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Abstract

Extended scalar sectors and the spontaneous breaking of symmetries form the base-
line of many theories beyond the standard model to explain, e.g., neutrino masses,
dark matter or baryogenesis. An assumption almost ubiquitous in all literature is
the neutrality of the vacuum and the conservation of electric charge. We provide a
new perspective on this assumption, which, although experimentally well-founded,
is not a theoretical necessity. General scalars that obtain vacuum expectation values
in their charged components are considered, and we will see how they bring about
corrections to the gauge boson masses, the weak mixing angle, expected fermion
and boson charges, and many more. We develop a framework to sensibly talk about
electric charge in the broken phase and apply it to the case of minicharged particles.
Scalars with special representations under the standard model gauge group that al-
low for new interactions are examined, and we show how they lead to the mixing
of charged and uncharged leptons. To this end, we introduce a new basis with cor-
responding Feynman rules and demonstrate their application with a few examples.
Throughout this discussion, we relate our results to the latest experimental limits
and give general bounds on parameters and observables.

Zusammenfassung

Erweiterte skalare Sektoren und spontane Symmetriebrechung sind die Grundlage
vieler Theorien, die über das Standardmodell hinausgehen und z.B. Neutrinomas-
sen, dunkle Materie, oder Baryogenese erklären. Eine beinahe allgegenwärtige An-
nahme in sämtlicher Literatur ist hierbei die Neutralität des Vakuums und die Erhal-
tung elektrischer Ladung. Wir eröffnen neue Perspektiven auf diese Annahme, die,
obwohl experimentell gut fundiert, aus theoretischer Sicht nicht zwingend notwen-
dig ist. Allgemeine Skalare, welche Vakuumerwartungswerte in ihren geladenen
Komponenten entwickeln, werden betrachtet, und wir werden feststellen, wie diese
zu Korrekturen auf Massen der Eichbosonen, des elektroschwachen Mischungswin-
kels, der zu erwartenden Teilchenladungen und vielem weiteren führen. Wir ent-
wickeln eine Herangehensweise, um sinnvoll über elektrische Ladung in der gebro-
chenen Phase sprechen zu können, und wenden sie auf Teilchen sehr geringer La-
dung an. Skalare mit speziellen Representationen der Standard-Modell-Eichgruppe,
die neue Interaktionen erlauben, werden untersucht und wir zeigen, wie sie zur
Mischung von geladenen und ungeladenen Leptonen führen. Dafür führen wir eine
neue Basis mit den dazugehörigen Feynman-Diagrammen ein und demonstrieren
ihre Anwendung anhand einiger Beispiele. Während unserer Diskussion verglei-
chen wir unsere Resultate durchweg mit den aktuellsten Experimenten und geben
allgemeine Begrenzungen auf Parameter und Observablen an.
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Chapter

1. Introduction

1.1. History and Motivation

Electromagnetic phenomena have captured the interest of humans all throughout
history; from lightning strikes observed by our early ancestors all the way up to
contemporary sophisticated electric circuits and machinery.
The first attempts to systematically study them are commonly attributed to Thales
of Miletus (ca. 624–546 BCE), who reportedly observed the electrostatic charge of
amber after rubbing it with a piece of cloth or fur. Although modern analyses show
that these effects were almost certainly known already for some time and Thales
likely only referenced them to make a point about the soul of inanimate objects (cf.
[1, 2]), this popular story still serves to demonstrate the pull this mysterious force
had on the curious minds of the last millennia.
During the industrial revolution, the invention of light bulbs, telegraphs, electric
motors, etc. brought electricity into the public consciousness, which in turn inspired
more research in the field and provided the opportunity for many today well-known
scientists, such as Michael Faraday (1791-1867), Carl F. Gauß (1777-1855), and
Wilhelm E. Weber (1804-1891), to earn their place in scientific history. One of the
most important of these physicists was James C. Maxwell (1831-1879), who was
the first to quantitatively describe electricity and magnetism as a unified theory in
his work A Treatise on Electricity and Magnetism (1873) [3].
The 20th century saw the development of gauge theories, paving the way to a further
combination of Maxwell’s electromagnetism with the weak and strong nuclear force
into what is today known as the standard model of particle physics (SM) (cf. [4]
and [5] for a more detailed history).

A crucial feature of the SM is the breaking of the gauge group SU(3)C ×SU(2)L ×
U(1)Y at a certain energy scale into the group SU(3)C × U(1)Q by use of the Higgs
mechanism1. It introduces a scalar particle that obtains a non-zero vacuum expec-
tation value (vev). After this phase transition occurs, the new vacuum of the theory
appears to carry the quantum numbers of the scalar, so they look broken in this
phase. For example, the left-handed (LH) electron eL has a weak hypercharge of

1We use here the popular name Higgs mechanism, but also do not want to neglect the important
contributions by many other physicists. Unfortunately, the name ABEGHHK’tH mechanism (for
Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble, and ’t Hooft), as suggested by Peter
Higgs [6], somewhat impedes the readability of the work.
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2 1.2 Theoretical Background

y = −1
2
, while its right-handed (RH) counterpart eR has y = −1. The electron mass

term eLeR therefore has a leftover hypercharge of y = −1
2

and is hence not invariant
under U(1)Y .
This begs an important question: we know that the SM is not the complete picture,
as it does not account for neutrino masses, dark matter, or the matter-antimatter
asymmetry of the universe, and we know that many of the models trying to address
these shortcomings rely on extended scalar sectors. How sure are we then that
there are no additional scalars obtaining vevs that break the remaining U(1)Q of
the SM?

Since we already have a broken U(1) gauge theory in the SM, we know that,
at least in theory, it must be possible. However, as we have outlined above, elec-
tromagnetism is of long-standing interest and has, with time, become one of the
best-tested theories we have in all of physics. We find ourselves in the era of pre-
cision measurements, and although there is some work on electric charge breaking
(see [7] for a modern review), the theoretical landscape has not been studied in
similar detail.
In this work, we want to make an effort to explore this landscape and, at the very
least, bring some overlooked and underappreciated consequences of a broken elec-
tromagnetic gauge group to the readers’ attention. We will be careful to be general
in our approach but also compare with experimental limits wherever possible.
In chapter 2, we will extend the standard Higgs mechanism to additional scalars
with arbitrary representations under the SM gauge group and investigate in what
way they contribute to the gauge boson masses. The constraints that can be derived
from this will lead us to examine two categories for representations: minicharged
particles (chapter 3), which do not have any new interactions with SM fermions
but still contribute to charge corrections for all particles, and representations that
allow for new renormalizable interactions (chapter 4), which lead to new mass
eigenstates of the fermions that we examine in the leptonic sector.

1.2. Theoretical Background

Before we begin our discussion of electric charge non-conservation, we want to
briefly review some important aspects, namely the Higgs mechanism of the SM.
More detailed information can be found in any introductory book on SM physics
[8, 9, 10, 11].
The Higgs field H is a scalar with the representation2 (1,2)1/2, i.e. we can write it
as a doublet

H =

(
H+

H0

)
. (1.1)

2When we write representation, we always mean under the SM gauge group. It is given in the form
( SU(3), SU(2) )U(1).
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It is the only scalar in the SM, so the most general scalar potential we can write
down is

V (H†H) = µ2H†H + λ(H†H)2 . (1.2)

Any higher order term would need coupling constants with negative mass dimen-
sions to keep the action S =

∫
d4xL dimensionless, and would hence spoil the

renormalizability of the theory. We have two parameters here, µ and λ. We know
that we must have λ ≥ 0, otherwise the potential would be unbounded from below.
The sign of µ2, however, could be either positive or negative.

µ²<0

µ²>0

Figure 1.1.: Schematic plot of the Scalar potential with µ2 > 0 (blue) and µ2 < 0
(red).

These two cases are depicted schematically in Figure 1.1 for a scenario where H
is a real scalar. In the case of µ2 > 0, the potential has a minimum at H = 0, as
we expect from a regular quantum field. But when µ2 < 0, we can see that two
distinct minima develop. Their position can be obtained by taking the derivative of
the potential with respect to the field:

∂

∂H
V (H†H)

∣∣∣∣
H†H=v2

= µ2H† + 2λH†(H†H)
!
= 0 → v2 = ±

(−µ2)

2λ
, (1.3)

where v is the vev of the scalar. Although we can see from Figure 1.1 that the
potential is still symmetric, the field will have to choose one of the minima at low
energies and hence the symmetry will appear broken when close to the minimum.
This scenario is easily generalized to the case of a complex scalar H. The two
minima then become a circular trough around the central maximum, as we can see
from the minimum condition

√
v2 =

√
−µ2

2λ
eiθ ≡ veiθ (1.4)

for some angle θ. There are two possible modes here: the field can move along the
trough and stay in the minimum, corresponding to a massless particle, the Gold-
stone boson. The other is a movement in radial direction, where the potential
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changes, corresponding to a massive particle. We put this into formulae in the fol-
lowing way. We choose one of the components of the doublet to write the vev into.
This choice is essentially arbitrary, as we can use a SU(2)×U(1) transformation to
change this however we like. In this component, we expand around the vev as
H0 = v + h. The excitation h is identified with the massive radial mode and is a
real field, the complex phase π is is naturally understood as an angle and hence
identified with the massless angular mode. All of this can be put together nicely as

H =
1√
2

(
0

v + h

)
e2i

πaτa

v . (1.5)

The factors
√
2 and 2 appear for normalization of the real fields and πaτa is the

equivalent of the angular mode in SU(2)×U(1)-space with τa = σa/2 the SU(2)
generators.

Let us take a closer look at what this vev means for the gauge group structure.
We reiterate that the Higgs has the SM representation (1,2)1/2, i.e. it transforms as

H → eiα
aτaeiβ/2H (1.6)

for some free parameters α and β. But when we only look at the vev, this transfor-
mation looks like

⟨H⟩ →

(
cosh α1

2
sinh α1

2

sinh α1

2
cosh α1

2

)(
cosh α2

2
sin α2

2

− sin α2

2
cosh α2

2

)(
eα

3/2

e−α3/2

)(
eβ/2

eβ/2

)
⟨H⟩

=
v√
2
e(β−α3)/2

(
cosh α1

2
sin α2

2
+ sinh α1

2
cosh α2

2

sinh α1

2
sin α2

2
+ cosh α1

2
cosh α2

2

)
,

(1.7)
which is only invariant if α1 = α2 = 0 and α3 = β. In other words, there is a
particular combination of generators τ 3 + 1, that leaves the vev invariant. This
generator is diagonal with one degree of freedom and hence belongs to the gauge
group U(1). We have therefore seen that

SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)Q . (1.8)

What happens to the gauge bosons of these groups? To find out, let us examine the
kinetic term of the Higgs

(DµH)†(DµH) . (1.9)

We ignore the gluons for now, such that the covariant derivative is

DµH =
(
∂µ − igτaW a

µ − ig
′

2
Bµ

)
H , (1.10)

where W a
µ are the gauge bosons of SU(2) and Bµ the one of U(1). When the Higgs

field develops it’s vev, this derivative becomes

Dµ⟨H⟩ = − 1√
2
i
2

(
g′Bµ + gW 3

µ g(W 1
µ − iW 2

µ)
g(W 1

µ + iW 2
µ) g′Bµ − gW 3

µ

)(
0
v

)
= − v√

2
i
2

(
g(W 1

µ − iW 2
µ)

g′Bµ − gW 3
µ

)
.

(1.11)
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We see here the combinations W 1
µ − iW 2

µ and W 1
µ + iW 2

µ . Since all interactions of
gauge bosons stem from some covariant derivatives, which in turn only contain the
W bosons together with their corresponding generator, this means that W 1 and W 2

will only appear in one of those two combinations. We hence define

W+
µ ≡ 1√

2
(W 1

µ − iW 2
µ) and W−

µ ≡ 1√
2
(W 1

µ + iW 2
µ) . (1.12)

We now insert everything back into Equation 1.9 and find

(Dµ⟨H⟩)†(Dµ⟨H⟩) = v2

8

(
2g2W+

µ W
− µ + (g′Bµ − gW 3

µ)
2
)

(1.13)

The first term is a mass term of a complex particle, as (W+)† = W− with mass
m2

W = 1
4
g2v2. The second term, however, contains not only mass terms, but also

terms of the form ∼ v2W 3
µB

µ. They can be interpreted as an interaction with the
vacuum that converts the two bosons into each other, that occurs all the time. This
makes it difficult to speak of either of the two bosons, as their is no useful timescale
on which we can say they are present for any process. We can remedy this by
using the same trick we already employed for the W bosons. If we introduce two
orthogonal fields as combinations of W 3 and B,

Aµ = sin θwW
3
µ + cos θwBµ and Zµ = cos θwW

3
µ − sin θwBµ , (1.14)

we find that the terms ∼AµZ
µ disappear when the mixing angle satisfies

sin θW =
g′√

g2 + g′2
and cos θW =

g√
g2 + g′2

. (1.15)

Equation 1.9 now finally reduces to

(Dµ⟨H⟩)†(Dµ⟨H⟩) = v2

4
g2W+

µ W
− µ +

v2

8
(g2 + g′2)ZµZ

µ . (1.16)

Note that theAµ has vanished entirely, i.e. it corresponds to a massless boson, which
we identify with the photon. The other massive particle is the familiar Z-boson.

We will briefly review and contextualize the most important aspects of this sec-
tion. In the very early and hot universe, temperature corrections have to be taken
into account (an introduction to finite-temperature field theory can be found in
[12]). These corrections go with T 2 and contribute to the ”mass term” of the Higgs
potential (Equation 1.2) ∼ (µ2+αT 2), for some α. We conjecture that µ2 is negative,
but with large enough corrections this term may be positive, such that the potential
has a clear minimum, which the field assumes.
As the universe cools, the mass-squared term of the potential truly becomes nega-
tive and the potential changes it’s form: the minimum now becomes a local maxi-
mum surrounded by equivalent minima, which break the symmetry when the field
chooses one of them. Their is some residual symmetry left, which is the U(1)Q

electromagnetic gauge group:

SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)Q . (1.17)
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This breaking of symmetry determines the properties of the gauge bosons and their
mass comes from their interaction with the scalar Higgs field. The gauge bosons
corresponding to the unbroken groups, the gluon for the SU(3)C and the photon for
the U(1)Q, remain massless.
This is everything we need to know to understand the relevant effects that arise
when we add more scalars to the standard model.



Chapter

2. Charged vevs
2.1. Extension to multiple scalars

Let us begin by considering the electroweak symmetry group SU(2)L × U(1)Y and
their associated gauge bosonsW i

µ andBµ. We extend this case by a set ofN complex
Lorentz-scalars Φi=1...N with ni components each and label their eigenvalues under
the 3rd generator of SU(2)L and the generator of U(1)Y as mi a and yi, respectively
(no summation over i):(

T̂ 3Φi

)
a
= mi a Φi a , Ŷ Φi = yiΦi . (2.1)

The hypercharge of any ni-plet is always the same for all components (i.e. Ŷ ∝ 1),
while every component has a different eigenvalue under T̂ 3.
According to representation theory we can always find an eigenbasis to T̂ 3 in which
it acts as T̂ 3 = diag(j, j − 1, . . . ,−j) (see e.g. chapter 5 of [13]). The j here is
connected to the multiplicity n = 2j + 1 of the SU(2)L-representation in analogy to
spin systems of ordinary quantum mechanics, where it is usually referred to as the
total angular momentum.
For example, we have T̂ 3 = diag(1

2
,−1

2
) for a doublet 2 and T̂ 3 = diag(1, 0,−1) for

a triplet 3, which we can again recognize as containing the allowed values for the
spin in regular quantum mechanics.
We shall call this eigenbasis em, labelled by it’s eigenvalue m. The different eigen-
vectors can be transformed into each other with the usual ladder operators

T̂+ = T̂ 1 + iT̂ 2 and T̂− = T̂ 1 − iT̂ 2 ; (2.2)

they act analogously to their angular momentum counterparts:

T̂+em =
√
j(j + 1)−m(m+ 1) em+1

and T̂−em =
√
j(j + 1)−m(m− 1) em−1 .

(2.3)

Indeed, the SM definitions of W+
µ /W

−
µ give rise to

T̂ 1W 1
µ + T̂ 2W 2

µ = 1
2
(T̂+ + T̂−)W 1

µ + 1
2i
(T̂+ − T̂−)W 2

µ

= 1
2
(W 1

µ − iW 2
µ)T̂

+ + 1
2
(W 1

µ + iW 2
µ)T̂

−

≡ 1√
2
(W+

µ T̂
+ +W−

µ T̂
−) ,

(2.4)

7



8 2.2 Gauge boson masses

showing that the ladder operators are the generators that correspond to the charged
W -bosons, as they should be [8].

Our new scalar bosons may be written in this particular basis as Φi = ϕimem
for some appropriate functions ϕim. In the most general case and at sufficiently
low energies, all of our scalar bosons may develop vevs, i.e. we can find minima
satisfying ΦiΦ

†
i = v2i /2 for some real constant vi (the factor 2 is conventional and

chosen such that it matches the canonical normalization of the bosons fluctuating
around the minima).
Crucially, the vev is constraining only the absolute value of the ni-plets Φi and
therefore allows for a global O(2ni) symmetry that allows us to freely choose which
components to write our vevs in when broken to a O(2ni − 1); a priori nothing
forbids us from writing them into electrically charged components.
Let us pick a component m̂ to obtain a vev, such that we can write ⟨Φi⟩ = vi√

2
em̂i

.
Under the SM electric charge operator, given by the Gell-Mann-Nishijima formula
Q̂ = T̂ 3 + Ŷ , any vev has an eigenvalue m̂i + yi. If this value is non-zero for
the vacuum, the corresponding gauge symmetry, i.e. the U(1)EM, must have been
spontaneously broken; much like in the SM Higgs mechanism, we expect to see this
reflected in the mass of the corresponding gauge boson: the photon.
Similarly, if the vacuum is not an electroweak singlet, we also expect contributions
to the W - and Z-boson masses.
In the following, we will derive just what these contributions to the masses look
like and how much they constrain the model building.

2.2. Gauge boson masses

The masses of the gauge bosons originate from the kinetic terms of the scalar
bosons. The Lagrangian under consideration here is

LScalar, kin = (DµΦi)
†(DµΦi) , (2.5)

with the covariant derivative

Dµ = ∂µ − igT̂ iW i
µ − ig′Ŷ Bµ

= ∂µ − i g√
2
(T̂+W+

µ + T̂−W−
µ )− igT̂ 3W 3

µ − ig′Ŷ Bµ .
(2.6)

Gauge boson mass terms arise naturally when the scalar bosons obtain non-zero
vevs. In this case, the Lagrangian becomes (ignoring the fluctuations around the
minima):

LScalar, kin =
v2i
2
e†m̂i

(
g√
2
(T̂+W+

µ + T̂−W−
µ ) + gT̂ 3W 3

µ + g′Ŷ Bµ

)2
em̂i

. (2.7)

Since our eigenbasis is orthonormal by construction, only combinations of genera-
tors that leave em̂i

invariant survive:

LScalar, kin =
v2i
2
e†m̂i

(
g2

2
(T̂+T̂− + T̂−T̂+)W+

µ W
−
µ + (gT̂ 3W 3

µ + g′Ŷ Bµ)
2
)
em̂i

. (2.8)
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The first term is responsible for contributions to the W mass, while the second term
will result in photon and Z masses. Let us first look at the former, where the action
of the generators given in Equation 2.3 can be inserted to obtain

LScalar, kin ⊃ g2v2i
2

(
ji(ji + 1)− m̂2

i

)
W+

µ W
µ− . (2.9)

For any SU(2)L-non-singlet we add, we will have a contribution to the W mass

M2
W =

g2v2i
2

(
ji(ji + 1)− m̂2

i

)
. (2.10)

If we consider only the SM Higgs (j = 1
2

and m̂ = −1
2
), this indeed yields the correct

result of m2
W = 1

4
g2v2 [14]. Since the W+/W−-bosons are comprised of only SU(2)L

gauge bosons, their masses do not depend on the hypercharges of the scalars and
we need to know only their representations and what component the vev lies in to
compute them. This is important as we expect the term in brackets to be roughly
O(1) and we can hence suppress any contributions in addition to the SM only via
the vev. We will reflect on this more at the end of this section.

For now, let us continue by examining the remaining neutral gauge boson masses.
They are determined by

LScalar, kin ⊃ v2i
2
e†m̂i

(
gT̂ 3W 3

µ + g′Ŷ Bµ

)2
em̂i

=
v2i
2

(
g2m̂2

i (W
3
µ)

2 + 2gg′m̂iyiW
3
µBµ + g′2y2i (Bµ)

2
)
.

(2.11)

It is advantageous to write this expression in matrix form:

LScalar, kin ⊃ v2i
2

(
Bµ W 3

µ

)( g′2y2i gg′m̂iyi
gg′m̂iyi g2m̂2

i

)(
Bµ

W 3
µ

)
≡ 1

2

(
Bµ W 3

µ

)
MGauge

(
Bµ

W 3
µ

)
;

(2.12)

this way we will always have a 2 × 2 real symmetric matrix, which we can diago-
nalize with an orthogonal rotation matrix

R =

(
cos θ sin θ
− sin θ cos θ

)
.

We can solve for the angle analytically by simply demanding that the off diagonal
elements of RMGaugeR

T be zero. A more refined approach can be found e.g. in [15].
Applying the author’s solution to our problem leaves us with:

sin θ =
1√
2

(
1 +

√
κ21

κ21 + κ22

)1/2

, cos θ =
1√
2

(
1−

√
κ21

κ21 + κ22

)1/2

, (2.13)
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where we have defined the model dependent parameters

κ1 =
∑
i

v2i (g
′2y2i − g2m̂2

i ) and κ2 = 2gg′
∑
i

v2i yim̂i . (2.14)

We made the sum explicit in this definition to stress that the terms in Equation 2.13
do not simplify due to the presence of a binomial formula.
If we only add electrically neutral scalars (i.e. m̂i = −yi ∀i) the parameters κ1 and
κ2 have a common factor

∑
i v

2
i y

2
i that drops out. We then get the usual SM formula

for the sine and cosine of the Weinberg angle.
Another important observation is that we no longer have the SM relation e =
g sin θ = g′ cos θ for the electric charge if we add charged vevs. Of course, this
is to be expected since the U(1)EM is now broken; the best we can do is to define
two separate charges

e1 ≡ g′ cos θ and e2 ≡ g sin θ (2.15)

for the U(1)Y and SU(2)L part of the electric charge, respectively.
To keep our Lagrangian unchanged we also need to rotate our fields. With our
above definitions, this amounts to

R

(
Bµ

W 3
µ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
Bµ

W 3
µ

)
=

(
sin θW 3

µ + cos θ Bµ

cos θW 3
µ − sin θ Bµ

)
. (2.16)

We recognize the top and bottom components as the photon and Z-boson, respec-
tively. They differ from their SM definitions only in the value of θ. The correspond-
ing masses are given by the entries of the diagonal matrix obtained by the above
rotation (i.e. the eigenvalues of the mass matrix), they can be written compactly in
terms of the rotation angles:

M2
A =

∑
i

v2i (g
′yi cos θ + g m̂i sin θ)

2
, (2.17)

M2
Z =

∑
i

v2i (g
′yi sin θ − g m̂i cos θ)

2
. (2.18)

We can see that in the absence of any charge breaking vevs, where m̂i = −yi and θ =
θW, the photon mass correctly vanishes and the Z mass becomesM2

Z = v2i y
2
i (g

2+g′2).

All of the quantities we have looked at up to now are of course very precisely
measured. Chief amongst them is the photon mass, determined currently to be
MA < 10−18 eV [16]. This puts a hefty constraint on our model and we need to
explore the available parameter space carefully.

Figure 2.1 shows the allowed parameter space for the photon mass predicted
by Equation 2.17 for the SM Higgs boson and an additional SU(2)L singlet with a
set hypercharge and vev. We see immediately that if the hypercharge is O(1) or
larger, the vev has to be suppressed heavily to be roughly 10−18 eV or smaller, but
if the hypercharge happens to be very small (y ≪ 1), we may lift the vev to higher
energies. For larger multiplets the parameter space looks analogous, only shifted
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Figure 2.1.: Allowed parameter space for the photon mass in the case of the SM
Higgs plus a scalar SU(2)L singlet with vev v and hypercharge y. The
shaded region is compatible with the bounds from [16].

slightly lower and with the y-pole such that y = −m̂. This is because here the
component with the vev becomes neutral and the contributions to the photon mass
vanish; in fact we should be able to make our vevs as large as we want if we also
send y → −m̂.
Unfortunately there is a catch to this; we have already seen in Equation 2.10 that
the W mass is independent of the hypercharge. Since all contributions to it’s mass
are necessarily positive and proportional to v2, there is an absolute upper limit on
any additional vevs that are not SU(2)L singlets. Figure 2.2 shows the maximum
vev for any single scalar added to the SM Higgs that gives a W -mass still within
one sigma of experimental results (not including the 2022 CDF result [17]). We see
that, as a general trend, the larger the n-plet, the smaller the vev can be at most. In
the most generous case of adding just another doublet (marked green in the figure),
the vev still needs to be smaller than ∼ 50GeV. We have to conclude that even if
the hypercharge is very small, there still cannot be any charge breaking on scales
higher than Higgs or even GUT, except if it is mediated by a singlet, which does not
contribute to the W -mass. It is to be noted, though, that throughout this discussion
we have assumed that the vev of the SM Higgs vH keeps its value of ∼ 246GeV. One
might be able to raise the scale of symmetry breaking further by decreasing vH , but
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Figure 2.2.: The critical vev for a scalar multiplet (in addition to the SM Higgs) at
which the contributions to the W mass exceed the one sigma range
of current experimental bounds [14] (MW = 80.377(12)GeV, not in-
cluding the more recent but significantly deviating CDF result [17]).
The x-axis shows the T̂ 3 eigenvalue of the component the vev lies in
and the color signifies what multiplet we have added (green – doublet,
light blue – triplet, dark blue – 4-plet, purple – 5-plet, red – 6-plet).
Results for negative m̂ are mirrored.

this would also mean changing the Yukawa couplings to the fermions to keep their
masses the same. We will not explore this case further here, but leave the possibility
open to be explored in future work.

2.3. The ρ -parameter

We want to spend some time investigating the ρ-parameter at this point. It is defined
by the equation

ρ =
M2

W

M2
Z cos2 θ

(2.19)

and determines the ratio of the W - and Z-masses [18]. In the standard model,
this parameter is equal to one at tree level, where it is protected by the custodial
symmetry; at loop-level this symmetry is broken and small corrections appear [19].
They match very well with the current experimental bound ρ = 1.00038(20) [14].
In our model, we may write ρ as

ρ =
g2

2 cos2 θ

∑
i v

2
i (ji(ji + 1)− m̂2

i )∑
i v

2
i (g

′yi sin θ − gm̂i cos θ)
2 . (2.20)
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Figure 2.3.: The ρ-parameter for the SM Higgs and one additional scalar doublet
(left) or triplet (right).

The question at hand is whether this leads to any further constraints on our new
vevs. If all additional scalars are SU(2)L singlets, the ρ-parameter becomes

ρ =
g2

cos2 θ

[
(g′ sin θ + g cos θ)2 + 4g′2 sin2 θ

∑
i

v2i
v2H
y2i

]−1

. (2.21)

As before, any new vev can be arbitrarily large as long as the corresponding hyper-
charge is small enough. Since the limits on the photon mass are much stronger than
the ones on the ρ-parameter, there are no further restrictions arising from precision
measurements in this area.

What about scalar multiplets? Figure 2.3 shows the allowed parameter space
for one additional doublet (left) or triplet (right). In the doublet case, there is a
noticeable pole around y = ±1

2
with the sign being opposite to the sign of the T̂ 3

eigenvalue. These cases occur in the well known Two-Higgs-doublet models (for a
recent review see e.g. [20]). We can see in Equation 2.20 that for this particular
combination of parameters (and indeed any N-Higgs-doublet model) the vevs drop
out of the equation. In the limit of v ≫ vH the ρ-parameter becomes that of a single
doublet; the size of the parameter space then increases again as larger y can be
compensated with cos θ → 0 in the same limit.
This behaviour is only possible if the quantum numbers of the vev are such that the
ρ-parameter is equal to one irrespective of the hypercharge. Equation 2.20 allows
us to extract the condition

3m̂2 = j(j + 1) . (2.22)

The lowest order solution to this equation is the doublet with m̂ = ±1
2

(7-plet with
m̂ = ±2, 26-plet with m̂ = ±15

2
, . . .). Of course, with the constraint on the vevs from
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the W -mass we have discussed earlier, these cases are not particularly viable for
us. Other configurations do not have any open parameter space for large vevs and
at most have poles that asymptotically approach a specific hypercharge value (e.g.
y ≈ ±3.234 in the triplet case of Figure 2.3).

Although there is some interesting behaviour to be found in the ρ-parameter, we
have to conclude that it does not provide any relevant constraints for our discussion.
The SU(2)L singlet is limited much more by the photon mass and the ρ-parameter
also allows for large vevs with small hypercharge. For higher multiplets the W -mass
still blocks large vevs altogether.
It is clear that these are the two directions we will need to investigate from here:
hypercharges very close to electric neutrality with reasonably high vevs (i.e. v =
O(GeV)) and hypercharges that allow for renormalizable interactions with other
particles and very small vevs.



Chapter

3. Minicharges
In our construction of the multiplet basis in section 2.1 we have already seen that
the eigenvalues of the SU(2)L’s third generator T̂ 3 are discrete (integer multiples of
1
2
). The hypercharge, on the other hand, is the eigenvalue of the continuous U(1)Y

group, where this is per se not the case. Invoking again the Gell-Mann-Nishijima
formula Q̂ = T̂ 3 + Ŷ , we see that this means – even in the SM – that the electric
charge may also take any continuous value.
It is therefore puzzling that nature seems to only allow for charges that are inte-
ger multiples of the down-quark charge. There are many models addressing this
apparent inconsistency, the most prominent of which are Dirac’s famous magnetic
monopoles [21] and the embedding of the hypercharge U(1)Y into a larger gauge
group such as the SU(5) GUT model [22].
However, as long as we lack experimental evidence for any of these mechanisms,
we need to consider the possibility of particles with very small fractional charges,
hereinafter referred to as minicharged particles (mCP). There already is a plethora
of work, both experimentally and theoretically, on limits for such particles, espe-
cially in the context of dark matter candidates (for recent reviews see e.g. [23,
24]). We want to highlight that specifically the parameter space we are interested
in here, i.e. y ≪ 1 and v = O(GeV), is still largely unexplored.

In the following sections we will consider the phenomenological implications of
both the minicharged scalar bosons we add to break the U(1)EM, as well as the small
charge corrections to the SM fermions that will arise from the symmetry breaking.

3.1. Electric charge in the broken phase

Before we continue we need to acknowledge that we cannot rigorously talk about
the electric charge of particles in the phase where the electromagnetic gauge group
is broken, as it is not a good quantum number anymore. We can, however, still talk
about eigenvalues under the broken generator Q̂′ of the U(1)EM; when we refer to
the electric charge of a particle from here on, we mean this coupling strength to the
photon.
To put this into more quantitative terms, let us investigate the interaction between
a photon and a generic fermion ψ, which stems from the action of the covariant
derivative:

Dµψ ⊃ ∂µψ − ig′BµŶ ψ − igW 3
µ T̂

3ψ . (3.1)

15
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We have defined the photon and Z-boson in Equation 2.16 as certain mixed states
of the B- and W 3-field. Thus, they in turn can be expressed as mixed states of
the photon and Z. This allows us to rewrite the above definition of the covariant
derivative into a more useful form in the broken phase:

Dµψ ⊃ ∂µψ − i
(
g′ cos θ Ŷ + g sin θ T̂ 3

)
Aµψ − i

(
−g′ sin θ Ŷ + g cos θ T̂ 3

)
Zµψ .

(3.2)
From this, we can read off the definition of the new electric charge

e′Q̂′ = g′ cos θ Ŷ + g sin θ T̂ 3 ≡ e1Ŷ + e2T̂
3 . (3.3)

This is true regardless of the assumptions we make for our additional scalars, but
we can make some good approximations if we assume only minicharged particles
and v ≤ O(GeV) to get a better feeling about what orders of magnitude we deal
with for the charge corrections.
We earlier defined the model dependent parameters κ1 and κ2 (cf. Equation 2.14)
that determine the weak mixing angle. In the minicharge limit, where y = −m̂ + ε
for some small ε > 0, these parameters can be approximated as

κ1 ≈

(
v2H
4

+
∑
i

v2i m̂
2
i

)
(g′2 − g2)− 2g′2

∑
i

v2i εim̂i ,

κ2 ≈ −2gg′

(
v2H
4

+
∑
i

v2i (m̂
2
i − εm̂i)

)
.

(3.4)

Since ε = y+ m̂ is the deviation from the electrically neutral case, we may interpret
it as the SM electric charge q of the scalar (in units of e). To first order in q, we can
then approximate

cos θ ≈ cos θW

(
1 + 4 sin2 θW

∑
i

v2i
v2H
qim̂i

)
,

sin θ ≈ sin θW

(
1− 4 cos2 θW

∑
i

v2i
v2H
qim̂i

)
.

(3.5)

We explicitly differentiate between the weak mixing angle θ as derived in the pre-
vious chapter and the Weinberg angle θW , which is the SM limit of θ. The quantity
measured in experiments is θ, although its value to current precision coincides with
θW . Inserting back into Equation 3.3 gives us a good estimate for the corrected
charge:

e′Q̂′ ≈ eQ̂+ 4e
∑
i

v2i
v2H
qim̂i(sin

2 θW Ŷ − cos2 θW T̂
3)

≡ e
[
Q̂+ κQ(sin

2 θW Ŷ − cos2 θW T̂
3)
]
.

(3.6)

To keep our formulae clean, we have introduced another model-dependent param-
eter κQ = 4

∑
i
v2i
v2H
qim̂i.
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As an example, consider a doublet scalar with v = 3Gev, m̂ = −1
2

and q = 0.1 e
(which would naturally have a mass and charge such that it will likely be possible
to exclude it with upcoming run-3 LHC data (specifically the MoeDAL-MAPP experi-
ment [25, 26]), cf. Figure 3.1); this particle would be on the upper border of where
our above approximations are valid and yield κQ ≈ −3.0 · 10−5.
Since this represents the larger end of the not-quite excluded parameter space, we
generically expect from the above numerical example that the charge corrections
|∆q| (i.e. the eigenvalue of |eQ̂ − e′Q̂′|) are roughly of order O(10−4) e. Although
larger corrections can be constructed, e.g. by adding more scalars, they lead to
too large deviations from the fermion charges, as we will discuss in the following
section.

Figure 3.1.: Parameter-space for minicharged particles (χ), figure taken from [26].
The red dashed lines show the projected 95% confidence level exclusion
limits for minicharged particles produced in various channels in the
MAPP–1 detector.
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3.2. Charge corrections to fermions

In 2019, the International System of Units (SI) was redefined to have all units
derived from seven defining constants. These constants, in turn, are defined to
have the value of their current best measurements. One of these constants is the
elementary charge [27]

e = 1.602 176 634 · 10−19 C .

This value has been measured numerous times over the years, first and most fa-
mously by Robert Andrews Millikan [28], for which he received the 1923 Nobel
Price. In our framework, these measurements still hide a splitting between e1 and
e2, or, equivalently, a difference in charge of left- and right-handed fermions. We
therefore want to take the spirit of the above definitions of SI units and simply
define the measured charge to be the value of the unbroken charge e and view e1
and e2 as deviations from this value. Note, however, that the elementary charge
e = g sin θW = g′ cos θW and the charge of the electron are two conceptually differ-
ent things. Despite that, it is still a sensible definition to make, as it allows us to
easily compare our results with literature. Besides, the precision of e is such that
e ≈ q′(e−) ≈ e1 ≈ e2 is a very good approximation.

Particle name SM charge q [e] Charge q′ under Q̂′ Approx. ∆q [κQe]

LH Electron e−L −1 −1
2
(e1 + e2)

1
2
(cos2 θW − sin2 θW )

RH Electron e−R −1 −e1 cos2 θW

LH Neutrino νL 0 −1
2
(e1 − e2)

1
2

LH u-Quark uL +2
3

+1
6
(e1 + 3e2) −1

6
(cos2 θW − 3 sin2 θW )

RH u-Quark uR +2
3

+2
3
e1 −2

3
cos2 θW

LH d-Quark dL −1
3

+1
6
(e1 − 3e2) −1

3
sin2 θW

RH d-Quark dR −1
3

−1
3
e1 +1

3
cos2 θW

Table 3.1.: 1st generation SM fermions and their SM electric charge, their charge
in the broken phase (i.e. under Q̂′), and the correction to the electric
charge ∆q in the minicharge approximation of section 3.1.

In Table 3.1 we show the charges of the fermions in the SM, the exact charges
in the broken phase, and the correction to the SM charge in units of the model
parameter κQ as we have determined in the previous section.
This table clearly shows the difference between the left- and right-handed fermions
as the latter get their charge only from the U(1)Y. Another big takeaway is the
charge of the previously neutral neutrino:

q′ν = −1

2
(e1 − e2) ≈

κQ
2
e . (3.7)
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This puts a much stronger constraint on κQ than the direct minicharge searches
we saw in the previous section, as the current best limits on the neutrino charge
are |q′ν | < 3.3 · 10−12 e [29] (as measured by the CONUS collaboration; there exist
stronger limits from CMB asymmetries [30], but we do not take them into account
as a phase transition into the charge breaking phase could have taken place much
more recently). In other words, we must have |κQ| ≲ 6.6 · 10−12 to fit experimental
data.
There are even wider reaching consequences, as many precision measurements of
fermions are tied to the electric charge. Take, for example, the (spin-)magnetic
moment.

f f

γ

Figure 3.2.: Feynman-Diagram that gives
rise to the tree-level magnetic
moment of a fermion f .

On tree-level, it is a direct result from
the coupling to the photon, as depicted
in Figure 3.2. In the SM, the magnetic
moment is a vector quantity determined
by [8]

µ⃗ = g
q

2m
S⃗ , (3.8)

with g the Landé g-factor and S⃗ the spin
of the particle. The electron, for ex-
ample, has |µe| ≈ −2 e

2me

ℏ
2
= −µB. In

the broken phase, this gets a correc-
tion |µ′

e| = − q′e
e
µB by a small factor (the

charge q′e will be determined later and can be found in Table 3.2). Even more
strikingly, the neutrino also has a tree-level contribution. Here, we now expect

|µν | ≈ −q
′
ν

e

me

Mν

µB ≈ −κQ
2

me

Mν

µB. (3.9)

Mν here is the (effective) mass of the neutrino, regardless of the mass-giving mech-
anism. Currently the best limits on the neutrino mass fixes the mass ratio to
me/Mν ≳ 4.6 · 106 [14]. Overall, the best limit on the neutrino magnetic moment
is |µν | < 6.4 · 10−12 µB by XENONnT [31], which implies that more likely we have
|κQ| ≲ 1.4 · 10−18.
Another way to interpret Figure 3.2 with f = ν is the decay of the photon to neu-
trinos. Indeed, only the neutrino is a possible decay product in this interaction.
We know from oscillation experiments that the second lightest neutrino has a mass
of at least 8.7 · 10−3 eV [32], which further kinematically disqualifies every particle
except for the lightest neutrino (which could still be massless) as a possible photon
decay product.
The Feynman rule of this vertex is the familiar −iqγµ with the charge given by
Equation 3.7. This results in the matrix element

M =
1

2
(e1 − e2)ϵµ(k)u(p)γ

µv(p− k) , (3.10)

where k is the momentum of the incoming photon and p that of the outgoing neu-
trino (cf. Figure 3.3).
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k

p− k

p

γ

ν

ν

Figure 3.3.: Feynman-Diagram for pho-
ton decay into a neutrino
anti-neutrino pair.

We can extract observables from this
using the usual techniques, i.e. squar-
ing the matrix element, averaging over
the spin-states of the incoming pho-
ton, summing over the spin states of
the outgoing neutrinos, accounting for
the phase space, etc. It is important
not to forget that the photon now has
mass (kµkµ = M2

A). This has an impor-
tant consequence: there is an additional
longitudinal polarization, similar to the
other massive gauge bosons. The sum
of polarizations therefore changes to

ϵµ(k) ϵ
∗
ν(k) = −ηµν −→

(
−ηµν +

kµkν
M2

A

)
. (3.11)

Crucially, this means that there is in general no smooth limit from the model in
which the photon has mass to the SM. With these caveats in mind, we can determine
the decay width for this process:

Γ =
S

48π
MA(e1 − e2)

2

√
1− 4M2

ν

M2
A
(1 + 2M2

ν

M2
A
) . (3.12)

The S accounts for the additional factor 1
2

in the case of indistinguishable outgoing
particles (i.e. S = 1 for Dirac-neutrinos and S = 1

2
for Majorana-neutrinos). Natu-

rally, Equation 3.12 is only defined when MA ≥ 2Mν .
Let us for simplicity assume that the lightest neutrino is massless. This lets us ex-
tract a very simple equation for the lifetime of the photon:

τγ =
48π

S

1

MA(e1 − e2)2
≈ 48π

SMA

1

κ2Qe
2
. (3.13)

With our previously determined limits of |κQ| ≲ 1.4 · 10−18 and MA < 10−18 eV, we
have at least τγ ≳ 1.75 · 1025 Gyr in this decay channel. This is far above the current
model-independent bounds for a photon in this mass-range τγ ≳ 2.7 yr [33]. The
fact that this limit is so small is because of the huge time dilation (O(1015)), which
makes the lifetime observed in the laboratory frame much larger. This highlights
that the photon lifetime is not a useful quantity for us, in the sense that it is far off
anything we can measure in the near future.

There is another important aspect we have yet to address. In Table 3.1 we have
listed the charges of the left- and right-handed fermions separately, but the particles
we see in nature are superpositions of both states. Of course the resulting state is
not a charge eigenstate and it therefore does not have a well-defined charge as a
system. We can nevertheless define an average charge and assign it to the particle
in question. This can be motivated in the following way:
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The transition between the LH and RH state of the particle occurs due to the mass
term, e.g. me(eLeR + eReL). We can interpret this term as a continuous interaction
with the vacuum that flips the particle’s chirality. Both interactions have the same
”coupling constant” me, i.e. neither of the two states should be preferred over the
other.

Figure 3.4.: Depiction of the path of an exclusively left-handed (green line) and
right-handed (yellow line) electron in a magnetic field. The real path
(black dashed line), that is determined by the interaction with the mag-
netic field, lies in-between these two cases and approaches the average
between the two cases (red line).

Consider an electron in a magnetic field (cf. Figure 3.4). If it were purely left- or
right-handed, we could predict the distinct path it would follow. When the chirality
flips, the path changes to be in-between these two cases. With an increasing number
of flips, the path naturally approaches the average between the exclusively left- and
right-handed path. Conversely, this path is the one followed by a particle with a
charge that is the average of the edge-cases.
Applying this to the electron, we get

q′(e−) =
1

2

(
q′(eL) + q′(eR)

)
= −1

4
(3e1 + e2). (3.14)

In the SM limit e1, e2 → e, this does indeed give the expected result. In this manner
we can also define the charges for the other fermions, as can be seen in Table 3.2.
A couple of comments are in order. Firstly, the charge of the neutrino in the table
is the same as the charge of the purely LH neutrino. This is because we do not
consider RH neutrinos, as they have not been experimentally confirmed thus far.
However, the charge of the neutrino from this mechanism is actually dependent on
the nature of the neutrino; the given value of q′ν = −1

2
(e1 − e2) is for Majorana

neutrinos (by which we mean only the LH part exists). For a Dirac neutrino, as
the RH part is a full singlet and remains uncharged even in the broken phase,
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Particle name SM charge q [e] Charge q′ under Q̂′

Electron e− −1 −1
4
(3e1 + e2)

Neutrino ν 0 −1
2
(e1 − e2)

u-Quark u +2
3

1
12
(5e1 + 3e2)

d-Quark d −1
3

− 1
12
(e1 + 3e2)

Table 3.2.: 1st generation SM fermions, their SM electric charge, and their charge
in the broken phase.

our procedure of assigning an average charge would give an additional factor 1
2
,

resulting in q′ν = −1
4
(e1 − e2).

We can also use these charges to estimate e1 and e2. Comparing the electron and
neutrino charges leaves us with −e1 = q′(e−) + q′(ν) and −e2 = q′(e−) − 3q′(ν) for
Dirac neutrinos. This justifies our definition of the measured elementary charge e
as the unbroken electric charge, as indeed the best limits on the neutrino charge
(cf. [29]) tell us that |e2 − e1| = 4|q′(ν)| < 1.3 · 10−11 e. The splitting of electric
charge into its higher gauge group components therefore occurs some orders of
magnitude below current experimental precision. In the Majorana case, this limit is
even tighter (by a factor of 2).

Some further quantities that can be obtained from Table 3.2 have to do with
neutrality of matter. The most abundant element in the universe is hydrogen, con-
sisting of a proton and an electron. We should check that it is neutral (or at least
have a small enough charge). The charge of the proton is a result of the charge of
its constituent quarks:

q′(p) = 2q′(u) + q′(d) =
1

4
(3e1 + e2). (3.15)

Luckily, this is indeed the opposite charge of the electron, ensuring the large-scale
neutrality of elementary hydrogen. However, the situation changes once we intro-
duce neutrons (from isotopes or heavier elements). For neutrons we have

q′(n) = 2q′(d) + q′(u) =
1

4
(e1 − e2). (3.16)

Interestingly, this is the opposite charge to Dirac neutrinos. The current bounds
on the neutron charge1 are q′n = (−0.4 ± 1.1) · 10−21 e [34]. Since properties of
the neutron are far easier to measure than the neutrino’s, this limit is much more
stringent than the neutrino charge. But since analytically they are given by the same
expression (up to a potential factor 1

2
), we can use this to give a much stronger

bound also on q′ν . Concerning our model dependent parameter κQ, this translates
to even stronger limits than from the neutrino magnetic moment:

−3.158 · 10−21 ≤ κQ ≤ 1.474 · 10−21 . (3.17)
1There are more recent and precise bounds (cf. [14]), but they generally assume charge conserva-

tion in some form or another, most often in the form of neutrality of β-decays.
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Additionally, there are a lot of astrophysical and cosmological consequences to con-
sider, like the overall charge of the universe, electromagnetic contributions to dark
energy and dark matter, changes in electromagnetic fields of stars etc., but they are
beyond the scope of this work.

3.3. Other charge corrections

Having established how the charges of our fermions change when introducing
charged vevs, we can further establish charges for other objects like gauge bosons.
We do this by inference from their interactions with other particles. For exam-
ple, the W−-boson interacts with pairs of u- and d-Quarks or electrons and anti-
neutrinos, respectively (cf. Figure 3.5).

W−

u

d

(a)

W−

ν

e−

(b)

Figure 3.5.: Interactions involving the W−-boson. On tree-level and with only 1st

generation fermions, there are two distinct vertices: quark-interactions
(a) and lepton-interactions (b).

This allows us define q′(W−) by reconstructing the flow of charge in the diagram;
in this way Figure 3.5a yields

q′(W−) = q′(dL)− q′(uL) = −e2 , (3.18)

where we need to take into account that the W -bosons only interact with the LH
fermions. As we would expect, the charge is therefore only dependent on e2, i.e.
the SU(2)L part of the electric charge. Figure 3.5b confirms this:

q′(W−) = q′(eL)− q′(νL) = −e2 . (3.19)

By the same logic we will also get q′(W+) = +e2. All bosons that mediate a neutral
current stay uncharged, as their interactions can be written as the annihilation of a
fermion and an anti-fermion.

We have collected all the gauge bosons and their charges in Table 3.3. The only
remaining object we need to determine the charge of is the vacuum itself. We
attempt do this in the same manner; previously we noted that the fermions interact
with the vacuum to flip their chirality and therefore define it’s charge to be the
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Particle name SM charge q [e] Charge q′ under Q̂′

Photon γ 0 0
Z-Boson Z 0 0

W−-Boson W− −1 −e2
W+-Boson W+ +1 +e2

Gluon g 0 0

Table 3.3.: SM gauge bosons, their SM electric charge, and their charge in the bro-
ken phase.

difference between the two charges of the fermions’ LH and RH state. For instance,
we have

q′(Ω) = q′(eL)− q′(eR) =
1
2
(e1 − e2) , (3.20)

where Ω represents the vacuum. Of course, this process can also take place in the
opposite direction. By our logic, this would give the vacuum the opposite charge.
Both interactions need to be able to take place, so we cannot give one definite
charge to the vacuum. Although this means that we have to treat the vacuum as a
charge non-eigenstate, we can still determine the magnitude of the charge breaking
effects it induces as an effective charge in interactions. Indeed, this number comes
out consistently for all fermions:

|q′(Ω)| = 1

2
(e1 − e2) . (3.21)

To conclude this section, we want to highlight again that in contrast to the LH and
RH chiral fermions, whose charges can be determined from their representations di-
rectly, the charges of the fermions in Dirac-representation and the gauge bosons are
definitions that we have given to states that are not necessarily charge-eigenstates.
They are still useful quantities, especially in the context of phenomenology, but it is
important to keep in mind that, fundamentally, we are talking about the quantum
number of a broken symmetry. But our approach is still valid, as even in the broken
phase charge is still conserved at the vertex, if you include interactions with the
vacuum (like with the U(1)Y in the SM).
We will continue to use the charges we have determined in this chapter; they will
serve as a baseline when we deal with new interactions. For example, as we will
see in the next chapter, choosing certain representations can lead to interactions like
e.g. e− → γ ν. This throws a wrench into our previous logic of inferring charges
from interactions, because they depend on the vevs in more complex ways, e.g.
through lepton mixing. We will define the charges of the involved particles as the
ones listed in Table 3.1-Table 3.3, where our way of determining charges makes
sense, and label any interaction where the influence of the vev is obscured through
other mechanisms and charge conservation is visibly broken at the vertex as strongly
charge breaking. We are free to do this, as in the broken phase matters pertaining
to electric charge amount to semantics and, as long as treated consistently, do not
come into conflict with physical observations.



Chapter

4. New Interactions
In chapter 2 we have seen that in order for our charge breaking model to be compat-
ible with experimental measurements, there are two possible directions to explore:

1. Large vevs (v = O(GeV) ) with very small charges (q ≪ e)

2. Very small vevs (v ≪ eV) and large charges (q∼ e)

The first option was examined in chapter 3. We have seen how we can define
charges in the broken phase and some of the phenomenological effects that are to be
expected. All of these consequences will still hold in what follows, but we are able
to expand upon them. By turning to the second of the two above points, it becomes
possible to introduce genuinely new interactions, instead of just making corrections
to the SM. For example, by introducing a scalar with a certain representation and
charge q = +e, it is possible for the electron to interact directly with the neutrino
via the vev. This is different from vertices like ∼ γνν, which appear from corrections
that prevent g sin θ and g′ cos θ from cancelling exactly. The price we have to pay for
this is the abandonment of eV scale vevs.
But as we will see, the richness of possible phenomenology makes this a trade-off
worth considering. For example, the mixing of charged and uncharged leptons that
becomes possible with accordingly chosen vevs allows for all kinds of interactions
between fermions and gauge bosons that would have been forbidden before.
Before we get to the phenomenological part though, we will begin in the following
section by systematically examining all kinds of scalars we can add that lead to new
interactions with fermions.

4.1. Representations that lead to new interactions

The standard model fermions consist of the two left-handed SU(2) doublets and
three right-handed SU(2) singlets shown in Figure 4.1. We want to add new inter-
actions between these fermions and potential new scalars. In order to do so, it is of
some importance to first establish what our demands on such interactions are.
Our model is an extension to the SM with light degrees of freedom and as such we
want to treat it as fundamental at this energy scale, as opposed to an effective the-
ory. This means that we should only consider renormalizable interactions; fermions
have mass dimension 3/2 and scalars have 1, hence the relevant objects for us to
study are Yukawa-type fermion-fermion-scalar interactions. Furthermore, we need

25
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L =

(
ν
e

)
L

: (1,2)−1/2 , Q =

(
u
d

)
L

: (3,2)1/6

eR : (1,1)−1 , uR : (3,1)2/3 , dR : (3,1)−1/3

Figure 4.1.: SM fermions and their gauge transformation behaviour denoted as
(SU(3),SU(2))U(1).

to be able to write down invariant terms in the unbroken Lagrangian, where we
demand that all SM gauge group charges are conserved. However, we do allow for
the breaking of lepton and baryon number, as they stem from accidental symmetries
that need not necessarily be exact. Finally, we will assume that Lorentz invariance
holds. Although there has been considerable work on Lorentz breaking theories in
the past and present, see e.g. [35] for a recent introduction and review, there is
little thematic overlap with our discussion of a broken U(1)EM.

In summary, we are interested in Yukawa-type interactions that preserve the SM
gauge group and Lorentz-invariance in the unbroken phase, but not necessarily
lepton and baryon number. There are only finitely many fermions and therefore
finitely many combinations of two of them. All we need to do then is to choose
a representation for a scalar that makes the combination of the three particles a
full singlet. As an example, consider two copies of the doublet L. Together, they
transform as

(1,2)−1/2 ⊗ (1,2)−1/2 = (1,1)−1 ⊕ (1,3)−1 . (4.1)

For now, let us only consider singlets and fundamental representations of SU(2)
and SU(3). Then we need to add a scalar that transforms as (1,1)1, which we call
χ1, to form an invariant.
Using the Lorentz-transformation properties of left-handed and right-handed spinors
(cf. [9]),

ψL 7→ e
1
2
(iθj−βj)σj ψL

ψR 7→ e
1
2
(iθj+βj)σj ψR ,

(4.2)

it is easy to show that the only allowed combinations are

ψLψR , ψRψL , ψT
L σ2ψL , ψT

Rσ2ψR . (4.3)

To clear up our notation, we define the inner product between doublets

LL = LαLβϵ
αβ = iLTσ2L = νLeL − eLνL = 2νLeL , (4.4)

which identical to the inner product of Weyl spinors, which guarantees the Lorentz-
invariance of the term νLeL. We can hence see that χ1LL is indeed an invariant.

Table 4.1 shows all scalars and interactions that can be obtained this way. We
have given the names ϕ, ρ, η, and ξ to the scalars that give rise to multiple different
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Scalar Representation Charge q [e] Interaction Terms
χ1 (1,1)1 +1 χ1LL

χ2 (1,1)2 +2 χ2eReR

χ3 (3,1)2/3 +2/3 χ3dRdR

χ4 (3,2)1/6

(
+2/3

−1/3

)
χ4dRL

ϕ (1,2)1/2

(
+1

0

) ϕQuR

ϕ̃QdR

ϕ̃LeR

ρ (3,2)7/6

(
+5/3

+2/3

)
ρLuR

ρ̃QeR

η (3,1)1/3 +1/3

ηLQ

ηeRuR

η̃QQ

η̃uRdR

ξ (3,1)4/3 +4/3
ξeRdR

ξ̃uRuR

Table 4.1.: All scalars with fundamental or singlet representations under SU(2) and
SU(3) that couple to SM fermions, along with their charge in the unbro-
ken phase and the interaction terms they induce. The inner product in
SU(2) and SU(3) space, where needed, is implied. The tilde ˜ signifies
the conjugate representation.

interactions and call the representations that are involved in only one interaction
χ1 − χ4. Note that ϕ has the same representation as the SM Higgs and gives mass
to the up- and down-quark, as well as the electron, when it’s vev lies in the neutral
component. We can also put the vev into the charged component, which results in
several mixing terms between quarks and leptons, respectively.
We want to stress again that this is not an exhaustive list of all possible scalars that
fit the requirements we have laid out earlier; there are many higher dimensional
representations that work just fine and have merely been omitted for the sake of
brevity. For example, Equation 4.1 already tells us that there exists a scalar with
representation Σ : (1,3)1 that matches our criteria. This particle, which is famously
added in the type-2 seesaw model, can generate Majorana masses for not only the
neutrino (when forgoing lepton number conservation), but also for the electron
with the doubly-charged component.
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The scalars from Table 4.1 are well-known and have a vast amount of phe-
nomenology and literature associated with them, especially in the context of non-
standard neutrino interactions (see e.g. [36, 37]). Their role in charge non-
conserving interactions is, however, rarely considered.
In this chapter, we will be studying the effects of these scalars developing vevs. We
will demonstrate them in a simplified environment by only considering the elec-
troweak sector, i.e. we limit ourselves to the scalars χ1, χ2, ϕ, and Σ. The quark
sector, where we can surely expect limits from proton and neutron stability, among
other effects, will be left for a future work.

4.2. Mass Eigenbasis

We now deal with the following Yukawa terms:

LY ⊃ y1 χ1LL+ y2 LΣL+ y3 χ2eReR + y4 Lϕ̃eR + h.c. (4.5)

We neglect non-diagonal interactions in flavour-space and hence, without loss of
generality, only consider one generation. This means that the Yukawa couplings are
complex numbers yi ∈ C instead of 3×3 matrices. When the temperature drops low
enough and the scalars develop vevs, we can see that some of these terms become
mass terms. For example, when ϕ has a vev in the neutral component we get the
electron Dirac mass term as in the SM; when χ2 obtains a vev we get a Majorana
mass term for the RH electron. But other terms give rise to mixing between the
leptons: y1χ1LL 7→ 2y1v

+
χ νLeL

1.

As with a regular Dirac mass term, this can be interpreted as a continuous inter-
action with the vacuum that switches between the two leptons. In order to have
objects that we can work with, we need to rotate into a basis where this is no longer
the case, called the mass eigenbasis (cf. Figure 4.2).

Before we perform this rotation, let us spend some time thinking about how best
to work with mass terms. In the standard model, we have a Dirac electron eD with
a mass term meDeD. It has a left-handed and a right-handed part eD = (eL, eR), such
that we can write

meDeD = m(eLeR + eReL) =
(
eL eR

)( m
m

)(
eL

eR

)
≡ eDMeD . (4.6)

We can conclude that in this form the masses are given by the off-diagonal elements
of the mass matrix. However, there is a problem with this representation: the
diagonal terms correspond to objects like eLeL, which are not Lorentz invariant.
Therefore, it is not obvious how to add the Majorana mass terms we need in our
formalism.

1We label the vevs here according to the following convention: the subscript denotes the represen-
tation as shown in Table 4.1, while the superscript gives the charge of the component the vev lies
in.
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Instead, let us borrow notation from the type-1 seesaw mechanism. Here, we define
the left-handed object e′D = (eL, e

c
R ). With this notation, we can write the mass term

as
−Lmass ⊃

1

2
e′ cD Me′D + h.c.

=
1

2

(
e c

L eR
)( m

m

)(
eL

e c
R

)
+ h.c.

=
1

2
m(e c

L e
c

R + eReL) + h.c.

=
1

2
m(−e T

L C−1CeR
T + eReL) + h.c.

=
1

2
m(eReL + eReL) + h.c. = eDMeD .

(4.7)

In this calculation we have made use of the particle-antiparticle conjugation opera-
tor ψc = CψT

and it’s identities that can be found along with physical background
e.g. in [38]. Equation 4.7 makes it obvious that both formulations of the mass
terms are equivalent for standard Dirac fermions. But now, the diagonal terms are
of the form e c

L eL, which has the structure of a Majorana mass term.

This formalism can now be extended to encompass the entire leptonic sector by
including the neutrino. We define the left-handed trispinor

Ψ =

 eL

e c
R
νL

 (4.8)

and use it to construct a general mass term

−Lmass =
1
2
ΨcMΨ+ h.c. = 1

2
Ψc

ML mD mLL

mD MR mRL

mLL mRL Mν

Ψ+ h.c. (4.9)

Keep in mind that we are still considering only one generation, so the entries of
the matrix are scalars and not matrices. Furthermore, including the possible CP-
violating phases would once again go beyond the scope of this work, so we take the

eL νL eL
. . .

⟨χ1⟩ ⟨χ1⟩

(a)

e̊L e̊L

(b)

Figure 4.2.: The mixing term ∼ eLνL represents the continuous interaction with the
vacuum (a). After rotating into the new basis, we can introduce a
particle e̊L that is a superposition of eL and νL. This fermion is now
a mass eigenstate and can propagate without changing it’s nature (b).
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entries to be real. In turn, this also limits the Yukawa couplings of our Lagrangian
in Equation 4.5 to be real numbers. The entries of the mass matrix (which we will
refer to individually as masses, even though they do not represent the mass of any
particle as such) arise naturally in the maximally broken phase from LY :

ML = y2 v
++
Σ

mD = y4 v
0
ϕ

mLL = 2y1 v
+
χ

MR = y3 v
++
χ

mRL = y4 v
+
ϕ

Mν = y2 v
0
Σ .

(4.10)

We want to note again that higher dimensional or multiple copies of certain rep-
resentations can also contribute to these masses, the above only represents the
minimal case for which the mass matrix is full. All the mass terms for our fermions
are now given conveniently in form of a real symmetric 3× 3 matrix. Such a matrix
is diagonalizable by an orthogonal rotation matrix R, which in three dimensions is
a combination of rotations around the x−, y−, and z−direction:

R =

 cycz cysz sy
−cxsz − sxszcz cxcz − sxsysz sxcy
sxsz − cxsycz −sxcz − cxsysz cxcy

 (4.11)

with cx = cos θx, sx = sin θx and so on. The whole rotation is parameterized by the
three angles θx, θy, and θz. The diagonalized mass matrix is then M′ = RTMR. In
principle, all we need to do now is to compute this product and set the off-diagonal
elements to zero. This gives us three equations to determine our three angles. In
practice, however, this means solving a highly non-trivial system of three trigono-
metric equations. We can make our lives simpler by making some approximations:
Except for the Dirac mass of the electron, which corresponds to mD

2, none of the
effects connected to the other elements of M have been observed experimentally
so far. We hence can assume that ML,MR,Mν ,mLL,mRL ≪ mD. It then also follows
that the rotation angles must be very small as well, since larger angles would mean
more noticeable effects.
In this approximation, we can expand the trigonometric functions and easily solve
the diagonalization equations to first order. We obtain the rotation angles

θx = −mRL +mLL√
2mD

, θy = −mRL −mLL√
2mD

, θz =
π

4
+
ML −MR

4mD
. (4.12)

2This assumes, of course, that the mass of the electron is actually given (almost) exclusively by mD.
One could imagine a scenario in which the mass of the electron has non-negligible contributions
from the Majorana mass terms, but this would also bring with it noticeable lepton number and
electric charge violation in processes such as γ → e−e−. Although there is, to the best knowledge
of the author, no experiment specifically measuring this kind of interaction, a non-negligible
number of these processes would have surely been seen in collider signatures of various other
experiments.
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Note that θz has been expanded around π
4

instead of zero. At this angle the ro-
tation puts the electron Dirac masses on the diagonal, which we know to be at
least approximately true. We introduce θ̃z = θz − π

4
and absorb the constant π/4

with trigonometric identities for the sin and cos whenever needed. This is then the
rotated matrix we obtain to first order in any new vevs:

M′ =

−mD + 1
2
(ML +MR)

mD + 1
2
(ML +MR)

Mν

 ; (4.13)

the masses mLL and mRL drop out completely at first order. This matrix is certainly
diagonal, but there is a problem with it: we have assumed that ML,MR ≪ mD,
which makes the first entry negative. But this can be fixed quite easily, we only need
to introduce a diagonal phase matrix η = diag(−1, 1, 1). Instead of the orthogonal
rotation matrix we then have a unitary matrix Urot = R · √η, such that

Mdiag = UT
rotMUrot =

√
ηTRTMR√

η =
√
ηTM′√η = M′η

=

mD − 1
2
(ML +MR)

mD + 1
2
(ML +MR)

Mν

 .
(4.14)

We now have a diagonal mass matrix with real positive eigenvalues. They make
sense, too, as two of them are close to the electron mass, loosely corresponding to
the two electron chiral states we started with, and one eigenvalue is very small in
comparison, as we know the neutrino masses are in nature.

Of course we cannot simply rotate the mass matrix however we like and leave it
at that. In order to compensate, we have to also rotate the states Ψ themselves:

−Lmass =
1
2
ΨcMΨ+ h.c. = 1

2
ΨcU∗

rotU
T
rotMUrotU

†
rotΨ+ h.c.

≡ 1
2
Ψc

mMdiagΨm + h.c.
(4.15)

with Ψm = U †
rotΨ. This product can be determined to first order as well:

Ψm = U †
rotΨ =

1√
2

−i(1− θ̃z) i(1 + θ̃z) i
√
2θy

1 + θ̃z 1− θ̃z −
√
2θx

θx + θy θx − θy
√
2

 eL

e c
R
νL


=


i√
2
θ̃z(e

c
R + eL) +

i√
2
(e c

R − eL) + iθyνL
1√
2
(e c

R + eL)− 1√
2
θ̃z(e

c
R − eL)− θxνL

1√
2
θx(e

c
R + eL)− 1√

2
θy(e

c
R − eL) + νL


=

1√
2

iθ̃z1
θx

 (e c
R + eL) +

 i

−θ̃z
−θy

 (e c
R − eL)

+

 iθy
−θx
1

 νL .

(4.16)

As expected, we have three mass eigenstates that get small corrections from each
other. What is less easy to spot is, that the states 1√

2
(e c

R + eL) and i√
2
(e c

R − eL) are
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actually possible expressions for the mass eigenstates of the electron in the standard
model without charge breaking. In that sense, although our results here check out,
they are somewhat unwieldy to perform calculations with and there is a much more
intuitive base that we can choose.

4.3. The quasi-SM basis

We have spend the last section working out the mass eigenstates of the leptons,
i.e. the eigenvalues of the mass matrix M. However, we already know from Equa-
tion 4.6 and Equation 4.7 that a non-diagonal mass matrix can be more easy to use
in the right basis. Since we only perform a small rotation away from the standard
model, it makes sense to aim for a block-diagonal matrix instead, where we have a
2× 2 sub-matrix corresponding to the electron and a single entry for the neutrino.

For a 2 × 2 diagonal matrix with degenerate eigenvalues, there exists a unitary
matrix that rotates the entries onto the off-diagonal:

1

2

(
−i i
1 1

)T (
m

m

)(
−i i
1 1

)
=

(
m

m

)
. (4.17)

We will employ the exact same transformation to our mass matrix. In contrast to
the two dimensional example, Mdiag is not proportional to the unit matrix, which
results in only the common term mD being moved off the main diagonal, which hap-
pens to be exactly what we are after. The unitary matrix we used in Equation 4.17
is easily extended to three dimensions:

V =
1√
2

−i i 0
1 1 0

0 0
√
2

 . (4.18)

We use this matrix to rotate Mdiag, so our diagonalization in the last section was
not in vain:

MqSM = V TMdiagV =

1
2
(ML +MR) mD

mD
1
2
(ML +MR)

Mν

 . (4.19)

We now have arrived at the mass matrix we set out to find: the 2× 2 matrix in the
top left has the Dirac masses on the off-diagonal like we had in Equation 4.6, but
with added Majorana terms on the diagonal. In the bottom right we have the small
Majorana mass for the neutrino-like eigenstate. The higher order terms have been
dropped, as before.
Naturally, we also need to rotate our states:

ΨqSM = V †Ψm =

 eL − θ̃ze
c

R − 1√
2
(θx + θy)νL

e c
R + θ̃zeL − 1√

2
(θx − θy)νL

νL +
1√
2
(θx + θy)eL +

1√
2
(θx − θy)e

c
R

 ≡

 e̊L

e̊ c
R
ν̊L

 . (4.20)
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We can now see clearly how the new states are mainly the leptons of the standard
model, but with first order corrections from each other due to the mixing. With
this in mind, we can define new particles e̊ and ν̊ that incorporate these corrections.
Another advantage of our block-diagonal mass matrix is that we can now easily sep-
arate the terms corresponding to our new particles. We have the purely left-handed
ν̊ = (̊νL, 0)

T and the bispinor (̊eL, e̊
c

R )T . Applying the same logic as in Equation 4.7,
we know that we can rewrite the Lagrangian in terms of e̊ = (̊eL, e̊R)

T in Dirac form
and an accompanying Majorana mass term. Putting everything together, we now
have the mass-Lagrangian

−Lmass = mD e̊̊e+
ML +MR

4
(̊ece̊+ h.c.) +

Mν

2
(̊νcν̊ + h.c.) (4.21)

We call this basis the quasi-standard model basis (qSM basis).

This is of course not the end of the story. We have changed the definitions of our
leptons and must apply them consistently throughout the entire Lagrangian. Other
than the mass terms, we must hence also consider the kinetic terms. Before the
charge breaking phase transition, they are given by

L ⊃ iL /DL+ i eR /DeR . (4.22)

We have defined the neutral part of the covariant derivative in the broken phase in
Equation 3.2. If we also include the charged current interactions, we can expand
the above Lagrangian as

L ⊃ ieL/∂eL + iνL/∂νL + ieR/∂eR

− 1
2
(e1 + e2)eL /AeL − e1eR /AeR − 1

2
(e1 − e2)νL /AνL

+ 1
2
(z1 − z2)eL /ZeL + z1eR /ZeR + 1

2
(z1 + z2)νL /ZνL

+ g√
2

[
eL /W

−
νL + νL /W

+
eL

]
,

(4.23)

where we have introduced z1 = g′ sin θ and z2 = g cos θ in analogy to e1 and e2
and everything neatly takes the familiar form in the SM limit. In matrix form, this
Lagrangian can be expressed as

L ⊃
(
eL e c

R νL
)i/∂ −

1
2
(e1 + e2)

−e1
1
2
(e1 − e2)

 /A

+

1
2
(z1 − z2)

−z1
1
2
(z1 + z2)

 /Z

+
g√
2

 /W
−

/W
+

  eL

e c
R
νL

 .

(4.24)

The identities

ψL,R /∂ ψL,R = ψ c
L,R /∂ ψ

c
L,R and ψL,R /AψL,R = −ψ c

L,R /Aψ
c

L,R (4.25)
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were used to bring everything in the form ∼ΨGΨ with some interaction matrix
G. When we perform the transformation to the qSM basis, G will naturally also
transform:

ΨGΨ = ΨUrotV V †U †
rot GUrotV V †U †

rot Ψ = ΨqSM (V †U †
rot GUrotV )ΨqSM . (4.26)

We can immediately see that Ψ/∂Ψ does not change under unitary transformations.
For future reference, let us give the individual interaction matrices of each gauge
boson a unique name: Ψ/GΨ = Ψ(GA /A+GZ /Z +GW /W

−
+GW† /W

+
)Ψ. We can hence

identify in the new basis:

GA
qSM = −


1
2
(e1 + e2)

1
2
θ̃z(3e1 + e2)

θy+θx√
2
e2

1
2
θ̃z(3e1 + e2) −e1 θy−θx√

2

(3e1−e2)
2

θy+θx√
2
e2

θy−θx√
2

(3e1−e2)
2

1
2
(e1 − e2)



GZ
qSM =


1
2
(z1 − z2)

1
2
θ̃z(3z1 − z2) − θy+θx√

2
z2

1
2
θ̃z(3z1 − z2) −z1 θy−θx√

2

(3z1+z2)
2

− θy+θx√
2
z2

θy−θx√
2

(3z1+z2)
2

1
2
(z1 + z2)


GW

qSM =
g

2

θx + θy θx − θy −
√
2

0 0 −
√
2θ̃z

0 0 −(θx + θy)

 .

(4.27)

This is a rather remarkable result: through the mixing of the leptons, all of their
interactions with electroweak gauge bosons have become possible3. Unfortunately,
the non-diagonal nature of these matrices forbid us from using the identities from
Equation 4.25 and we cannot write the interactions purely in terms of e̊ and ν̊. We
can nevertheless improve the aesthetics of our Lagrangian by noting that ΨqSM =
PL(̊e, e̊

c, ν̊). With this we can finally write the entire Lagrangian containing leptons
in a concise form:

Lf = e̊ (i/∂ −mD)̊e+ i̊ν/∂ν̊ − 1
4
(ML +MR)(̊ece̊+ e̊̊ec)− 1

2
Mν (̊νcν̊ + ν̊ν̊c)

+ e̊(/G11PL − /G22PR)̊e+ e̊ /G12PLe̊
c + e̊c /G21PLe̊+ ν̊ /G33PLν̊

+ e̊ /G13PLν̊ + ν̊ /G31PLe̊+ e̊c /G23PLν̊ + ν̊ /G32PLe̊
c .

(4.28)

The indices of the interaction coefficients /Gij mark the i, j-th entry of the corre-
sponding matrix. We have further dropped the label ”qSM” for better readability;
when we write /Gij from here on it is always implied that we mean

/Gij=̂
[
GA

qSM /A+GZ
qSM /Z +GW

qSM /W
−
+ (GW

qSM)
† /W

+
]
ij
.

We can read off the Feynman rules for the interactions from this Lagrangian, which
we have listed in Appendix A. We are now in a position where we can quantitatively

3The attentive reader may have noticed the lack of e̊Re̊RW
+/− interactions in Equation 4.27. This

vertex does indeed exist on tree-level, but being the only RH-RH interaction without contribution
of U(1)Y, it is doubly suppressed by new vevs and hence dropped in our first order approximation.
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examine the phenomenology of our model, but before we turn to this we want to
close this section with a few remarks.

At some points in this work we have referred to the particle content and the
equations that govern its behaviour, for lack of a better term, as ”model”. We want
to make clear, however, that our discussion so far has not been restricted to just
one specific set of new scalars. Everything we have derived in this chapter is valid
for an arbitrary scalar sector. Any higher dimensional representation can still only
contribute to the masses listed in Equation 4.10 and any scalar that is unwanted
in a given theory can simply be eliminated from what we have discussed by setting
the according vev to zero.
We also want to mention that the mixing effects do not change the charges of our
leptons we have derived in chapter 3. In fact, we can find our assigned charges
for the electron and neutrino in the matrix GA

qSM, further justifying our methods
employed in the previous chapter.

4.4. Phenomenology in the qSM basis

The experimental signature most often linked to electric charge breaking is that of
electron decay into a photon and a neutrino, so we will investigate it first.

p

p− k

k

e̊

ν̊

γ

Figure 4.3.: Feynman-Diagram for elec-
tron decay into a photon and
a neutrino.

Kinematically, this is an allowed de-
cay and only the conservation of elec-
tric charge prevents it from occurring
naturally within the SM. We proceed
similarly to the photon decay from sec-
tion 3.2 and first write down the matrix
element corresponding to the Feynman
diagram of this process (cf. Figure 4.3):

M =
1

2
u(p− k)GA

13γ
µ(1− γ5)ϵ∗µ(k)u(p) .

(4.29)
As before, we need the spin averaged
squared matrix element

⟨|M|2⟩ = 1

8
|GA

13|2(−ηµν +
kµkν
M2

A
)Tr

[
(/p− /k +mν̊)γ

µ(1− γ5)(/p+me̊)(1 + γ5)γν
]
,

(4.30)
where again we have used that for the massive photon the extra term kµkν/M

2
A

appears in the polarization sum. The masses me̊ and mν̊ we encounter are the
physical masses of the particles, which we have only determined to first order in
this chapter.
We can simplify this expression by using standard trace techniques (see e.g. [9])
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along with the identities

(p− k) · p = −1
2

[
(p− k − p)2 − (p− k)2 − p2

]
= 1

2
(m2

e̊ +m2
ν̊ −M2

A)

k · p = −1
2

[
(k − p)2 − k2 − p2

]
= 1

2
(m2

e̊ −m2
ν̊ +M2

A)

k · (p− k) = 1
2

[
(p− k + k)2 − (p− k)2 − k2

]
= 1

2
(m2

e̊ −m2
ν̊ −M2

A) .

(4.31)

In the end, we arrive at

⟨|M|2⟩ = e22
4
(θx + θy)

2

[
m2

e̊ +m2
ν̊ − 2M2

A +
(m2

e̊ −m2
ν̊)

2

M2
A

]
. (4.32)

As the electron decay is just a simple 2-body decay and independent of the scatter-
ing angle, the decay width is proportional to the averaged squared matrix element
without any integration:

Γ =
e22
32π

|⃗k|
m2

e̊

(θx + θy)
2

[
m2

e̊ +m2
ν̊ − 2M2

A +
(m2

e̊ −m2
ν̊)

2

M2
A

]
, (4.33)

where |⃗k| is fully determined by the masses of the involved particles:

|⃗k| = 1

2me̊

√
(m2

e̊ − (mν̊ +MA)2)(m2
e̊ − (mν̊ −MA) . (4.34)

Two points are especially important here. Firstly, note how the decay width is
suppressed by the mixing angles θx and θy. If we remind ourselves of their definition
(cf. Equation 4.12), we see that their sum corresponds to just θx+θy = −

√
2mRL/mD

If we think back to our original mass matrix, where mRL determines the mixing
between the right-handed SM electron and the left-handed SM neutrino, this tells
us what is going on behind the scenes in this interaction.
Imagine an incoming SM electron; it’s right-handed part allows it to turn into a (left-
handed) SM neutrino. The photon can couple in this process either to the electron
before the mixing, or to the neutrino afterwards (if this interaction is allowed).
Accounting for all chiralities, this decay would need at least 2 diagrams if we restrict
ourselves to only one mass insertion; with the formalism we have developed so far
we can take into account all mass insertions with just one diagram.

The other point we want to highlight here is that the decay width includes a term
that is proportional to the inverse square of the photon mass. Because we know
the photon mass to be tiny, this must be the dominating term. On the other hand,
electron decay has never been measured, so Γ cannot be too large. Let us estimate
the magnitudes involved by using the approximation me̊ ≈ me ≫ mν̊ ,MA

4 and
e2 ≈ e. With this the decay width reduces to

Γ ≈ e2

32π
me

m2
RL

M2
A

⇒ τ ≈ 32π

e2me

M2
A

m2
RL

≈ 1.4 · 10−18 s · M
2
A

m2
RL
, (4.35)

4The difference between me̊ and me is somewhat semantic, in the sense that the SM value could be
made to fit any small correction by slightly tweaking the corresponding Yukawa coupling, which
is not yet independently measurable (but will be in future colliders, see e.g. [39]). Conceptually,
however, these masses are indeed different.
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where τ = 1/Γ is the corresponding lifetime. In the SM limit this is an undefined
quantity, showing once more that we cannot simply take this limit when the new
third polarization of the photon is involved. The current best measurement of the
electron lifetime comes from the Borexino experiment and sets a bound at τ ≥
6.6 · 1028 yr (∼ 2.1 · 1036 s) [40]. This gives us the inequality

mRL ≤ 8.2 · 10−28MA (4.36)

Even in the best case scenario, when the photon mass is equal to the current bound
of 10−18 eV, this would still mean that mRL ≤ 8.2 · 10−46 eV. Although this is not an
impossibility, a lot of fine-tuning is required to make this value small enough.

But Figure 4.3 is not the only diagram that can contribute to the electron decay.
If we let go of lepton number conservation, we also have the decay e̊→ γν̊. We can
repeat the above process for this diagram, we get

Γ =
1

32π

(3e1 − e2)
2

4

|⃗k|
m2

e̊

(θx − θy)
2

[
m2

e̊ +m2
ν̊ − 2M2

A +
(m2

e̊ −m2
ν̊)

2

M2
A

]
. (4.37)

The mixing of the left-handed electron with the left-handed anti-neutrino is deter-
mined by mLL, so in the same approximation as before the lifetime becomes

τ ≈ 32π

e2me

M2
A

m2
LL +m2

RL
. (4.38)

This gives the combined stronger limit
√
m2

LL +m2
RL ≤ 8.2 · 10−46 eV. The masses

mLL and mRL stem from the scalars χ2 and ϕ (and their corresponding Yukawa cou-
plings), respectively. Models which include these particles, like for example SUSY,
the Babu-Zee model, or the two Higgs doublet model, must take special care that
their scalars do not obtain vevs (or otherwise introduce very large fine-tuning).

k

k − p

p

W−

e̊

e̊

Figure 4.4.: Feynman-Diagram for the de-
cay of a W boson into two
electrons.

Another interesting interaction for us to
look at is that of the W -boson with two
electrons as in the figure on the right.
For one, we now have a vertex that
breaks lepton number conservation, in
addition to the electric charge. As we
note in Appendix A, these vertices have
an additional particle-antiparticle con-
jugation matrix C, which is cancelled (in
this case) by use of the identity

uT (p) = C−1v(p) . (4.39)

With this, we can use the usual procedure to obtain to find the lifetime of the W in
this channel:

τ ≈ 32π

g2
m2

e

m2
LL

mW

m2
W −m2

e

. (4.40)
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Numerically, this amounts to τ ≈ 793.3 eV /m2
LL. The limit on mLL we have extracted

from Equation 4.38 yields

τ ≳ 1.18 · 1093 1
eV ≈ 2.46 · 1070 yr . (4.41)

This is an extraordinarily big number and shows that such a process will not be
observed in nature; it serves as an example to demonstrate how much we can expect
any of the interactions in our Lagrangian that depend on the mixing angles θx and
θy (cf. Equation 4.27 and Equation 4.28 or Appendix A) to be suppressed.

We have so far seen two classes of vertices: those of SM interactions with slight
corrections and new interactions depending on the mixing angles θx and θy. But
there exists a third class: new interactions that depend on θ̃z. This is the most diffi-
cult class to handle from a phenomenological viewpoint, because it does not contain
any vertices that are of much experimental interest. Converting e.g. a photon into
two electrons is ”obviously” very suppressed in the sense that it offers a clear sig-
nature of which we have seen no signs of, so there is little point in constructing
theoretical models that introduce a mechanism for this. As a result, no experiments
focusing on these signatures are actually undertaken, since there is no theoretical
basis for them.
We highlight this viscous cycle here not as criticism, but merely as an explanation
for why it has proven so difficult to give quantitative limits on the clearly small
parameters ML and MR that are contained in θ̃z.

We will give an example regardless, in the form of lepton violating β-decay. We
assume that the hadronic part of the β-decay stays the same as the SM and only the
leptonic part changes (cf. Figure 4.5).

W−

ν̊

e̊

(a)

W−

ν̊

e̊

(b)

Figure 4.5.: The leptonic part of the familiar β-decay (a) and it’s lepton violating
variant (b).

The relevant vertex rule in the normal β-decay has not changed in the qSM basis
and therefore the averaged matrix element will be the same as well:

⟨|Ma|2⟩ =
g2

4
ϵ∗µ(k)ϵν(k)Tr

[
/p γ

µ(/k − /p)γ
ν
]

(4.42)
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with the same conventions for the names of the momenta as in the previous dia-
grams. The same calculation for Figure 4.5b reveals that all differences to the SM
case actually drop out and only the dependence on θ̃z remains:

⟨|Mb|2⟩ =
g2

4
θ̃2zϵ

∗
µ(k)ϵν(k)Tr

[
/p γ

µ(/k − /p)γ
ν
]
. (4.43)

Because ⟨|M|2⟩ is proportional to the decay width, we can use this to determine the
branching ratio for this event in dependence on the mixing angle:

BR(W− → e̊ ν̊) = θ̃2z
Γ(W− → e̊ ν̊)

Γ(W−)
≈ 0.107 θ̃2z , (4.44)

where we have used that Γ(W− → e ν)/Γ(W−) = (10.71 ± 0.16)% [14]. Of course,
this alone does not mean much without an experimental limit on this branching
ratio. The benefit of this specific interaction is, however, that the corresponding
SM process W− → eν is charge conserving and only lepton-number violating. It is
therefore of some interest also outside of our discussion and we might be able to
extract useful limits from e.g. reactor (anti)neutrino experiments in the future.
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5. Discussion and Outlook
Let us briefly summarize what we have achieved so far. We began by extending the
scalar sector of the SM in a general way without specifying a specific representation
and investigated the generic consequences for the electroweak sector. Specifically,
we saw in what way the gauge boson masses

M2
A =

∑
i

v2i (g
′yi cos θ + g m̂i sin θ)

2
,

M2
Z =

∑
i

v2i (g
′yi sin θ − g m̂i cos θ)

2
,

M2
W =

g2v2i
2

(
ji(ji + 1)− m̂2

i

)
,

(5.1)

depend on the representations of the new scalars and how the weak mixing angle
deviates from the SM Weinberg angle:

sin θ =
1√
2

(
1 +

√
κ21

κ21 + κ22

)1/2

, cos θ =
1√
2

(
1−

√
κ21

κ21 + κ22

)1/2

, (5.2)

where κ1 and κ2 are model-dependent parameters defined in Equation 2.14. This
change away from the Weinberg angle θW also means that the relation g sin θ =
g′ cos θ = e for the electric charge is not valid anymore; we hence separately intro-
duced e1 = g′ cos θ and e2 = g sin θ as the U(1)Y and SU(2)L part of e, respectively,
with their difference being |e2 − e1| < 1.3 · 10−11 e. This lead us to define an equiva-
lent of the Gell-Mann-Nishijima formula for the broken phase:

Q̂′ = e1
e
Ŷ + e2

e
T̂ 3 . (5.3)

The constraints by measurements of the gauge boson masses had us conclude that
there are two directions for the realization of charge breaking that are worth inves-
tigating:

• Large vevs v ∼= O(GeV) and suppression of new effects by a small charge q ≪ e
(chapter 3)

• Large charges q ∼ e and suppression of new effects by small vevs v ≪ O(eV)
(chapter 4)

40
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These categories are not mutually exclusive, but if both the vev and the charge of
a scalar are small, it is still considered a minicharged particle, only it will be even
harder to detect because its interactions are additionally suppressed.
In the first case, we were able to expand the weak mixing angle around the neutral
vacuum for small charges q:

cos θ = cos θW
(
1 + κQ sin θ2W

)
+O(q2)

sin θ = sin θW
(
1− κQ cos θ2W

)
+O(q2)

(5.4)

with the model dependent parameter κQ = 4
∑

i
v2i
v2H
qim̂i. κQ features the vevs,

charge, and SU(2) eigenvalues of the involved scalars and, although not the only
free parameter that arises in this approximation, it can serve as a characteristic
quantity for a theory that features minicharged particles as a result of electric charge
breaking. Some constraints on this parameter have been derived (cf. Table 5.1).

q′ν µν q′n

|κQ| ≤ 6.6 · 10−12 |κQ| ≤ 1.4 · 10−18
κQ ≤ 1.5 · 10−21

κQ ≥ −3.2 · 10−21

Table 5.1.: Limits on κQ from the neutrino charge q′ν , the neutrino magnetic moment
µν , and the neutron charge q′n.

If we are given the parameters of a theory with minicharged scalars we can hence
determine its agreement with experiment by simply determining κQ. The above
table contains only some limits we saw fit to include for illustrative purposes in
chapter 3, there may be more stringent ones yet to explore.
A further consequence of the modified Gell-Mann-Nishijima formula is a change in
the electric charge of fermions as determined through the photon coupling. We
averaged over the different chiralities and examined the couplings of the particles
to each other to arrive at the new charges listed in Table 5.2.

Next, we expanded on the minicharge effects by investigating scalars with charges
of O(1) that lead to new renormalizable interactions with fermions. We systemati-
cally wrote down allowed interaction terms and found that the lowest dimensional
scalars that are of interest for us are

χ1 : (1,1)1 , χ2 : (1,1)2 , ϕ : (1,2)1/2 , Σ : (1,3)1 . (5.5)

We have neglected any interactions with quarks so far and only looked at the lep-
tonic sector. Here, we saw how the above representations induce mixing between
the different leptonic states. We introduced the new quasi-SM basis via a unitary
transformation with the mixing-angles θx, θy, and θz; here we found the fermions
e̊ and ν̊, which we take to be the measurable leptons in the current phase of the
universe, and their interactions with the gauge bosons (Appendix A).
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Particle name SM charge q [e] Charge q′ under Q̂′

Electron e− −1 −1
4
(3e1 + e2)

Neutrino ν 0 −1
2
(e1 − e2)

u-Quark u +2
3

1
12
(5e1 + 3e2)

d-Quark d −1
3

− 1
12
(e1 + 3e2)

Photon γ 0 0

Z-Boson Z 0 0

W±-Boson W± ±1 ±e2

Gluon g 0 0

Table 5.2.: 1st generation SM fermions and gauge bosons, their SM electric charge,
and their charge in the broken phase.

Finally, we applied our qSM Feynman rules to some new processes and showed
how they simplify calculations compared to the SM base. Experimental observa-
tions, or rather a lack thereof, allowed us to put some very stringent bounds on
the parameters from which these interactions arise. One example we looked at was
the decay of electrons to photons and neutrinos. We noticed that the additional
longitudinal polarization of the photon leads to new non-trivial effects that have
no smooth limit to the standard model and gives huge contributions to the decay
width. This allowed us to determine the strong limit√

m2
LL +m2

RL ≤ 8.2 · 10−46 eV , (5.6)

where mLL and mRL directly correspond to the vevs of χ1 and the positive compo-
nent of ϕ, respectively, as well as higher dimensional representations. This corre-
sponds to interactions dependent on θx and θy occurring generically on timescales
of ∼ 1070 yr.

The Higgs boson is the most recently discovered fundamental particle of the SM
and the only example of a fundamental scalar we have found as of yet. With so
many unresolved issues like dark matter, neutrino masses, or baryogenesis, an ex-
tended scalar sector is a reasonable area to expect new physics. The spontaneous
breaking of symmetries to endow scalars with vevs is also no rarity in beyond the
standard model physics. But traditionally, the breaking of the U(1)Q has been ruled
out categorically because of lacking experimental evidence, despite there being no
known mechanism to explicitly forbid it.
In this work, we have examined some previously unexplored repercussions of elec-
tric charge non-conservation; we saw how the particle charges and gauge boson
masses get corrections and provided a characteristic quantity to compare and rule
out models. We also showed how certain representations lead to mixing of the
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fermions and derived Feynman rules in order to make it easier to work in the bro-
ken phase.
We want to conclude by highlighting areas building upon this work that require
more attention and analysis:

• An obvious starting point is the structure of the scalar sector itself; we have
taken for granted that there must be some set of parameters for which the
scalars can obtain (simultaneous) vevs, but it is worth exploring just how
much of such parameter space exists. Furthermore, quantifiable knowledge
of how much fine-tuning is needed to make such a model possible (or even a
mechanism which explains it in a natural way) would go a long way towards
evaluating the plausibility of electric charge breaking in nature.

• Connected to the above point, a placement of a charge breaking in the thermal
history of the universe would be helpful. We have avoided most large-scale
and cosmological bounds on the grounds that a (comparatively) small vev is
naturally expected to appear at later times in the universe. This also opens the
possibility for observable topological effects of the breaking, like e.g. cosmic
strings.

• We have computed observables like charges and life-times mostly to illustrate
new effects that appear in a possible broken phase, and have only done so at
tree-level. A more exhaustive review of the phenomenology needs to be done
to find out just how far the parameters in models featuring charge breaking
(e.g. κQ) can be constraint even now. For example, one could determine
the dependence of the Peskin-Takeuchi parameters [42] on the new vevs or
calculate the energy loss of electron beams due to conversion to neutrinos.
In the same vein, we can also extend our Yukawa couplings to the complex
domain and study its CP-violating behaviour.

• The quark sector has been neglected almost entirely in this discussion. It
would allow for a much bigger mass matrix with the right representations (cf.
Table 4.1) and result in new mass eigenstates that are, to a degree, strongly
interacting with each other and bring with them all kinds of interesting new
problems and phenomena.



Appendix

A. Feynman Rules in the
Broken Phase

We collect here the Feynman-diagrams and -rules for the interaction vertices of the
lepton-lepton-gauge boson interactions that can be derived from Equation 4.28.
Importantly, like our derivation of the Lagrangian, they only feature terms to first
order in the new vevs. As a result of the appearance of e̊c, the Feynman rules for the
lepton number violating vertices feature the particle-antiparticle conjugation matrix
C. In the calculation of matrix elements these matrices will always drop out, either
by cancellation with further Cs appearing in the Majorana-like propagator or with
the help of the identities

vs(p) = C uTs (p) and us(p) = C vTs (p) (A.1)

when including the external fermionic legs. For more details and references, see
the excellent treatment of [38].

e̊ e̊

Aµ

: iγµ
(
1
2 (e1 + e2)PL + e1PR

)

e̊ e̊

Zµ

: −iγµ
(
1
2 (z1 − z2)PL + z1PR

)

e̊ e̊

W+µ/W−µ

: −ig
θx + θy

2
γµPL

ν̊ ν̊

Aµ

: i
2 (e1 − e2)γµPL

ν̊ ν̊

Zµ

: − i
2 (z1 + z2)γµPL

ν̊ ν̊

W+µ/W−µ

: ig
θx + θy

2
γµPL

44



45

e̊/ν̊ ν̊/̊e

Aµ

: i
e2√
2
(θx + θy)γµPL

e̊/ν̊ ν̊/̊e

Zµ

: i
z2√
2
(θx + θy)γµPL

e̊/ν̊ ν̊/̊e

W−µ/W+µ

: i
g√
2
γµPL

e̊

e̊

Aµ : i
2 θ̃z(3e1 + e2)γµCPR

e̊

e̊

Zµ : − i
2 θ̃z(3z1 − z2)CγµPL

e̊

e̊

Zµ : − i
2 θ̃z(3z1 − z2)γµCPR

e̊

e̊

W+µ: −ig
θx − θy

2
CγµPL

e̊

e̊

W+µ: −ig
θx − θy

2
γµCPR

e̊

ν̊

Aµ : −i
θx−θy
2
√
2
(3e1 − e2)CγµPL

e̊

ν̊

Aµ : −i
θx−θy
2
√
2
(3e1 − e2)γµCPR

e̊

ν̊

Zµ : i
θx−θy
2
√
2
(3e1 − e2)CγµPL

e̊

ν̊

Zµ : i
θx−θy
2
√
2
(3e1 − e2)γµCPR

e̊

ν̊

W−µ: i g√
2
θ̃zCγµPL

e̊

ν̊

W+µ: i g√
2
θ̃zγµCPR

e̊

e̊

Aµ : i
2 θ̃z(3e1 + e2)CγµPL
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[24] Carlos A. Argüelles, Kevin J. Kelly, and V́ıctor M. Muñoz. “Millicharged par-
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