
Co-Design for Energy Efficient and Fast Genomic Search:
Interleaved Bloom Filter on FPGA

Marius Knaust
Zuse Institute Berlin
Berlin, Germany
knaust@zib.de

Enrico Seiler
Freie Universität Berlin

Berlin, Germany
enrico.seiler@fu-berlin.de

Knut Reinert
Freie Universität Berlin

Berlin, Germany
knut.reinert@fu-berlin.de

Thomas Steinke
Zuse Institute Berlin
Berlin, Germany
steinke@zib.de

ABSTRACT
Next-Generation Sequencing technologies generate a vast and ex-
ponentially increasing amount of sequence data. The Interleaved
Bloom Filter (IBF) is a novel indexing data structure which is state-
of-the-art for distributing approximate queries with an in-memory
data structure. With it, a main task of sequence analysis pipelines,
(approximately) searching large reference data sets for sequencing
reads or short sequence patterns like genes, can be significantly
accelerated. To meet performance and energy-efficiency require-
ments, we chose a co-design approach of the IBF data structure
on the FPGA platform. Further, our OpenCL-based implementa-
tion allows a seamless integration into the widely used SeqAn C++
library for biological sequence analysis. Our algorithmic design
and optimization strategy takes advantage of FPGA-specific fea-
tures like shift register and the parallelization potential of many
bitwise operations. We designed a well-chosen schema to partition
data across the different memory domains on the FPGA platform
using the Shared Virtual Memory concept. We can demonstrate
significant improvements in energy efficiency of up to 19× and in
performance of up to 5.6×, respectively, compared to a well-tuned,
multithreaded CPU reference.

CCS CONCEPTS
• Computer systems organization→ Reconfigurable comput-
ing; • Applied computing → Bioinformatics; Computational
genomics.

KEYWORDS
sequence alignment, indexing, FPGA, energy efficiency, perfor-
mance
ACM Reference Format:
Marius Knaust, Enrico Seiler, Knut Reinert, and Thomas Steinke. 2022. Co-
Design for Energy Efficient and Fast Genomic Search: Interleaved Bloom
Filter on FPGA. In Proceedings of the 2022 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays (FPGA ’22), February 27-March

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FPGA ’22, February 27-March 1, 2022, Virtual Event, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9149-8/22/02.
https://doi.org/10.1145/3490422.3502366

1, 2022, Virtual Event, CA, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3490422.3502366

1 INTRODUCTION
Following the sequencing of the human genome [10, 27], genomic
analysis has come a long way. The recent improvements of se-
quencing technologies, commonly subsumed under the term NGS
(Next Generation Sequencing) or 3rd (and 4th) generation sequenc-
ing, have triggered incredible innovative diagnosis and treatments
in biomedicine, but also tremendously increased the sequencing
throughput.Within 10 years it rose from 21 billion base pairs [10, 27]
collected over months to about 400 billion base pairs per day on a
single machine (current throughput of Illumina’s HiSeq 4000).

The costs for producing one million base pairs could also be
reduced from hundreds of thousands of dollars to a few cents. As
a result of this dramatic development, the number of new data
submissions, generated by various biotechnological protocols (ChIP-
Seq, RNA-Seq, assembly etc.), to genomic databases has grown
dramatically and is expected to continue to increase faster than
the cost per capacity of storage devices will decrease. This poses
challenges for the existing sequence analysis pipelines. One of the
main tasks of such pipelines is to (approximately) search large
reference data sets for sequencing reads or short sequence patterns
like genes. Hence, researchers had to develop novel indexing data
structures such as the Interleaved Bloom Filter (IBF) [7] and, based
on this, an extension with winnowing minimizers and probabilistic
thresholding called Raptor [23] which is currently the state-of-
the-art for distributing approximate queries with an in-memory
data structure. The CPU-based IBF implementation can distribute
10million NGS queries for combined texts of hundreds of Gigabytes
in only a few seconds.

Here, we see the opportunity to further improve this algorithmic
development with the unique characteristics of FPGAs, both in
terms of performance and energy efficiency. The minimizer compu-
tation is ideally suited to use shift-registers, a pattern that translates
directly to the hardware of the FPGA, because they follow a sliding
window approach. The IBF computations perform many parallel
bitwise operations that can benefit from the high parallelism of
FPGAs at this level. In addition, genomics applications are gener-
ally very well suited for non-standard data types, such as a 2 bit
representations for DNA without ambiguity characters.

This work is licensed under a Creative Commons Attribution International 4.0 License.

FPGA '22, February 27-March 1, 2022, Virtual Event, CA, USA.
© 2022 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-9149-8/22/02.
https://doi.org/10.1145/3490422.3502366

Session: Applications FPGA ’22, February 27-March 1, 2022, Virtual Event, CA, USA

180

https://orcid.org/0000-0002-0338-8042
https://doi.org/10.1145/3490422.3502366
https://doi.org/10.1145/3490422.3502366
https://doi.org/10.1145/3490422.3502366
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3490422.3502366&domain=pdf&date_stamp=2022-02-11

The contributions of our work are the following:

• We present a hardware/software co-design approach for a
first implementation of the novel IBF data structure on FPGA
which results in a 5.6× speedup compared to the highly-
tuned CPU implementation in the SeqAn C++ library [20].

• We can demonstrate a 19× improvement in energy efficiency
which is in particular important in institutional and data
center environments to meet power restrictions.

• We demonstrate today’s performance capabilities within a
high-level language (OpenCL) approach for the implementa-
tion on FPGA. By directly mapping sliding windows in the
algorithm to shift registers in hardware, using non-standard
data bit-widths, and taking advantage of the parallel-process-
ing capabilities on bit level on FPGAs, we are able to turn
a compute-bound problem into a memory- (latency) bound
problem.

• Our implementation can be transparently used in the SeqAn
library, and, in conjunction with the demonstrated perfor-
mance and energy efficiency, we contribute to enabling
FPGAs in today’s large-volume sequence searches for ge-
nomic but also other texts.

2 RELATEDWORK
In this section, we highlight recent related work in the (bioinformat-
ics) algorithm domain as well as implementations of approximate
genomic searches on FPGAs.

The problem of approximately searching queries in ultra-large
databases has been recently addressed by several groups focusing on
different applications, all of which use methods based on the 𝑘-mer
content of the databases. In the field of alignment-free metagenomic
analysis, which focuses on 𝑘-mer based analysis, the size of the data
is likewise slowly becoming prohibitive. For example, Kraken [28]
requires 147GiB of RAM to index 380GBases. For the analysis of
RNA-Seq data, some groups aimed to search the raw files directly for
a series of transcripts ([25] and shortly afterwards [26]), [3]). They
propose novel solutions to the problem of searching a transcript of
interest in all relevant RNA-Seq experiments. The runtimes were
initially significantly improved by the Patro group with the tool
Mantis in [18] and by the Iqbal group with COBS [3]. This year,
the Reinert lab introduced the IBF [23], which has proven to be a
significant step towards a very time and space efficient in-memory
data structure for preprocessing approximate sequence queries,
which opens up many possible applications. It improves in runtime
by a factor of 12-144 over its competitors COBS and Mantis.

Recent work in the area of approximate genomic searching in-
cluding short read alignment on FPGA are presented in compre-
hensive surveys [17, 21, 22], and a summary in [15]. Most recent
FPGA-based accelerator solutions are based on the FM-index data
structure. Ng et al. [16] implemented a two-stage alignment ar-
chitecture on FPGA that is similar to the seed-and-extend model
adopted by Bowtie2, and achieved an overall 2× speedup. For the
construction of an FM-index, Chen et al. [5] propose an FPGA-based
implementation of the SAII algorithm with no memory overhead.
As far as we know, no FPGA or other accelerator implementations
of Mantis and COBS are currently available. It should be noted
that efforts tackling the memory access issue are presented, for

example, with the GRIM-Filter on HBM [11], and ALPHA filter on
PiM architecture [8], both of which show significant performance
improvements. Also, pure 𝑘-mer counting was accelerated on the
FPGA in [14] by a factor of 13 compared to CPU-based solutions.
Further, Sireesha and Roopa provided in [24] an implementation
of standard Bloom filters on an FPGA for key value stores. While
related, the above implementations do not address the problem
presented in this work.

Our work differs from previous ones as we propose a hard-
ware/software co-design for the implementation of the novel IBF
data structure on reconfigurable hardware, chose an implementa-
tion approach which allows a seamless drop-in replacement into the
existing SeqAn library, and thus ensure the same valid biological
results as the CPU reference.

3 BACKGROUND
The following section contains a brief introduction to the IBF data
structure, details can be found in [23].

The IBF data structure addresses the problem of indexing and
querying large collections of data. While the data consist of long
sequences of (DNA) characters, those sequences are often tokenized
by generating all substrings of length 𝑘 , also called the 𝑘-mers of
a sequence. Then, the input data can be seen as a set of sets of
𝑘-mers with which the user usually connects a semantic meaning.
For example, the user could define about 20000 sets of bacterial
genomes where each set contains the 𝑘-mers of genomes of all the
subspecies of a particular species. Or the user might want to query
a collection of 3000 RNA-Seq files that contain NGS reads. Then a
set contains the 𝑘-mers of all the reads in a file.

The IBF stores a representative transformation of the 𝑘-mer
content of the database (for instance, many thousands microbial
genomes). A 𝑘-mer in this context is a substring of string of length
𝑘 , e.g. 𝑇 = 𝐴𝐺𝐺𝐶𝑇 is a string of length 5 containing two 4-mers
𝐴𝐺𝐺𝐶 and𝐺𝐺𝐶𝑇 . The database consists of bins 𝐵𝑖 , typically a few
hundred to a few thousand, for example, a bin for all genomes of
the subspecies of a certain bacterial species.

The term representative indicates that the 𝑘-mer content could
be transformed by a function which reduces its size and distribu-
tion (for example, using winnowing minimizers on the text and its
reverse complement, or using gapped 𝑘-mers). We currently use
ungapped (𝑤,𝑘)-minimizers to compute representative 𝑘-mers (see
also [6]). A (𝑤,𝑘)-minimizer is essentially the lexicographically
minimal 𝑘-mer of all 𝑘-mers and their reverse complements in a
window of size𝑤 . For example, choosing𝑤 = 5 and 𝑘 = 4 for the
string 𝑆 = 𝐴𝑇𝑇𝐴𝐶𝐺𝑇𝐴 yields for the first window of 𝑆 , 𝐴𝑇𝑇𝐴𝐶 ,
the two 4-mers 𝐴𝑇𝑇𝐴 and 𝑇𝑇𝐴𝐶 . The reverse complement of the
first window, 𝐺𝑇𝐴𝐴𝑇 , yields 𝐺𝑇𝐴𝐴 and 𝑇𝐴𝐴𝑇 . In total, there are
four 4-mers {𝐴𝑇𝑇𝐴,𝑇𝑇𝐴𝐶,𝐺𝑇𝐴𝐴,𝑇𝐴𝐴𝑇 }. Hence, the minimizer
for the first window is 𝐴𝑇𝑇𝐴. To determine all minimizers of 𝑆 , the
window is shifted one position to the right after the current window
is processed. (𝑤,𝑘)-minimizers can be efficiently computed using
a rolling hash function.

The same transformation is applied to the 𝑘-mers of the query
upon lookup. The parameter 𝑤 is set depending on the length of
the query and the maximum of allowed errors 𝑒 and is assumed

Session: Applications FPGA ’22, February 27-March 1, 2022, Virtual Event, CA, USA

181

to be given in this work. The IBF is then used to retrieve binning
bitvectors indicating whether a representative 𝑘-mer is in a bin.

As such, the IBF is a combination of 𝑏 standard Bloom filters [4]
in an interleaved scheme. A Bloom filter is a bitvector of size 𝑛
and a set of ℎ hash functions that map a key value, in our case a
representative 𝑘-mer, to one of the bit positions. A value is present
in the Bloom filter if all ℎ positions return a 1. Note that a Bloom
filter can give a false positive answer. However, if the Bloom filter
size is large enough, the probability of a false positive answer is
low. A Bloom filter of size 𝑛 bits with ℎ different hash functions
and𝑚 inserted elements has a probability for giving a false positive
answer of:

𝑝 𝑓 𝑝 =

(
1 −

(
1 − 1

𝑛

)ℎ ·𝑚)ℎ
For this reason, sufficient space needs to be allocated such that

𝑝 𝑓 𝑝 does not become too large. Still, the problem of using a sim-
ple Bloom filter is that it does not point directly to the binning
bitvectors, i.e., it only answers the set membership question for a
single bin. To alleviate the problem, 𝑏 Bloom filters (one for each
bin) with identical hash functions are used and their bitvectors are
interleaved. In other words, in an IBF each bit in the normal Bloom
filter is replaced by a (sub-) bitvector of size 𝑏, where the 𝑖-th bit
”belongs” to the Bloom filter for bin 𝐵𝑖 . This results in a total size
of 𝑏 · 𝑛. When inserting a 𝑘-mer from bin 𝐵𝑖 into the IBF, all ℎ hash
functions are computed, each pointing to the position of the block in
which the sub-bitvector is stored. For each of the sub-bitvectors, the
𝑖-th bit from the respective beginning is set. Hence, 𝑏 Bloom filters
are interleaved in a way that allows the binning bitvectors for each
of the ℎ hash functions to be retrieved in a single burst operation.
When querying which bins contain a 𝑘-mer, the ℎ sub-bitvectors
are retrieved and a bitwise AND-operation is applied, which then
results in the desired binning bitvector indicating the membership
of the 𝑘-mer in the bins (see Figure 1). This is much faster than in-
dividually querying 𝑏 standard Bloom filters to retrieve the binning
bitvector.

For the approximate search of a query 𝑃 , the binning bitvectors
of all representative 𝑘-mers in the query are combined into a count-
ing vector and the membership of a query in a bin is determined
by applying an appropriate threshold (see [23]). This approach is
depicted in Figure 2.

In summary, the main computational steps that have to imple-
mented on the FPGA are:

(1) The minimizer computation: Compute the lexicographical
minimum for all 𝑘-mers and their reverse complement in a
window of size𝑤 .

(2) The IBF computations: Compute ℎ hash functions for the
minimizers, the bitwise AND of the ℎ binning bitvectors, in-
crement counters, and test for exceeded threshold.)

4 DESIGN CONSIDERATIONS FOR THE FPGA
IMPLEMENTATION

The goal of the FPGA-accelerated IBF implementation is to be a drop-
in replacement for the existing CPU implementation of the pattern
look-up described in the previous section. The host submits patterns
to the accelerator, while in return it receives the bin associations

0 0 0 ... 1 1 0 1 ... 0 0 0 0 ... 1 ... 1 0 0 ... 1 0 0 1 ... 0 0 0 1 ... 1

1 0 1 0 0 1 ... 0 1 0 1 0 0

. . .

0 1 0 0 0 0 ... 0 0 1 1 0 0

0 0 0 0 0 0 ... 1 0 0 0 0 0

0 1 0 0 1 0 ... 0 1 0 0 0 1

IBF

BF1

BF2

BF3

BFb

b b b b b b

|IBF | = b ∗ n

|BFb| = n

H1(ACGTACT) =

H2(ACGTACT) =

H3(ACGTACT) =

0 0 0 ... 1
0 0 1 ... 1
1 0 0 ... 1&

&

Bins of ACGTACT = 0 0 0 ... 1

Figure 1: Example of an IBF. Differently colored Bloomfilters
of length 𝑛 for the 𝑏 bins are shown at the top. The individual
Bloom filters are interleaved to obtain an IBF of size 𝑏 × 𝑛. In
the example, 3 positions are retrieved for a 𝑘-mer (ACGTACT)
using 3 different hash functions. The corresponding sub-
bitvectors are combined with a bitwise AND-operation, which
results in the required binning bitvector (Figure is from [7]).

0 1 0 0 1 0 ... 0 1 0 0 0 0
Interleaved Bloom Filter IBF

A C G G A C G A ... A C C A G
Pattern P

A C G G A 0 0 0 0 1 ... 1D(k1)

sub-bitvectors D of IBF
for k-mers of pattern P

C G G A C 1 0 1 0 1 ... 1D(k2)

G G A C G 1 1 1 1 0 ... 0D(k3)

G A C G A 0 0 0 0 1 ... 1D(k4)

... ...

A C C A G 0 0 0 0 1 ... 1D(kn)

5 2 4 1 4 ... 4Count(P)

X X X Xpotential bins for pattern P (threshold = 4)

Figure 2: For each 𝑘-mer 𝑘𝑖 generated from a pattern 𝑃 , the
binning bitvectors 𝐷 (𝑘𝑖) are extracted. 𝐷 (𝑘𝑖) represents the
bins containing the 𝑘-mer 𝑘𝑖 . For all bits in 𝐷 (𝑘𝑖) which are
set to 1, the counter of the corresponding bin is incremented.
Bins with a counter greater than or equal to the threshold
(in this case 4) need to be validated for 𝑃 (Figure is from [7]).

as a bit mask. Like Seiler et al.[23], it uses minimizers to reduce
the number of 𝑘-mers to be queried and thus the number of costly
memory accesses.

We decided on the Intel FPGA SDK for OpenCL version 2021.3
as the implementation environment, as it offers a high-level pro-
gramming model with an acceptable overhead and encapsulates
the entire host interaction in a well-known API, which allowed
us to focus on the algorithmic optimizations of the problem. The
CPU emulation enabled quick functional tests after performance
optimizations. Most of these optimizations were made based on

Session: Applications FPGA ’22, February 27-March 1, 2022, Virtual Event, CA, USA

182

Host

DRAM

CPU

FPGA Card

DRAM

FPGA

Logic

Block RAM

Queries Results IBF Data Structure

Counters

512 bit

512 × 16 bit

Figure 3: A simplified overviewof thememory partitioning of
the most important data structures across the memory hier-
archy of the FPGA card and the host system.With the queries
and the results placed on the host and accessed directly via
the PCIe connection. This leaves the DRAM directly attached
to the FPGA solely to IBF data structure, which enables maxi-
mum performance, since it is accessed by a read-only 512 bit
burst-coalesced load-store unit. In addition, the counters for
a higher number of bins are stored in the BRAM and are
connected via a wide read and write port to serve the 16 bit
counters of all 512 bins that are processed simultaneously.

the detailed reports of the High-Level Synthesis (HLS). Thus, the
time-consuming bitstream generation was only necessary for the
final evaluation and the possibility of the automatic insertion of
profiling counters into these led to the detection of bottlenecks
induced by memory interaction. Further, this approach helps our
intention to integrate our work seamlessly into to the SeqAn library
for broader impact.

The various data structures were carefully partitioned over the
entire memory hierarchy of the FPGA card and the host system
to ensure maximum performance (Figure 3). The large prebuilt IBF
data structure is stored on the DRAM of the FPGA, interleaved
across all banks so that it can be accessed concurrently.

We opted for the Board Support Package (BSP) that supports
Shared Virtual Memory (SVM), which allows the accelerator to
access host memory directly via the PCIe connection. This opened
up the possibility for us to leave data that is only accessed once
(either by a read or a write access) on the host and to transfer it di-
rectly without a detour over the FPGA-attached DRAM (hereinafter
simply referred to as DRAM), which as a result reduces the load on
it. In this particular case, this applies to the majority of the most
important data structures apart from the prebuilt IBF data structure,
such as the input pattern and the resulting bit set. Since the IBF
data structure remains the only major data structure located on the
DRAM and (after the initial transfer) is only accessed for reading,
low latencies and maximum burst rates can be achieved (which
were confirmed by profiling).

In order to enable multi-FPGA support in future work, it should
be possible to adapt the partitioned version of the IBF [7] in which
the indexing structure is broken down into several partitions in
order to distribute it.

For the remainder of this section, we will first focus on the
accelerator side and later on the host side, which involves the
interaction between the two.

cycles

st
ag
es

1 2 3 4 · · · 𝑖

1 2 3 4 · · · 𝑖

1 2 3 4 · · · 𝑖
%

M
in
im

iz
er

1 3 4 · · · 𝑖

1 3 4 · · · 𝑖

1 3 4 · · · 𝑖

IB
F

Figure 4: Pipeline bubbles (highlighted in red) in the IBF com-
putation (bottom) when it is combined with the minimizer
computation (top) in a single deep hypothetical pipeline. In
the example shown, a pipeline bubble is generated if the sec-
ond iteration is skipped after the minimizer computation.

4.1 Implementation on the FPGA Accelerator
For the FPGA accelerator implementation, we use single work-item
kernels, as recommended by Intel in their programming guide [9].
In order to enable static optimizations such as shift-registers and
since certain parameters do not vary for inputs of the same type,
we keep the 𝑘-mer size, window size, and number of bins compile
time constant and have several bitstreams available at runtime
(Section 4.2). Since only a few bits are necessary to encode base
pairs, for example DNA without ambiguity characters requires
2 bit, we heavily use data types with custom bit-width throughout
our design. We opted out of Intel’s hyper-optimized handshaking
because it does not allow for query prefetching and other memory
access optimizations that we favor in our design.

At first glance, it seems favorable to combine the minimizer
and IBF computations on the FPGA, as this would enable deeper
pipelining and thus make better use of the parallel resources, even
if it is not possible to express explicit parallelism. However, the
minimizer computation skips elements if they are redundant to
their predecessor, this in turn would lead to bubbles in the rest of
the pipeline that extends over the entire IBF computation (Figure 4).
As a consequence, we decided to decouple the minimizer and IBF
computations by splitting them into two separate kernels that run
in parallel and communicate via a FIFO buffer. In order to realize
this, we used the Intel-specific Intel FPGA SDK for OpenCL Channels
Extension. For reasons of compatibility with OpenCL SDKs from
other vendors, it should be possible to replace its use with pipes
from OpenCL 2.0.

The IBF kernel ends up operating slower than the minimizer
kernel due to costly memory interactions (Section 5.2.1). As a result,
the minimizer kernel usually stalls waiting for the IBF kernel to
free space in the buffer. This is not a disadvantage in our particular
configuration, since the memory interaction dominates the compu-
tation anyway and there is therefore no risk of the buffer running
empty.

To saturate all given DRAM memory banks, the IBF data struc-
ture is interleaved across all of them, and we replicate the kernel
pair of minimizer and IBF computations, each with its own FIFO

Session: Applications FPGA ’22, February 27-March 1, 2022, Virtual Event, CA, USA

183

1 2 3 · · · 𝑘

𝑘-mer shift-register query𝑖

min(hash(kmer), hash(complement (kmer)))

1 2 3 · · · 𝑤

window shift-register
hash

(hash, position) B minelement (window)

1

minimizer shift-register

hashprevious ≠ hashcurrent ∨ positionprevious = 1

currentprevious

hashcurrent

Figure 5: Composition of shift-registers in the minimizer
computation. Starting with a shift-registers containing the
current 𝑘-mer, followed by one for the hash values of the
current window, and ending with a single register containing
the previous minimizer to decide whether to skip the current
minimizer.

buffer. The parallelization is naive as each pair processes separate
queries (Section 4.2). The number of pairs is determined experi-
mentally, since the higher resource requirements also affect the
performance of the configuration.

4.1.1 Minimizer Kernel. The minimizer kernel heavily relies on
three chained shift-registers to buffer data and reduce redundant
memory interactions. With each iteration over the query elements,
all shift registers are advanced by one position and provide data to
their successors (Figure 5).

• The first shift-register contains the current 𝑘-mer, which
is updated by the latest query element. Based on its content,
the hash of the 𝑘-mer and that of its reverse complement is
calculated; the smaller of the two is passed on to the next
shift-register.

• The second shift-register contains all the representative
hashes of the current window. The first occurrence of the
minimizing hash (together with its position in the window)
is determined for each window and fed into the last shift-
register.

• The third shift-register contains only a single element,
the previous hash. The current hash is ignored if its value is
the same as the predecessor’s and the predecessor itself is
still valid (not moved out of the sliding window), otherwise
it is passed on to the IBF computation.

Since the minimizer computation and the IBF computation are
carried out separately from each other, the minimizer computation
has to mark the last minimizer of the query so that the decoupled
IBF computation knows when to stop and transmit its results to
the host. Because the minimizer computation can not tell whether
the current element will be the last minimizer or not, the previous
minimizer is only passed when a new one is determined or the last
query element is reached. This is achieved by leveraging the last
shift register, which buffers the previous minimizer anyway.

4.1.2 IBF Kernel. The IBF kernel processes incoming minimizer
hashes as long as none is marked as the last element of the query.
For smaller bin sizes, it operates as expected: First, it reads the
binning bitvectors of the IBF for the corresponding bin of each hash
function from the DRAM; then all binning bitvectors are combined
via a binary AND-operation. Afterwards, a separate counter for each
set bit in the binning bitvector is incremented. As a result, a bit
mask is created in which each bit is set based on the associated
counter exceeding a provided threshold, which depends on the
IBF’s parameters.

The main strength of the FPGA implementation is that all the
operations on each bit of the bin can be carried out in parallel, such
as the AND-operation, but especially the counter increments and
the threshold checks. This would not be possible on the CPU even
when using AVX-512, as it is limited to 32 bins at the same time
with 16 bit counters.

The original implementation was relying on a modulo operation
to map a hash to a bin. The realization of the normal modulo op-
eration requires a division, which is quite expensive to implement
on the FPGA. We have therefore decided to replace the modulo
operation with an alternative introduced in [12], which is based on
a wide multiplication followed by a shift operation, both of which
are manageable on the FPGA. It has been proven that the values are
mapped equally well to the specified range, which is the important
requirement for the IBF.

We have also decided to give each access point to the IBF data
structure based on a different hash function its own load-store unit
(LSU). If the data is stored on different memory banks, this allows
them to operate simultaneously. But more importantly, each LSU
has its own independent burst buffer so that they do not interfere
with one another in this regard.

Optimizations for larger numbers of bins. The implementation for
larger number of bins is more complicated, as two challenges arise:
First, for a larger number of bins, the binning bitvectors exceed
the width of the internal memory interface (512 bit in our case).
Second, the array of counters becomes very large, so it is no longer
feasible to keep them in registers, and it has to be stored in block
RAM (BRAM). Both problems require special handling to achieve
good performance.

Exceeding the width of the internal memory interface leads to a
stall of the pipeline, since it takes more than one cycle to fulfill the
memory request. Hence, it is better to divide the memory access
into several chunks with the width of the memory interface and
to overlap the individual requests with the computation on the
previous chunk. This optimization avoids the stalls and at the same
time reduces the area demand, since the computation is, in parts,
carried out serially.

Session: Applications FPGA ’22, February 27-March 1, 2022, Virtual Event, CA, USA

184

Since, with large bin sizes, the counters have to be stored in
BRAM, it is important to configure this memory correctly so that it
meets the requirements placed on it and at the same time remains
within the hardware limits. We decided to initialize the counters
lazily the first time they are accessed, as this reduces the require-
ment to just a single read and a single write port that matches
the underlying hardware. This makes it sufficient to have a single
bank non-replicated BRAM configuration. However, the bank width
is chosen to be wide enough to allow access to all counters of a
chunk at the same time in order to enable parallel computation (see
Figure 3). Here the chunking plays into our hands, as it limits the
required bank width.

Another positive side effect of the chunking is that it solves
another problem that has been introduced by placing the counters
in BRAM, a memory dependency. BRAM has no unpredictable
large latency like DRAM, but it still has a small latency between
consecutive reads and writes to the same location, unlike registers.
This would lead to a memory dependency in our design as the
counters are incremented with each iteration. However, since each
chunk accesses a different set of counters, the memory dependency
is resolved as long as there are more chunks than the number of
cycles imposed by the latency.

For smaller IBF sizes, it might be feasible to use modern FPGAs
withHigh BandwidthMemory (HBM) to store the IBF data structure.
Since the HBM is connected with a wider memory interface, more
data can be served at a time, which should lift the current 512 bit
limit and unleash more parallelization potential. Furthermore, a
hierarchical version of the IBF is under development, dividing the
structure into separate levels, which are typical smaller. This may
make it possible to preload the individual levels from the DRAM
into HBM.

4.2 Host Part of the Implementation
Since certain parameters (𝑘-mer and window size as well as the
number of hash functions and bins) are statically compiled into our
FPGA design in order to enable further optimizations, we maintain
a bitstream library for the common parameters sets. During ini-
tialization, the host configures the FPGA with the corresponding
bitstream for the specified parameters, and at the same time loads
the pre-built IBF data structure from the filesystem into the acceler-
ator’s DRAM. Depending on the size of the IBF data structure, one
or the other dominates (Figure 6). After the initialization is initiated
(but not necessary completed), it is ready to accept requests.

It is not feasible to process individual queries, especially small
ones, because the overhead involved in the transfer of the data to
the accelerator and starting the kernels is too big. As a consequence,
the host maintains a buffer in which it gathers queries and submits
them to the accelerator in batches. At the same time, this enables
the multiple kernel pairs (Section 4.1) to process the queries in
parallel, as each simply takes on an equal share. In order to overlap
I/O and computation, the host actually maintains two of these
buffers in a double-buffer pattern. While the accelerator performs
the computations on one buffer, the other is being filled with new
data by the host. Since both the input and output are double buffered,
it is possible for the host to carry out further computations based

0 5 10 15

Compute
Transfer

Drive I/O

Reconfig.

Compute
Transfer

Drive I/O

Reconfig.

runtime (s)

Bitstream IBF data Compute

8 G
iB

IB
F
da
ta

4G
iB

IB
F
da
ta

Figure 6: The simplified execution timeline for 10 million
queries and a configuration with 8912 bins, for both a 4GiB
and a 8GiB IBF data structure. Since the reconfiguration of
the FPGA and the initialization of the IBF data structure
(reading it from filesystem and the transfer to the FPGA’s
DRAM) take place in parallel, one or the other dominates the
initialization phase, depending on the size of the IBF data
structure.

on the results already computed in parallel to the processing of the
remaining queries by the accelerator.

5 RESULTS
The FPGA implementation was evaluated on an Intel FPGA PAC
D5005 card with an Intel Stratix 10 SX FPGA (14 nm lithography,
2 753 000 logic elements, 244Mbit on-chip memory, 11 520 DSP
blocks) and a total of 32GB (4 banks of 8GB each) external DDR4
DRAM. The card is attached to the host system via PCIe 3, even
though our measurements seem to indicate that the BSP is only
using 8 of the 16 PCIe lanes. The FPGA host system comprises two
Intel Xeon Gold 6246 CPUs with 384GiB of main memory. The
system runs with CentOS 7.8 and kernel version 3.10.0., and Board
Management Controller version 2.0.12 is in effect.

The CPU reference implementation [23] is benchmarked on dual
socket system with Intel Xeon Gold 6248 CPUs (14 nm lithography)
and 1 TiB main memory. The CPU reference benchmarks run with
32 threads on this system.

A set of approximately 10million artificial DNA sequence pat-
terns with a read length of 100 base pairs was used for the first
measurement. In addition, we conducted experiments with a grow-
ing number of patterns reaching from 10 to 50 million. With regard
to the parameters, we have chosen a 𝑘-mer size of 19, a window
size of 23, and a IBF data structure size of 4 GiB as a typical config-
uration for this type of queries. For the number of bins, we have
selected 64 at the lower end (such a value is for example used in [7]
to distribute read mapping jobs) and 8192 at the upper end (such
a value would be used for metagenomics analyses like in [19] to
represent a range encountered in common use cases and cover both

Session: Applications FPGA ’22, February 27-March 1, 2022, Virtual Event, CA, USA

185

Table 1: The utilization of resources of the Intel Stratix 10 SX
FPGA for the two designs used in the benchmarks. The design
for many bins (8192 bins) uses 4 pairs of minimizer and IBF
kernels to achieve the best performance. In contrast to that,
only 2 pairs are sufficient when the strategy for few bins (64
bins) is employed.

Logic Utilization BRAM DSPALUTs Registers

Device 933 120 11 721 57601 866 240 3 732 480
8192 bins 391 505 (42 %) 5622 (48 %) 132 (2 %)(4 pairs) 322 215 773 426
64 bins 299 362 (32 %) 2722 (23 %) 70 (1 %)(2 pairs) 242 906 484 191

implementations of the IBF kernel specialized in the number of bins
(Section 4.1.2).

Each benchmark was repeated 120 times, aiming for a confidence
level of 99 % for the given precision of the stated mean values.

5.1 FPGA Design Properties
The FPGA design reaches frequencies of around 300MHz in the
8192 bin design and around 200MHz in the 64 bin version, depend-
ing on the number of minimizer and IBF kernel pairs used. For the
specific configuration of the benchmarks, the best performance
can be observed with 4 and 2 kernel pairs for 8192 and 64 bins, re-
spectively, leading to frequencies of 297MHz and 211MHz. Thanks
to the manually resolved memory dependency in the IBF kernel
(Section 4.1.2), the High-Level Synthesis (HLS) reports only low
Initiation Intervals (II) for all critical pipelined loops.

5.1.1 Resource Utilization. With the OpenCL-based high-level lan-
guage approach, a number of optimization capabilities are available
to the developer that directly influence the resource usage. For
example, enforcing loop unrolling through directives, the way the
Load Store Units are used, e.g., with/without cache, the replication
of compute units (here the kernel pairs) which multiplies logic
and BRAM resources, and the implementation of arithmetic oper-
ations via DSPs (here the modulo operation) impact the resource
utilization.

Our achieved resource utilization for both small and large num-
bers of bins is summarized in Table 1. The numbers shown include
the static part given by the BSP (e.g. PCIe link, memory controller,
partial reconfiguration) and the freely available resources consumed
by the user logic. The resource utilization of the user logic scales
roughly linear with the number of kernel pairs placed on the FPGA.
Since the implementation for large number of bins differs from
the more basic implementation for a few bins (Section 4.1.2), they
cannot be directly compared.

5.2 Runtime Performance
Table 2 summarizes the performance and energy consumption data
(see 5.3) of our work together with some recent data for FPGA
implementations of similar algorithms.

0 5 10 15 20 25 30 35

FPGA
CPU

FPGA
CPU

runtime (s)

Initialization Compute

81
92

bi
ns

64
bi
ns

Figure 7: The FPGA’s runtime compared with the multi-
threaded CPU reference implementation for approximately
10million queries (reads), for both few (64) and many (8192)
bins. The runtime of the FPGA implementation is further
divided into an initialization and a computation phase, the
initialization loses relevance with larger query volumes and
thus leads to an even higher speed-up factor.

10 20 30 40 50

20

40

number of reads (million)

ru
nt
im

e
(s)

8192 bins 64 bins

Figure 8: The runtime on our FPGA platform plotted for an
increasing amount of reads, for both few (64) andmany (8192)
bins. A linear scaling can be observed.

For 10million sequence patterns (reads), we measure for the to-
tal runtime of the 8192 bin configuration on the FPGA accelerated
implementation an average of 12.51 s (standard deviation (SD) =
0.05 s) , which is a 2.88-fold increase over the reference implementa-
tion with a runtime of 36.02 s (Figure 7). At 64 bins we can observe
an even higher speed-up factor of 3.30× with an average runtime
of 6.79 s (SD = 0.04 s) versus a runtime of 22.45 s. For few bins, all
bins can be fetched from memory at the same time and the array
of counters is small enough to fit in registers. With an increasing
amount of reads, the runtime scales linearly (Figure 8).

For 50 million reads, we measure the best speedups of the FPGA
accelerator implementation over the CPU reference in our study.
The FPGA configurations with 1892 and 64 bins is 3.4× and 5.6×,
respectively, faster than the CPU version. The total runtimes of
the 8192 bin configurations are on average 47.21 s (SD = 0.15 s) on
the FPGA accelerator and 162.2 s on CPU. Using the 64 bin config-
uration, the total runtimes are 19.35 s (SD = 0.055 s) on FPGA and
108.00 s on CPU, respectively.

It should be noted that these measurements include the initial-
ization phase. For both systems, this is the I/O to read the prebuilt

Session: Applications FPGA ’22, February 27-March 1, 2022, Virtual Event, CA, USA

186

IBF data structure from the filesystem. The measurements relat-
ing to the FPGA implementation also include its transfer to the
DRAM of the FPGA and the reconfiguration of the FPGA loading
the bitstream. Since these initialization procedures only have to be
carried out once, regardless of the number of queries, the increase
in performance of the pure computational part is even higher than
the factors mentioned above. Namely, an estimated (because of
parallel flows during initialization in both implementations) factor
of 3.80 for the 8192 bin configuration and even 5.85 for the 64 bin
configuration while processing 10 million reads.

Compared with recent FPGA implementations of the FM-index
structure (Table 2), our IBF data structure implementation is signif-
icantly faster without any limitations of the biological relevance
of its results [23]. Moreover, our IBF data structure implementa-
tion on CPU is competitive to some FPGA accelerated FM-index
implementations.

This clearly shows the usefulness of the IBF as prefilter for
databases that are so large that a single FM-index is too costly
to compute. In such cases the IBF can effectively distribute the
queries to many smaller FM-indices as was demonstrated in [7].

5.2.1 Limitations. When instrumenting the LSUs with profiling
counters, it becomes apparent that the memory access of the IBF
data structure in DRAM causes the pipeline to a stall about 30 % of
the time for the 8192 bin configuration. This value is rather modest
because it is lowered by the bursts. This becomes visible with the
64 bin configuration, since it does not use bursts and leads to a stall
rate of up to 85 %. The use of a caching LSU, which temporarily
stores memory requests that are accessed in the BRAM, is only
of little help, especially for bigger IBF data structure sizes, since
the hash-based accesses occur randomly across the whole IBF data
structure. This is an inherent problem with Bloom filters [13] be-
cause they rely on this randomness. Nevertheless, this indicates
that we have turned a previously compute-bound problem into a
memory latency-bound problem.

5.3 Energy Consumption
In addition to runtime performance, energy consumption has be-
come an important factor for data centers in recent years. The
FPGA-based implementation has a great advantage in this area,
partly because of the reduced runtime, but also because of the less
generic, more problem-adapted hardware of the accelerator.

To measure the power consumption of our Intel FPGA card,
we use the Open Programmable Acceleration Engine (OPAE) SDK
version 1.1.4 to access the Platform Descriptor Records (PDR), which
contain information about the card’s power subsystem. The D5005
card has two relevant entries, one for the PCIe and one for the
auxiliary connector, which can be aggregated to the total power
consumption of the card. We then integrate the power draw over
the runtime to determine the total energy consumption of the
application (Figure 9).

The power consumption of the CPU implementation is measured
with the Running Average Power Limit (RAPL) counters of modern
Intel CPUs. We use perf to set the measurements into relation to
the runtime of the applications and add up the package and DRAM
zone to use them as the total energy demand.

0 2 4 6 8 10 12

70

75

80

runtime (s)

po
w
er

(W
)

Figure 9: The power draw of the FPGA card plotted over the
runtime of the 8192 bin configuration. Starting with a recon-
figured FPGA at idle while the host reads the precomputed
data structure from the filesystem, followed by a brief (ap-
proximate half a second) increase while the data structure is
transferred to the FPGA accelerator, and finished with the
compute phase that requires the most power. The plotted
power measurements can be integrated over the runtime to
obtain an estimate of the total energy consumption.

For 10 and 50 million reads, the 8192 bin configuration on the
FPGA card consumes on average 888 J and 3591 J (SD = 13.8 J, 22.6 J),
respectively, making it about 11 times more energy efficient than
the CPU reference implementation with its energy consumption
of 10 412.36 J and 41 442 J. The improvement in the 64 bin config-
uration is superior again, as is with the runtime performance. It
reaches a factor of up to 19× with an average consumption of 401 J
and 1170 J (SD = 14.36 J, 14.0 J) versus 5223 J and 22 600 J on CPU.
This excludes the power consumption of its host system, since it
only performs I/O and would be free for other computational work-
loads based on the results (Section 4.2). If there is no demand for
further processing and its only purpose is to host the FPGA card,
the host could be configured to have a very low energy footprint.
The power consumption of the FPGA card might be reduced even
further, as we are using a rather demanding card with 215W TDP
and this could be replaced by a smaller one such as the Intel PAC
with Arria 10 GX FPGA with only 66W TDP (which could lead to a
small performance compromise, but should be sufficient for smaller
IBF data structure sizes like the one used in our benchmarks).

6 CONCLUSION
In conclusion, we presented an FPGA design for a state-of-the-art
data structure to distribute approximate text queries with direct
applications in bioinformatics. Our implementation is up to 5.6×
faster than a highly-tuned CPU implementation and is up to 19×
more energy efficient. The implementation can be seamlessly used
in the SeqAn C++ library [20] and is hence available to application
programmers in the biomedical domain. We achieved these out-
comes by using with OpenCL a high-level language approach for
the FPGA design.

ACKNOWLEDGMENTS
We thank Mohamed Issa, Rolf Richter, Graham McKenzie, Hardik
Shah, and Klaus-Dieter Oertel from Intel for feedback on various

Session: Applications FPGA ’22, February 27-March 1, 2022, Virtual Event, CA, USA

187

Table 2: Performance comparison and energy consumption of our work and selected recent FPGA implementations for
approximate genomic searches. With the 64 bin FPGA design we achieve the best improvements in performance and energy
efficiency of 5.6× and 19×, respectively, over our CPU implementation (numbers in bold). Data and idea taken from [15] and
works cited therein. ("SW" means Smith-Waterman algorithm.)

Method & Platform Device Reads Length Time Speed Energy Year/RefData Structure [Mio] [base pairs] [s] [Mbp/s] [J]
FM-index+SW Maxeler MAX3 Virtex-6 SX475T 82 90 49.0 151 - 2013/[2]
FM-index Maxeler MAX3 Virtex-6 SX475T 18 75 13.8 97.8 - 2013/[1]
FM-index Maxeler MAX5C Virtex Ultrascale+ VU9P 300 100 683 44.4 - 2021/[15]

10 100 12.5 79.7 888Intel PAC D5005 Intel Stratix 10 SX 50 100 47.2 105.9 3591
10 100 36.0 27.8 10 412IBF, 8192 bins

Dell PowerEdge T640 Intel Xeon Gold 6248 50 100 161.0 31.1 41 442

this work

IBF, 64 bins
Intel PAC D5005 Intel Stratix 10 SX 10 100 8.1 122.9 401

this work50 100 19.4 258.4 1170

Dell PowerEdge T640 Intel Xeon Gold 6248 10 100 22.5 44.5 5223
50 100 108.0 46.3 22 600

FPGA related topics. At the Zuse Institute Berlin, this work is par-
tially supported by the German Federal Ministry of Education and
Research (BMBF) through grants for the HPCLab within the Re-
search Campus MODAL, project no. 05M20ZBM, and the ORKA-
HPC project, grant 01IH17003D. We thank Intel Corp. for providing
the Intel PAC with Arria 10 GX FPGA for initial prototype work.

REFERENCES
[1] James Arram, Wayne Luk, and Peiyong Jiang. 2013. Reconfigurable filtered

acceleration of short read alignment. In 2013 International Conference on Field-
Programmable Technology (FPT). 438–441. https://doi.org/10.1109/FPT.2013.
6718408

[2] James Arram, Kuen Hung Tsoi, Wayne Luk, and Peiyong Jiang. 2013. Reconfig-
urable Acceleration of Short Read Mapping. In 2013 IEEE 21st Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines. 210–217.
https://doi.org/10.1109/FCCM.2013.57

[3] Timo Bingmann, Phelim Bradley, Florian Gauger, and Zamin Iqbal. 2019. COBS:
A Compact Bit-Sliced Signature Index BT - String Processing and Information
Retrieval. In String Process. Inf. Retr. Vol. 11811. Springer, Cham, Cham, 285–
303. https://link.springer.com/chapter/10.1007/978-3-030-32686-9{_}21papers3:
//publication/doi/10.1007/978-3-030-32686-9{_}21

[4] B. H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable Errors.
Commun. ACM 13, 7 (July 1970), 422–426. https://doi.org/10.1145/362686.362692

[5] Nae-Chyun Chen, Yu-Cheng Li, and Yi-Chang Lu. 2021. A Memory-Efficient
FM-Index Constructor for Next-Generation Sequencing Applications on FPGAs.
CoRR abs/2102.03045 (2021). arXiv:2102.03045 https://arxiv.org/abs/2102.03045

[6] Rayan Chikhi, Antoine Limasset, and Paul Medvedev. 2016. Compacting de
Bruijn graphs from sequencing data quickly and in low memory. Bioinformatics
(Oxford, England) 32, 12 (June 2016), i201–i208.

[7] Temesgen Hailemariam Dadi, Enrico Siragusa, Vitor C Piro, Andreas Andrusch,
Enrico Seiler, Bernhard Y Renard, and Knut Reinert. 2018. DREAM-Yara: an exact
read mapper for very large databases with short update time. Bioinformatics
(Oxford, England) 34, 17 (2018), 766–772.

[8] Fazal Hameed, Asif Ali Khan, and Jeronimo Castrillon. 2021. ALPHA: A Novel
Algorithm-Hardware Co-design for Accelerating DNA Seed Location Filtering.
IEEE Transactions on Emerging Topics in Computing (2021). https://doi.org/10.
1109/TETC.2021.3093840

[9] Intel Corp. 2021. Intel FPGA SDK for OpenCL Pro Edition: Programming Guide.
Intel Corp.

[10] International Human Genome Sequencing Consortium. 2001. Initial sequencing
and analysis of the human genome. Nature 409, 6822 (2001), 860–921.

[11] Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
M. Alser, Hasan Hassan, O. Ergin, C. Alkan, and O. Mutlu. 2018. GRIM-Filter:
Fast seed location filtering in DNA read mapping using processing-in-memory
technologies. BMC Genomics 19 (2018).

[12] Daniel Lemire. 2016. A fast alternative to the modulo reduction. https://lemire.
me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/

[13] Marek Majkowski. 2020. When Bloom filters don’t bloom. https://blog.cloudflare.
com/when-bloom-filters-dont-bloom/

[14] Nathaniel McVicar, Chih Ching Lin, and Scott Hauck. 2017. K-mer counting
using bloom filters with an FPGA-attached HMC. Proc. - IEEE 25th Annu. Int.
Symp. Field-Programmable Cust. Comput. Mach. FCCM 2017 (2017), 203–210.
https://doi.org/10.1109/FCCM.2017.23

[15] Ho-Cheung Ng, Izaak Coleman, Shuanglong Liu, and Wayne Luk. 2021. Recon-
figurable Acceleration of Short Read Mapping with Biological Consideration.
In The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (Virtual Event, USA) (FPGA ’21). Association for Computing Machinery,
New York, NY, USA, 229–239. https://doi.org/10.1145/3431920.3439280

[16] Ho-Cheung Ng, Shuanglong Liu, Izaak Coleman, Ringo S.W. Chu, Man-Chung
Yue, and Wayne Luk. 2020. Acceleration of Short Read Alignment with Run-
time Reconfiguration. In 2020 International Conference on Field-Programmable
Technology (ICFPT). 256–262. https://doi.org/10.1109/ICFPT51103.2020.00044

[17] Ho-Cheung Ng, Shuanglong Liu, and Wayne Luk. 2017. Reconfigurable accelera-
tion of genetic sequence alignment: A survey of two decades of efforts. In 2017
27th International Conference on Field Programmable Logic and Applications (FPL).
1–8. https://doi.org/10.23919/FPL.2017.8056838

[18] Prashant Pandey, Fatemeh Almodaresi, Michael A Bender, Michael Ferd-
man, Rob Johnson, and Rob Patro. 2018. Mantis: A Fast, Small, and Exact
Large-Scale Sequence-Search Index. Cell Syst. 7, 2 (aug 2018), 201–207.e4.
https://linkinghub.elsevier.com/retrieve/pii/S2405471218302394papers3:
//publication/doi/10.1016/j.cels.2018.05.021https://doi.org/10.1016/j.cels.2018.05.
021

[19] Vitor C. Piro, Temesgen H. Dadi, Enrico Seiler, Knut Reinert, and Bernhard Y.
Renard. 2020. Ganon: Precise Metagenomics Classification Against Large and
Up-To-Date Sets of Reference Sequences. Bioinformatics 36, Supplement_1 (jul
2020), I12–I20. https://doi.org/10.1093/BIOINFORMATICS/BTAA458

[20] Knut Reinert, TemesgenHailemariamDadi, Marcel Ehrhardt, Hannes Hauswedell,
SvenjaMehringer, René Rahn, Jongkyu Kim, Christopher Pockrandt, JörgWinkler,
Enrico Siragusa, Gianvito Urgese, and David Weese. 2017. The SeqAn C++
template library for efficient sequence analysis: A resource for programmers.
Journal of Biotechnology 261, July (Nov. 2017), 157–168. https://doi.org/10.1016/
j.jbiotec.2017.07.017

[21] Tony Robinson, Jim Harkin, and Priyank Shukla. 2021. Hardware
acceleration of genomics data analysis: challenges and opportunities.
Bioinformatics 37, 13 (05 2021), 1785–1795. https://doi.org/10.1093/
bioinformatics/btab017 arXiv:https://academic.oup.com/bioinformatics/article-
pdf/37/13/1785/39353017/btab017.pdf

[22] Sahand Salamat and T. Simunic. 2020. FPGA Acceleration of Sequence Alignment:
A Survey. ArXiv abs/2002.02394 (2020).

[23] Enrico Seiler, Svenja Mehringer, Mitra Darvish, Etienne Turc, and Knut Rein-
ert. 2021. Raptor: A fast and space-efficient pre-filter for querying very large
collections of nucleotide sequences. iScience 24, 7 (July 2021), 102782. https:
//doi.org/10.1016/j.isci.2021.102782

[24] Y Sireesha and M Roopa. 2015. An FPGA Implementation of Hashed Key-Value
Store Using Bloom Filter. Int. J. Comput. Sci. Mob. Comput. 4, 5 (2015), 1094–1100.

[25] B. Solomon and C. Kingsford. 2016. Fast search of thousands of short-read
sequencing experiments. Nature Biotechnology 34, 3 (March 2016), 300–302.

Session: Applications FPGA ’22, February 27-March 1, 2022, Virtual Event, CA, USA

188

https://doi.org/10.1109/FPT.2013.6718408
https://doi.org/10.1109/FPT.2013.6718408
https://doi.org/10.1109/FCCM.2013.57
https://link.springer.com/chapter/10.1007/978-3-030-32686-9{_}21 papers3://publication/doi/10.1007/978-3-030-32686-9{_}21
https://link.springer.com/chapter/10.1007/978-3-030-32686-9{_}21 papers3://publication/doi/10.1007/978-3-030-32686-9{_}21
https://doi.org/10.1145/362686.362692
https://arxiv.org/abs/2102.03045
https://arxiv.org/abs/2102.03045
https://doi.org/10.1109/TETC.2021.3093840
https://doi.org/10.1109/TETC.2021.3093840
https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
https://blog.cloudflare.com/when-bloom-filters-dont-bloom/
https://blog.cloudflare.com/when-bloom-filters-dont-bloom/
https://doi.org/10.1109/FCCM.2017.23
https://doi.org/10.1145/3431920.3439280
https://doi.org/10.1109/ICFPT51103.2020.00044
https://doi.org/10.23919/FPL.2017.8056838
https://linkinghub.elsevier.com/retrieve/pii/S2405471218302394 papers3://publication/doi/10.1016/j.cels.2018.05.021 https://doi.org/10.1016/j.cels.2018.05.021
https://linkinghub.elsevier.com/retrieve/pii/S2405471218302394 papers3://publication/doi/10.1016/j.cels.2018.05.021 https://doi.org/10.1016/j.cels.2018.05.021
https://linkinghub.elsevier.com/retrieve/pii/S2405471218302394 papers3://publication/doi/10.1016/j.cels.2018.05.021 https://doi.org/10.1016/j.cels.2018.05.021
https://doi.org/10.1093/BIOINFORMATICS/BTAA458
https://doi.org/10.1016/j.jbiotec.2017.07.017
https://doi.org/10.1016/j.jbiotec.2017.07.017
https://doi.org/10.1093/bioinformatics/btab017
https://doi.org/10.1093/bioinformatics/btab017
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/37/13/1785/39353017/btab017.pdf
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/37/13/1785/39353017/btab017.pdf
https://doi.org/10.1016/j.isci.2021.102782
https://doi.org/10.1016/j.isci.2021.102782

https://doi.org/10.1038/nbt.3442
[26] C. Sun, R. S. Harris, R. Chikhi, and P. Medvedev. 2016. AllSome Sequence Bloom

Trees. bioRxiv (Dec. 2016), 090464. https://doi.org/10.1101/090464
[27] J. C. Venter, ..., K. Reinert, ..., and X. Zhu. 2001. The sequence of the human

genome. Science 291 (Feb 2001), 1304–1351.

[28] Derrick E Wood and S Salzberg. 2014. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol. 15, 3 (jan 2014), R46.
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=
24580807{&}retmode=ref{&}cmd=prlinkspapers3://publication/doi/10.1186/gb-
2014-15-3-r46papers3://publication/uuid/82DEF96F-5CF8-4C61-B713-
63DCB6628C8D

Session: Applications FPGA ’22, February 27-March 1, 2022, Virtual Event, CA, USA

189

https://doi.org/10.1038/nbt.3442
https://doi.org/10.1101/090464
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=24580807{&}retmode=ref{&}cmd=prlinks papers3://publication/doi/10.1186/gb-2014-15-3-r46 papers3://publication/uuid/82DEF96F-5CF8-4C61-B713-63DCB6628C8D
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=24580807{&}retmode=ref{&}cmd=prlinks papers3://publication/doi/10.1186/gb-2014-15-3-r46 papers3://publication/uuid/82DEF96F-5CF8-4C61-B713-63DCB6628C8D
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=24580807{&}retmode=ref{&}cmd=prlinks papers3://publication/doi/10.1186/gb-2014-15-3-r46 papers3://publication/uuid/82DEF96F-5CF8-4C61-B713-63DCB6628C8D
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=24580807{&}retmode=ref{&}cmd=prlinks papers3://publication/doi/10.1186/gb-2014-15-3-r46 papers3://publication/uuid/82DEF96F-5CF8-4C61-B713-63DCB6628C8D

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Design Considerations for the FPGA Implementation
	4.1 Implementation on the FPGA Accelerator
	4.2 Host Part of the Implementation

	5 Results
	5.1 FPGA Design Properties
	5.2 Runtime Performance
	5.3 Energy Consumption

	6 Conclusion
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 50.20, 73.57 Width 250.15 Height 87.42 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 50.2032 73.5744 250.1506 87.4229

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 10
 0
 1

 1

 HistoryList_V1
 qi2base

