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Abstract

The perception of tension and release dynamics constitutes one of the essential aspects of

music listening. However, modeling musical tension to predict perception of listeners has

been a challenge to researchers. Seminal work demonstrated that tension is reported con-

sistently by listeners and can be accurately predicted from a discrete set of musical features,

combining them into a weighted sum of slopes reflecting their combined dynamics over

time. However, previous modeling approaches lack an automatic pipeline for feature extrac-

tion that would make them widely accessible to researchers in the field. Here, we present

TenseMusic: an open-source automatic predictive tension model that operates with a musi-

cal audio as the only input. Using state-of-the-art music information retrieval (MIR) methods,

it automatically extracts a set of six features (i.e., loudness, pitch height, tonal tension,

roughness, tempo, and onset frequency) to use as predictors for musical tension. The algo-

rithm was optimized using Lasso regression to best predict behavioral tension ratings col-

lected on 38 Western classical musical pieces. Its performance was then tested by

assessing the correlation between the predicted tension and unseen continuous behavioral

tension ratings yielding large mean correlations between ratings and predictions approxi-

mating r = .60 across all pieces. We hope that providing the research community with this

well-validated open-source tool for predicting musical tension will motivate further work in

music cognition and contribute to elucidate the neural and cognitive correlates of tension

dynamics for various musical genres and cultures.

Introduction

Although musical tension is considered an essential part of the music listening experience, lit-

tle is known about the underlying mechanisms that trigger its dynamics. Tension increase can

be qualitatively defined as the feeling that something meaningful is happening or about to hap-

pen in the music and it is closely related to listeners’ expectations in the harmonic or rhythmic

structure [1, 2]. When expectations are fulfilled, tension decreases as the music comes to a har-

monic resolution [1, 3]. Additionally, tension is commonly associated with arousal, suggesting

that tension increases when arousal levels increase [1, 2].
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The lack of a unequivocal quantitative definition of musical tension impedes research on its

cognitive and neural underpinnings. A quantitative approach could enrich the knowledge

about the combination of features contributing to musical tension perception and its inter-

subject and intra-subject variability. Ultimately, quantifying musical tension could yield to an

improved understanding of the music listening experience, while additionally giving insight

into related concepts, such as predictive processing [1, 4] and musical emotions [2]. For exam-

ple, tension has been suggested to provide the link between low-level musical features and

higher level processing such as emotional responses [4]. To advance this central aspect of

music cognition, the field would greatly benefit from an automatic prediction model as it

allows to computationally characterize how low-level features are critical to emotional arousal.

Importantly, most of the available research on musical tension and its correlates has been con-

ducted using western classical music. It is unclear whether tension relies on similar acoustical

and musical processes in non-western musical contexts. Quantitatively defining musical ten-

sion allows for investigating the mechanisms of tension in western classical music, as well as

comparing the experience of tension across musical styles and cultures.

Interestingly, tension ratings are highly correlated across individuals [2, 5], independently

of previous experience with the musical pieces [6] or musical preferences [7]. Only minor dif-

ferences between the tension ratings performed by musicians and those performed by non-

musicians have been observed [5]. Critically, even when participants are not provided with an

explicit definition of musical tension, they consistently rate musical tension in music, suggest-

ing that they perceive tension as an intuitively accessible aspect of their musical experience

[1, 8]. Altogether, converging evidence suggests that tension is an accessible perceptual musical

phenomenon modulated by acoustical and musical features [2]. However, the intertwining of

such features into the integrative experience of musical tension remains largely under-

characterized.

Past research has assessed the impact of a diverse set of features on musical tension using

participants’ ratings of tension in excerpts of music. A number of studies have highlighted the

association of harmonic and melodic components with tension in a Western classical tonal

system [1, 2, 5, 9, 10]. In tonal music, tension is assumed to be at least partly elicited by har-

monic dynamics. In this context, models of tonal tension have been developed to capture ten-

sion in the harmonic and melodic domain [3]. Previous accounts were able to successfully

model tonal tension and show that it is related to behavioral tension ratings [2, 3, 11]. Tonal

tension is assumed to consist of several components including sensory dissonance, harmonic

instability, and melodic expectation [3]. For example, the tonic in a Western classical context

is associated with lower dissonance, high stability, and low melodic expectation, thus it

decreases tension. In contrast, highly dissonant intervals or chords are assumed to increase

tension [3, 11]. Additionally, notes that strongly lead towards other notes, such as a leading

tone to the tonic, seem to increase tension by inducing high levels of instability and melodic

expectation [3, 12]. Recent approaches conceptualized tonal tension in the context of the spiral

array theory, which quantifies the tonal distances between notes and chords [13]. Here, larger

distances between simultaneous notes, successive chords, and chords and the global key

induce increased tonal tension [11].

However, the melodic and harmonic characteristics captured by tonal tension only provide

one component among several characteristics that make up the experience of musical tension.

Besides harmony and melody contour, features such as loudness [1, 2, 10, 14] and tempo [2,

14] have been shown to be consistently related to musical tension. Additionally, onset fre-

quency, which provides a measure of the averaged temporal rate of note onsets at any given

time point, was associated with tension in previous investigations [2]. Going beyond the inves-

tigation of these feature dynamics in natural music, studies systematically controlling features
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such as loudness and tempo in selected excerpts revealed interesting insights into the effects of

single features and their interactions on perceived tension [1, 2, 14]. Interestingly, while tonal

tension seems to rely heavily on musical expectations, other non-tonal features, such as tempo,

onset frequency, and loudness modulate tension related arousal [1]. Investigating the relative

influence of these two types of features could give insight into the importance of expectations

and arousal for tension dynamics. Additionally, tension has been shown to be influenced by

timbral features, such as roughness [15, 16]. Roughness is described as the sensation of rapid

amplitude fluctuations (so-called beating) resulting from the presentation of two tones with a

very small frequency difference [17]. In previous studies, increased roughness has been associ-

ated with increased tension [5, 15, 18]. Critically, roughness has been shown to predict tension

dynamics in a non-western musical context [16].

Altogether, tension seems to be influenced by combining a set of musical features, which

motivated a seminal tension model to integrate loudness, tempo, onset frequency, pitch height,

and harmony to successfully predict behavioral ratings of tension [2]. Tension was defined as

the combined directional change of these musical features over time. The slope for each feature

was computed over an “attentional window” and integrated with a “memory window” captur-

ing the slope of the directly preceding context to account for the build up of tension over long

passages of music spanning over several tens of seconds. The prediction model has provided

promising prediction and generalization performance in a small selection of pieces stemming

from the Western classical domain [2, 19].

This previous model has several shortcomings that are addressed in the current work. The

model developed by [2] only works with non-automatically extracted information. To manu-

ally perform the feature extraction, users require musical scores or midi files, as well as audio

files of the musical pieces. Additionally, the code used for the tension prediction is not avail-

able online, which prevents the broad community of interested researchers to use it to their

own research questions and data. The set of features used for this original model did not

include timbral parameters, despite their proven contribution to overall tension. Finally, the

original model has been tested on a very limited set of ten pieces [2], and an updated configu-

ration was only tested on one piece [19]. To provide an ecologically valid prediction model,

the model configuration should be based on a larger amount of diverse musical samples.

With this work, we aim to build on the seminal work conducted by [2] while addressing

these shortcomings. For the users’ convenience, we provide an open-source python-based

tension prediction model that works on the sole input of audio files. The algorithm to predict

tension along with example notebooks explaining the procedure are available at https://

github.com/vivienbarchet/TenseMusic. Our work includes methods of feature extraction

from audio files relying on state-of-the-art music information retrieval (MIR) methods [20].

Furthermore, we provide readers with a repository including the music files used for the

model optimization, the feature extraction notebooks, as well as the tension prediction code

to enable users to build on our work and adapt the algorithm to their data and research ques-

tions. For our model optimization, we use a set of 38 musical pieces stemming from Western

classical and modern music to provide a larger corpus of music to inform the model’s opti-

mal configuration. It should be noted that the model presented here is mainly suitable to

assess tension in Western classical music. However, it constitutes a valuable tool to investi-

gate tension dynamics in other cultural contexts or musical styles. Investigating model con-

figurations suitable for other musical contexts should be a goal of future research. Notably,

future efforts should use non-Western musical stimuli for parameter optimization, in order

to evaluate how the model adapts to various musical stimuli. Overall, we hope that our work

will motivate further research on the correlates of musical tension in the cognitive, emo-

tional, and the neural domain.
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Model generation

We built up on the model architecture from [2] to develop an optimized automatic tension

prediction model. It involves a stage of feature extraction from the musical audio files, and a

stage of prediction of a tension signal from the combined directional slopes of the features. An

overview of the model generation flow is displayed in Fig 1.

The main idea behind this model is that behavioral tension can be predicted from the com-

bined directional change of a set of musical features. The model thus combines the trends of

each individual feature at each time point by first estimating each individual feature trend and

then integrating the feature trends into a general tension trend. This integration is imple-

mented using sliding attentional windows representing perceptual windows, as well as mem-

ory windows that directly precede the attentional windows and are used to integrate the

tension trend with the directly preceding context, thus capturing the tension build up over

long excerpts of music.

We tested two model versions presented by [2, 19]. The difference between both versions is

the method by which the features are integrated into an overall tension trend. In the original

model described in [2], the features are assigned individual weights that lead to some features

being weighted more heavily than others while all feature trends are captured by the same

attentional and memory window size. In an updated model presented by [19], more flexibility

is provided by calculating the tension trend in different time scales for each feature, i.e., each

feature is assigned an individual attentional and memory window duration.

Automatic feature extraction

In line with previous work [2], we selected loudness, onset frequency, tempo, pitch height, and

harmonic tension as captured by tonal tension as the predictive features. Additionally, we

included roughness to investigate the effects of timbral features on tension. We adapted exist-

ing MIR tools available in Python, most heavily relying on the Python based library librosa

[20]. All features were extracted using Jupyter notebook running on python version 3.9.7.

Fig 1. Tension model generation flow. Displayed is a schematic representation of the model including the feature

extraction, the tension prediction involving an attentional and a memory window, as well as the global integration of

the feature trends. A: The features are extracted automatically using music information retrieval methods in Python. B:

To predict tension, the feature time series are divided into sliding attentional windows (Step 1) and the slope of every

feature is extracted in each attentional window (Step 2). Each slope is then integrated with the directly preceding slope

using memory windows (Step 3). If the direction of the slope in the memory window matches the direction of the slope

in the attentional window, the slope is amplified by β = 5. C: Tension is predicted from the weighted and summed

smoothed feature trends.

https://doi.org/10.1371/journal.pone.0296385.g001
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Loudness was extracted using the Zwicker model for temporally variable sounds [21] imple-

mented in the python library MoSQITo [22]. The model provides a perceptually plausible esti-

mate of loudness by taking into account the frequency selectivity of the hearing system, as well

as the frequency and the waveform of the sound signal.

Onset Frequency was extracted by first identifying the timing of note onsets, using librosa’s

note onset detection algorithm. The onset detection is achieved by selecting the amplitude peaks

in the envelope. This onset strength envelope is calculated by applying a spectral flux operation

on the magnitude spectrogram. The spectral flux describes the increase of spectral energy across

the audio by computing differences between consecutive short-term spectra separately for each

frequency bin [23]. All positive differences are summed up across frequency bands yielding a

one dimensional measure of the amount of increasing spectral energy in the audio [24]. Peaks

in the onset strength envelope are then thresholded to reveal the peaks displaying strong

increases in spectral energy and most likely corresponding to note onsets. The note durations

were inferred by calculating the differences between all successive onset times. To estimate the

onset frequency, every event duration was substracted from the maximum event duration in the

respective piece. Because the note onset detection is based on the thresholded envelopes’ peaks,

any drastic change in the envelopes’ property (such as a change in instrumentation) may result

in inaccurate onset detection. Thus, to account for these within-piece inconsistencies and enable

a more flexible onset detection, we split the respective audio file in two parts and separately per-

formed onset detection and onset frequency calculation on both parts of the audio.

Tempo was estimated using the dynamic tempo estimation method implemented in librosa

version 0.9.1 [20]. Dynamic tempo estimation is a challenging task, since multiple hierar-

chically organized rhythmic levels contribute to an overall tempo perception and a change in

the dominant rhythmic structure does not necessarily indicate a change in tempo. Thus, the

tempo estimation is based on a cyclic tempogram that identifies equivalent tempi on different

rhythm levels that can be shifted in case of a tempo change [25]. The cyclic tempogram was

based on a local autocorrelation of the onset envelope used to analyze the local periodicity of

onsets and beats.

Pitch was extracted using a method for polyphonic pitch estimation. Indeed, all pieces

included in the analyses included multiple pitch lines. For polyphonic pitch estimation, we

used pretrained models based on neural networks implemented in the python library basic-

pitch [26]. For the model input, we calculated the mean of all estimated pitches at each time

point in order to receive one aggregated pitch score.

Tonal tension was extracted using the model developed by Herremans and Chew [11] based

on the spiral array theory [13]. The model is implemented in the python library midi-miner

[27]. The midi input required for the estimation of tonal tension was created using the python

package basic-pitch [26] that includes a state-of-the-art polyphonic pitch estimation method.

According to the model by [11], tonal tension can be quantified using three metrics. For effi-

ciency of computation, we decided to concentrate on the tensile strain, a metric which captures

the most reliable and intuitive aspect of tonal tension. The tensile strain captures the tonal dis-

tance between the notes contained in a sliding window and the global key estimated for the

piece [11].

Roughness was used to investigate the contribution of timbral features to musical tension.

Roughness is described as the sensation of rapid amplitude fluctuations (so-called beating)

resulting from the presentation of two tones whose overtone series include small frequency

differences. Roughness has been related to an increased unpleasantness of the sound. In several

previous investigations, roughness has been associated with experienced tension [5, 15, 16,

18]. We estimated roughness using the algorithm developed by Daniel and Weber [17] imple-

mented in MoSQITo [22]. All extracted features were z-standardized and smoothed using a
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moving average filter. The features, originally sampled at 44.1 kHz, were then downsampled to

10 Hz, an appropriate time scale for capturing perceptually relevant phenomena [19]. The

code for the feature extraction as well as an example notebook explaining the feature extraction

and providing sonification functions to rapidly and intuitively evaluate feature extraction per-

formance can be retrieved from example notebook 1 in https://github.com/vivienbarchet/

TenseMusic.

Slope estimation

The tension prediction is based on the combined directional change of all features, which was

captured by feature slopes estimated in overlapping attentional windows, obtained through

linear regressions, as depicted in Fig 1b. These slopes were then integrated with the directly

preceding context using memory windows leading to a non-linear prediction. This resulted in

the slope for each feature at each time point being defined as:

s0f ðtÞ ¼ b ∗ sf ðtÞ ð1Þ

with sf(t) being the slope for every feature f at each time point t. The β parameter enabled the

integration of the memory and the attentional windows. If the direction of the tension trend in

the attentional window matched the direction of the tension trend in the memory window, β
was assigned the optimal value of 5 [2]. If the slopes point in different directions, β was 1. The

slopes in the attentional windows were evaluated using a step size of 250 ms, meaning that a

new window began every 250 ms.

Smoothing and tension prediction

The resulting feature slopes were smoothed using a moving average filter to integrate the over-

lapping feature slopes at every time point. The smoothed slope for each feature was defined as:

Sf ðtÞ ¼
X
d
h� 1

t¼0

sðt � t � hÞkt ð2Þ

with d being the duration of the attentional window and h being the step size of the trend cal-

culation, which here was 250 ms. kτ represents a decay constant for a moving average filter,

resulting in more recent trends being weighted more heavily. This step was performed at an

attentional window size of 3 seconds.

These smoothed feature slopes were then weighted and summed up to receive the final ten-

sion prediction. The tension prediction at time t was thus defined as

SðtÞ ¼
X

f

wf Sf ðtÞ ð3Þ

with wf being the feature weights. These weights are optimized using a linear mixed effects

model (see section model optimization). Codes for the tension prediction using the optimized

weights and window sizes can be retrieved from https://github.com/vivienbarchet/TenseMusic

along with an example notebook explaining the tension prediction (example notebook 2).

Materials and methods

Participants

Participants were recruited in the New York University psychology undergraduate program

and received course credit for their participation. A total of 30 undergraduate students (13
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males, age range: 18–34 years (M = 20.73, SD = 2.87) completed the experiment. All partici-

pants reported normal and uncorrected hearing and 17 participants reported that they

received formal musical training. These participants reported a wide range of musical experi-

ence ranging from 2 years up to 17 years of musical training with a mean of M = 7.12 years

(SD = 4.75). Seven participants indicated that they were still actively practicing music. All par-

ticipants gave written informed consent prior to starting the study and the procedure was

approved by the New York University ethics committee. Six participants were excluded from

the analyses since they were unresponsive (i.e., their ratings did not indicate any tension

changes in at least two pieces). This exclusion criterion was applied in previous work collecting

continuous tension ratings [19].

Procedure

Following the University policy for restricted in-person experimentation, behavioral data was

collected online on the Pavlovia server using Psychopy version 2022.1.4. Participants were

instructed to use headphones. Before the start of the data collection, the participants adjusted

the volume to a comfortable level while listening to a 20 second excerpt of jazz music. The pre-

sentation order of the pieces was randomized across participants. Tension was assessed using

continuous ratings, a validated method, used to assess musical tension in numerous previous

studies [2, 6, 7, 10, 19]. Prior studies have not included a description of tension as part of the

experimental protocol. Indeed, data suggests that listeners have an intuitive comprehension of

the concept and how it translates into continuous ratings over the course of a musical piece, as

suggested by the remarkable consistency of within and between subjects’ ratings [2, 5]. Here,

because the data was collected online and participants had no opportunities to ask any ques-

tions during the experiment, we included the following description of rising tension: “the feel-

ing that something important is about to happen in the music”. In doing so, we wanted to

avoid confusion between tension and closely related concepts. While listening to the musical

pieces, participants were asked to rate their perceived tension on a slider that appeared on the

screen and that they controlled with their mouse. The slider ratings were collected at the par-

ticipants’ monitor frame rate, which corresponded to 60 Hz in the majority of the sample with

three participants’ ratings being sampled at higher rates of 120 or 144 Hz. The slider was parti-

tioned into 10 segments of equal size. At the onset of each piece, the initial slider position was

fixed at 30 percent of the slider’s width. Additionally, maximum tension was marked at 70 per-

cent of the slider’s width. However, participants could still go beyond the maximum tension

level to prevent the tension ratings from being restricted by the slider width. Participants were

instructed to use the whole scale for their ratings. Demographic information including age,

gender, and musical experience were collected prior to starting the tension rating task. In total,

the experiment lasted for approximately 50 minutes.

Method validation

A mounting number of publications highlighted the value and quality of online data [28]. Sev-

eral studies have specifically demonstrated that data collected online replicates well established

behavioral effects [29–31]. A recent study successfully used online data collection to investigate

the effect of musical expertise on various aspects of musical perception, including tension [32].

However, continuous tension ratings, although frequently used in the lab, have not yet been

collected online. To validate the methods used in the online data collection and assess the

degree of inter-rater agreement, we calculated intraclass correlation estimates across the indi-

vidual participants for each piece. We calculated an intraclass correlation based on a two-way

random effects model to estimate the reliability of the mean of the individual ratings (k = 24).
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Intraclass correlation estimates and their 95% confidence intervals were obtained using the

Python package Pingouin version 0.5.3 [33].

Stimuli

We collected tension ratings on a diverse set of a total of 38 musical pieces, spanning from

baroque to modern atonal music. However, all pieces can be defined as Western classical

music and it should be noted that, therefore, our modeled tension remains mainly applicable

to Western tonal and atonal classical music. Most of the pieces were orchestral, but the selec-

tion also included several solo piano pieces, as well as string quartets and other chamber music

ensembles. Some of the pieces were used in a previous study investigating inter-subject corre-

lation during music perception [34]. Participants were presented with a 60 to 90 second

excerpt of each piece. Additionally, we included Schubert’s “Morgengruss” –a piece used in a

previous study [19]– in the data collection. Participants were presented with the full length

piece (approximately 4 minutes), but the piece was cut to 90 seconds for the model training. A

complete list of the stimuli can be retrieved from S3 Table. The pieces were sampled at 44,1

kHz when played for behavioral data collection. All pieces were loudness normalized to -23

LUFS using Audacity.

Data analysis

We calculated correlations between the behavioral tension ratings and the tension predictions

to assess the performance of the prediction model. The model was optimized in order to maxi-

mize the correlations between the behavioral ratings and the model predictions. To obtain a

reliable behavioral tension rating, we first computed the mean of ratings across individual data

sets for each musical piece. The z-standardized mean as well as the model predictions were

resampled to 2 Hz to calculate correlations, as similar time scales have been used before to

assess correlations between time series data [2] and larger rates might lead to overestimated

correlation estimates due to the interdependency of the individual time points. Since our time

series correlation does not meet the normality requirement of Pearson correlations, we calcu-

lated Spearman correlations between the model predictions and the behavioral ratings. Addi-

tionally, the correlation analyses incorporated a time shift between the behavioral ratings and

the features, since it can be expected that the behavioral ratings lag behind the musical events

that trigger tension dynamics. We calculated all correlations with a shift of 4.5 seconds, as it

displayed the best correlation performance across pieces.

Model optimization. For the weighted prediction model, we optimized each feature

weight, as well as a global attentional and memory window size. The attentional window dura-

tion was varied from 1 to 10 seconds and the memory window duration was varied from 0 to

10 seconds, both in steps of 1 second. The model optimization operated as a two-step process.

First, we estimated the optimal combination of attentional and memory windows to predict

tension. Thus, we calculated the slopes for every feature captured at each possible combination

of attentional and memory window size. These slopes, capturing the features’ dynamics on

each time scale, were then entered into a generalized linear mixed model as predictors for the

mean tension ratings. The model additionally included a random intercept for the piece. To

identify the optimal combination of attentional and memory window size across all features,

we used a grouped Lasso regression as implemented in the R library glmmLASSO [35]. The

predictors were grouped by time scale in order to reveal one optimal global time scale for all

features. The lambda parameter used by the Lasso regression was incrementally adjusted until

the model returned one time scale for all features. Secondly, the final feature weights used to

predict tension were obtained with a second linear mixed effects model which included only

PLOS ONE TenseMusic: An automatic prediction model for musical tension

PLOS ONE | https://doi.org/10.1371/journal.pone.0296385 January 19, 2024 8 / 18

https://doi.org/10.1371/journal.pone.0296385


the feature slopes captured on the optimal time window combination resulting from step 1

and a random intercept for the piece.

For the time scale model, we again optimized the feature weights but in addition, we opti-

mized the individual attentional and memory window sizes for each feature. Attentional win-

dow sizes were varied from 1 to 20 seconds and memory window sizes were varied from 0 to

20 seconds, both in steps of 1 second. Similar to the optimization of the weighted model, we

used a two-step process. To estimate the optimal feature window sizes, we first calculated all

feature slopes captured on each possible combination of the attentional and memory window

size. These feature slopes were entered into a generalized linear mixed effects model as predic-

tors along with a random intercept for the piece. Since, here, we were aiming for individual

window sizes for each feature, we did not group the predictors. Instead, to reduce multicolli-

nearity, we calculated an ungrouped Lasso regression. The lambda parameter for this regres-

sion was chosen by an iterative procedure in which the parameter was adjusted to obtain the

lowest AIC from a wide range of possible parameters. The Lasso regression resulted in a small

number of combinations of the attentional and memory window size for every feature display-

ing non-zero weights. We selected the time window combination with the highest absolute

weight for every feature as the optimal individual feature time scale. Secondly, we optimized

the feature weights through a linear mixed effects model including the feature slopes captured

on the individual time window combinations selected in step 1. The model additionally

included a random intercept for the piece.

Optimization and validation. To assess the generalization performance of both model

variants, we used a leave-one-out cross-validation procedure. Here, we used 38 iterations with

each of the iterations including 37 pieces and one piece being left out for the validation step.

For each iteration, we performed a model optimization revealing the optimal window sizes

and weights for the training data. Then, the predictions generated with these weights and win-

dow sizes were correlated with the behavioral ratings for the held-out test piece. In order to

provide the optimal model configurations for all pieces, we additionally optimized both model

variants on all 38 pieces. An approximate measure of the variance in the tension ratings

explained by the feature slopes was obtained using marginal R2 values for linear mixed effects

models [36, 37].

Results

Method validation

To assess the degree of inter-rater agreement, we calculated intraclass correlations among the

tension ratings for each piece. The analysis indicated high inter-rater reliability for the mean

ratings (M = .80, CI95% = [.78, .82]). This can be classified as good reliability based on com-

monly used guidelines in the interpretation of intraclass correlations [38]. Hence, this study

validates the use of online continuous ratings as a reliable method for research on musical ten-

sion on Western musical pieces.

Model validation

For the weighted prediction model, the cross-validation procedure resulted in a mean correla-

tion between the predicted tension and the averaged tension ratings of M = .59 (SD = 0.29).

The mean RMSE across all iterations was M = 0.73 (SD = 0.23). For the time scale model, the

validation resulted in a mean shifted Spearman correlation of M = .61 (SD = 0.31) with a mean

RMSE of M = 0.70 (SD = 0.26). The correlations and their confidence intervals are displayed in

Fig 2. All correlations for the 38 test pieces, as well as their RMSE can be retrieved from S1

Table. For the time scale model, the correlations for 26 of the 38 pieces (68%) can be classified
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as large (i.e., r> .5) based on traditional conventions in the interpretation of correlations [39].

For another 4 pieces, the correlation estimates can be classified as medium (r� .3). For the

weighted model, 27 pieces’ correlations (71%) fall into the same range. For another 7 pieces,

correlation estimates can be classified as medium. Previous investigations revealed correlations

between.60 up to.93 between tension predictions and behavioral ratings [2]. For the majority

of pieces, our correlations fall into the same range, further validating the method of data collec-

tion. Since we conducted a cross-validation procedure, in which the respective test piece was

not included in the model training, our results reveal a convincing generalization performance

for the majority of pieces.

However, there are a few pieces for which neither model variant displays significant predic-

tion performance. These are pieces composed by Mozart, Dvorak, and Deprez. Additionally,

there are large differences between the performance of both model variants for the pieces com-

posed by Rossini, Glass, Xunfa, and Pärt and one piece by Beethoven. The variable prediction

performance might be caused by distinct characteristics of the pieces. These points will be

developed in the discussion section.

Since the cross-validation procedure yielded 38 slightly different set of model parameters,

we assessed their variability across the 38 validation folds. As shown in Fig 3A, the weights

overall displayed a low variability across the validation folds. The weights were even more con-

sistent in the weighted model than in the time scale model, and this difference was especially

pronounced for the tonal tension, roughness, and tempo features.

The variability of the optimal window duration is shown in Fig 3B. In the weighted model,

optimal attentional windows of 3 seconds were assigned in all cross-validation folds. Similarly,

the optimal memory window was assigned a duration of 3 to 4 seconds in all folds. This is con-

sistent with previous work applying this model architecture [2]. In the time scale model, loud-

ness was captured by an optimal attentional window of 3 seconds in all foldsand a memory

window of 3 seconds in the majority of folds. Similarly, roughness was optimally integrated

into the tension trend at attentional windows of 3 seconds and memory windows of 3 seconds

in the vast majority of validation folds. Tempo seems to be captured optimally by an atten-

tional window of 3 seconds and a long memory window of around 20 seconds. Onset fre-

quency was optimally captured by attentional windows of around 3 seconds and memory

windows of 20 seconds in the majority of validation folds. The optimal window sizes for pitch

were consistently set at 5 seconds for the attentional window and at 12 seconds for the memory

Fig 2. Correlations between the tension ratings and the tension prediction for the test pieces in each cross-validation fold. Displayed are the time-

lagged Spearman correlations between the predicted tension and the mean tension ratings. The square dots in dark green indicate the time-lagged

Spearman correlation values between the mean tension ratings for the held-out test piece and the tension prediction from the respective validation fold

for the time scale model. In light green, the correlations between the tension ratings and the model predictions for the weighted model are plotted. The

error bars represent the 95% confidence interval of the Spearman correlations. ** p< .01, * p< .05.

https://doi.org/10.1371/journal.pone.0296385.g002
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window in all validation folds. Finally, tonal tension was optimally captured at an attentional

window duration of 7 seconds and a memory window duration of 12 seconds in the vast

majority of cross-validation folds.

Final model configuration

The final model was obtained after training the parameters on all 38 pieces, without any cross-

validation procedure, in order to include all data available. Predictions from the optimal

model configurations for three example pieces with varying correlation with behavior are dis-

played in Fig 4 alongside with the mean tension ratings. The optimized window sizes and

weights are summarized in S2 Table.

Weighted model. The optimal window sizes for the weighted prediction model were 3sec-

onds for the attentional window and 3 seconds for the memory window. This is consistent with

previous work using the trend salience model [2]. Loudness was assigned the highest weight of

all features. Pitch, roughness, and tonal tension received medium positive weights. Tempo was

Fig 3. Model generalization. Displayed is the variation of the model parameters, i.e., weights and window sizes, across

the 38 cross-validation folds. A: The distribution of the weights for the time scale model is plotted in dark green and the

distribution of the weights in the weight model is displayed in bright green. Every dot stands for one cross-validation

fold. B: Plotted is the distribution of the feature window sizes for the time scale model. The attentional window sizes are

plotted in dark blue and the memory window sizes are plotted in bright blue. C: Plotted is the distribution of the global

window sizes for the weighted model. The attentional window sizes are plotted in dark blue and the memory window

sizes are plotted in bright blue.

https://doi.org/10.1371/journal.pone.0296385.g003
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assigned a small positive weight while onset frequency received a small negative weight. The

final model prediction displayed a mean correlation of rspearman = 0.62 (SD = 0.27) with the

mean tension ratings. The approximate R2 of the fixed effects was R2(marginal) = 0.46.

Time scale model. The optimized weights and window sizes for the time scale model can

be retrieved from S2B Table. Loudness, roughness, tempo, and onset frequency were assigned

attentional window durations of 3 seconds. Pitch was assigned an attentional window of 5 sec-

onds, whereas tonal tension was optimally integrated using an attentional window of 7 sec-

onds. The optimal memory windows display the most variability across features, with onset

frequency and tempo being assigned the longest windows of 20 seconds, respectively. Pitch

and tonal tension were assigned medium memory window durations of 12 seconds. Loudness

and roughness were assigned short memory windows of 3 and 4 seconds, respectively. The

mean correlation of the predictions of the optimized window model and the behavioral ten-

sion ratings was rspearman = 0.68 (SD = 0.26). The approximate R2 of the fixed effects was

R2(marginal) = 0.52.

Fig 4. Comparison between the mean tension ratings and the tension predictions from the optimal model configurations. Displayed are the

tension predictions and the mean tension ratings for three example pieces taken from our sample. The mean tension ratings are displayed in black.

Predictions from the time scale model are plotted in dark green and predictions from the weighted model are plotted in bright green. The error

bands show the standard error around the mean of the tension ratings. The mean tension ratings have been shifted by 4.5 seconds to account for the

delay in reporting behavioral tension and facilitate the visual evaluation of the overlap between the curves.

https://doi.org/10.1371/journal.pone.0296385.g004
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Discussion

Music is an integral part of most people’s lives, regardless of their cultural origin [40] and

therefore, investigating the cognitive and neural processes underlying the human music listen-

ing experience is a central topic in human auditory neuroscience [41]. In the Western musical

tradition, tension and relaxation dynamics constitute a central part of the music listening expe-

rience. In this culture, tension is related to key features of music processing such as expecta-

tions and musical emotions [42].

However, the field of music cognition lacks a quantitative description of musical tension

due to its multidimensional and phenomenological nature. Indeed, tension seems to be best

captured by the listeners’ subjective experience, as continuous ratings, which seems to be

driven by certain characteristics of the music [2]. In this work, we present the parameters,

algorithmic steps and performance of an automatic tension prediction model that works on

the sole input of musical audio files. Our model provides an important tool for future investi-

gations of musical tension addressing the lack of a quantitative description, and an accessible

tool to automatically simulate behavioral data. In contrast to existing models [2, 19], we offer

an easy-to-use and open-source tension prediction toolbox. We demonstrate that our model

displays high prediction and generalization performance for Western classical music. We

acknowledge and emphasize that future work should address the model’s generalization per-

formance for other musical styles and cultures. This will also address an existing gap in the

literature: the description and function of musical tension in non-Western musical systems

[16, 43].

The model combines information from acoustic dynamics, as well as musical features and

timbral attributes into a global tension prediction. Loudness provides the highest contribution

to the tension prediction across all pieces and both model variants, consistently with previous

findings [1, 2]. Additionally, tension is well predicted by roughness, underlining the impor-

tance of timbral features for musical tension that has been demonstrated in previous investiga-

tions [15, 16]. We additionally demonstrate that pitch height positively predicted tension,

which is in line with previous work [2]. Surprisingly, we found that the predictive power of

tonal tension was small, given its arguably high relevance for perceived tension in a Western

context [3]. However, this echoed more recent investigations, which indicated that tonal ten-

sion only provides limited overlap with participant’s tension ratings, which can be attributed

to the high contributions of other musical features, such as loudness or roughness [11]. Onset

frequency and tempo only contribute to the tension prediction to a limited extent. Tempo was

found to be negatively correlated with the tension ratings in some of the pieces (see S2 Fig).

This is in line with previous investigations indicating that slower tempo estimates may elicit

rising sensations of tension under certain circumstances [2]. However, there does not seem to

be a consistent trend in the relation between the tension ratings and the onset frequency.

Two model variants

We tested the performance of two different model variants. The “weighted model” variant

used the same time scale to capture all feature trends together while the “time scale” variant

allowed feature integration on flexible time scales. As demonstrated by the large correlations

between the tension predictions and the behavioral ratings across cross-validation folds, both

models generalize well and accurately predict tension dynamics for unseen pieces.

However, in 8 pieces, neither or only one of the model variants significantly predicted the

tension ratings. Four of these pieces are composed in a modern/contemporary (e.g., Glass,

Xunfa, Pärt) or early renaissance (e.g. Desprez) musical tradition, and thus may rely on a dif-

ferent combination of features to elicit tension dynamics, if any, which also may yield less
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consistency in subjects’ ratings. For 4 classical excerpts, we observed low correlations between

loudness and the tension ratings, as displayed in S2 Fig. This is very uncommon across studies

using tension ratings [1, 2, 10, 14] and results in low correlations with predicted tension. In

one of them in particular, by Rossini, the absence of correlations between the tension predic-

tions and the behavioral ratings could be explained by the prominence of percussive instru-

ments, which resulted in an altered extraction of some of the features. Indeed, the broadband

envelope for this piece is dominated by non-periodic information, which somewhat hindered

the extraction of pitch, dissonance, and onset frequency. These examples emphasize the poten-

tial of further model variants that may be tailored to predict tension in pieces from modern

composing styles or pieces that do not mainly rely on loudness fluctuations to induce tension.

Future work is needed to uncover the different feature combinations that are crucial for elicit-

ing tension in these excerpts.

In spite of this few cases, it should also be emphasized that the model parameters yield high

consistency across the validation folds, demonstrating its potential to generalize to other data.

From a perceptual viewpoint, the time scale model provides interesting insights into the pro-

cessing time scales of the different features contributing to tension perception. The most

noticeable differences in the window sizes between both model variants are observed for

tempo, onset frequency, tonal tension, and pitch. These features display strikingly long optimal

memory windows. As a result, the influence of tempo and pitch on the tension prediction is

enhanced. This may reflect the higher abstraction level needed to process changes in tempo,

tonal tension, and pitch when compared with changes in other features, such as loudness [19].

Perceptible changes in tempo, tonal tension, and pitch could take longer to unfold over time.

Tonal tension in particular may rely on the temporal unfolding of harmonic progression over

a long time span [19]. The time scale model thus benefits to the flexibility of these varying time

of integration, offering a cognitively compelling account of perceived tension.

In conclusion, there is no general trend towards a superior performance of one model vari-

ant over the other. However, the time scale model displays slightly higher generalization per-

formance. The generalization performance might benefit from the increased flexibility in the

time scale model. The generalization performance however seems to be largely dependent on

the characteristics of the pieces tested. To further consolidate the comparison between the two

models, future work should address the generalization performance of both variants using

training sets of musical samples from different styles, cultures, and genres.

Limitations

A limitation of this model is that it relies on data collected online. Although previous work

used online tension ratings [32], this method is yet not very well established. Our results how-

ever are very comparable to previous studies collecting continuous behavioral data in the lab,

which suggests that online data collection could be considered a valid technique for future

research. In sum, we believe that this model parameters, which have been trained using online

continuous tension ratings, will generalize well and predict tension ratings on Western musical

pieces collected inside the lab. Higher quality data, collected in an in-person setting, might

give additional insights into the combination of individual features. Additionally, the use of

physiological measures, such as Electroencephalography (EEG) or Electrodermal activity

(EDA) as objective markers of engagement during music listening has recently revealed prom-

ising results [34, 44, 45]. Future studies should address the overlap between subjective tension

ratings and objective neural data.

Machine learning advances during the last decade have uncovered the potential for compu-

tationally complex, non-linear methods (e.g., feed-forward or recurrent neural networks) to
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explain behavioral and neural data [46, 47]. Both types of neural networks have been exten-

sively tested in the domain of time series prediction [48], which makes them a promising tool

for tension prediction. However, their non-linear nature makes them difficult to interpret

from a cognitive, perceptually plausible stand-point. The present model operates using state-

of-the-art feature extraction and a fairly readable algorithm, which we hope will propel investi-

gations on musical tension and its cognitive and neural basis. Future work using non-linear

machine learning techniques to predict tension might provide alternative and important

insights on this highly complex perceptual phenomenon.

Perspectives for future work

We demonstrated the model’s potential to predict tension in music using Western classical

composition principles. Future work should investigate tension dynamics in a more diverse set

of musical pieces and musical genres. Although previous investigations have shown consis-

tency in ratings for other musical styles [49], so far studies on musical tension dynamics have

mainly focused on Western classical music. Few studies have assessed tension in cross-cultural

contexts, but they suggest that musical tension depends to some extent on listeners’ musical

enculturation [16, 43]. Interestingly, roughness has been shown to predict tension in non-

western contexts [16]. Besides, responses to certain features such as loudness have been sug-

gested to be rooted in biological wiring due to its biological functioning as an alarm signal [1].

As such, loudness could be of high relevance to predict tension across musical cultures. These

points underline the potential of our approach and feature selection to investigate tension in

non-western musical contexts. However, as the experience of tension may be a culture-specific

phenomenon, extensive adjustments to the model may be required as data from non-Western

music and listeners is collected. This model is perfectly suited to assess the relative influence of

the musical features and their relative windows of integration. We hope that providing the

research community with an accessible tool for tension prediction will stimulate this research,

to tackle the phenomenon of musical tension above and beyond the Western music tradition

and explore the interplay of universal and culture-specific feature dynamics in eliciting

tension.

In order to provide a sparse and applicable model for tension prediction, the model focuses

on a small set of six musical features that have been shown to contribute to the perception of

musical tension in prior work [1, 2, 11, 15, 19]. The current work does not exclude the possibil-

ity that additional features may also modulate musical tension. Unexplored relevant features

may also emerge when considering other musical genres, styles, or cultures. The model pro-

vides an informative window into a possible quantitative definition of musical tension in

Western classical music, but it is far from being comprehensive or universally applicable.

Future work should investigate its suitability and applicability in various musical styles, poten-

tially considering a broader set of features.

Conclusion

In conclusion, we provide users with a prediction model that accurately predicts behavioral

tension ratings from automatically extracted musical features. For the majority of the selected

pieces (*70%), the model displays high generalization performance in a set of Western classi-

cal music as indicated by large correlations between the tension predictions and the behavioral

ratings. Based on our results, we believe that the model provides a promising tool to investigate

tension dynamics in a variety of musical pieces stemming from different genres and styles.

However, the low prediction performance in a small set of pieces indicates that additional fea-

ture dynamics should be considered, especially for pieces composed in a non-classical Western

PLOS ONE TenseMusic: An automatic prediction model for musical tension

PLOS ONE | https://doi.org/10.1371/journal.pone.0296385 January 19, 2024 15 / 18

https://doi.org/10.1371/journal.pone.0296385


tradition. We hope that our work will motivate further research into the domain of musical

tension to inform a culturally and musically diverse view on musical tension and its cognitive

and neural correlates.
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