derivatives, sky position and binary orbital
parameters if applicable) and the amplitude parameters
{h0, cos ι, ψ, ϕ0} – intrinsic amplitude, orientation, polar-
ization angle and initial phase, respectively.

There are three broad classes of CW searches, depend-
ing on the amount of knowledge available on the source.
All-sky searches [1–6] assume no information about the
sources and search over a broad signal parameter space.
Directed searches [7–13] focus on objects with known
sky position but have limited or no knowledge on their
spin parameters. Targeted searches [14–17] use electro-
magnetic observations of pulsars to accurately infer the
gravitational-wave phase-evolution parameters.

Owing to the massive reduction in parameter-space
size compared to wide-parameter-space searches, a tar-
geted search using a fully-coherent combination of all
the data, leading to the maximum possible sensitivity,
is possible [14, 16, 18, 19]. Narrow-band searches around
expected signal parameters can typically also still be per-
formed at nearly maximum sensitivity [16, 18].

Since the presence of a neutron star is assured and

its rotational frequency and spindown are known, a
null measurement is directly informative about the
gravitational-wave emission of the source. Targeted
searches of known sources are, therefore, a crucial class
of CW searches.
Previously, only a single Bayesian method and imple-

mentation existed for amplitude-parameter estimation on
known pulsars [20], often referred to as the Time Domain
method or Heterodyne method. This method has been
successfully used for targeted searches for a long time
[14, 16, 21–26].
In this paper, we introduce a new expression and im-

plementation of the CW signal likelihood function, based
on the well-established F-statistic framework. Combin-
ing this likelihood with standard stochastic (MCMC and
nested) sampling methods allows us to perform Bayesian
parameter estimation. In principle this approach can be
used for any subspace of the full CW parameter space,
but in this first study we focus on targeted searches,
where all phase-evolution parameters of the source are
assumed to be known, and the posterior is computed over
the unknown amplitude parameters only (i.e., amplitude
h0 and orientation angles {ι, ψ, ϕ0} of the source). As an
incidental benefit, this avoids convergence difficulties for
the samplers that can arise if the parameter space is too
large, e.g. see [27].
The paper is organised as follows. In Sec. II, we de-

scribe the continuous-gravitational-wave signal model. In
Sec. III, we derive the F-statistic-based likelihood func-
tion, describe its software implementation and discuss
two tests to validate the method. Section IV intro-
duces and tests a likelihood function that is analytically
marginalized over the initial-phase parameter ϕ0. Sec-
tion V illustrates the application of the method to the
hardware injections in Advanced LIGO data. In Sec. VI,
we apply this method to perform parameter estimation
on a putative CW signal from PSR J1526-2744 and ob-
tain a Bayesian upper limit on h0 from this posterior.
Section VII summarizes the method and the results and
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discusses possible future work.

II. SIGNAL MODEL

We assume that the signal is a nearly monochromatic
CW of the form described in Sec. II of [28]. The signal
strain in the detector has the form

s(t) = F+(t;α, δ, ψ)h+(t) + F×(t;α, δ, ψ)h×(t), (1)

where “+” and “×” indicate the two gravitational-wave
polarizations, and F+(t;α, δ, ψ) and F×(t;α, δ, ψ) are the
detector antenna-pattern functions. These depend on the
relative orientation between the detector and the source
as a function of time t, on the sky position (α, δ) of the
source and the polarization angle ψ. The two waveforms
h+(t) and h×(t) are given by

h+(t) = A+ cosϕ(t),

h×(t) = A× sinϕ(t),
(2)

with the two polarizations amplitudes A+,× expressible
as

A+ =
1

2
h0(1 + cos2 ι), A× = h0 cos ι, (3)

in terms of the overall amplitude h0 and the inclination
angle ι between the neutron-star angular momentum and
the line of sight. The signal phase ϕ(t) in Eq. 2 in the
detector frame at time t depends on the signal frequency
f and its derivatives f (k) (at some reference time), as well
as the source sky position, and — if the neutron star is
in a binary system — the binary orbital parameters b.
As already anticipated in the previous Section, these are
collectively referred to as the phase-evolution parameters
λ ≡ {α, δ, f, ḟ , . . . , b}.

As shown in [28] the signal amplitude parameters
{h0, cos ι, ψ, ϕ0} can be re-parametrized into a set of four
amplitude coordinates Aµ, defined as

A1 ≡ A+ cosϕ0 cos 2ψ −A× sinϕ0 sin 2ψ ,

A2 ≡ A+ cosϕ0 sin 2ψ +A× sinϕ0 cos 2ψ ,

A3 ≡−A+ sinϕ0 cos 2ψ −A× cosϕ0 sin 2ψ ,

A4 ≡−A+ sinϕ0 sin 2ψ +A× cosϕ0 cos 2ψ ,

(4)

such that the signal sX(t) of Eq. (1) at a detector X can
now be written in the form

sX(t;A, λ) =
4∑

µ=1

AµhXµ (t;λ), (5)

where the detector-dependent basis functions hXµ (t;λ)
are given by

hX1 (t) ≡ aX(t) cosϕX(t),

hX2 (t) ≡ bX(t) cosϕX(t),

hX3 (t) ≡ aX(t) sinϕX(t),

hX4 (t) ≡ bX(t) sinϕX(t),

(6)

in terms of the signal phase ϕX(t) at detector X and
antenna-pattern functions aX(t) and bX(t), for which ex-
plicit expressions can be found, again, in [28].

III. THE CW LIKELIHOOD FUNCTION

A. The F-statistic formalism

The F-statistic is a partially maximized [28] (or
marginalized [29]) likelihood ratio between two hypothe-
ses, namely a signal (HS) and a noise hypothesis (HN).
The signal hypothesis HS states that the strain data
xX(t) in detector X contains a signal sX(t) described
by Eq. (5) in addition to (Gaussian) noise nX(t), namely

xX(t) = nX(t) + sX(t;A, λ). (7)

The noise hypothesis HN, on the other hand, assumes
that the data contains only (Gaussian) noise nX(t), i.e.,
sX = 0.

For ease of notation we define a multi-detector scalar
product [30, 31] between time-series xX(t) and yX(t) as

(x|y) ≡ 2

NDet∑
X

S−1
X

∫ T

0

xX(t) yX(t) dt, (8)

where NDet is the number of detectors and SX is the
(single-sided) noise power spectral density (PSD) of de-
tector X around the narrow frequency band of inter-
est. For simplicity this expression assumes fully sta-
tionary noise, but it can be easily generalized [31] to
the weaker assumption of stationarity over short time
stretches TSFT, which is used in the actual implementa-
tion.

With this definition of scalar product, it can be shown
[32] that the likelihood function for the Gaussian-noise
hypothesis HN can be written as

P (x|HN) = κ e−
1
2 (x|x) , (9)

where κ is a normalization factor. From Eq. (7) we can
therefore also express the likelihood for the signal hy-
pothesis HS for a particular signal s(t;A, λ) as

P (x|HS,A, λ) = κ e−
1
2 (x−s|x−s) . (10)

For the detection problem of deciding whether the signal-
or noise-hypothesis is favored by the data x, both the
frequentist as well as the Bayesian framework require ex-
pressing the likelihood ratio L between the two hypothe-
ses, namely

L(x;A, λ) ≡ P (x|HS,A, λ)
P (x|HN)

= e(x|s)−
1
2 (s|s) , (11)

and substituting Eq. (5) for the signal s we can further
write this as

logL(x;A, λ) = Aµxµ − 1

2
AµMµνAν , (12)
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with implicit summation over repeated amplitude indices
µ, ν = 1 . . . 4, and the definitions

xµ(λ) ≡ (x|hµ) , and Mµν(λ) ≡ (hµ|hν) . (13)

The four numbers xµ are the “matched filter” scalar
products of the data x with the four CW basis func-
tions hµ of Eq. (6). The symmetric 4x4 matrix Mµν , of-
ten referred to as the antenna-pattern matrix, quantifies
the response of the detector network for a particular sky
direction. For ground-based detectors (using the long-
wavelength approximation) the antenna-pattern matrix
can be found more explicitly [28] as

Mµν = γ

A C 0 0
C B 0 0
0 0 A C
0 0 C B

 , (14)

in terms of the coefficients

A ≡ ⟨a2⟩, B ≡ ⟨b2⟩, C ≡ ⟨a∗b⟩, (15)

where ⟨.⟩ indicates (noise-weighted) time-averaging. The
prefactor γ is

γ ≡ S−1 Tdata, (16)

which characterizes the amount and noise-level of the
data, in terms of the overall noise floor S, given by the
harmonic mean

S−1 ≡ 1

NDet

∑
X

S−1
X , (17)

and the total amount of data from all detectors, Tdata.
We discuss some of the statistical properties of the log-
likelihood-ratio in Appendix A.

In practice the implementation uses detector strain
data in the form of Short Fourier Transforms (SFTs)
over time spans TSFT, and stationarity of the noise is
only assumed over these short spans, see [31]. For a total
number NSFT of input SFTs used from all detectors, the
total amount of data is Tdata ≡ NSFT TSFT.

As first shown in [28], using the reparametrization of
Eq. (5), the log-likelihood ratio Eq. (12) is a quadratic
function over the Aµ and can therefore be maximized
analytically:

F(x, λ) ≡ max
A

logL(x;A, λ) = 1

2
xµMµνxν , (18)

where we defined Mµν as the inverse of the antenna-
pattern matrix Mµν of Eq. (14). The same expres-
sion can also be obtained as a partial Bayes factor by
marginalizing the likelihood-ratio over Aµ for a specific
(albeit unphysical) choice of priors on the A, as shown
in [29].

Following the standard F-statistic notation of [28], we
introduce the two complex quantities

Fa(λ) ≡
1√
2γ

(x1 − i x3) ,

Fb(λ) ≡
1√
2γ

(x2 − i x4) ,

(19)

and combining this with the explicit antenna-pattern ma-
trix of Eq. (14), we can obtain the F-statistic in the form

2F =
2

D

[
B |Fa|2 +A |Fb|2 − 2C ℜ (F ∗

a Fb)
]
, (20)

where D ≡ AB − C2 is the determinant of the nonzero
2x2 block in Mµν , and ℜ denotes the real part.

B. F-statistic-based likelihood

The F-statistic implementation in LALSuite [33] pro-
ceeds by first computing the two complex numbers
Fa(λ), Fb(λ) and the antenna-pattern matrix coefficients
A,B,C, and then combining them via Eq. (20). However,
we see from Eq. (12) that these are the same ingredients
needed to express the full likelihood ratio. Specifically,
we can express the two terms in the likelihood as

Aµxµ(λ) =
√
2γ
(
A1Fℜ

a +A2Fℜ
b −A3Fℑ

a −A4Fℑ
b

)
,

(21)
using real ℜ and imaginary ℑ parts of the Fa, Fb, and

AµMµν(λ)Aν = h20γ (α1A+ α2B + 2α3 C)

≡ ρ2(A, λ), (22)

which defines the signal power ρ2, also known as the
squared (perfect-match) signal-to-noise ratio (SNR), and
with amplitude angle factors αi(cos ι, ψ)

α1 ≡ 1

4
(1 + cos2ι)2 cos2 2ψ + cos2ι sin2 2ψ ,

α2 ≡ 1

4
(1 + cos2ι)2 sin2 2ψ + cos2ι cos2 2ψ ,

α3 ≡ 1

4
(1− cos2ι)2 sin 2ψ cos 2ψ .

(23)

We can use Eq. (11) to express the signal likelihood func-
tion as

P (x|HS,A, λ) = L(x;A, λ)P (x|HN) , (24)

where L can be computed from the byproducts of the F-
statistic calculation, namely Eqs. (21) and (22), and the
noise likelihood does not depend on any signal parame-
ters.

C. Bayesian parameter-estimation framework

1. Likelihood

In a targeted CW search, the phase-evolution param-
eters λ are assumed to be known from electromagnetic
observations, while the amplitude parameters are gener-
ally unknown. Using Bayes’ theorem, the posterior for
the unknown amplitude parameters A is

P (A|x,HS, λ) = P (A|HS, λ)
P (x|HS,A, λ)
P (x|HS, λ)

, (25)
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where P (A|HS, λ) is the prior on the amplitude param-
eters, P (x|HS,A, λ) is the signal likelihood derived in
Sec. III B, and P (x|HS, λ) is the amplitude-marginalized
signal likelihood. Using Eq. (24) and collecting all A-
independent factors into a proportionality constant k,
this yields

P (A|x,HS, λ) = kL(x;A, λ)P (A|HS, λ) , (26)

where k can be determined via the normalization condi-
tion

∫
P (A|...) d4A = 1.

2. Priors

Typically we have weak or no prior information on the
intrinsic amplitude of the signal h0 and the angle param-
eters {ι, ψ, ϕ0} of the source.

If there are no observational constraints on the rotation
axis of the pulsar, we assume isotropic “ignorance” priors
on the angle parameters, following standard choices that
we recap below [26, 29, 34]:

• The initial phase ϕ0 corresponds to the pulsar ro-
tation angle at a reference time and the ignorance
prior is uniform over the range ϕ0 ∈ [0, 2π).

• The ignorance prior for the direction of the rotation
axis is also uniform ∈ [0, 2π) and it translates to
uniform priors in cos ι ∈ [−1, 1] and ψ ∈ [0, 2π).

• From Eq. (4) we see that ψ → ψ + π leaves the
Aµ unchanged, and further that ψ → ψ+ π/2 flips
their sign, which can be compensated by ϕ0 → ϕ0+
π. We can therefore choose a gauge where ψ ∈
[−π/4, π/4) and ϕ0 ∈ [0, 2π).

When pulsar observations do constrain these priors, they
can be modified appropriately.

When it comes to h0, the choice of prior range
[hlow, hhigh] and probability distribution is less straight-
forward and ultimately depends on the specific case being
considered.

When targeting a known pulsar, one could inform the
hhigh from the observed pulsar parameters, namely the
spindown upper limit hsd0 of Eq. (34), which indicates
the maximal possible amplitude of a CW signal if all
the rotational energy lost by the pulsar was converted
into gravitational waves. One could, therefore, require
hhigh ≤ hsd0 .
If a previous targeted search has established an h0 up-

per limit hUL
0 for the pulsar, then, under the assumption

that the signal amplitude does not change over time, one
could require hhigh < hUL

0 .
Another possibility is to use physical estimates on the

possible range of ellipticities of neutron stars, which is a
measure of the non-axisymmetric deformation defined as

ε =
|Ixx − Iyy|

Izz
, (27)

where Iaa denotes the moment of inertia of the object
along axis a. One can then derive an h0 prior range from
the range of possible ε using (e.g., see [35])

h0(ε) =
4π2GεIzzf

2

c4d
, (28)

where f is the CW signal frequency and d is the distance
to the pulsar. The maximum deformation εmax that the
neutron star crust can sustain before breaking also pro-
vides an indication of the largest possible gravitational
wave amplitude.
Putting all these considerations together one could

argue that hhigh should be the smallest among (i) the
spindown-limit hsd0 , (ii) the amplitude corresponding to
the largest sustainable deformation and (iii) the largest
amplitude compatible with previous observations.
Quadrupolar deformations can also be sourced by an

internal magnetic field B, and are predicted to be very
small. Usually, the smallest signal amplitudes correspond
to this sort of mechanism, so one could place hlow ∼
h0(B). We refer the reader to [36] and references therein
for further discussion.
When a strong signal is present, the prior has minimal

influence on the resulting posterior, because the likeli-
hood will be strongly peaked. In the realm of a weak
or non-detectable signal, however, a uniform prior on h0
leads to a more “conservative” (i.e., higher) upper limit
compared to a log-uniform distribution, as discussed in
[37]. A prior distribution uniform in the logarithm, on
the other hand, ensures a uniform sampling when our ig-
norance spans several orders of magnitude. To alleviate
the concern that an upper limit based on log-uniform h0
priors is range-dependent, [37] showed that such depen-
dence is, in fact, weak.

3. Software

We use the “Demod” [38] implementation of the F-
statistic within the LALSuite [33] software library for
the F{a,b} calculation. This uses Fourier-transforms of
the data – the SFTs – computed over relatively short
periods of time, such that the instantaneous signal fre-
quency does not move during that time period by more
than a Fourier bin. The method involves the usage of the
Dirichlet kernel [31], which peaks at the frequency (k∗)
of the signal on the SFT data. For efficiency, the kernel
is approximated by truncating it to a few bins (∆k) on
each side of k∗ for computational efficiency. We use a ∆k
of 8 bins unless stated otherwise.
The signal likelihood function expressed in Sec. III B

is used with a stochastic sampler to compute the likeli-
hood in the {h0, cos ι, ψ, ϕ0} parameter space weighted
by the prior. See [39] for a discussion on stochastic sam-
pling. For this, we use the Python library BILBY [40],
specifically the class core.sampler, to interface the differ-
ent available Python samplers with our likelihood func-
tion. Since the latter is implemented in C99, we use
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the SWIGLAL wrapper of [41] to pass it to BILBY in
Python.

4. Timing

On an Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
processor, the median time for a single computation
of the likelihood function is ∼ O(µs) with the ϕ0-
marginalized likelihood of Sec. IV needing around twice
as much time than the full-likelihood. This processor is
slower than the one used by [20], where it was reported
that their standard likelihood takes 81 µs to be com-
puted.

The full run-time of the pipeline depends on the size
of the prior space to probe and the number of CPU
cores that can be used in parallel. For the known-pulsar
search reported in Sec. VI, with 32-core parallelization,
the search in the 4-dimensional parameter space took 154
seconds whereas the search in the 3-dimensional space,
(using the ϕ0-marginalized likelihood of Sec. IV) con-
cluded in 124 seconds. Note that we re-used the narrow-
banded SFTs already prepared for the templated search
that was reported in [18], so the cost of data-preparation
steps prior to the actual search is not included here.

D. Tests

1. Recovery of a simulated signal

The first test of the method is to check if it correctly
recovers the parameters of a simulated signal. We test
in the absence of noise to avoid the signal peak in the
posterior getting shifted from the injection point.

We simulate a one-year-long signal of h0 ≈ 4 × 10−27

in the H1 and L1 detectors and compute the likelihood
assuming a noise floor of 1× 10−25/

√
Hz, corresponding

to an SNR of ρ ≈ 100. The phase parameters of the
signal are given in Table I. The year-long data is con-
verted into SFTs of 10 s in this test. The nested sampler
DYNESTY [42] is used with options nlive = 5000 and
dlogz = 0.01. The priors for {cos ι, ψ, ϕ0} are as de-
scribed in Sec. III C 2. For this test, we choose a simple
uniform h0 prior in the range [10−28, 7.1×10−27] centered
on the h0 of the injected signal.

Figure 1 shows the posterior distributions recovered
by our pipeline. The true amplitude parameters of the
injected signal, indicated by the orange lines, are accu-
rately recovered by the method at the maximum of the
posterior, as is expected in the absence of noise.

As discussed in Sec. III C 2, the signal is degenerate
under the transformation ψ → ψ + π/2, ϕ0 → ϕ0 + π.
This results in a bi-modal posterior distribution in the
ψ − ϕ0 sub-space when the ψ value of the signal is close
to the edges of its [−π/4, π/4) range. A nested sampler
like DYNESTY tends to handle multi-modal likelihoods
better than an MCMC sampler (see for eg. [43, 44]). In

TABLE I. Settings of injection and recovery tests in Figs. 1,
2, 5 and 6: SFT timebase, number of Dirichlet-kernel bins,
sampler options, and phase-evolution parameters of a fake
signal. True values of amplitude parameters are shown in the
figures as orange lines.

Parameter Value

TSFT (seconds) 10

∆k (bins) 8

nlive 5000

dlogz 0.01

Start of fake signal (GPS) 1234567890.0

Reference epoch (GPS) 1242451890.0

Right Ascension, α (rad) 0.26

Declination, δ (rad) 0.30

GW Frequency, f (Hz) 100.0

GW Freq. Derivative, ḟ (Hz s−1) −1× 10−15

FIG. 1. Corner plot showing the recovery of a simulated sig-
nal (ρ ≈ 100) without noise. The true values of the signal
amplitude parameters are shown in orange. The blue vertical
lines show the 16th and 84th percentile of the distribution,
and together they bracket a 68% credible interval in the high
probability-density region. The title for each 1-d posterior
plot shows the median value and the 1-σ error of the parame-
ter. The 2-d iso-probability levels contain ≈ 39%, ≈ 87% and
≈ 99% of the posterior area corresponding to the 1-,2- and
3-σ levels of a two-dimensional Gaussian distribution.

Fig. 2, the simulated signal of Table I but with ψ = −π/4
is recovered using DYNESTY, with two modes in the pos-
terior split by π/2 radians in ψ and by π radians in ϕ0. In
Fig. 3, the same signal is searched using BilbyMCMC [45]
with the default parameters. It recovers only one of the
modes in the ψ − ϕ0 sub-space. Owing to its better per-
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FIG. 2. The fake-signal of Fig. 1 with the modification of ψ =
−π/4 as recovered by the DYNESTY sampler. The multi-
modal posteriors in ψ − ϕ0 parameter space are recovered by
this nested-sampler.

formance in multi-modal parameter spaces, DYNESTY
is chosen as the default sampler for the rest of this paper.

2. Percentile-percentile (PP) plots

A second test is the percentile-percentile plot, which
checks whether the Bayesian credible intervals on the
posterior distributions of parameters, as returned by
the method, correspond to frequentist confidence inter-
vals when sampling from the priors. To do this, we
construct 10 000 fake signals whose amplitude parame-
ters are drawn randomly from their priors and whose
phase-evolution parameters are fixed to the values in
Table II. The h0-prior is log-uniform in the range [1 ×
10−28, 4 × 10−26]. We embed the signals in simulated
Gaussian noise contiguously spanning the three observa-
tion runs from the two Advanced LIGO detectors (hence-

forth O1O2O3) with a noise floor of 9×10−24/
√
Hz. The

SFT time-baseline is TSFT = 1800 s. The highest SNR
of a simulated signal in this test is ρ ≈ 50. We use
DYNESTY with nlive = 500 and dlogz = 0.1, a less
stringent convergence criterion than used in the previous
section to reduce the computational cost of this test.

Ideally, x% of the total number of injections should
fall in the x% credible interval. This corresponds to a
uniform distribution of the measured credible intervals.
We test that this is the case with a Kolmogorov-Smirnov
(KS) test, quantifying the conformity of the two distribu-

FIG. 3. The fake-signal of Fig. 1 with the modification of
ψ = −π/4 as recovered by the BilbyMCMC sampler, with
nsamples = 1000 under its default settings. The sampler
recovers only one mode of the posterior in ψ − ϕ0 space.

TABLE II. Settings of PP plot tests in Figs. 4, 7 and 14:
Timespan of data (Tspan), Timebase of SFTs (TSFT), number
of bins in Dirichlet kernel (∆k), sampler options, and phase-
evolution parameters of fake signals.

Parameter Value

Tspan (seconds) 142739988.0

TSFT (seconds) 1800

∆k (bins) 8

Sampler dynesty

nlive 500

dlogz 0.1

Start of fake signals (GPS) 1126623625.0

Reference epoch (GPS) 1081123148.8

Right Ascension, α (rad) 1.13

Declination, δ (rad) 1.16

GW Frequency, f (Hz) 687.24

GW Freq. Derivative, ḟ (Hz s−1) −3.2× 10−15

tions with a p-value (higher p-values imply better agree-
ment). The results are shown in Fig. 4.

Although the KS p-value shown in Fig. 4 for h0 is quite
small and indicates some level of systematic bias (which
we describe in Appendix B), we argue that in practice
this does not pose a critical issue. As can be seen in the
figure, although the h0 KS p-value is small, the absolute
error in the percentage of recovered signals is actually
quite small. For example, 89.2% of the signals fall within
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FIG. 4. PP plot with maximum ρ ≈ 50. We sample 10 000
injections from the prior range h0 ∈ [10−28, 4 × 10−26] and
the full ranges as mentioned in Sec. III C 2 for the other am-
plitude parameters. The legend shows the per-parameter KS
p-values.

the 90% credible interval for h0.

IV. ϕ0-MARGINALIZED LIKELIHOOD

A. Expression for the marginalized likelihood Lϕ0

As shown in [46] (Sec. 5.4), the likelihood ratio L of
Eq. (24) can be analytically marginalized over ϕ0.

This has several advantages for parameter estimation:
it avoids the bi-modality of posteriors in ψ − ϕ0 dis-
cussed in the previous section, and it leaves us with
fewer dimensions to explore numerically. For example,
for the purpose of calculating h0 upper limits, this tends
to yield better numerical robustness and accuracy. Ad-
ditionally, the ϕ0-marginalized likelihood provides a con-
sistency check for the results from full-likelihood.

From Eq. (4) we can explicitly factor out the ϕ0-
dependence in the Aµxµ term that appears in the
likelihood-ratio Eq. (24):

Aµxµ = qs sinϕ0 + qc cosϕ0

= q cos(ϕ0 − φ0), (29)

with

qs ≡ − sin 2ψ(x1A× + x4A+) + cos 2ψ(x2A× − x3A+),

qc ≡ cos 2ψ(x1A+ + x4A×) + sin 2ψ(x2A+ − x3A×),
(30)

and tanφ0 ≡ qs/qc, and

q2(x;h0, cos ι, ψ) ≡ q2s + q2c

= 2h20γ
[
α1|Fa|2 + α2|Fb|2 + 2α3ℜ (F ∗

a Fb)
]
.

(31)

We can see from Eq. (22) that the signal power ρ2 does
not depend on ϕ0, and therefore writing the likelihood
ratio in the form

L(x;A) = e−
1
2ρ

2

eq cos(ϕ0−φ0) , (32)

makes the ϕ0 dependence fully explicit. Using the uni-
form ϕ0-prior of Sec. III C 2, we can now obtain the ϕ0-

marginalized likelihood ratio Lϕ0 in the form

Lϕ0(x;h0, cos ι, ψ) ≡
∫ 2π

0

L(x;A)P (ϕ0|HS) dϕ0

=
1

2π

∫ 2π

0

L(x;A) dϕ0

=
1

2π
e−

1
2ρ

2

∫ 2π

0

eq cos(ϕ0−φ0) dϕ0

= e−
1
2ρ

2

I0(q) , (33)

where we used the Jacobi-Anger expansion [47] to see

that
∫ 2π

0
eq cosϕ dϕ = 2π I0(q), in terms of the modified

Bessel function of the first kind I0.

B. Tests

1. Recovery of a simulated signal

We test again the recovery of the simulated signal
(without noise) of Sec. IIID 1, this time using the ϕ0-

marginalized likelihood Lϕ0 . The resulting posterior dis-
tributions on {h0, cos ι, ψ} are shown in blue in Fig. 5,
indicating that these parameters have again been accu-
rately recovered by the method, as they coincide with the
maximum of the posterior.
Additionally, the posteriors on {h0, cos ι, ψ} computed

by the 4-dimensional likelihood of Sec. III and numeri-
cally marginalized over ϕ0, and by the 3-dimensional (ϕ0-
marginalized) likelihood should be equivalent. To show
that this is indeed the case in the noiseless scenario, the
posteriors from the full-likelihood are overlaid in purple
on the posteriors from the ϕ0-marginalized likelihood in
Fig. 5.
To test that this is true also when noise is present, we

search for the simulated signal of Sec. IIID 1 with Gaus-
sian noise (with a noise floor of 10−25/

√
Hz) using the

two likelihood functions. A comparison of the resulting
posteriors is shown in Fig. 6. The ϕ0-marginalized likeli-
hood (in blue) and the full-likelihood (in purple) produce
posteriors that are consistent with each other. The peaks
of both sets of posteriors deviate from the true values, as
is expected in the presence of noise.

2. PP Plots

Next, we produce PP plots for the ϕ0-marginalized
likelihood, as was done for the full-likelihood in
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FIG. 5. Blue: The posterior distributions on {h0, cos ι, ψ} in
the absence of noise for the signal of Sec. IIID 1, analyzed
using the ϕ0-marginalized likelihood. See caption of Fig 1 for
descripion. Purple: The posteriors from the full-likelihood
(same as in Fig. 1) are overlaid on the posteriors from the ϕ0-
marginalized likelihood to show that the analytical marginal-
ization (blue) and the numerical marginalization over ϕ0 agree
with each other. The true injection parameters are shown in
orange.

Sec. IIID 2. We simulate signals with amplitudes from
the range h0 ∈ [10−28, 4× 10−26] in contiguous O1O2O3
data, with a maximum signal SNR of ρ ≈ 50, with
the same set-up of table II. The results with the per-
parameter KS-test p-values are shown in Fig. 7. The KS
p-values are of similar magnitude to the ones in Fig. 4.

However, a PP test with (unrealistically) high SNR
signals in the range of up to ρ ≈ 1000 reveals an increas-
ing bias in the h0 posterior, indicating a current lim-
itation of the method, affecting both the full as well as
the marginalized-ϕ0 likelihoods. We discuss this problem
and its underlying causes in Appendix B. However, such
high signal strengths are unrealistic in the present-day
scenario of ground-based continuous-gravitational-wave
searches, and solving this issue is beyond the scope of
this paper.

V. RECOVERY OF HARDWARE INJECTIONS

We apply the parameter-estimation method on the CW
hardware injections present in the data of the Advanced
LIGO detectors. Namely, we search for 17 of the 18 hard-

FIG. 6. Recovery of the simulated signal of Sec. IIID 1 by the
ϕ0-marginalized likelihood (in blue) and the full-likelihood (in
purple) in the presence of noise. The true parameters of the
signal are shown in orange. The posteriors peak away from
these true values because of the presence of noise.

FIG. 7. PP plot using the ϕ0-marginalized likelihood with
maximum ρ ≈ 50.

ware injections1 added in O3a data. We use both the
full-likelihood of Sec. III as well as the ϕ0-marginalized
likelihood of Sec. IV, but for simplicity we present here

1 “Pulsar 15” at 2991 Hz is omitted for simplicity as there were no
SFTs readily available at that high frequency.
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FIG. 8. Posterior probability distribution for the amplitude
parameters of the hardware injection “Pulsar 3” in O3a data
using the ϕ0-marginalized likelihood. The true values of the
hardware injection are marked in orange. The dashed lines
indicate the 5% and 95% quantiles of the distribution.

only the results from the latter. The phase-evolution pa-
rameters of each search are fixed at those of the respective
hardware injection. We use isotropic priors on cos ι and ψ
as discussed in Sec. III C 2, and a log-uniform amplitude
prior in the range h0 ∈ [10−28, 10−23], which includes the
true h0 of all hardware injections. The DYNESTY nested
sampler is used with nlive = 5000 and dlogz = 0.01.

Note that here we cannot perform a PP-style consis-
tency test of how many injections are found within which
percentiles because the injections were not drawn from a
prior that we know. But given the small number of injec-
tions, we would not expect to find signals in the tails of
the posteriors. Table III shows for the targeted hardware
injections, the number of standard deviations (σs) in the
distance between the maximum posterior point and the
true value of each of {h0, cos ι, ψ} parameters, along with
the SNR of the maximum posterior point. In the case
of hardware injections, it can be difficult to identify the
cause of larger deviations, given there can be inaccura-
cies in the actuation forces that generated the hardware
injections, as well as non-Gaussian noise artefacts in the
data that can affect the results. Therefore we also employ
lalapps knope of [20] to recover the hardware injections
and cross-check against our results.

We show the posterior distributions on the amplitude
parameters of two hardware injections, “Pulsar” 3 and 6
in Figs. 8 and 9 respectively.

Below we discuss the hardware injections for which

FIG. 9. Posteriors for the amplitude parameters of the hard-
ware injection “Pulsar 6” in O3a data. See Fig. 8 for details.

the recovered posteriors are far away from the true
{h0, cos ι, ψ} values or are non-informative, ordered by
how certain we are of what caused the subpar recovery:
Pulsar 5 lies at 52.8 Hz where power spectral density
(PSD) plots indicate the presence of non-Gaussian noise
artefacts that degrade the recovery.
Pulsars 14,4 and 1 at 1991.1, 1390.8, 848.9 Hz respec-
tively, are recovered in H1 and L1 separately within 3σ
credible region. The large ∆s in the multi-detector search
is likely due to an error in the actuation function used for
L1 hardware injections, that impairs coherent H1-L1 in-
jection recovery, especially for high-frequency injections
(see caption of Table IV in [48]). A discrepancy between
the ϕ0 values in H1 and L1 is seen by both our method
(using full-likelihood) and by lalapps knope. Our poste-
riors on the h0 in single and multi-detector searches for
these injections are consistent with those from knope.

VI. FIRST APPLICATION TO SEARCH FOR
EMISSION FROM PSR J1526-2744

As a first “real-world” application of the method, we
apply it to PSR J1526-2744, which was discovered in a
joint survey by TRAPUM and FERMI-LAT [18]. Among
the nine pulsars discovered in the survey, PSR J1526-
2744 is the only pulsar whose timing could be solved,
and the solution is derived from 13 years of FERMI-LAT
data that overlaps with the Advanced LIGO observation
runs.
The pulsar parameters are given in Table IV. PSR
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TABLE III. Recovery of hardware injections. For every “Pul-
sar” we indicate the recovered SNR ρ of the injection and the
distance (∆) between the maximum posterior point and the
true value of the parameters h0, cos ι, ψ, in terms of standard
deviations (σs) of their 1-d posterior distributions.

Pulsar ID SNR (ρ) ∆h0/σh0 ∆cos ι/σcos ι ∆ψ/σψ

0 29.9 1.35 1.42 2.83

1 102.1 2.48 7.25 1.70

2 32.6 2.67 2.57 0.93

3 24.8 1.89 0.76 2.35

4 97.3 15.49 9.28 1.70

5 74.3 3.10 1.50 0.89

6 86.1 1.30 1.01 1.51

7 31.1 1.90 2.77 1.76

8 26.0 0.87 1.47 0.95

9 32.9 0.15 0.38 0.15

10 55.6 2.48 2.65 2.40

11 17.2 1.77 0.41 1.21

12 18.4 1.08 1.00 0.86

13 0.4 0.25 0.13 0.24

14 84.8 29.99 12.05 2.88

16 68.2 0.28 0.11 0.83

17 21.1 0.49 0.19 0.33

TABLE IV. Gravitational wave parameters of pulsar
PSR J1526−2744. The uncertainty on the last digit is written
inside the parenthesis, as in Table 3 of [18].

Parameter Value

Reference epoch (MJD) 59355.47

Right Ascension, α 15h26m45.s103(2)

Declination, δ −27◦44′5.′′91(8)

GW Frequency, f (Hz) 803.4892041950(5)

GW Freq. Derivative, ḟ (Hz s−1) −1.142(2)× 10−15

Orbital period, P (days) 0.2028108285(7)

Projected semi-major axis, ap (lt-s) 0.22410(3)

Epoch of ascending node, tasc (MJD) 59303.20598(1)

J1526-2744 is a binary pulsar at a distance d of 1.3 kpc
with spindown upper limit of

hsd0 =

(
5

2

GIzz|ν̇|
c3d2ν

)1/2

≈ 7× 10−28, (34)

where ν and ν̇ are the pulsar’s rotational frequency and
spindown, and Izz is its principal moment of inertia as-
sumed to be the canonical value of 1038 kg m2.

In [18] we reported single-template and narrow-band
continuous wave search results and frequentist upper lim-
its for the emission from the pulsar. Here we describe the
Bayesian targeted search for continuous waves from PSR
J1526-2744 using our new parameter-estimation pipeline.
We assume emission at twice the spin frequency of the
pulsar. This is the only mode of emission if the deformed

FIG. 10. Bayesian posterior distribution on the amplitude
parameters of the continuous-gravitational-wave signal from
PSR J1526-2744 using the full-likelihood function of Sec. III.
The vertical blue lines show the 5% and 95% quantiles of
the distribution, bracketing a 90% credible interval for the
parameter. The title for each 1-d posterior plot shows the
median value and the 1-σ error of the parameter.

neutron star rotates about one of its principal axis (tri-
axial aligned model of [49]) and one of the two dominant
modes in the more general triaxial non-aligned case of
[49].
We use a coherent combination of data from the O1,

O2, and O3 observation runs [50] of the Advanced LIGO
detectors, gated to remove loud and short glitches in the
time domain [51], cleaned to remove narrow lines in the
frequency domain, and Fourier-transformed with a time-
base of TSFT = 60 s.
The phase-evolution parameters of the search (includ-

ing the binary orbital parameters) are fixed at the val-
ues prescribed by the timing solution from [18], see Ta-
ble IV. We use a log-uniform distribution in amplitude
in the range h0 ∈ [10−28, 4 × 10−22], based on an el-
lipticity range of ε ∈ [1.9 × 10−10, 7.6 × 10−4] for this
pulsar, probing below the expected minimum ellipticity
of millisecond pulsars [52] and up to (slightly above) the
maximum neutron star ellipticity according to [53].
We perform two searches, one using the full-likelihood

function of Sec. III and one with the ϕ0-marginalized
likelihood function of Sec. IV. We use DYNESTY with
options nlive = 5000 and dlogz = 0.01, which produces
a posterior distribution with a total of 8516 samples
across the four amplitude parameters. In the case of the
marginalized likelihood, using DYNESTY with the same
options, the posterior distribution contains 6532 samples
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FIG. 11. Bayesian posterior distribution on the non-ϕ0 ampli-
tude parameters of the continuous-gravitational-wave signal
from PSR J1526-2744 using the ϕ0-marginalized likelihood
function of Sec. IV. See Fig. 10 for details.

over the non-ϕ0 amplitude parameter space.
The resulting posterior distributions on the signal pa-

rameters are shown in Figs. 10 and 11. The h0 poste-
rior is consistent with expectations from noise. Since we
do not see a signal, the posterior distributions of other
signal parameters are non-informative. The 95% upper
limit on h0 is obtained by integrating the h0 posterior up
to the value of h0 such that 95% of the distribution lies
below it. The h95%0 value for PSR J1526-2744 is found as
6.5× 10−27 from the full-likelihood and 6.7× 10−27 from
the ϕ0-marginalized likelihood. This is a factor of 9.2
larger than the spindown upper limit of the pulsar and
a factor of 1.9 smaller than the frequentist upper limit
reported in [18].

This h95%0 upper limit can be translated into a 95%
confidence upper limit on the ellipticity ε:

ε95% = 1.3× 10−8

(
h95%0

6.7× 10−27

)
×

(
d

1.3 kpc

)(
803.5 Hz

f

)2(
1038 kg m2

Izz

)
.

(35)

VII. CONCLUSION AND DISCUSSION

New pulsars are being discovered at a rate faster than
ever before and when their timing solution is known they
can be targeted for continuous gravitational wave emis-

FIG. 12. 95% confidence upper limits on continuous grav-
itational wave emission from PSR J1526-2744 derived via
Bayesian and frequentist methods. Blue: posterior distri-
bution on h0 derived using the full-likelihood method (from
Fig. 10), with the 95% upper limit denoted by the dashed-blue
line. Orange: posterior distribution on h0 derived using the
ϕ0 marginalized likelihood method (from Fig. 11), with the
95% upper limit denoted by the dashed-orange line. Dashed-
red line: the frequentist upper limit reported in [18].

sion with exquisite sensitivity. The most recent con-
straints are approaching the regime of the expected min-
imum ellipticity for neutron stars as proposed by [52],
making targeted searches ([14, 16, 54]) a very relevant
class of continuous-gravitational-wave searches.
In this paper we introduce and demonstrate a new

Bayesian parameter-estimation pipeline, combining well-
established machinery from the F-statistic, LALSuite,
and BILBY, in order to search for continuous gravi-
tational waves from known pulsars. Previously, only
a single Bayesian pipeline existed for such amplitude-
parameter estimation [20, 55], which operates in the time
domain exploiting the knowledge of the signal to reduce
the amount of the data to be analyzed via heterodyn-
ing, low-pass filtering, and down-sampling. Our method
works in the frequency domain using only a limited band-
width of frequency of data decided by the evolution of
the signal frequency. At its core, this method is based on
the computation of the F-statistic [28, 30], utilizing its
components to compute the likelihood function.
We use the method to estimate the amplitude pa-

rameters of continuous-wave hardware injections in O3a
data. Of the 17 hardware injections we targeted, the true
{h0, cos ι, ψ} of all but 5 are recovered within their 3σ
credible intervals. Of these 5, for 1 the posterior remains
uninformative. The true parameters of the remaining 4
lay in the tail of their posteriors. We identify likely causes
for this with the help of lalapps knope [20].
We demonstrate the method by searching for con-

tinuous gravitational wave emission from PSR J1526-
2744. The search yields no evidence for a signal, and
the obtained 95% confidence upper limits are consistent
with those derived with a frequentist method as seen in
Fig. 12.
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In this paper we assume a simple Gaussian model for
the noise, weighting the Fa and Fb quantities according to
the estimated noise on a per-SFT basis [31], but we do not
account for uncertainties in the noise-level estimation.
The other Bayesian known-pulsar search pipeline [20] ad-
dresses this issue with an analytical marginalization of
the unknown standard deviation of the noise leading to a
Student’s t-likelihood function. Another approach would
be including the uncertainties due to the PSD estima-
tion as additional explicit parameters, and sampling over
these with certain priors. A similar approach could also
be applied to account for the calibration uncertainties of
the detectors, as already done with other types of gravi-
tational wave searches [56, 57].

In addition to the targeted application on known pul-
sars discussed in this paper, a future application of this
method is anticipated in the final stages of follow-up
of interesting detection candidates from wide-parameter-
space search pipelines. We plan to characterize the
method for this application, allowing for additional ex-
ploration of (expected small) uncertainties in phase-
evolution parameters.

One limitation of this method is an underestimation of
h0 in the ultra-high SNR regime, which is discussed in
Appendix B. Full characterisation of and potential solu-
tions to this problem lie beyond the scope of this paper
and will be considered in future work.

Appendix A: Statistical properties of the
log-likelihood ratio

The log-likelihood ratio logL of Eq. (12) depends lin-
early on the four xµ, which each follow a Gaussian dis-
tribution when the noise is Gaussian. Thus logL is also
a Gaussian-distributed quantity. In the case of a signal
with amplitude parameters Aµ

s , the four xµ have expec-
tation values sµ ≡ E [xµ] = Aν

sMνµ, and second moment
E [xµxν ] = Mµν+sµsν . Therefore the expectation of the
log-likelihood ratio is

E[logL] = Aµsµ − 1

2
ρ2 , (A1)

which in the perfect-match signal case Aµ = Aµ
s and the

noise-case Aµ
s = 0 yields, respectively,

E [logL]As=A =
1

2
ρ2 ,

E [logL]As=0 = −1

2
ρ2 .

(A2)

The corresponding variance is found as

Var[logL] = AµE [xµxν ]Aν − ρ2AµE [xµ] +
1

4
ρ4

− E [logL]2

= ρ2 + (Aµsµ)
2 − ρ2Aµsµ +

1

4
ρ4 − E [logL]2

= ρ2,
(A3)

FIG. 13. Histogram of 10 000 log-likelihood-ratio logL (given
by Eq. (12)) values for the noise-only case. The red line shows
the expected Gaussian distribution with a mean of -0.5 and a
standard deviation of 1.

in both the noise and signal cases. Figure 13 shows a
histogram with the distribution for the noise-only case,
where agreement with the expected Gaussian distribu-
tion can be seen.

Appendix B: Limitations in the ultra-high SNR
regime

For ultra-high SNR (of the order of ρ ≈ 1000) signals,
the accuracy of the h0 estimation is compromised.
We set up a PP test with simulated signals of ampli-

tudes drawn from the prior range h0 ∈ [10−25, 10−23],
in data spanning 10 days with a noise floor of 9 ×
10−24/

√
Hz. The corresponding SNR range of the sig-

nals is ρ ∈ [12, 1200]. We use the ϕ0-marginalized like-
lihood and DYNESTY sampler to recover these signals
and produce PP plots as described in Sec. IIID 2. In the
resulting PP plot, shown in Fig. 14, the h0 curve reveals
a systematic bias.
The biases in the h0 curve likely arise due to a combi-

nation of approximations in the computation of per-SFT
quantities contributing to the Fa and Fb:
(i) the phase evolution of the signal during the timespan
of an SFT is approximated by a linear term (ϕ(t) = 2πft)
and higher-order corrections are neglected,
(ii) the antenna-pattern coefficients are assumed constant
during the timespan of an SFT,
(iii) the number of bins used in the Dirichlet kernel is
truncated to a finite number ∆k,
(iv) uncertainties in the noise-estimation and biases in-
herent to the process [58].
To quantify these biases, we simulate 1000 noiseless
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FIG. 14. PP plot of ϕ0-marginalized likelihood with a max-
imum SNR of ρ ≈ 1200 for the included signals, using the
default, TSFT = 1800 s and ∆k = 8 bins. The expected 1-,
2- and 3σ deviations under the finite (N=1000) number of
injections are in the shaded grey region in decreasing opacity.

signals with SNRs in the range ρ ∈ [12, 1240] and com-
pute the percentage difference in their true signal power
and that computed by our codes. For TSFT = 1800 s,
the bias amounts to ≈ 3% as seen in Fig. 15. In the low-
SNR regime, this 3% bias is absorbed in the width of the
individual posterior distributions, and its effect does not
show up in the PP plots. But in ultra-high SNR signals,
the posterior distributions on the amplitude parameters
are narrowly peaked, and systematic biases, even at a
few per cent levels, begin to matter. This is seen in the
PP plots composed of simulated signals with very high
SNR.

Exploring the effects of (i),(ii),(iii) and (iv) further, we
produce PP plots using the 3-dimensional likelihood with
varying TSFT and ∆k. We simulate 1000 signals with
SNR in the range ρ ∈ [12, 1200] with phase-evolution
parameters of Table II. For every PP plot we compute

δh = 0.9− Coverage(C.I. = 0.9) (B1)

where Coverage denotes the measured fraction of injec-
tions in the credible interval, thus quantifying the bias
in the h0 curve. The resulting Fig. 16 shows variation of
δh (in color-code) with TSFT and ∆k. We repeat the ex-
periment suppressing the effects of (iv) by assuming the
noise floor instead of estimating it, with the resulting δh
in Fig. 17. In both Figs. 16 and 17 the h0-bias decreases
with increasing ∆k for a given TSFT. But the observed
dependence on varying TSFT (and thereby on the varying
number of SFTs) is less straightforward.

A study of the interplay between (i),(ii),(iii) and (iv)
under different conditions of TSFT, ∆k, signal power and
phase-evolution parameters is interesting for improving
the accuracy of h0 estimation in these SNR regimes, but
further study is postponed to future work.

FIG. 15. Percentage mismatch in the signal power (ρ2) of 1000
simulated signals. The approximations in the computations
of per-SFT quantities induce an ≈ 3% bias in the posteriors
of h0 at TSFT=1800 s.

FIG. 16. Effects on the PP-plot h0 curve due to varying
timebase of SFTs and the number of frequency bins included
in the Dirichlet kernel function. In a PP plot, at C.I. = 90%
we expect 90% of the simulated signals to be recovered. The
color code shows the deviation from this expectation in terms
of the difference between the measured value for C.I. = 90%
and 90%. The PP plots contain 1000 signals in the SNR range
ρ ∈ [12, 1200] with a frequency of ≈ 700 Hz. The PP plot of
Fig. 14 corresponds to the lowest-rightmost point on this plot.
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