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Abstract. Despite recent widespread deployment of differential privacy, relatively little is
known about what users think of differential privacy. In this work, we seek to explore users’
privacy expectations related to differential privacy. Specifically, we investigate (1) whether
users care about the protections afforded by differential privacy, and (2) whether they are
therefore more willing to share their data with differentially private systems. Further, we
attempt to understand (3) users’ privacy expectations of the differentially private systems
they may encounter in practice and (4) their willingness to share data in such systems. To
answer these questions, we use a series of rigorously conducted surveys (n=2424).

We find that users care about the kinds of information leaks against which differential
privacy protects and are more willing to share their private information when the risks
of these leaks are less likely to happen. Additionally, we find that the ways in which
differential privacy is described in-the-wild haphazardly set users’ privacy expectations,
which can be misleading depending on the deployment. We synthesize our results into a
framework for understanding a user’s willingness to share information with differentially
private systems, which takes into account the interaction between the user’s prior privacy
concerns and how differential privacy is described.

1. Introduction

Differential privacy (DP) is a mathematically rigorous definition of privacy that has gained
popularity since its formalization in 2006 (Dwork et al., 2006). DP facilitates the computation
of aggregate statistics about a dataset while placing a formal bound on the amount of
information that these statistics can disclose about individual data points within the dataset.
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Guaranteeing DP generally requires injecting carefully calibrated noise that hides individual
datapoints while preserving aggregate level insights.

DP has become a leading technique used to meet the increasing consumer demand for
digital privacy (Auxier et al., 2019). In the last few years, several companies have deployed
DP. For instance, Apple uses DP to gather aggregate statistics on Emoji usage, which it uses
to order Emojis for users (Team, 2017; Apple, 2018). Uber uses DP to prevent data analysts
within the company from stalking customers (Near, 2018; Johnson and Near, 2019), and
Google uses DP to crowd-source statistics from Google Chrome crash reports (Erlingsson
et al., 2014).

The U.S. government has also begun to use DP. The United States Census Bureau is
using DP to prevent information disclosure in the summary statistics it releases for the 2020
Decennial Census (Abowd et al., 2020). The use of DP in the Census means that nearly
every person in the United States will have private data protected by DP.

Following in the footsteps of these earlier adopters, more companies have already
announced their intentions to integrate differentially private techniques into their systems,
e.g., Nayak (2020); Herdağdelen et al. (2020). As a result, DP is becoming an increasingly
consumer-relevant technology. Yet, little is known about whether end users value the
protections offered by DP.

While DP is mathematically elegant and computationally efficient, it can be difficult
to understand. Not only is DP typically defined mathematically, the privacy protections
provided by DP are not absolute and require contextualization (Dwork, 2008). DP does not
provide binary privacy (i.e., private or not private), but instead provides a statistical privacy
controlled by unitless system parameters that are difficult to interpret (i.e., the parameters ϵ
and δ control the maximum amount of information that can leak about any individual entry
in the dataset) (Dwork et al., 2006). Additionally, DP can be deployed in different security
models, and the choice of model has significant impact on the types of adversarial behavior
the system can tolerate. In the local model, users randomly perturb their information (with
the help of the collection mechanism, e.g., their device) before sending it to a central entity
in charge of analysis, called the curator (Kasiviswanathan et al., 2011). In the central model
users share their sensitive information directly, and the curator is trusted to perturb results
that are released (Dwork and Roth, 2014).

1.1. Differential Privacy from the user’s perspective. The existing DP literature
focuses on techniques for achieving DP (Dwork et al., 2006; Dwork and Roth, 2014; McSherry
and Talwar, 2007; Hardt and Rothblum, 2010; Dwork et al., 2009; Kasiviswanathan et al.,
2011; Dwork et al., 2015), with a small but growing body of work on legal and ethical
implications of DP (Nissim and Wood, 2018; Cummings and Desai, 2018; Oberski and
Kreuter, 2020; Cohen and Nissim, 2020). Notably absent, however, is the voice of the
end user, whose information may eventually be protected by DP and may benefit from
its deployment (Benthall et al., 2017). Do users care about the information disclosures
against which DP protects? Do users understand how DP protects them, and if so, do
those protections influence their comfort with sharing information? As differentially private
systems proliferate, it is increasingly important to answer such questions and understand
DP from the user’s perspective.

While a limited body of prior work has sought to understand how training users to
understand DP influences willingness to share (Xiong et al., 2020; Bullek et al., 2017; Dekel
et al., 2021), we aim to answer broader questions regarding: (i) whether DP meets users’
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existing privacy needs, (ii) what expectations a potential user might have of a differentially
private system, and (iii) whether existing, in-the-wild, descriptions of DP accurately set user
expectations.

As a privacy-enhancing technology, DP is designed to prevent the unwanted information
disclosure of user information to certain entities. However, it is not clear that these
protections are meaningful to potential users. Additionally, it is not clear if DP provides the
level of protection that potential users might hope.

Thus, in this work, we ask the following research questions:

(RQ1) Do potential users care about protecting their information against disclosure to the
entities against which differentially private systems can protect?

(RQ2) Are potential users more willing to share their information when they have increased
confidence that such information disclosures will not occur?

(RQ3) Do potential users expect differentially private systems to protect their information
against disclosure? How does the way in which differential privacy is described impact
their expectations?

(RQ4) Are potential users more willing to share their information when their information will
be protected with differential privacy? How does the way in which differential privacy is
described impact sharing?

We conduct two surveys with a total of 2, 424 respondents to answer our research questions.
We use vignette-based surveys to elicit respondents intended behavior, as such surveys have
been found to well-approximate real-world behavior (Hainmueller et al., 2015).

To address RQ1 and RQ2, we present each respondent with one of two information-
sharing scenarios (sharing information with a salary transparency initiative or sharing
medical records with a research initiative) and query respondents’ privacy concerns. We
then set their privacy expectations for those concerns (e.g., how likely information is to
be leaked to a particular entity) and query if they would be willing to share their private
information. Using the results of this survey, we examine how respondents’ privacy concerns
align with the protections offered by DP.

To address RQ3 and RQ4, we again present each respondent with one of the two
information-sharing scenarios. We additionally tell respondents that their information will
be protected by DP, as described by one of six descriptions.1 We then query respondents’
privacy expectations for these scenarios (e.g., whether their information could leak to various
entities) and whether they would be willing to share their information. Using the results of
this survey, we interrogate how accurately and effectively existing descriptions of DP set
user expectations.

There is no “standard” deployment of DP, nor is there a “normal” way to describe
its guarantees. In order to construct representative descriptions of DP to present to our
participants, we systematically collected over 70 descriptions of DP written by companies,
government agencies, news outlets, and academic publications. Through affinity diagramming
qualitative analysis (Beyer and Holtzblatt, 1999), we identify six main themes present in
these descriptions, compose a representative description for each theme, and showed these
representative definitions to respondents.

By describing DP as a potential user would encounter it in-the-wild, we gain a better
understanding of how potential users are likely to respond to DP in practice. The nuances
innate in DP make it easy for a prospective user to misunderstand what they are being

1We also maintain a control group of participants who are not told that their information is protected.



4 R. CUMMINGS, G. KAPTCHUK, AND E. REDMILES

promised. As such, a user seeking to choose the right privacy-preserving system may find it
difficult to make an informed choice. Getting this wrong can have real-world consequences:
DP may be insufficient to protect a user’s information against the types of threats about
which they are concerned.

1.2. Summary of Findings. We find that users care about the kinds of information
disclosure against which DP can protect (RQ1) and are more willing to share their private
information when the risk of information disclosure to certain entities, specifically those for
which disclosure would represent an inappropriate information flow (Nissenbaum, 2004), is
not possible (RQ2).

Further, we find that descriptions of DP raise respondents’ concrete privacy expectations
around information disclosure (RQ3). This effect, however, varies by how DP is described:
different descriptions of DP raise expectations for different kinds of information disclosure.
These expectations, in turn, raise respondent’s willingness to share information. However,
informing respondents that a system was differentially private did not raise potential users’
willingness to share information, no matter which description of DP was presented to the
respondent (RQ4).

Taken together, our findings suggest that while (1) respondents do care about the
information disclosures against which DP can protect; (2) the likelihood of those disclosures
influences respondent’s willingness to share; and (3) different in-the-wild descriptions of DP
influence respondents perception of the likelihood of those disclosures. However, (4) simply
being shown a randomly-selected, in-the-wild description of DP does not increase willingness
to share. These results, at first glance, appear to be in tension.

On deeper analysis however, these findings suggest the presence of a misalignment
between the information disclosures about which users care and the information disclosures
that descriptions of DP address. The probability that a given respondent was (a) shown a
description that related to the information disclosures about which they care, and (b) that
description influenced enough of their perceptions is likely low.

Synthesizing these findings, we posit a novel framework for understanding how end
users reason about sharing their data under DP protections. Our framework — and the
findings that informed it — offer concrete directions for reformulating DP descriptions to
accurately and effectively set user’s privacy expectations and increase their comfort when
using differentially private systems. Users must either be trained to carefully understand
descriptions (as done in Xiong et al. (2020)) or descriptions should be reformulated to directly
communicate how they address the information flows that concern users (e.g., via privacy
nutrition-labels (Kelley et al., 2009)). If DP descriptions can be effectively reformulated, our
results suggest that users may be significantly more comfortable sharing their information
when given differentially private protections.

2. Background and Related Work

In this section, we provide a background on DP and review prior work on communicating
privacy to end users, with a specific focus on prior research studying DP-related communica-
tions.
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2.1. Differential Privacy. In the last decade, a growing literature on differentially private
algorithms has emerged to address concerns surrounding user-level data privacy. First
defined by Dwork et al. (2006), DP is a parameterized notion of database privacy that gives
a mathematically rigorous worst-case bound on the maximum amount of information that
can be learned about any one individual’s data through the analysis of a dataset. Formally,
a database D ∈ Dn is modeled as containing data from n individuals, and DP constrains the
change in an algorithm’s output caused by changing a single person’s data in the database.

Definition 2.1 (Differential Privacy (Dwork et al., 2006)). An algorithm A : Dn → R is
(ϵ, δ)-differentially private if for every pair of databases D,D′ ∈ Dn that differ in at most
one entry, and for every subset of possible outputs S ⊆ R,

Pr[A(D) ∈ S] ≤ exp(ϵ) Pr[A(D′) ∈ S] + δ.

DP can be implemented either in the central model — where users provide their raw
data to a trusted curator for private analysis — or in the local model, where users add noise
locally to their own data before sharing it for analysis. The central model corresponds to
the original DP definition of Dwork et al. (2006) as presented in Definition 2.1, where an
analyst first collects a dataset from users, and then uses specialized DP tools to ensure that
the technical requirements of Definition 2.1 are satisfied. The original intended use case for
central DP is to enable trusted data analysts who already held sensitive datasets to publish
aggregate statistics or reports on their data without violating the privacy of the individuals
represented in the data. Central DP is used by e.g., the U.S. Census Bureau (Abowd et al.,
2020; Hawes, 2019) and Uber (Near, 2018; Johnson and Near, 2019) since both require exact
user data – the Census Bureau through a constitutional mandate; Uber because data like
rider location are necessary for their ride-sharing services.

The local model provides privacy guarantees in the presence of an untrusted curator.
Users add noise to their own information (i.e., on their own device) through algorithms that
satisfy Definition 2.1 for n = 1, and share the privatized output with the curator. Thus,
the curator receives only a perturbed and private version of each user’s data and never has
access to raw user data. Any analysis performed on the noisy data will retain the same
DP guarantee due to post-processing (Dwork et al., 2006), so the curator need not use any
specialized analysis tools to ensure privacy. Analysts can still make aggregate inferences
based on population-level statistics, but will only see noisy information about any individual.
Local DP is used by, e.g., Apple (Team, 2017; Apple, 2018), Google (Erlingsson et al., 2014),
and Microsoft (Ding et al., 2017) in settings where user data is stored on-device and the
company only requires aggregate information to perform its services.

The possible risks of information disclosure differ substantially between these two models.
Since the central model stores user data in a centralized location, data analysts have access to
exact user data, along with any other parties who obtain access through legal or illegal means.
In the local model, the dataset itself is privatized, so there is no risk of information disclosure
through the curator’s dataset. In this work, we seek to understand user’s perceptions of these
possible risks of information disclosure and interrogate the accuracy of those perceptions
under both the local and central models of differential privacy.

2.2. Privacy Communications. A large body of work has examined how best to explain
privacy to end users (Mcdonald et al., 2009; Spiekermann and Cranor, 2008; Earp et al., 2005;
Jensen and Potts, 2004; Senarath et al., 2017). This has included creating privacy nutrition
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labels (Kelley et al., 2009) that clearly delineate to users who may use their information,
how their information may be used, and how likely these uses are to occur; designing
privacy icons that clearly communicate when and what information is being collected (Motti
and Caine, 2016; Egelman et al., 2015; Cranor, 2006); and developing machine-learning
systems that help users negotiate privacy boundaries (Sadeh et al., 2013). Particularly
relevant to the work presented here, prior work has also identified best practices for privacy
communications: descriptions should be relevant (e.g., include the necessary context for users
to make decisions), actionable (e.g., allow the user to make choices), and understandable
(e.g., usable, not overloading the user with technical information) (Schaub et al., 2017). As
we discuss in Section 6, our findings suggest that existing DP descriptions fail to satisfy
these criteria.

Despite this large body of prior work on privacy communications and the increasing
importance of DP, only two pieces of prior work have focused on communicating with users
about DP.

Bullek et al. (2017) study how users understand privacy parameters in randomized
response, a specific local DP technique. They describe randomized response to users using
a virtual, colored spinner; the user would spin the spinner, the outcome of which would
indicate if the user should answer the sensitive question truthfully or with the response
indicated on the spinner. Our work focuses more broadly on how the information disclosures
against which DP protects can influence users’ willingness to share, and on how descriptions
of DP influence expectations for those disclosures.

Most closely related to our own work, Xiong et al. (2020) study how informing users that
their information is protected with DP influences their willingness to share different types
of information. They study this question in the context of an app that collects medically
relevant information, both low sensitivity (e.g., gender, height, weight) and high sensitivity
(e.g., substance use, income level, current medication). They found that promising users DP
makes them more willing to share their information (particularly high sensitivity information,
which is comparable to the information we consider in this work). However, they found
that users struggled to understand descriptions of DP but were more able to understand
descriptions that mentioned the implications of information sharing.

Our study builds upon this prior work to more deeply explore (RQ1) which information
sharing implications are most concerning to users, and thus should be emphasized when
describing DP, (RQ2) how these implications themselves influence users’ willingness to share
information, and (RQ3) how existing in-the-wild descriptions of DP set their expectations
about these information sharing implications. Prior work on user expectations for information
sharing (Benthall et al., 2017) notes that there is a lack of work considering how users
reason about information sharing under DP. Our work fills this gap. Additionally, we seek
to replicate their results through (RQ4), in which we examine how different descriptions of
DP themselves influence users willingness to share information.

In addition to primarily focusing on different research questions, our work method-
ologically differs from the work of Xiong et al. (2020) in two ways. First, we derive the
descriptions of DP we use as stimuli from a systematic review of 76 in-the-wild descriptions
of DP (see Section 5). In contrast, in two of their three experiments Xiong et al. (2020) use
DP descriptions that were created to explain the definition and/or different aspects (e.g.,
data perturbation) of DP to users2; more similar to our approach, in their third experiment

2The most closely related definition to our work is the DP with implications description: “To respect your
personal information privacy and ensure best user experience, the data shared with the app will be processed
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they use the descriptions from four companies that use DP, in addition to their created
descriptions. Second, and relatedly, Xiong et al. (2020) test whether respondents correctly
understand the implications of DP based on the description they were shown before respon-
dents are shown additional survey questions about their willingness to share information.
Respondents who did not correctly answer the understanding question(s) were presented
with the DP description a second time; if they again did not understand the description,
they were excluded from the study. Their results thus have important implications about
how users can be educated about DP. On the other hand, this methodology does not offer
insight into how users’ privacy expectations or willingness to share information might be
influenced by encountering descriptions of DP in-the-wild, rather than in a laboratory setting.
As further discussed in Section 6, the results of our replication study (RQ4) significantly
differ from those of Xiong et al. (2020) likely due to the methodological differences in our
approaches.

3. Summary of Methods

To answer our research questions, we ran two surveys (n = 2, 424 total), one to address RQ1
and RQ2 and the other to address RQ3 and RQ4. In order to improve the external validity
of our work, we use vignette (scenario) surveys (Hainmueller et al., 2015). In both our
surveys, we use the same two scenarios, which focus on two different potential use cases for
DP: protecting people’s salaries and protecting people’s medical histories. To contextualize
the first scenario, we ask respondents to imagine that they work in the banking industry
and are approached by a friend on behalf of a salary transparency initiative. In the second
scenario, we ask the respondent to imagine that during their next doctor’s visit, their doctor
asks them if they want to share their medical records with a medical research non-profit,
in the name of improving care. The exact wording of these scenarios is shown in Table 1.
Table 2 contains concrete privacy expectations about which we asked respondents in both
surveys; we discuss these expectations further in the following sections. We ran both surveys
using Amazon Mechanical Turk (MTurk). MTurk has been shown to be representative
of American privacy preferences for Americans aged 18-50 who have at least some college
education (Redmiles et al., 2019).

We present detailed overviews of each survey in Sections 4 and 5 respectively. The
median time to complete our surveys (taken across respondents from both surveys) was 3.25
minutes and each respondent was paid $0.67, for an hourly rate of approximately $12 per hour.
We present our findings from each survey in Sections 4.2 and 5.2 respectively. Our full survey
instruments can be found in Appendix A. We also present demographic information and
descriptive statistics for both surveys in Appendix B. Our anonymized datasets and code for
our analyses can be found at https://github.com/gkaptch1/JPC_diffprivdefn_public.
Our procedures were approved by our institutions’ ethics review board.

via the differential privacy (DP) technique. That is, the app company will store your data but only use the
aggregated statistics with modification so that your personal information cannot be learned. However, your
personal information may be leaked if the company’s database is compromised.”

https://github.com/gkaptch1/JPC_diffprivdefn_public
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Scenario Name Scenario Description

Salary Scenario

“Imagine that you work in the banking industry. You are friends with
a group of other people who work in banking companies in your city.
One of your friends is part of a transparency initiative that is trying
to publish general statistics about pay in the banking industry. As
part of this initiative, they have asked everyone in the group to share
their salaries and job titles using an online web form on the initiative’s
website.”

Medical Scenario

“Imagine that during your next doctor’s visit, your primary care doctor
informs you that they are part of a non-profit organization trying to
push the boundaries of medical research. This non-profit is asking
patients around the country to share their medical records, which will
be used to help medical research on improving treatment options and
patient care. Your doctor, with your permission, can facilitate the
non-profit getting the information they need.”

Table 1. Scenarios used in both survey one and survey two.

3.1. Limitations. As in all user studies, our study is subject to multiple possible biases.
The first is sampling bias. We sample our respondents using MTurk. While prior work
shows that MTurk is reasonably representative of the privacy attitudes and experiences of
Americans aged 18-50 who have some college education (Redmiles et al., 2019), our sample
does not capture the experiences of all Americans, especially those older and less educated.
Our results should be interpreted in this context. Further, there are known issues with
inattentive respondents in online surveys. We carefully reviewed the open-answer responses
provided in our surveys to filter out inattentive respondents, however some low quality
data from such respondents may still have contaminated our dataset. Second, we may have
introduced reporting biases through our question design. While we aimed to follow best
practices — using cognitive interviews to validate our questionnaire, and offering “other”
and “I don’t know” response options (Redmiles et al., 2017a) — respondents may still have
mis-reported or failed to report their true perceptions or preferences. Third, while we took
steps to improve external validity — sourcing experimental stimuli by rigorously collecting
and coalescing in-the-wild DP descriptions and using a vignette survey — our study may
have failed to appropriately reflect real-world conditions.

4. Impact of Information Disclosures (RQ1 & RQ2)

In our first survey, we aimed to answer RQ1 and RQ2. Namely, we wanted to determine if
(a) users cared about the kinds of information disclosures against which DP can protect,
and (b) users would be more willing to share their sensitive information when the risk of
such information disclosures decreased.

Information Disclosures. Contextual integrity (CI) theory – a commonly used framework
to explain end-user privacy reasoning – posits that users’ privacy decisions depend heavily
on information flows – what information is being transmitted to which entities under what
privacy expectations (Nissenbaum, 2004). Our scenarios define a set of expected information
flows (e.g., salary information moving from the user, to the salary transparency initiative,
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Expectation Name Expectation Description
Ground Truth:

Local
Ground Truth:

Central

Hack

“A criminal or foreign government that
hacks the transparency initiative could
learn my salary and job title”
“A criminal or foreign government that
hacks the non-profit could learn my medi-
cal history”

False True

Law Enforcement

“A law enforcement organization could ac-
cess my salary and job title with a court
order requesting this data from the initia-
tive”

“A law enforcement organization could ac-
cess my medical history with a court order
requesting this data from the non-profit”

False True

Organization
“My friend will not be able to learn my
salary and job title”

“The contents of my medical record will
be stored only by my doctor’s office, and
will not be stored by the non-profit”

True False

Data Analyst

“A data analyst working on the salary
transparency initiative could learn my ex-
act salary and job title”

“A data analyst working for the non-profit
would be able to see my exact medical
history”

False True

Graphs

“Graphs or informational charts created
using information given to the salary trans-
parency initiative could reveal my salary
and job title.”

“Graphs or informational charts created
using information given to the non-profit
could reveal my medical history.”

False False

Share

“Data that the salary transparency initia-
tive shares with other organizations doing
salary research could reveal my salary and
job title”

“Data that the non-profit shares with other
organizations doing medical research could
reveal my medical history”

False True

Table 2. Information disclosure expectations used in both survey one and
survey two.

under some privacy protection – as described further in the following sections). Based on
our descriptions, users may have different expectations for whether unexpected information
flows (e.g., information being shared with an entity they did not intend to share it with) may
occur. We term these unexpected information flows “information disclosures” throughout
the remainder of the paper.
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As survey one seeks to investigate the role of different types of information disclosures
in users’ sharing behaviors and survey two seeks to investigate how existing methods of
describing DP influence user expectations for information disclosure, both surveys address
the same potential information disclosures that could occur in either scenario.

While we would like users to tell us about the kinds of disclosure that concerns them,
prior work has shown that users often do not have good mental models for privacy tools
(Abu-Salma et al., 2018; Krombholz et al., 2019; Mai et al., 2020). To compensate for this,
we leveraged prior work (Kang et al., 2015; Vitak et al., 2018; Morando et al., 2014; Carrascal
et al., 2013; Nissim et al., 2017; Heffetz and Ligett, 2014) on both DP and on user privacy
concerns to create a preliminary list of information disclosures about which a user might care.
Our list included the following kinds of information disclosure (names in italics): (Hack)
Could a criminal organization or foreign government access the respondent’s information
by hacking the organization holding the information?; (Law Enforcement) Could a law
enforcement organization access the respondent’s information with a court-issued warrant?;
(Organization) Could the organization collecting the information (or their representative)
access the respondent’s information?; (Data Analyst) Could a data analyst working within the
organization access the respondent’s information?; (Graphs) Could graphs or informational
charts created by the organization be used to learn the respondent’s information?; and
(Share) Could the collected information be shared with another organization such that the
other organization could access the respondent’s information?

While some of these questions are redundant from a technical perspective (e.g., hack and
law enforcement), we chose these questions to be representative of real data-privacy concerns
that potential users might have, since prior work finds that a key part of users’ reasoning
about privacy is how appropriate they consider different information flows (Nissenbaum,
2004).

4.1. Methodology: Survey One. To ensure that we had not missed information disclosures
about which users were concerned, we first conducted five cognitive interviews3 and offered
survey respondents the opportunity to list other information disclosures about which they
cared. Fewer than 2% entered a disclosure not captured in our list. As such, we use the
above list of information disclosures throughout this work. We present the descriptions of
these expectations in Table 2.

In Table 2, we also indicate the ground truth for each of these information disclosures in
both the local and central model of DP. Both central and local DP protect against information
disclosure through graphs, as this is the core privacy guarantee of DP. The central model
aggregates raw user data into a centralized database that can potentially be accessed by
the data analyst, employees of the organization, entities that hack the organization, law
enforcement (with proper court orders), and partner organizations with whom the dataset is
shared. In the local model, the aggregated dataset contains only DP versions of user data,
so information disclosure would not occur even if the dataset is accessed by these entities.

We stress that we are considering a “typical” DP deployment and acknowledge that
there are deployments for which our ground truths are not correct. For instance, we indicate
that a data analyst would be able to learn a potential user’s exact information in the central

3Cognitive interviewing is a survey methodology technique in which participants think aloud as they
answer a survey (Redmiles et al., 2017a). Cognitive interviews are used to verify that potential respondents
understand the survey questions and no answer choices are missing. We conducted interviews until no new
survey protocol corrections emerged.
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model. However, Uber deployed central DP specifically to protect users’ information against
curious data analysts. As it is impossible to account for all possible system parameters and
design options, we derive our ground truth from the most simple setup.

Questionnaire. Each respondent was randomly assigned to either the salary scenario or
the medical scenario described above. Then, each respondent was asked to indicate which of
the information disclosures, described above, they would want to better understand before
sharing their information. Additionally, they were given the option of adding any additional
disclosures about which they would want additional information. For each information
disclosure event that the respondent indicated they would want to better understand, the
respondent was presented with one of the following explicit risks, chosen at random:

(1) there is no risk of this information disclosure,
(2) the risk of this information disclosure is the same as the chance that your bank account

will be compromised (accessed by a person who you did not intend to gain access to) as
part of a data breach in the next year, and

(3) the risk of this information disclosure is higher than the chance that your bank account
will be compromised (accessed by a person who you did not intend to gain access to) as
part of a data breach in the next year.

We set expectations in this way because (a) prior work on how humans interpret numbers
and risk suggests that reference events of a similar type improve risk comprehension (Singh
and Paling, 1997; Riederer et al., 2018; Gigerenzer et al., 2005; Keller and Siegrist, 2009),
and (b) prior work shows that users have concrete estimates for the likelihood of bank
account compromise, a frequently discussed security event (Barrio et al., 2016; Kaptchuk
et al., 2022; Slovik, 1987). Each respondent was then asked if they would be willing to share
their information with the initiative. Additionally, they were asked to describe why they
would or would not be willing to share their data.

We note that our questionnaire did not mention differential privacy explicitly in order to
avoid priming or biasing respondents. As such, the results of our survey could be relevant to
privacy preserving techniques more broadly. However, we note that these privacy expectation
are all highly relevant to systems providing differential privacy, and therefore help us answer
our first two research questions.

Finally, each survey concluded with a battery of demographic questions, including a
measurement of internet skill using an existing validated measure (Hargittai and Hsieh,
2012), as prior work suggests that internet skill is among the most relevant constructs to
control for in privacy studies (Redmiles et al., 2017b; Redmiles, 2018; Hargittai and Litt,
2013; Hargittai and Micheli, 2019). The complete survey is in Appendix A.1.

Sample. We surveyed 1,216 U.S. Amazon Mechanical Turk workers. These workers were
split evenly between the two survey scenarios. To ensure high quality responses, we required
that respondents have at least a 95% approval rating (Peer et al., 2014). The demographics
of our sample are reported in Table 7 in the appendix.

Analysis. To answer RQ1, we conduct a descriptive analysis, reporting the proportion of
respondents who were concerned about each potential information disclosure event; when
reporting differences between proportions of respondents who report concern, we use χ2

proportion tests to validate that the differences between proportions are significant. To
answer RQ2, we build six logistic regression models, one for each potential information
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Figure 1. Proportion of respondents who care about each potential infor-
mation disclosure. We provide a breakdown of these statistics by scenario
(salary vs medical) in Appendix B.

disclosure event. In each model, the dependent variable (DV) is whether the respondent is
willing to share their information, the independent variable (IV) of interest is the level of
risk that the respondent was told of the information disclosure occurring, and the control
IVs are the scenario type and the respondents’ internet skill score. We report the odds ratios
(the exponentiated regression coefficients) with 95% confidence intervals, and p-values for
each IV in the model.

In Section 4.2, we contextualize a subset of our results using open-text responses
participants provided to describe their sharing decisions. These responses were analyzed
through open-coding by a member of the research team with qualitative research experience.
The author followed an inductive open-coding process and iterated on versions of the
codebook with a second author who reviewed coded segments. As these responses are not
offered as primary research artifacts, we do not double code this data nor provide intercoder
agreement statistics, per best-practice guidelines outlined in McDonald et al. (2019).

4.2. Information Disclosure Results. Here, we detail the results of our analyses of survey
one.

RQ1: What Information Disclosures Concern Users? The goal of DP is to protect
user information against disclosure to various entities. Thus, we investigate whether users
care about potential information disclosures to different entities against which DP can protect
(see Table 2 for information disclosures and Section 4.1 for the source of these disclosures).

We find that the most respondents — 60.3% — care about information disclosures to
third-parties (Share). Over half (55.3%) care about disclosures to the person or organiza-
tion running the initiative to which they contributed their information, while 52.1% care
about disclosing their information to an entity that hacks the organization to which they
contributed their information. Fewer, 43.5%, care about whether a data analyst working at
the organization might be able to learn their private information or whether graphs created
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Variable Hack Law Enforcement Organization

OR/CI p-value OR/CI p-value OR/CI p-value

Low Risk
1.91

< 0.01**
0.87

0.55
1.63

0.01*
[1.27, 2.88] [0.54, 1.39] [1.12, 2.38]

No Risk
2.97

< 0.001***
2.07

< 0.01**
1.61

0.01*
[1.98, 4.49] [1.32, 3.27] [1.1, 2.35]

Salary Scenario
1.44

0.03*
1.35

0.12
1.20

0.23
[1.04, 2] [0.92, 1.98] [0.89, 1.64]

Internet Score
1.04

0.68
1.01

0.92
0.98

0.79
[0.86, 1.25] [0.82, 1.24] [0.82, 1.16]

Variable Data Analyst Graphs Share

OR/CI p-value OR/CI p-value OR/CI p-value

Low Risk
0.92

0.72
1.42

0.14
1.25

0.27
[0.59, 1.44] [0.89, 2.27] [0.85, 1.84]

No Risk
1.23

0.36
1.48

0.10
1.97

< 0.001***
[0.79, 1.9] [0.93, 2.37] [1.35, 2.88]

Salary Scenario
1.37

0.09
1.12

0.54
1.04

0.81
[0.96, 1.96] [0.77, 1.64] [0.76, 1.42]

Internet Score
1.24

0.04*
1.05

0.66
1.01

0.87
[1.01, 1.52] [0.86, 1.28] [0.86, 1.2]

Table 3. Effect of expectations about the probability of a disclosure on
respondent willingness to share. This Table is constructed using data from
Survey One. Each logistic regression model constructed only for respondents
who cared about that type of disclosure, comparing against the High Risk
condition. Table shows odds ratio (OR), 95% confidence intervals for the
odds ratios (shown in brackets), and p-values, where * indicates p < 0.05, **
indicates p < 0.01, and *** indicates p < 0.001.

using their information might disclose their private information (40.8%). Finally, 39.8% of
respondents care whether law enforcement might be able to access their information using a
court order. We visualize these findings in Figure 6.

It is interesting to note that nearly 20% more respondents (χ2 = 34.54, p < 0.001) cared
about their information being disclosed to a third party vs. being disclosed through graphs
created using their information. Similarly, 11.8% more respondents (χ2 = 22.32, p < 0.001)
cared about their information being disclosed to the organization running the initiative vs.
being disclosed specifically to a data analyst at the organization. Open-answer responses
offer some insight into this difference. When asked why they would (or would not) be willing
to share their information, after they were told the risk of the disclosures they indicated they
cared about, many respondents indicated that they believed in the cause of the initiative
and wanted to contribute to their analysis/research. For example, one respondent said, “I
trust the non-profit organization to handle my information responsibly and to use it for the
positive research purpose that they claim they will be using it for.” Thus, respondents may
care less about disclosures that occur through “appropriate information flows” (Nissenbaum,
2004), in which user’s information is being used in the way they expect: e.g., to benefit
salary transparency or medical research through data analysis and the generation of graphs.
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RQ2: How Does the Probability of Information Disclosure Influence Sharing?
Next, we investigate whether setting respondents’ expectations about the information
disclosures that concerned them influences their reported willingness to share information.
The results are shown in Table 3.

Among respondents who care about their information being hacked by a criminal
organization or foreign government, those who were told that the risk of this disclosure
occurring is about the same as the risk of having their bank account compromised (“Low
Risk” in Table 3) are nearly twice (O.R. = 1.91, p < 0.01) as likely to share their information
as compared to respondents who were told that this risk is greater than the risk of having
their bank account compromised. Those who are told there is no risk of their information
being disclosed through a hack were nearly three times as likely to share (O.R. = 2.97,
p < 0.01). Respondents who care about their information being hacked were also more
willing to share salary information than medical information.

Respondents that care about information disclosure to the organization running the
initiative to which they might contribute their information were > 60% more willing to share
if the risk of their information being disclosed to the organization was lower (Low Risk: O.R.
= 1.63, p = 0.01; No Risk: O.R. = 1.61, p = 0.01).

On the other hand, respondents who care about whether law enforcement would be able
to access their information with a court order and respondents who care about whether
their information might be disclosed to a third-party are both more likely to share their
information only if they are told there is no risk of their information being disclosed to these
entities. Respondents that are told there is no such risk are about twice as likely to share
their information (Law Enforcement: O.R. = 2.07, p < 0.01; Share: O.R. = 1.97, p < 0.01).
Being told there is a low risk instead of a high risk of disclosure has no significant effect on
their willingness to share.

We hypothesize that respondents show a graduated response to the risk of information
disclosures to the organization running the initiative to which they might contribute their
information because it is appropriate for this organization to have their information. Similarly,
we hypothesize that respondents show a graduated response to the risk of hacks because
information disclosures resulting from hacks are unintentional on the part of the organization.
On the other hand, the organization purposefully choosing to share information they
contributed to the initiative with a third party or with law enforcement, even with a court
order, may feel incongruent with the purpose for which they shared their information.

Finally, we find that the probability of disclosure to data analysts or through graphs has
no effect on willingness to share, even among respondents who care about those information.
We hypothesize that those respondents who are motivated by the altruistic goals specified
in the scenarios may be willing to share their information regardless of the risk of disclosure
occurring through these information flows, which are arguably the most appropriate informa-
tion flows we examine, while those who are not compelled by the goals of the organizations
described in the scenarios are similarly unwilling to share their information regardless of
this risk. For example, one respondent who cared about information disclosure to both of
these entities, and was told there was no risk of disclosure to a data analyst and low risk of
disclosure through a graph said, “Unfortunately, I do not see enough of a benefit for me to
take the risk of sharing my personal information. I absolutely do not want such personal
info being leaked out.“ On the other hand, a respondent who cared about disclosure to a
data analyst and was told the risk of this disclosure was higher than the risk that their
bank account would be compromised commented that they would be willing to share their
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Theme Description

Unsubstantial
“Differential privacy is the gold standard in data privacy and protection and is
widely recognized as the strongest guarantee of privacy available.”

Techniques “Differential Privacy injects statistical noise into collected data in a way that
protects privacy without significantly changing conclusions.”

Enables
“Differential Privacy allows analysts to learn useful information from large amounts
of data without compromising an individual’s privacy.”

Trust “Differential privacy is a novel, mathematical technique to preserve privacy which
is used by companies like Apple and Uber.”

Risk
“Differential privacy protects a user’s identity and the specifics of their data,
meaning individuals incur almost no risk by joining the dataset.”

Technical
“Differential privacy ensures that the removal or addition of a single database
item does not (substantially) affect the outcome of any analysis. It follows that
no risk is incurred by joining the database, providing a mathematically rigorous
means of coping with the fact that distributional information may be disclosive.”
Dwork (2008)

Table 4. Descriptions of DP synthesized from the six main themes present
in our collection of 76 in-the-wild DP descriptions.

information, “because it’s for good research, and I’m getting too old to worry about who sees
my medical record. I anticipate I will have *many* doctors, nurses, lab techs, etc involved
in my medical record before too long.”

We note that respondents who cared about information disclosures to data analysts with
higher internet scores were more likely to report being willing to share their information. As
technologically savvy respondents, they may have had a clearer mental model of the data
analysis process and therefore understood that data analysts typically have complete access
to user information. As such, they may be more forgiving toward any approach that aims to
reduce this level of access, even given the relatively high risk of an information disclosure.

5. Expectations & Willingness to Share Under DP (RQ3 & RQ4)

Next – via a second survey – we explore how DP influences privacy expectations (RQ3) and
intent to share information (RQ4).

Descriptions of Differential Privacy. In order to answer these research questions, we
needed to describe DP to respondents in our surveys. However, there is no standard
description of DP we can use. Because we want to ask our research questions in a realistic
context, we seek to describe DP to our respondents in the same way they might encounter
DP in-the-wild.

To determine how DP is described in-the-wild, we conducted a systematic search for
publicly available descriptions of DP using keywords such as “differential privacy,” “formal
privacy,” “privacy guarantee,” and “census privacy.” We used both Google search and
searched within the past five years (2014-2019) of content in large media venues. We
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Variable Hack Law Enforcement Organization

OR/CI p-value OR/CI p-value OR/CI p-value

Description: 1.94
0.01*

1.10
0.72

1.13
0.59

Unsubstantial [1.16, 3.29] [0.65, 1.86] [0.73, 1.75]

Description: 1.96
0.01*

1.21
0.47

1.43
0.10

Techniques [1.17, 3.33] [0.72, 2.03] [0.93, 2.22]

Description: 1.60
0.08

1.05
0.84

1.40
0.13

Enables [0.95, 2.73] [0.63, 1.77] [0.91, 2.16]

Description: 1.86
0.02*

1.04
0.89

1.43
0.11

Trust [1.11, 3.17] [0.61, 1.76] [0.92, 2.22]

Description: 2.58
< 0.001***

1.86
0.01*

1.43
0.10

Risk [1.57, 4.33] [1.15, 3.05] [0.93, 2.20]

Description: 1.56
0.10

1.02
0.95

1.38
0.15

Technical [0.92, 2.69] [0.60, 1.73] [0.89, 2.14]

Salary Scenario
1.32

0.04*
0.80

0.11
1.29

0.03*
[1.02, 1.71] [0.61, 1.05] [1.03, 1.63]

Internet Score
1.17

0.04*
1.25

0.01**
1.02

0.78
[1.01, 1.36] [1.06, 1.46] [0.89, 1.17]

Variable Data Analyst Graphs Share

OR/CI p-value OR/CI p-value OR/CI p-value

Description: 1.71
0.10

1.64
0.05*

1.68
0.06

Unsubstantial [0.92, 3.27] [1.01, 2.67] [0.99, 2.88]

Description: 2.40
< 0.01**

2.15
< 0.01**

2.22
< 0.01**

Techniques [1.33, 4.5] [1.34, 3.5] [1.33, 3.77]

Description: 2.06
0.02*

1.76
0.02*

1.69
0.05

Enables [1.13, 3.88] [1.09, 2.87] [1, 2.9]

Description: 1.99
0.03*

1.38
0.20

1.19
0.55

Trust [1.08, 3.78] [0.84, 2.28] [0.68, 2.09]

Description: 2.46
< 0.01**

2.40
< 0.001***

2.27
< 0.01**

Risk [1.37, 4.59] [1.50, 3.88] [1.37, 3.84]

Description: 2.30
0.01**

1.70
0.03*

1.90
0.02*

Technical [1.26, 4.33] [1.04, 2.79] [1.12, 3.25]

Salary Scenario
0.75

0.06
1.23

0.10
1.14

0.31
[0.56, 1.01] [0.96, 1.57] [0.88, 1.49]

Internet Score
1.05

0.54
1.07

0.36
1.01

0.85
[0.89, 1.25] [0.93, 1.23] [0.87, 1.18]

Table 5. Effect of DP descriptions on respondent’s perception of the likeli-
hood that their information will be disclosed through a particular information
flow. All models are logistic regressions constructed using data from Survey
Two. See Table 3 for detailed legend.

continued searching until new search results stopped appearing. We put special focus on
collecting descriptions used by industry and in the media coverage, as these descriptions are
the ones that an uninformed consumer would be most likely to encounter. We performed
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this search and data collection in December 2019.4 In total, we collected 76 descriptions of
DP: 36 from industry, 30 from media outlets, and 10 from the academic literature.

The industry descriptions primarily came from companies that use DP, including Google,
Apple, Microsoft, and Uber, as well as smaller start-ups and an investment firm. We also
gathered multiple descriptions from the U.S. Census Bureau regarding the use of DP in the
2020 Census. The media descriptions were from large, mainstream media outlets, such as The
New York Times, Fox News, The Washington Post, The Guardian, and Tech-Crunch. The
academic descriptions were collected from some of the most-cited papers and books on DP,
e.g., Dwork (2008). As DP is an active area of research, these ten academic descriptions are
clearly not comprehensive, but serve as a representative example of academic descriptions.

The research team employed affinity diagramming (Beyer and Holtzblatt, 1999) to
extract the main themes of these widely varying descriptions of differential privacy. In
affinity diagramming, the research team collaboratively sorts pieces of content — in our case
the descriptions of DP — into themes based on affinity, with each researcher iterating over the
affinity diagram at least twice until consensus was reached on appropriate categorization. This
analysis resulted in the identification of six main themes (names in bold): (Unsubstantial)
claims that DP is the best notion of privacy; (Techniques) explanations that briefly
summarize the methods used to create differentially private summary statistics, usually
focusing on statistical noise; (Enables) statements that attempt to capture the types of
applications that DP makes possible; (Trust) descriptions that focus on the well known
organizations and companies that have recently started using DP; (Risk) statements that
highlight the data-privacy risks that an individual incurs when allowing their information to
be part of a differentially private system; and (Technical) highly technical explanations
using dense, mathematical language.

Many of the descriptions we gathered touch on more than one of these main themes. For
instance, documents prepared by the U.S. Census Bureau state, “Differential privacy allows
us to inject a precisely calibrated amount of noise into the data to control the privacy risk
of any calculation or statistic” (Hawes, 2019). This description touches on the techniques
theme and the risk theme, while also using technical language like “calculation or statistic”
that may be unnatural to non-experts. The New York Times provides a description that
is another combination of the main themes, writing, “[o]ne example, differential privacy,
is already used by Apple, Google and even the U.S. Census Bureau to limit the amount
of personal information that is shared with an organization while still allowing it to make
useful inferences from the data” (Condliffe, 2019). This description contains elements of
both the trust theme and the enables theme.

We note that most descriptions we gathered did nothing to distinguish between the
central model and the local model. Indeed, we found that determining if an industry system
was in the local or central model generally required looking at technical documentation. The
descriptions provided by media coverage also generally did not include any indication as to
the model of system being described.

5.1. Methodology: Survey Two. After collecting and analyzing the descriptions of
DP used in practice, we distilled six descriptions of DP that were representative of the
descriptions in each of these themes. We present these descriptions in Table 4. Each of these

4Since we conducted this survey, more companies and organizations have started adopting and publicly
writing about DP. As such, our dataset is no longer comprehensive. Because this data collection informed
the design of our survey, we choose not to incorporate the newer descriptions into our dataset.
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descriptions is a synthetic creation meant to be representative of the real descriptions we
found, with the exception of the technical description, which was taken from Dwork (2008).
We chose to create new descriptions (rather than selecting a representative example) in
order to free the description from the surrounding context, make them consistent in their
structure, and have each description focus on only one theme. Just like the descriptions we
observed in-the-wild, our descriptions included no indication as to whether the system they
described was in the local or central model.

Questionnaire. First, as in survey one, each respondent was randomly presented one of
the two scenarios. Each respondent was then randomized to either a control condition,
where there was no mention of privacy protection, or shown one of the DP descriptions. In
the later conditions, the scenario was followed by the description, ”To reduce the intrusion
into personal privacy, the [organization] will use a technique called differential privacy.
[differential privacy description],” where the description presented was sampled with equal
weight from Table 4. Respondents were then asked the following questions: First, they were
asked if they would be willing to share their data. Next, each respondent was asked to share
their concrete privacy expectations by reporting whether they believed the expectations
described in Table 2 (e.g., “A criminal or foreign government that hacks the transparency
initiative could learn my salary and job title.”) were true or false. All questions included an
”I don’t know” option. Finally, we included the same demographics questions as above. The
complete survey is in Appendix A.2.

Sample. We surveyed 1,208 Amazon Mechanical Turk workers following the same screening
requirements as in survey one, as described in Section 4. Workers were split evenly between
the two survey scenarios and equally between the seven description conditions (six descriptions
of DP and the baseline).

Analysis. To answer RQ3, we construct six logistic regression models 5, one for each
information disclosure event. The DV is whether the respondent reported that they thought
the given information disclosure would occur, the IV of interest is the description they were
shown (a categorical variable with the control – no description shown – as the baseline),
the control IVs are, as in Section 4, whether the scenario was the salary scenario and
the respondent’s internet skill. To answer RQ4, we construct a single logistic regression
model. The DV is whether the respondent reported that they would be willing to share
their information, the IV of interest is the description they were shown (coded as above),
and the control IVs are the same as above.

5.2. Results: Responses to Descriptions of DP. Here, we detail the results of our
analyses of survey two.

5We note that these models are not corrected for multiple testing in line with Benjamini and Hochberg
(1995), which suggests such correction only for models with a large number of DVs.
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Figure 2. Influence of in-the-wild DP descriptions on respondent expec-
tations for information disclosures by DP model. Dashed lines are 95%
confidence intervals of the distribution’s mean. “I don’t know” not included
as correct. We give a breakdown of these distributions by scenario in Appen-
dix B

RQ3: How Do Differential Privacy Descriptions Affect Privacy Expectations?
We divide our results for RQ3 into two parts. First, we detail our findings regarding the way
descriptions of DP increase respondents’ privacy expectations (see Table 5). Second, we
investigate if the descriptions correctly set respondents’ privacy expectations, with respect
to the ground truth privacy properties of typical local and central DP deployments (see
Figure 2).

Descriptions Increasing Expectations. Overall, we find that each description of DP that we
tested increased respondents’ privacy expectations for at least one of the disclosure risks.
However, different descriptions increased different privacy expectations.

First, we found that none of the descriptions significantly changed respondents’ ex-
pectations when it came to disclosing their information to the organization soliciting their
information or its representative. Respondents had higher privacy expectations in the
salary scenario than in the medical scenario, indicating that the slightly different wording
of these expectations may have had an effect on respondent expectations. We verified that
this wording did not interfere with our main finding (that no descriptions increased user’s
expectations of the Organization disclosure) by re-building our models on each dataset
separately; we found the same results.

Four of the descriptions do, however, influence respondents’ perceptions regarding
whether their information could be disclosed through a hack. Respondents who were shown
the Unsubstantial, Techniques, and Trust explanations were nearly two times more likely
(Unsubstantial: O.R. = 1.94, p = 0.01, Techniques: O.R. = 1.96, p = 0.01, Trust: O.R. =
1.86, p = 0.02) to think their information would not be disclosed through a hack. Those
who were shown the Risk description were even more likely (O.R. = 2.58, p < 0.01) to think
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their information could not be disclosed through a hack. Users may see preventing hacks as
one of the key roles of security and privacy technologies, as these results indicate that they
expect such protection from the gold standard techniques (Unsubstantial) and those used by
major companies (Trust). The Risk description directly addresses this potential information
disclosure, so it is unsurprising that it raised privacy expectations regarding hacks. Finally,
respondents may have gathered that injecting statistical noise (Techniques) would protect
their information against hacks, as it does in practice.

Only the Risk description significantly influenced respondents’ perceptions of whether
their information would be disclosed to law enforcement as the result of a court order:
those who saw the Risk description were nearly two times more likely (O.R. 1.86, p = 0.01)
to think their information would not be disclosed to law enforcement. Interestingly, this
indicates that users may see information sharing with law enforcement as a risk, rather than
an information flow that is appropriate and necessary to protect society.

All of the descriptions aside from the Unsubstantial description increase the likelihood
that respondents think their information would be secure against disclosures to a data analyst,
while all but the Trust description increase the likelihood that respondents think their
information would not be disclosed through graphs or charts made using their information.
It may be that the Unsubstantial description did not raise respondents’ expectations for
disclosure to data analysts because users are unfamiliar with the notion that data analysts
could accomplish their job without seeing user information — users may expect even “gold
standard” techniques to disclose information in this way. Similarly, users may be unfamiliar
with the idea that tech companies create graphs and charts, as most of these releases are
not customer facing. Therefore, it would not be assumed that such techniques could protect
user information.

The Techniques, Risk, and Technical descriptions all increase the likelihood that respon-
dents think their information could not be shared with another organization (Techniques:
O.R. 2.22, p < 0.01, Risk: O.R. 2.27, p < 0.01, Technical: O.R. 1.90, p = 0.02). As above,
users may have gathered that the injection of statistical noise described in the Techniques
description would prevent this information disclosure. Additionally, both the Risks and
Technical descriptions speak to the risk of joining the dataset. As indicated in our results
for RQ1, a large number of respondents care about their information being disclosed to a
third party. This may be a primary “risk” in their mind, which the descriptions suggest
that they would be secure against.
Descriptions Setting Expectations Correctly. Not all DP techniques reduce the likelihood of
all potential information disclosures. It is critical that descriptions of DP are used to set
users’ expectations correctly, not only raise expectations. This is especially important in DP;
a potential user encountering a description of a DP may set their expectations as though
the system offers local DP, only to discover later that their information was more vulnerable
because the deployment used central DP (see Table 2 for the ground truth we consider under
both local and central DP). Our survey instrument does not explicitly describe the model
under which DP is to be deployed—in the same way that most in-the-wild descriptions of
DP do not describe the model. As such, we have an opportunity to better understand how
these in-the-wild descriptions align users expectations with the typical DP deployments.

Revisiting our findings above, we note that local DP provides protection against all
of the information disclosure risks about which we asked. This is because under local DP
the curator never has access to the unperturbed data (and therefore cannot accidentally
or intentionally disclose information). As such, increased expectations mean more correct
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Variable Odds Ratio CI p-value

Description: Unsubstantial 1.22 [0.79, 1.88] 0.37
Description: Techniques 0.96 [0.62, 1.47] 0.83
Description: Enables 1.48 [0.96, 2.29] 0.08
Description: Trust 1.08 [0.7, 1.67] 0.72
Description: Risk 1.37 [0.89, 2.12] 0.15
Description: Technical 0.94 [0.61, 1.45] 0.77

Salary Scenario 1.67 [1.32, 2.1] < 0.001***
Internet Score 1.09 [0.95, 1.25] 0.2

Table 6. Effect of DP descriptions on respondents’ likelihood of being willing to
share information. See Table 3 for detailed legend.

expectations under local DP. As we saw above, each of the descriptions does increase some
— but not all — expectations. This means that the descriptions are not only raising user
expectations for differentially private systems, but setting those expectations more accurately
for local privacy.

In central DP, on the other hand, the curator has access to users’ raw information. In
this model, the curator is responsible for injecting statistical noise into any aggregations
that are released for public consumption. Because the curator has access to raw information,
a typical deployment would be able to disclose sensitive information in all of the listed ways,
with the exception of Graphs. Thus, the descriptions that raise privacy expectations related
to Hack, Law Enforcement, Data Analyst, and Share disclosures are actually misleading
users in the central model.

Finally, we also consider the aggregate effect of the descriptions we study on the accuracy
of respondents’ privacy expectations (see Figure 2). We find that respondents’ expectations
of DP are more in line with the central model than the local model (i.e., they have lower
privacy expectations). Specifically, respondents had correctly set expectations for less
than half of the information disclosure risks under local DP, while roughly half of their
expectations were set correctly for the central model. More importantly, we note that users’
privacy expectations are poorly aligned with both local and central DP. This indicates that
users have no coherent mental model of the data collection process, as many of the privacy
expectations about which we ask are equivalent from a technical perspective.

RQ4: How Do In-The-Wild Descriptions of Differential Privacy Affect Sharing?
When analyzing the results of our second survey, we find that respondents who were told
that their information would be protected by DP techniques, as described by one of six
different descriptions of those techniques, were no more likely to report that they would
share their information in either scenario (Table 6). We also note that the descriptions did
not decrease the likelihood that respondents would be willing to share their information.
Respondents were, however, more likely (O.R. = 1.67, p < 0.01) to share their information
in the salary scenario than in the medical scenario, in line with prior work suggesting that
medical information is particularly sensitive (Ion et al., 2011).

We note that this finding contradicts the findings of Xiong et al. (2020), who found
that DP increased respondents’ willingness to share high sensitivity information. We note
that (a) the ways in which we describe DP and (b) the context in which we elicit responses
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Legend:

Hack

Law Enforcement
Organization

Data Analyst

Graphs

Share

Description: Enables

User Concerns: Description Effects:

No Overlap

No Increased Sharing

Description: Risk

User Concerns: Description Effects:

Partial Overlap

Some Increased Sharing

Description: Techniques

User Concerns: Description Effects:

Full Overlap

Significantly Increased Sharing

Figure 3. Visualization of our framework for reasoning about the impact of DP

descriptions on users’ willingness to share information. Colored dots under users

represent information flows about which that user cares. Colored dots under descrip-

tions represent the information flows for which the description raises expectations.

We imagine a potential user with some prior set of information disclosures about

which they are concerned. When asked if they are willing to share their information

with a differentially private system, the user is given a brief description of DP.

Our results suggest that a user’s willingness to share information is not simply a

function of how this description raises their expectations, but also a function of

their prior concerns. Specifically, the description may raise the user’s expectations

for information disclosures about which the user was not concerned. Thus, we

speculate that the degree to which the user’s expectations overlap with the effects of

a description will be an important determining factor in a user’s willingness to share.

are different. As discussed in Section 2.2, the descriptions used in this prior work were
significantly longer and not necessarily representative of in-the-wild descriptions from which
we derived our descriptions, and the methodology of prior work also involved mechanisms to
ensure respondents correctly understood the privacy guarantees detailed in the descriptions.

6. Discussion

Summary of Findings. Our surveys indicate that (RQ1) users care about the kind of
information disclosures against which DP can protect, and (RQ2) users’ willingness to share
information is significantly related to the degree of risk of most information disclosures
occurring. However, the risk of disclosures occurring through the two information flows that
might seem most appropriate (Nissenbaum, 2004) to users given our scenarios related to a
salary transparency initiative and a medical research initiative — disclosures through graphs
or to a data analyst — did not significantly relate to users’ willingness to share. This is
noteworthy, as ensuring privacy in graphs and informational charts is a common motivating
example of DP, is the only information disclosure protected against by both local and central
DP, and at least one current deployment of DP is focused on protecting user information
from data analysts (Near, 2018).

We also find that in-the-wild descriptions of DP have a substantial impact on user
privacy expectations (RQ3), but not user willingness to share (RQ4). Descriptions of DP
that focus on different themes raise privacy expectations for information flows. However,



“I NEED A BETTER DESCRIPTION” 23

this can be a double-edged sword, as raising expectations can also mislead users about the
privacy properties of a system.

Novel framework for reasoning about the impact of descriptions. Upon first
inspection, there appears to be a contradiction embedded in our results: we established that
respondents care about information disclosures relevant to DP and are (in some cases) more
willing to share their information when they are assured that these information disclosures
will not occur. But, we found that offering respondents DP did not increase their willingness
to share information, no matter the description. At first glance, these results might seem to
indicate that respondents did not understand the descriptions at all. However, the results
in Table 5 show that respondents had higher privacy expectations when presented with
some descriptions. One would expect that these higher expectations would lead to higher
willingness to share, in line with our first results.

To resolve this tension, we recall that not every respondent cared about every kind
of information disclosure (Section 4.2). While many respondents cared about each kind
of disclosure, none of the information disclosures were important to more than 60% of
respondents. Thus, there was almost certainly misalignment between the disclosures that
mattered to a given respondent and the disclosures that were influenced by the DP description
they were shown. For instance, imagine a potential user cared about the Share expectation,
but was presented with the Trust description. This potential user’s higher expectations for
Hack and Data analyst disclosures would likely do little to raise their willingness to share.

These results suggest a framework for understanding how descriptions of DP influence
a user’s willingness to share information (visualized in Figure 3). When users encounter a
differentially private system, they already have privacy preferences and concerns. When a
user sees a description of DP, the user’s expectations about certain information flows may
increase. If the ways in which their privacy expectations increase aligns with the types of
information disclosure about which they are concerned, they may be more likely to share
their private information. A key takeaway from this framework is that a clear and concise
description of DP may not be enough to raise user’s willingness to share. Instead, it is
important that a description speaks to users’ concerns directly and be tailored to address
those concerns, as we discuss below.

Need for new descriptions. It is very evident from our results that the way DP is
described in-the-wild is insufficient to help users make informed decisions. There is no
consistency or standardization in the language organizations use. Thus, characterizing the
way users might see DP described required us to identify the six descriptive themes used
in this work. The themes present in these descriptions seem to haphazardly raise users’
expectations. This is especially concerning given the differences between local and central
DP; if descriptions are not carefully tailored to the model, they may mislead users about
the privacy properties of the system. Indeed, Figure 2 shows that the existing descriptions
of DP do little to correctly set expectations, no matter the deployment model.

We note that the simple descriptions that we showed respondents in our surveys are
not completely ineffective or without use. For instance, using our Risk description may be
appropriate for a local DP deployment as it raised expectations broadly. However, because
these descriptions do nothing to increase participation, they may not achieve the goals of
system designers.
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There are two main alternatives for improving the state of DP descriptions. First, one
could take the approach of Xiong et al. (2020), carefully constructing descriptions of DP and
training users to understand those descriptions. However, Xiong et. al.’s results indicate that
such an approach is difficult: a significant number of users were unable to correctly answer
test questions about DP after viewing carefully crafted descriptions. An alternative approach,
which prior work on privacy beyond DP suggests may be particularly effective (Schaub et al.,
2017), is to explicitly inform users about the risks posed to their information. For instance, a
description of a central DP system might specify that information will not be leaked through
any graphs or informational chats, but could still be leaked to the other entities listed above.
This would be similar to the privacy nutrition labels proposed by Kelley et al. (2009). Such
descriptions of DP could allow users to make an informed information sharing decision
without requiring them to build a comprehensive mental model of the technical details of
DP techniques. That said, technical details and parameter choices for DP deployment (e.g.,
the value of ϵ) have important implications for user privacy and, as such, future work should
also explore how best to communicate these technical nuances in meaningful ways.

7. Conclusion

In this work we studied DP from the user’s perspective, focusing on how users’ privacy
expectations relate to DP as they are likely to encounter it in-the-wild. We showed that the
privacy concerns about which users care can be addressed by DP, but the varied ways in
which DP is described set user expectations in a haphazard, and often inaccurate, manner.
Our results indicate that the interaction between user’s intrinsic privacy concerns and
the ways in which descriptions of DP set user expectations informs a user’s willingness to
share their information under differentially private guarantees. Our work posits a novel
framework for understanding this interplay and suggests concrete directions for developing
better descriptions of DP that directly and accurately address user privacy concerns.
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A. Herdağdelen, A. Dow, B. State, P. Mohassel, and A. Pompe. New privacy-protected
facebook data for independent research on social media’s impact on democracy. https:
//research.fb.com/blog/2020/06/protecting-privacy-in-facebook-mobility-d

ata-during-the-covid-19-response/, Jun 2020.
I. Ion, N. Sachdeva, P. Kumaraguru, and S. Čapkun. Home is safer than the cloud! Privacy
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Appendix A. Complete Survey Descriptions

For completeness, we include the language and flow of our two surveys below.

A.1. Complete Description of Survey One. Respondents were randomized into either
the salary scenario or the medical scenario, described below.

Salary Scenario: Imagine that you work in the banking industry. You are friends with a
group of other people who work in banking companies in your city. One of your friends is
part of a transparency initiative that is trying to publish general statistics about pay in the
banking industry. As part of this initiative, they have asked everyone in the group to share
their salaries and job titles using an online web form on the initiative’s website.

Medical Scenario: Imagine that during your next doctor’s visit, your primary care doctor
informs you that they are part of a non-profit organization trying to push the boundaries
of medical research. This non-profit is asking patients around the country to share their
medical records, which will be used to help medical research on improving treatment options
and patient care. Your doctor, with your permission, can facilitate the non-profit getting
the information they need.

Questions: Answer options for each questions presented in <>. Text differences between
the two scenarios presented in italics inside brackets.

• Which of the following would you want to know before deciding whether or not to share
your [salary/medical history]? Select as many as apply.
– <[Whether your friend could learn your salary/Whether other doctors involved in the
non-profit could learn your medical history]

– Whether a criminal or foreign government could steal your [salary/medical history]
– Whether law enforcement could accesses your [salary/medical history] by obtaining a
warrant

– Whether data analyst at the initiative could see your
[salary/medical history]

– Whether graphs and charts created by the initiative could reveal your [salary/medical
history]

– Whether your [salary/medical history] could be shared with another organization
– Other [free response]>

For each of the non-other options selected by the respondent, they were shown one of
the follow three options, selected independently at random.

• [leak entity] will not learn your [salary/medical history].
• [leak entity] might learn your [salary/medical history]. The chance this happens is about
the same as the chance that your bank account will be compromised (accessed by a person
who you did not intend to gain access to) as part of a data breach in the next year.

• [leak entity] might learn your [salary/medical history]. The chance this happens is higher
than the chance that your bank account will be compromised (accessed by a person who
you did not intend to gain access to) as part of a breach in the next year.

Finally, respondents were asked:

• Would you be willing to share your [salary/medical record] with the [initiative/non-profit]?
<Yes, No, I’m not sure, Prefer not to answer>

– [If Yes] Why would you be willing to share your [salary/medical record]?
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– [If No] Why would you not be willing to share your
[salary/medical record]?

– [If I’m not sure] Why are you unsure whether you would be willing to share your
[salary/medical record] with the [initiative/non-profit]?

A.2. Complete Description of Survey Two. Respondents were randomized into either
the salary scenario or the medical scenario, described below. In both scenarios, respondents
were randomly shown a description of differential privacy, listed after the scenarios.

Salary Scenario: Imagine that you work in the banking industry. You are friends with a
group of other people who work in banking companies in your city. One of your friends is
part of a transparency initiative that is trying to publish general statistics about pay in the
banking industry. As part of this initiative, they have asked everyone in the group to share
their salaries and job titles using an online web form on the initiative’s website. [description
from the list of differential privacy descriptions, shown below.]

In this survey we are going to ask you a series of questions about a hypothetical scenario.
Please do your best to imagine yourself in this scenario and answer the questions as if you
were actually making the decisions about which you will be asked.

Medical Scenario: Imagine that during your next doctor’s visit, your primary care doctor
informs you that they are part of a non-profit organization trying to push the boundaries
of medical research. This non-profit is asking patients around the country to share their
medical records, which will be used to help medical research on improving treatment options
and patient care. Your doctor, with your permission, can facilitate the non-profit getting the
information they need. [description from the list of differential privacy descriptions, shown
below.]

In this survey we are going to ask you a series of questions about a hypothetical scenario.
Please do your best to imagine yourself in this scenario and answer the questions as if you
were actually making the decisions about which you will be asked.

List of Differential Privacy Descriptions: Names of the description, shown in italics
inside parenthesis, were not show to respondents.

• (Control:) no additional text
• (Unsubstantial:) To reduce the intrusion into personal privacy, your friend says they will
use a technique called differential privacy. Differential privacy is the gold standard in
data privacy and protection and is widely recognized as the strongest guarantee of privacy
available.

• (Techniques:) To reduce the intrusion into personal privacy, your friend says they will use
a technique called differential privacy. Differential Privacy injects statistical noise into
collected data in a way that protects privacy without significantly changing conclusions.

• (Enables:) To reduce the intrusion into personal privacy, your friend says they will use a
technique called differential privacy. Differential Privacy allows analysts to learn useful
information from large amounts of data without compromising an individual’s privacy.

• (Trust:) To reduce the intrusion into personal privacy, your friend says they will use a
technique called differential privacy. Differential privacy is a novel, mathematical technique
to preserve privacy which is used by companies like Apple and Uber.

• (Risk:) To reduce the intrusion into personal privacy, your friend says they will use a
technique called differential privacy. Differential privacy protects a user’s identity and the
specifics of their data, meaning individuals incur almost no risk by joining the dataset.
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• (Technical:) To reduce the intrusion into personal privacy, your friend says they will
use a technique called differential privacy. Differential privacy ensures that the removal
or addition of a single database item does not (substantially) affect the outcome of
any analysis. It follows that no risk is incurred by joining the database, providing a
mathematically rigorous means of coping with the fact that distributional information
may be disclosive.

Questions: Answer options for each questions presented in <>. Text differences between
the two scenarios presented in italics inside brackets. The names of the data leaks used in
the main body of the text are shown in italics inside parenthesis and were not shown to
users.

• Would you be willing to share your [salary/medical record] with the [initiative/non-profit]?
<Yes, No, I’m not sure, Prefer not to answer>

– [If Yes] Why would you be willing to share your [salary/medical record]?
– [If No] Why would you not be willing to share your

[salary/medical record]?
– [If I’m not sure] Why are you unsure whether you would be willing to share your

[salary/medical record] with the [initiative/non-profit]?

For each of the following statements, please indicate if you expect the following to be true
or false if you share your salary and job title as part of this initiative.

• (Organization:) [My friend will not be able to learn my salary and job title/The contents
of my medical record will be stored only by my doctor’s office, and will not be stored by the
non-profit]

<Yes, No, I don’t know>
• (Hack:) A criminal or foreign government that hacks the [transparency initiative/non-
profit] could learn my [salary and job title/medical history]

<Yes, No, I don’t know>
• (Law Enforcement:) A law enforcement organization could access my [salary and job
title/medical history] with a court order requesting this data from the [transparency
initiative/non-profit]

<Yes, No, I don’t know>
• (Data Analyst:) A data analyst working [on/for] the [salary transparency initiative/non-
profit] could learn my exact [salary and job title/medical history]

<Yes, No, I don’t know>
• (Graphs:) Graphs or informational charts created using information given to the [salary
transparency initiative/non-profit] could reveal my [salary and job title/medical history]

<Yes, No, I don’t know>
• (Share:) Data that the [salary transparency initiative/non-profit] shares with other
organizations doing [salary/medical] research could reveal my [salary and job title/medical
history]

<Yes, No, I don’t know>

Appendix B. Descriptive Statistics

In this section we include descriptive statistics of the results of both our surveys. Recall
that in Survey One we solicited if respondents would want to know the explicit privacy
risks for different types of information disclosures before sharing their data. In Table 8, we
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show the number of respondents who indicated that they would share their data, broken
down by the condition they were assigned for each privacy risk. Note that this captures the
number of respondents who answered that they did care about each particular privacy risk
(by summing over High Risk, Low Risk, and No Risk) and the number of respondents who
did not (Do No Care row). Recall that in Survey Two we asked if respondents would be
willing to share their data given a particular description of differential privacy. Additionally,
we solicited respondents’ privacy expectations for different information disclosures. In Table
9, we show the answers to respondent willingness to share and privacy expectations, broken
down by the description they were randomly assigned. Demographics for the two samples
are included in Table 7. Additionally, we include cumulative distribution functions for the
internet scores of the respondents in the two surveys in Figure 4. For complete descriptions
of the surveys, see Appendix A.

The median time to complete our surveys (taken across respondents from both surveys)
was 3.25 minutes and each respondent was paid $0.67, for an hourly rate of approximately
$12 per hour.

Survey One (n=1,216) Survey Two (n=1,208)

Percent Mean Stdev Percent Mean Stdev

Age - 37.09 12.00 - 37.39 11.16

Woman 42.92% - - 40.64% - -
Man 56.08% - - 58.36% - -

Black 12.00% - - 11.92% - -
White 76.15% - - 76.98% - -
Hispanic 7.48% - - 7.12% - -
Asian 9.12% - - 7.53% - -
Native American 1.64% - - 1.32% - -

Edu. High school or less 9.04% - - 9.10% - -
Edu. Some College 23.60% - - 22.93% - -
Edu. Bachelor’s or above 66.78% - - 67.54% - -
Income - US$61.6K US$42.9K - US$61.5K US$41.3K
Internet Skills (1-5) - 2.19 .89 - 2.28 .86

Table 7. Survey demographics.
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(a) Cumulative distribution func-
tion of the internet scores for re-
spondents in survey 1.

(b) Cumulative distribution func-
tion of the internet scores for re-
spondents in survey 2.

Figure 4. Cumulative distribution functions for the respondent’s internet
scores for both surveys.
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Willing to share data?
Yes

(n=548)
No

(n=433)
Not Sure
(n=225)

Prefer not to Answer
(n=10)

Overall
(n=1216)

Organizational
Care: High Risk 84 (15.3%) 101 (23.3%) 35 (15.6%) 2 (20.0%) 222 (18.3%)
Care: Low Risk 111 (20.3%) 69 (15.9%) 40 (17.8%) 2 (30.0%) 223 (18.3%)
Care: No Risk 112 (20.4%) 74 (17.1%) 40 (17.8%) 1 (10.0%) 227 (18.7%)
Do Not Care 241 (44.0%) 189 (43.6%) 110 (48.9%) 4 (40.0%) 544 (44.7%)

Hack
Care: High Risk 59 (10.8%) 100 (23.1%) 46 (20.4%) 3 (30.0%) 208 (17.1%)
Care: Low Risk 91 (16.6%) 81 (18.7%) 36 (16.0%) 4 (40.0%) 212 (17.4%)
Care: No Risk 114 (20.8%) 61 (14.1%) 38 (16.9%) 0 (0%) 213 (17.5%)
Do Not Care 284 (51.8%) 191 (44.1%) 105 (46.7%) 3 (30.0%) 583 (47.9%)

Law Enforcement
Care: High Risk 54 (9.9%) 81 (18.7%) 27 (12.0%) 2 (20.0%) 164 (13.5%)
Care: Low Risk 48 (8.8%) 77 (17.8%) 32 (14.2%) 4 (40.0%) 161 (13.2%)
Care: No Risk 79 (14.4%) 48 (11.1%) 30 (13.3%) 0 (0%) 157 (12.9%)
Do Not Care 367 (67.0%) 227 (52.4%) 136 (60.4%) 4 (40.0%) 734 (60.4%)

Data Analyst
Care: High Risk 61 (11.1%) 75 (17.3%) 41 (18.2%) 2 (20.0%) 179 (14.7%)
Care: Low Risk 57 (10.4%) 77 (17.8%) 38 (16.9%) 1 (10.0%) 173 (14.2%)
Care: No Risk 70 (12.8%) 74 (17.1%) 28 (12.4%) 5 (50.0%) 177 (14.6%)
Do Not Care 360 (65.7%) 207 (47.8%) 118 (52.4%) 2 (20.0%) 687 (56.5%)

Graphs
Care: High Risk 46 (8.4%) 88 (20.3%) 28 (12.4%) 2 (20.0%) 164 (13.5%)
Care: Low Risk 59 (10.8%) 70 (16.2%) 35 (15.6%) 2 (20.0%) 166 (13.7%)
Care: No Risk 61 (11.1%) 71 (16.4%) 33 (14.7%) 1 (10.0%) 166 (13.7%)
Do Not Care 382 (69.7%) 204 (47.1%) 129 (57.3%) 5 (50.0%) 720 (59.2%)

Sharing
Care: High Risk 67 (12.2%) 112 (25.9%) 63 (28.0%) 3 (30.0%) 245 (20.1%)
Care: Low Risk 78 (14.2%) 119 (27.5%) 47 (20.9%) 0 (0%) 244 (20.1%)
Care: No Risk 104 (19.0%) 91 (21.0%) 47 (20.9%) 2 (20.0%) 244 (20.1%)
Do Not Care 299 (54.6%) 111 (25.6%) 68 (30.2%) 5 (50.0%) 483 (39.7%)

Table 8. Descriptive Statistics for Survey 1.
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DP Description
Control
(n=171)

Technical
(n=166)

Risk
(n=179)

Trust
(n=169)

Share data?
Yes 92 (53.8%) 88 (53.0%) 108 (60.3%) 96 (56.8%)
No 49 (28.7%) 47 (28.3%) 40 (22.3%) 34 (20.1%)
I’m not sure 28 (16.4%) 31 (18.7%) 27 (15.1%) 39 (23.1%)
Prefer not to answer 2 (1.2%) 0 (0%) 4 (2.2%) 0 (0%)

Hack
True 113 (66.1%) 92 (55.4%) 81 (45.3%) 100 (59.2%)
False 29 (17.0%) 40 (24.1%) 61 (34.1%) 47 (27.8%)
I don’t know 29 (17.0%) 34 (20.5%) 37 (20.7%) 22 (13.0%)

Law Enforcement
True 110 (64.3%) 101 (60.8%) 83 (46.4%) 104 (61.5%)
False 35 (20.5%) 34 (20.5%) 57 (31.8%) 36 (21.3%)
I don’t know 26 (15.2%) 31 (18.7%) 39 (21.8%) 29 (17.2%)

Organization
True 61 (35.7%) 72 (43.4%) 79 (44.1%) 75 (44.4%)
False 70 (40.9%) 65 (39.2%) 68 (38.0%) 62 (36.7%)
I don’t know 40 (23.4%) 29 (17.5%) 32 (17.9%) 32 (18.9%)

Data Analyst
True 127 (74.3%) 96 (57.8%) 103 (57.5%) 121 (71.6%)
False 18 (10.5%) 35 (21.1%) 40 (22.3%) 32 (18.9%)
I don’t know 26 (15.2%) 35 (21.1%) 36 (20.1%) 16 (9.5%)

Graph
True 112 (65.5%) 87 (52.4%) 84 (46.9%) 100 (59.2%)
False 37 (21.6%) 53 (31.9%) 71 (39.7%) 47 (27.8%)
I don’t know 22 (12.9%) 26 (15.7%) 24 (13.4%) 22 (13.0%)

Share
True 124 (72.5%) 98 (59.0%) 99 (55.3%) 115 (68.0%)
False 28 (16.4%) 45 (27.1%) 55 (30.7%) 32 (18.9%)
I don’t know 19 (11.1%) 23 (13.9%) 25 (14.0%) 22 (13.0%)

DP Description
Enables
(n=177)

Techniques

(n=172)
Unsubstantial

(n=174)
Overall

(n=1208)

Share data?
Yes 112 (63.3%) 91 (52.9%) 103 (59.2%) 690 (57.1%)
No 30 (16.9%) 43 (25.0%) 31 (17.8%) 274 (22.7%)
I’m not sure 34 (19.2%) 37 (21.5%) 40 (23.0%) 236 (19.5%)
Prefer not to answer 1 (0.6%) 1 (0.6%) 0 (0%) 8 (0.7%)

Hack
True 109 (61.6%) 93 (54.1%) 101 (58.0%) 689 (57.0%)
False 44 (24.9%) 49 (28.5%) 49 (28.2%) 319 (26.4%)
I don’t know 24 (13.6%) 30 (17.4%) 24 (13.8%) 200 (16.6%)

Law Enforcement
True 106 (59.9%) 91 (52.9%) 103 (59.2%) 698 (57.8%)
False 39 (22.0%) 41 (23.8%) 38 (21.8%) 280 (23.2%)
I don’t know 32 (18.1%) 40 (23.3%) 33 (19.0%) 230 (19.0%)

Organization
True 77 (43.5%) 76 (44.2%) 67 (38.5%) 507 (42.0%)
False 62 (35.0%) 66 (38.4%) 62 (35.6%) 455 (37.7%)
I don’t know 38 (21.5%) 30 (17.4%) 45 (25.9%) 246 (20.4%)

Data Analyst
True 115 (65.0%) 109 (63.4%) 114 (65.5%) 785 (65.0%)
False 35 (19.8%) 38 (22.1%) 29 (16.7%) 227 (18.8%)
I don’t know 27 (15.3%) 25 (14.5%) 31 (17.8%) 196 (16.2%)

Graph
True 94 (53.1%) 85 (49.4%) 95 (54.6%) 657 (54.4%)
False 58 (32.8%) 64 (37.2%) 54 (31.0%) 384 (31.8%)
I don’t know 25 (14.1%) 23 (13.4%) 25 (14.4%) 167 (13.8%)

Share
True 109 (61.6%) 88 (51.2%) 114 (65.5%) 747 (61.8%)
False 44 (24.9%) 52 (30.2%) 43 (24.7%) 299 (24.8%)
I don’t know 24 (13.6%) 32 (18.6%) 17 (9.8%) 162 (13.4%)

Table 9. Descriptive Statistics for Survey 2.
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Figure 5. Proportion of respondents who care about each potential in-
formation disclosure. This chart was generated only with the answers of
respondents randomized into the salary scenario.
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Figure 6. Proportion of respondents who care about each potential in-
formation disclosure. This chart was generated only with the answers of
respondents randomized into the medical scenario.
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(a) Distribution of respondent
correctness in the salary sce-
nario about information disclo-
sures under local DP. The x-axis
shows percentage of disclosures
for which their expectations were
correct under local DP.
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(b) Distribution of respondent
correctness in the salary sce-
nario about information disclo-
sures under central DP. The x-
axis shows percentage of disclo-
sures for which their expectations
were correct under central DP.

Figure 7. Influence of in-the-wild DP descriptions on respondent expec-
tations for information disclosures by DP model. Dashed lines are 95%
confidence intervals of the distribution’s mean. These distributions were
generated using the respondents who were randomized to the salary scenario.
“I don’t know” not included as correct.
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(a) Distribution of respondent
correctness in the medical sce-
nario about information disclo-
sures under local DP. The x-axis
shows percentage of disclosures
for which their expectations were
correct under local DP.
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(b) Distribution of respondent
correctness in the medical sce-
nario about information disclo-
sures under central DP. The x-
axis shows percentage of disclo-
sures for which their expectations
were correct under central DP.

Figure 8. Influence of in-the-wild DP descriptions on respondent expec-
tations for information disclosures by DP model. Dashed lines are 95%
confidence intervals of the distribution’s mean. These distributions were gen-
erated using the respondents who were randomized to the medical scenario.
“I don’t know” not included as correct.



40 R. CUMMINGS, G. KAPTCHUK, AND E. REDMILES

This work is licensed under the Creative Commons License Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0). To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

https://creativecommons.org/licenses/by-nc-nd/4.0/

	1. Introduction
	1.1. Differential Privacy from the user's perspective.
	1.2. Summary of Findings.

	2. Background and Related Work
	2.1. Differential Privacy.
	2.2. Privacy Communications.

	3. Summary of Methods
	3.1. Limitations

	4. Impact of Information Disclosures (RQ1 & RQ2)
	4.1. Methodology: Survey One
	4.2. Information Disclosure Results

	5. Expectations & Willingness to Share Under DP (RQ3 & RQ4)
	5.1. Methodology: Survey Two
	5.2. Results: Responses to Descriptions of DP

	6. Discussion
	7. Conclusion
	Acknowledgment
	References
	Appendix A. Complete Survey Descriptions
	A.1. Complete Description of Survey One
	A.2. Complete Description of Survey Two

	Appendix B. Descriptive Statistics

