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Abstract

In this paper, we study the asymptotics of the equivariant analytic torsions for a
certain sequence of flat vector bundles over a compact locally symmetric space.
Our approach is combining the twisted trace formula with an explicit geometric
formula for the twisted orbital integrals. We show that the leading term of
asymptotic equivariant analytic torsion is given in terms of W-invariants with
oscillating coefficients.

Keywords: Equivariant analytic torsion; locally symmetric space; twisted
orbital integral.

Contents

1 Introduction 2

2 Twisted orbital integrals and locally symmetric spaces 7
2.1 Real reductive Lie group and symmetric space. . . . . . .. ... 7
2.2 Twisted conjugation . . . ... . ... ... L. 9
2.3 Casimir operator and heat kernel . . . . . . ... ... ... ... 10
2.4 Semisimple element . . . . ... ..o oo 11
2.5 An explicit formula for twisted orbital integrals . . . . . . .. .. 13
2.6 Compact locally symmetric space M with twisting action . ... 15

3 Equivariant real analytic torsion for locally symmetric space 18

3.1 The de Rham operator associated with a flat bundle . . . . . . . 18
3.2 Equivariant Ray-Singer real analytic torsionson M . . . . . . .. 19
3.3 A vanishing theorem on the equivariant analytic torsions . . . . . 21
4 The asymptotics of the equivariant real analytic torsion 24
4.1 The forms e;, d; and the W-invariant . . . . . . ... .. ... .. 25
4.2 A sequence of unitary representations of U? . . . . . . ... ... 28

Email address: bxliu@math.uni-koeln.de (Bingxiao LIU)



4.3 The nondegeneracy conditionon A\ . . . . . .. .. ... ... .. 34

4.4  Asymptotics of the elliptic twisted orbital integrals . . . . . . . . 36
4.5 A lower bound for the Hodge Laplacianon X . . . ... ... .. 41
4.6 A proof to Theorem 1.0.1 . . . . .. .. ... ... ... ..... 43

1. Introduction

The purpose of this paper is to study the leading terms in the asymptotic ex-
pansions of the equivariant Ray-Singer real analytic torsions for compact locally
symmetric spaces.

Let (M,g"™™) be a closed oriented Riemannian manifold, let (F, VF7/ AT
be a Hermitian flat vector bundle on M. Let D%2 be the de Rham-Hodge
Laplacian associated with the de Rham complex (Q*(M, F),d™-¥). The real
analytic torsion T (g7M, V¥ hF) is a (graded) spectral invariant of D2
introduced by Ray and Singer [RS71, RS73]. When dimg M is odd, it does not
depend on the choices of g7, h¥". The theorems of Cheeger [Che79] and Miiller
[Miil78] say that, for unitarily flat vector bundle F', this invariant coincides with
the Reidemeister torsion, a topological invariant defined via C'W complexes of
M. Using the Witten deformation, Bismut and Zhang [BZ91, BZ92] gave an
extension of the Cheeger-Miiller theorem for arbitrary flat vector bundles.

Let ¥ be a compact Lie group which acts on (F, VF*f) — M equivariantly.
Then ¥ acts on (Q*(M, F),d*F). In [LRI1], Lott and Rothenberg introduced
an equivariant version of Ray-Singer analytic torsion. If o € X, set

9y (g™, VIS B (5) = =T [NN (T M) M (DM F2)=5] (1.0.1)

Then 9, (gTM, VES hf)(s) extends to a meromorphic function of s € C, which
is holomorphic at 0. The o-equivariant Ray-Singer analytic torsion is defined as
100, (g™ vES pf
2 0s

To(g™ ,VE hF) = (0). (1.0.2)
If o = Idg, we just get the ordinary analytic torsion 7 (¢7™, VFf hf).

When ¥ is a finite group, in [Rot78], for a 3-CW complex of M, Rothenberg
constructed an equivariant version of the Reidemeister torsion. In [LR91|, when
F' is unitarily flat, an extension of the Cheeger-Miiller theorem was established
by comparing the equivariant Reidemeister torsion and Ray-Singer analytic tor-
sion. Then Bismut and Zhang [BZ94| generalized these results for arbitrary flat
vector bundles with an equivariant action of a compact Lie group. Also Bunke
[Bun99] showed that when F is unitarily flat, the equivariant analytic torsion
can be determined by counting the cells of a 3-CW decomposition of M, up to
a locally constant function on X.

Now, let G be a connected linear real reductive Lie group with compact
center, and let X = G/K be the associated symmetric space. Let I' be a
cocompact torsion-free discrete subgroup of G. In this paper, we work on the
compact locally symmetric space M = I'\ X equipped with a compact Lie group
action generated by suitable o € Aut(G). We will consider a certain sequence



of flat vector bundles Fy, d € N on M, and we evaluate the leading term in the
asymptotic expansion of T, (g7, VFef hFa) as d — 4o0.

Bergeron and Venkatesh [BV13] have considered the asymptotic behavior
of the Ray-Singer analytic torsion under a tower of finite coverings of M, and
then by Cheeger-Miiller theorem, they studied the asymptotic growth of the
torsions in homology. In [BL17], under finite coverings and acyclic base change,
Bergeron and Lipnowski studied the asymptotic equivariant analytic torsions
and then considered the growth of torsion cohomology under twisting action.

Miiller [Miill2] initiated the study of the analytic torsion for symmetric
powers of a given flat vector bundle on hyperbolic manifolds. Also Bismut-Ma-
Zhang |[BMZ11, BMZ17] and Miiller-Pfaff [MP13b, MP13a] studied the case
where one considers a sequence of flat vector bundles on M associated with
multiples of a given highest weight of an irreducible G-representation. Moreover,
Marshall-Miiller [MM13] and Miiller-Pfaff [MP14] applied the related results to
study the asymptotic growth of torsion cohomology for a family of local systems
on certain compact arithmetic manifolds.

Using methods of harmonic analysis, Ksenia Fedosova [Fed, Fed15] studied
the asymptotic analytic torsions for compact hyperbolic orbifolds for a sequence
of homogeneous flat vector bundles. Then in [Liu20], the author extended her
results to arbitrary compact locally symmetric orbifolds of noncompact type via
applying Bismut’s explicit formula [Bis11] for orbital integrals.

Here, we introduce an equivariant analog to the settings in [BMZ17, Section
8] and [MP13al, and we study the asymptotics of the equivariant Ray-Singer
analytic torsion for M. Let us give more details on the results of this paper.

Let 6 € Aut(G) be the Cartan involution, whose fixed point set is the max-
imal compact subgroup K of G. Let g, ¢ denote the Lie algebras of G, K
respectively. Then 6 acts on g and fixes £. Let p C g be the eigenspace of 6
associated with the eigenvalue —1. The Cartan decomposition of g is

g=pot (1.0.3)

Let B be a G- and #-invariant nondegenerate symmetric bilinear form on g,
which is positive on p and negative on £. When g is not semisimple, we do not
have a canonical choice of B such as the Killing form due to the nontrivial center
of g, but here we always fix one choice once and for all. Let U be compact form
of G with Lie algebra u = /—1p @€ Then U is a compact linear Lie group. We
extend the bilinear form B to u.

Let g7 be the Riemannian metric on X induced from Bl,. Then the group
G acts on X isometrically. Taking quotient by I', we get a compact locally
symmetric manifold (M = T'\ X, g7M). Set m = dimp = dim X = dim M.

Let 0 € Aut(G) be such that it commutes with 6 and preserves B and T.
Then it induces an isometry on X which descends to an isometry of M. Let
Y7 C Aut(@G) be the closure of the subgroup generated by o, which is a compact
Abelian subgroup. We assume that the action of o on u lifts to U. Set

GT=GxX, U =Uxx’, (1.0.4)



where x denotes the semi-direct product.
If o € 3, we define the o-twisted conjugation C? so that if h,vy € G,

Cy(h)y = hya(h™1). (1.0.5)

Let Z,(y) C G be the o-twisted centralizer of 7. Since o preserves I, let [T,
denote the set of o-twisted conjugacy classes in I'. If v € T is such that vyo
acting on X has fixed points, then we call [y], € [['], an elliptic class. In this
case, let X(vo) C X denote the fixed point set of yo, which is a symmetric
space associated with Z, (7).

Let (E, pP, h¥) be an irreducible unitary representation of U7, then it ex-
tends uniquely to a representation of G? via unitary trick. This way, (F =
G x E,hf") becomes a Hermitian vector bundle on X equipped with an G-
invariant flat connection V/. It descends to a flat bundle on M equipped with
an equivariant X%-action, so that T, (¢7™, V/ AT is well-defined.

In Theorem 3.3.2, we get several criteria to make T, (¢7™, VFf, hf") vanish.
In particular, we show that if £ is not irreducible as U-representation, then

To (g™ VI pE) = 0. (1.0.6)

This theorem extends some classical results on the usual analytic torsions such
as [MS91, Corollary 2.2], [Lot94, Proposition 9], [BL95, Theorem 3.26], [Bis11,
Section 7.9, [BMZ17, Theorem 8.6], etc.

As a consequence of (1.0.6), we only need to focus on the irreducible U°-
representations which are also irreducible when restricting to U. They corre-
spond exactly the essential representations considered in [BL17]. In the context
of [BMZ17, Section 8] and [MP13a], this condition means that we are concerned
with a o-fixed dominant weight A of U with respect to a suitable root system.

Let Ny be the flag manifold associated with A, on which U? acts holomor-
phically. This U?-action also lifts to the canonical line bundle Ly — Ny. The
rigorous construction is given in Subsection 4.2. Then for each d € N, U7 acts
on E; = HOO(N,, L{). This way, we get a canonical sequence of irreducible
unitary representations (Eg4, pd, h4) of U? such that each (Eg4, p¥?) is the ir-
reducible U-representation with highest weight d\. It defines a sequence of flat
vector bundles {Fy}qen over M on which X7 acts equivariantly.

For a nice spectral gap of the Hodge Laplacians, we also need to introduce
a nondegeneracy condition on A (Definition 4.1.2, Subsection 4.3). Equiva-
lently, \ is called nondegenerate if (Ey, pPt) is not isomorphic to (Ey, p¥t o 6)
as U-representations. On a given closed Riemannian manifold, the W-invariant
was introduced in [BMZ17]. Here, for a nondegenerate J, it is a universally con-
structed G-invariant section W* of A" (T* X) (see Subsection 4.1). It is expressed
in terms of the Duistermaat-Heckman integrals [DH82, DH83] associated with
Ly — Ny. Let [WA]™a% denote the coefficient of the (oriented) volume element
on X of norm 1 in W*. Since W? is G-invariant, [IW*]™2% here becomes a real
constant. Put ny = dimg Ny. A result of [BMZ17] is that when the fundamental
rank 6(G) =1, as d = +o0o, we have

AT (g™ T BF) =Nl 4 0. (107)



Then Vol(M)[WA]™2 is a topological invariant for M. Note that if §(G) # 1,
we have T (¢?™ VF+f pFi) = 0, and the connected linear simple Lie groups
with §(G) = 1 are completely classified (cf. [Bisll, Remark 7.9.2]).

As shown by the computations in [MP13b, MP13a], [BMZ17, Section §],
[Liu20, Subsections 7.3 & 7.4], given a concrete symmetric pair (G, K) with
§(G) = 1 and a nondegenerate A as above, the associated quantity [IW*]™%* can
be evaluated explicitly in terms of A\ and a root system of g. Then we can use
these W-invariants to describe other geometric objects for symmetric spaces.

We now present the main result of this paper, where the sequence {Fy}aen
is constructed as above. Our notation will be made explicitly in Subsection 4.6.
In particular, E}'™3% is a finite subset of elliptic classes in [[],, and J(y)™& is
a finite set determined by ~. Each WJ;O_ is a W-invariant for a symmetric space
X (yo) associated with a linear reductive Lie group of fundamental rank 1. The
complex numbers 7, ; are all of modulo 1.

Theorem 1.0.1. If EL™3 £ () there exists m(o) € N such that as d — +00,
d—m(a)*l’];(gTM’ de,f’ hFd)

= 3 VTAZON\XGo)( Y e W) + 0,
['Y]UeE;,max JET (y)max
(1.0.8)

where the constants r. j, go?Y can be explicitly computed in terms of \, o and
root data of u (Proposition 4.2.6).
If ELmax = () then there exists constant ¢ > 0, as d — +o0,

7:7(gTM7 VFaz,f7 hFd) - O(e_Cd). (109)

Let “M denote the fixed point set of ¢ in M. In Subsection 2.6, we show
that ? M can be identified with a disjoint union of I' N Z,(v)\ X (yo) associated
with each elliptic class [7], in [I'],. Therefore, (1.0.8) relates the asymptotic
o-equivariant analytic torsion of M to the W-invariants on “ M.

A difference from the result (1.0.7) of [BMZ17, Section 8] is that the coeffi-
cients of W, have oscillating factors ri’ ; as d varies. Moreover, if o is of finite
order Ny, then each 7, ; is a No-th root of unity (cf. Corollary 4.6.3).

Note that in the asymptotic analytic torsions for compact locally symmetric
orbifolds in [Fed15] and [Liu20], the oscillating coefficients also appear in the
evaluation of elliptic orbital integrals. Here in (1.0.8), they come from the o-
twisted orbital integrals associated with elliptic classes [y], € [I'],.

Now we explain our approach to Theorem 1.0.1. By (1.0.1) and Mellin

transform, we need to study the asymptotic behavior of
Trg[(NAT(T7M) %)O‘M exp(—tDM-F122)] ¢ > 0, (1.0.10)

where Try[-] denotes the supertrace with respect to the Zy-grading on A®(T*M).



At first, we apply the twisted Selberg’s trace formula to M = I'\X. For
Mo € [Ty, let Try DO [(NATTTX) 1) exp(—tDX¥+2 /2)] denote the associated
twisted orbital integral (Subsection 2.5). Then

Tr,[(NA T80 — oM exp(—tDM o2 2)]

= > Vol N Zy(y)\X (30)) Tr, D (VAT - ) exp(—D ¥ 2 2))
o€l
(1.0.11)

In [Liul8, Section 5|, using the Bismut’s theory of hypoelliptic Laplacian for
symmetric space, an explicit geometric formula was obtained for the twisted
orbital integrals appeared in the right-hand side of (1.0.11).

In the sum of (1.0.11), if [y], is elliptic with 6(Z,(7)?) # 1, then its con-
tribution is zero. For the case §(Z,(7)?) = 1, we can compute the leading
terms in the asymptotics of Tr77I[(NA*(T"X) _ ) exp(—tD*F+2 /2)], so that,
after Mellin transform, we obtain exactly an oscillating combination of some
W-invariants for the compact locally symmetric space I' N Z,(7)\X (yo). The
oscillating factor rﬁYlJ comes from the action of yo on L‘i — N, on the fixed
points. To get exactly the asymptotic expansion in (1.0.8), in Theorem 4.4.1, we
also obtain several important uniform estimate for the twisted orbital integrals
when ¢ > 0 is small and large.

The second step is to handle the contribution of the nonelliptic [y], € [T,
we use a spectral gap of D42 due to the nondegeneracy of \. By [BMZ11,
Théoréme 3.2|, [BMZ17, Theorem 4.4] which holds for a more general setting (cf.
also [MP13a, Proposition 7.5, Corollary 7.6] for a proof by using representation
theory), there exist constants C' > 0, ¢ > 0 such that for d € N,

DM-Fa2 > oq? — C. (1.0.12)

Then for d large enough, Fy is acyclic flat vector bundle on M. Combining
(1.0.12) with the fact that nonelliptic elements yo, v € T' admit a uniform
positive lower bound for their displacement distances on X (Proposition 2.6.3),
we prove that the contribution from nonelliptic classes of [I'], to (1.0.10) is
exponentially small as d — 400. As a consequence, we get (1.0.9).

This paper is organized as follows. In Section 2, we describe our setting
for the locally symmetric space with a twisting action of o, and we recall the
explicit formula for the twisted orbital integrals obtained in [Liul8, Section 5].

In Section 3, we consider the flat Hermitian vector bundle F' on M de-
fined from the unitary representations of U?, and we study the associated
To (g™ VS AT, In particular, we get a vanishing theorem for it.

Finally, in Section 4, for an irreducible U?-representation with a o-fixed
highest weight A\, we construct a canonical sequence of representations { Fg}qcn
of U?. This way, we get a sequence of flat vector bundles F; on M. We also
recall the nondegeneracy condition for A as in [BMZ17, Section 8]. At last, we
prove Theorem 1.0.1.



The results contained in this paper are mainly from the second part of the
author’s thesis [Liul8] and were announced in [Liul9]. Note that (1.0.8) is a
refinement of [Liul9, Theorem 4.5].

In the sequel, if V' is a real vector space and if E is a complex vector space,
we will denote by V ® E the complex vector space V @r E. We use the same
convention for the tensor products of vector bundles. If £ = ET @ E~ is a Zy-
graded vector space, if A € End(E) has the diagonal elements AT € End(E™),
A~ € End(E™), then the supertrace is defined as

Tr.P[A] = o7 [AT] - TvP (A7) (1.0.13)

If H is a Lie group, let H° denote the connected component of identity.
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2. Twisted orbital integrals and locally symmetric spaces

In this section, we consider the action of a certain compact subgroup X7 C
Aut(G) on the symmetric space X = G/K, and we recall an explicit ge-
ometric formula for twisted orbital integrals obtained in the author’s thesis
[Liul8, Liul9]. Then, given a cocompact torsion-free discrete subgroup I' C G
preserved by X7, we recall the twisted trace formula for M = T'\ X.

As in the introduction, we always consider (G, 6, B) to be a connected linear
real reductive Lie group with compact center. Set

m = dimp,n = dim¢. (2.0.1)
We also use the notation Ad(-), ad(-) for the adjoint actions of G, g respectively.

2.1. Real reductive Lie group and symmetric space

The bilinear form B induces a symmetric bilinear form B* on g*, which
extends to a bilinear form on A'(g*). The K-invariant bilinear form (-, ) =
—B(+,0-) is a scalar product on g, which extends to a scalar product on A (g*).
We will use | - | to denote the norm under this scalar product.



Let Ug be the universal enveloping algebra of g. Let C® € Ug be the
Casimir element associated with B, i.e., if {€;}i=1,... m+n i a basis of g, and if
{ef}i=1,.. m+n is the dual basis of g with respect to B, then

Co == e (2.1.1)

We can identify Ug with the algebra of left-invariant differential operators over
G, then C% is a second-order differential operator, which is Ad(G)-invariant.
Similarly, let C* denote the Casimir operator associated with (€, Bl).

Let i = /—1 denote one fixed square root of —1. Put

u=+-lpat (2.1.2)

If a € p, we use notation ia € v/—1p C u to denote the corresponding vector.
Then u is a (real) Lie algebra, which is called the compact form of g. Then
gc = uc. Let G be the complexification of G with Lie algebra gc. Then G is
the analytic subgroup of G¢ with Lie algebra g. Let U C G¢ be the analytic
subgroup associated with u. By [Kna86, Proposition 5.3], since G has compact
center, then U is a compact Lie group and a maximal compact subgroup of G¢.
Let Uu, Ugc be the enveloping algebras of u, g¢ respectively. Then Uge can
be identified with the left-invariant holomorphic differential operators on Ge.
Let C* be the Casimir operator of U associated with B, by (2.1.1), we have

C*'=C%*eUgnNnUuCUgc. (2.1.3)

Set
X =G/K. (2.1.4)

Then X is a smooth manifold, and it is diffeomorphism to p by the global Cartan
decomposition of G.
Let w9 € Q!(G, g) be the canonical left-invariant 1-form on G. Then by the
splitting (1.0.3), we write
wd = wP 4wt (2.1.5)

Let p : G — X denote the obvious projection. Then p is a K-principal
bundle over X. Then w® is a connection form of this principal bundle. The
associated curvature form

1 1
0f = dw* + §[wg,we] = —§[wp,wp]. (2.1.6)

Moreover, the adjoint action of K on p gives us exactly the tangent bundle
TX =G Xk p. (2.1.7)

The bilinear form B restricting to p defines a Riemannian metric g7, and
w® induces the associated Levi-Civita connection V7. Let d(-,-) denote the
Riemannian distance on X.



Let Aut(G) be the Lie group of automorphism of G [Hoc52, Theorem 2].
The semidirect product of G and Aut(G) is defined as

G x Aut(G) == {(g,0) | g € G, 6 € Aut(G)}, (2.1.8)

with the group multiplication:

(91, 81) - (92, 92) = (9161(92), P102). (2.1.9)

In the sequel, we will often write g¢ instead of (g, ¢) € G x Aut(G).
Definition 2.1.1. Put

Y:={¢ € Aut(G) : ¢0 = 0¢, ¢ preserves the bilinear form B}.  (2.1.10)

Then ¥ is a compact Lie subgroup of Aut(G). The action of ¥ on G preserves
K, and the induced action of ¥ on g preserves the splitting (1.0.3) and the
scalar product of g. Note that ¥ contains all the inner automorphisms defined
by elements in K. Moreover, G x X is a closed Lie subgroup of G x Aut(G).

Given o € ¥, the map g € G — 0(g) € G descends to a diffeomorphism
of X, which we also denote by o. By (2.1.7), (2.1.10), the derivative of o is
given by (g, f) — (c(g),0(f)) with g € G, f € p. This way, G x ¥ acts on X
isometrically and transitively, and we have the following identification,

X =(GxD)/(K «%). (2.1.11)

2.2. Twisted conjugation

In the sequel, we fix an element o € . If g, ¢’ € G, the o-twisted conjugation
of g on ¢’ is defined as follows,

Colg)g' = gd'o(g™!) € G. (2.2.1)

The map C,(g) is not always a Lie group automorphism except ¢ = Idg. But
Cy(-) defines a left action of G on itself.

If g € G, the stabilizer of C,-action at g is called o-twisted centralizer of g
in G, denoted by Z,(g). More precisely, we have

Zs(9) ={h € G| Cs(h)g=yg.} (22.2)

It is a closed Lie subgroup of G. Let 3,(g) C g denote the Lie algebra of Z,(g).
If o0 = Idg, then Z,(g) is just the centralizer Z(g) of g in G with Lie algebra
3(g9). The orbit under this C,-action containing g € G is called the o-twisted
conjugacy class of g in G.

Since we already fix the element o, we often use the word twisted instead of
o-twisted in the above terminologies.



2.8. Casimir operator and heat kernel

Let X7 be the closure of the subgroup of 3 generated by o, then it is a closed
Lie subgroup of 3. Set

G=GxX?, K=K xX°. (2.3.1)

Asin (2.1.11),
X =G /K. (2.3.2)

If k € K, then ko = (k,0) € K9, and its adjoint action on f € p is given by
Ad(ko)(f) = Ad(k)a(f) € p. (2.3.3)
Then, analog to (2.1.7), we have
TX =G xxa p. (2.3.4)
If pP : K — U(E, h”) is a finite dimensional representation, then set
F =G xga E. (2.3.5)

The metric h® defines a Hermitian metric h¥ on F. The action of X7 lifts to
F — X, where o-action is represented by (g,v) — (o(g), p¥(0)v), g € G,v € E.

If we restrict p¥ to K, we can view (E,h”) as a unitary representation of
K. Then the above vector bundle F' is equivalently defined as G xx E — X. It
is equipped with a unitary connection V¥ induced by w®.

Remark 2.3.1. An interesting question is what kind of representation of K can
be extended to a representation of K. For simplicity, we temporarily view o
just as an element in Aut(K). Let Irr(-) denote the set of equivalent classes
of irreducible (complex) representations of a compact Lie group. In [Liulg,
Subsection 2.4], when K is semisimple, there exists an automorphism 7 of K
with finite order which lies in the connected component of Aut(K) containing
o. Moreover, 7 acts on the set Py (K,T) of dominant weights of K for certain
root system. Set K™ = K x (7). Then we proved the following bijections

Irr (Z9N\Irr(K7) ~ Irr((7) )\Irr(K7) ~ (7)\ P4+ (K, T). (2.3.6)

We refer to the proof of Proposition 3.3.5 for understanding precisely the above
bijections, where K is replaced by U.

Let C*(G, E) denote the set of smooth map from G into E. If k € K,
s € C®(G, E), we define the dot-action of K by (k.s)(g) = p¥(k)s(gk). Let
C% (G, E) be the set of K-dot-invariant maps in C*°(G, E). Let C*(X,F)
denote the smooth sections of F' over X. Then

C™(X,F) = C2(G, E). (2.3.7)

Moreover, the left action of G° on F' — X induces an action of G” on C*°(X, F).
Also V¥ is invariant under this action of G7.
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The Casimir operator C? acting on C*(G, E) preserves C¥ (G, E), so it
induces an operator C%X acting on C*®(X,F). Let A¥X be the Bochner
Laplacian acting on C*°(X, F) given by VI, and let C*¥ € End(FE) be the
action of the Casimir C* on E via p¥. The element C*¥ induces an self-adjoint
section of End(F') over X. Then

COX — _AHX 4 OB, (2:3.8)

Let C*" € End(p), C%* € End(£) be the actions of C* on p, £ via the adjoint
actions. Given A € End(FE) commuting with K, we view it as a parallel section
of End(F) over X. Let dz denote the Riemannian volume element of (X, g7X).

Definition 2.3.2. Let Ef’F be the Bochner-like Laplacian acting on C*°(X, F)
given by

1 1 1
BF = 209X 4 TP [CYP] 4+ Tt [CHY + A 2.3.
Ly 20 +16r[C ]+28r[C |+ A (2.3.9)
If A =0, we denote this operator simply by £XF. For t > 0, z,2’ € X, let
piX(z,2") denote its heat kernel with respect to dz’.

Since C? is invariant under the adjoint action of G, the operator Eﬁ’F
commutes with G-action on C*°(X,F). Then p;(z,2’) lifts to a function
pX(g,9") on G x G valued in End(E) such that for ¢ € G, k, k' € K,

i (9"9:9"9') = pi (9.9),
pi* gk, g'K') = p" (k™ )pi* (9,97)p" (K), (2:3.10)
pi (0(9),0(9") = p" ()P (9.9")p" (07 1).

Let pX(-) be the smooth function on G valued in End(E) such that

P (9) = pi¥ (1, 9). (2.3.11)

In the sequel, we will often regard the heat kernel p;*(z,z’) and the function
p;X(g) as the same object.

2.4. Semisimple element

Recall that for v € G, yo € G? acts on X isometrically. The associated
displacement function d,, is the function on X defined as

dyo(z) = d(z,yo(x)) , z € X. (2.4.1)

Put m,, = infyex dyo(z) € R>g.

Since X has nonpositive sectional curvature, by [Ebe96, Chapter 1, Example
1.6.6], dy, is a continuous nonnegative convex function on X, and d%a is a
smooth convex function.

Definition 2.4.1. The element yo € G is called semisimple if d(x) reaches
its infimum m., in X. An element ~yo is called elliptic if it has fixed points in
X, which is always semisimple by definition. If yo is semisimple, put

X(yo)={z € X |dyo(x) =mye}. (2.4.2)
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A semisimple element o as above shares many similar properties as a
semisimple matrix in GL,,(R) or a semisimple element in a linear reductive Lie
group [Ebe96, Section 2.19]. A detailed discussion can be found in the [Liulg,
Section 1]. We recall some of the results in the sequel.

If v € G and if 7o is semisimple, then there exists g € G such that

v =gk to(g7 ), a€p k€ K,Ad(k™ )o(a) = a. (2.4.3)
An equivalent way to state the first identity in (2.4.3) is
vo = Cy(g9)(e®k Vo = gle®k1o)g™! € G°. (2.4.4)
Moreover, we get

Zs(7) = 9Z-(e"k g C G,

- * (2.4.5)
X(yo) =97 X(ek™0) C X, Myy = Meag-1, = |al.

Therefore, we may and we will focus on a semisimple element yo such that
y=e"kHacp ke K Ad(k " o(a) = a. (2.4.6)

Let Z(a) C G be the centralizer of a under the adjoint action of G. Let
3(a) be its Lie algebra. Similar to the Jordan decomposition properties of a
semisimple matrix, we have the following identities [Liul8, Proposition 1.3.5],

Zo(y) = Z(e) N Z,(k7Y), Z(e*) = Z(a). (2.4.7)
Correspondingly, we have

30(7) = 3(e") N3 (k71), 3(e") = 3(a). (2.4.8)

The Cartan involution @ preserves Z, (), Z(e%) and Z,(k~1), so that the cor-
responding Cartan decompositions of their Lie algebras hold true as in (1.0.3).
In particular, by [Kna02, Proposition 7.25], Z, () is reductive.

Set

Ko(v) = Zs(v) N K. (2.4.9)

Moreover, K, () is a maximal compact subgroup of Z, (), which meets every
connected components of Z, (7).
Let €,(v) C 35(7) be the Lie algebra of K, (). Then

t(7) =s.(v)NE (2.4.10)
Put
po(7) =30(7) Np. (2.4.11)
Then the Cartan decomposition of 3(-y) with respect to 8 is given by
30(7) = € (7) ®po(v). (2.4.12)
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Moreover, the bilinear form B|; (. is positive on p, (), and negative on £, ().
The splitting in (2.4.12) is orthogonal with respect to B.

The minimizing set X (o) is a totally geodesic submanifold of X, which is
again a symmetric space. More precisely, by [Liul8, Lemma 1.4.6, Theorem
1.4.7], Z,(7y) and its identity component Z, () act on X (yo) transitively, and
we have the following identifications,

X(0) = Zo(7)/ Ko (7) = Zo(7)° /Ko (7)°. (2.4.13)

Under the identification X ~ p via the global geodesic coordinate, we have
X(yo) ~po(7)-

2.5. An explicit formula for twisted orbital integrals

In this subsection, we give an explicit geometric formula for twisted orbital
integral Trl[exp(—t£X)] for pX associated with a semisimple yo. We still
assume that v € G is given by (2.4.6).

Let dg be the left-invariant Haar measure on G induced by (g, (-,-)). Since
G is unimodular, then dg is also right-invariant. Let dk be the Haar measure
on K induced by —Bl|g, then

dg = dzdk. (2.5.1)

Let dy be the Riemannian volume element of X (yo), and let dz be the bi-
invariant (positive) Haar measure on Z,(v) induced by B|;_ (). Let dks(v) be
the Haar measure on K, () such that

dz = dydk, (7). (2.5.2)
Let Vol(K,(7)\K) be the volume of K, (v)\K with respect to dk, dk,(y). Then

Vol(Ko(7)\K) = \% (2.5.3)

Let dv be the G-right-invariant measure on Z,(vy)\G such that

dg = dzdv. (2.5.4)

For ¢ > 0, the twisted orbital integral Tr(7] [exp(—tﬁi(’F)] is defined as

D fexp( X FY = L E1pE (0)pX (v yo (v))]dv
T fexp )] = G Ry o O 0 >(>1d |
2.5.5

By [Liul8, Propositions 4.2.1 & 4.4.1], the integral in (2.5.5) is well-defined. As
indicated by the notation, it only depends on the conjugacy class [yo] of yo
in G?, and then it only depends on the o-twisted conjugacy class of v in G.
This kind of integrals play an important role in base change theory, we refer to
[Lan80, Clo84, AC89, BL17] for more details.

In [Liul8, Subsection 4.2] [Liul9, Definition 2.1|, a geometric formula for
Trlvel [exp(—t/jﬁ’F)} is established. We explain it as follows. Let Nx (o) x be
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the orthogonal normal bundle of X (yo) in X, and let \V- X(v0)/x denote its total
space. Then Nx (o) x ~ X via the normal geodesics. For z € X(yo), let df
be the Euclidean volume element on Nx(y¢)/x,.- Then there exists a positive
function 7(f) on Nx(yo)/x,2 such that dv = r(f)dydf. We have

Telexp(—tL ")) = /N T [p7* (exp, (£), vo exp, (f))yolr(f)df,
X(vo)/ X,z

(2.5.6)
where the right-hand side of (2.5.6) does not depend on the choice of z € X (y0).
An explicit formula for Ty [exp(ftﬁi(’F)} was obtained in [Liul8, Theorem
5.2.1] [Liul9, Theorem 3.3] via the theory of hypoelliptic Laplacian developed by
Bismut, which generalizes Bismut’s formula for orbital integrals [Bis11, Theorem
6.1.1]. We now recall this formula.
To save the notation length, put

30 =3(a), po=kerad(a) Np, € =kerad(a)Nt. (2.5.7)

Let 33‘, pd‘, Eé‘ be the orthogonal subspaces to 39, po, & in g, p, ¥ with respect
to B. Then
30 ="ho @b, 30 =py DEy. (2.5.8)
By (2.4.8),
30(7) =30 N30 (k). (2.5.9)

Also p, (), €5 () are subspaces of po, €y respectively. Let 3?;70(7), pjjo('y), Eio('y)
be the orthogonal spaces to 35(7), po(7), t-(7) in 30, po, to. Then

350(7) = pr0(7) & t50(7)- (2.5.10)

Also the action ad(a) gives an isomorphism between pg and E(J)-.

For y € £,(7), ad(y) preserves po(7), € (7),px0(7), to(7), and it is an an-

tisymmetric endomorphism with respect to the scalar product.

Recall that the function A\(:v) = ﬁ% Let H be a finite-dimensional
B/2
Hermitian vector space. If B € End(H) is self-adjoint, then s1nh(/B/2) is a
self-adjoint positive endomorphism. Put
~ B/2
A(B) =det V2| ———|. 2.5.11
(B) = det | Soh(B/2) (25.11)

In (2.5.11), the square root is taken to be the positive square root.
If y € ¢,(7), the following function A(y) has a natural square root that is
analytic in y € €,(v),

1 det(1 — exp(—iad(y))Ad(k~'0))[ex ()

AW = g = Ad(k0))[;2 ) det(l — exp(—iad(y))Ad(k~10))

|Pi‘,0(’Y)'
(2.5.12)
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Its square root is denoted by

1 det(1 — exp(—iad(y)Ad(k:’la))|Ei0(,y) 1/2
det(1 — Ad(k~10))l;1 (4 " det(1— exp(—iad(y)Ad(k~1))[, (4 ’
(2.5.13)
The value of (2.5.13) at y = 0 is taken to be such that
L (2.5.14)

det(l — Ad(k_l)o-)lplo('y) '

We recall an important function defined in [Liul8, Definition 5.1.2] [Liul9,
Definition 3.2]

Definition 2.5.1. Let J,(y) be the analytic function of y € €,(v) given by

~

_ 1 A(iad(y)lp, ()
e W) = et = Ad 72 70
| det( (Yo, [V2 Aiad(y)le, ()
1 det(1 — exp(—iad(y))Ad(kilo))|Ei0(y) 1/2
det(1 — Ad(k_la))|3:0(7) det(1 — exp(—iad(y))Ad(k;_la))|pio(v)
(2.5.15)
By (2.5.1), there exists Cy, > 0, ¢y > 0 such that if y € £,(v),
[ Tyo ()] < Croer ], (2.5.16)

Put p = dimp,(7y), ¢ = dim€,(y). Then r = dimj,(v) = p + ¢. By [Liuls,
Theorem 5.2.1] [Liul9, Theorem 3.3], for ¢t > 0, we have

Tl fexp(—t£5F)]

1 E[ E(7.—1 . E —y|?/2t dy
:@ﬂ)p/?/eam o )T [p" (ko) exp(—ip®(y) —t)]e” M o,
(2.5.17)

Remark 2.5.2. In [BL17], under suitable conditions in base change setting (then
o is of finite order), Bergeron and Lipnowski managed to express certain twisted
orbital integrals in terms of ordinary orbital integrals, where they can make use
of Harish-Chandra’s theory to compute them.

2.6. Compact locally symmetric space M with twisting action

Let T" be a cocompact torsion-free discrete subgroup of G, which is preserved
by o. Even we do not require o to be of finite order, the group X7 descends to
a finite Abelian subgroup of Aut(T"). Also note that in many interesting cases
such as the base change setting, or for G simple, ¢ will be of finite order.

By [Sel60, Lemmas 1,2], we have the following results.
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Lemma 2.6.1. If T" is a cocompact discrete subgroup of G, if v € I, then it
is semisimple in G, and T'N Z(7) is a cocompact discrete subgroup of Z (7).
Generally, if v € T, then vo € G is also semisimple, and T' N Z,(v) is a
cocompact discrete subgroup of Z, (7).

Definition 2.6.2. We denote by [I'], the set of o-twisted conjugacy classes in T'.
If v € T, let [y], be the o-twisted conjugacy class of  in T'. If vo is elliptic, we
say that [y], is an elliptic class.

Let E, be the set of elliptic classes in [I'],. By [Liul8, Lemma 1.8.3], E, is
a finite set. Note that m,, € R>¢ only depends on the class [7], of v € T'. Set

cro =inf{m, | [7]o € T]o\Es} > 0. (2.6.1)

Proposition 2.6.3. We have
cre > 0. (2.6.2)

Proof. Suppose that we have a sequence of [y;]s € [[|s\Es, ¢ € N such that
My,o — 0 as i — +o0o. Let V C G be the compact connected fundamental
domain for the quotient I'\G. Then for each class [7y;],, there exists v, € [v;]o,
x; € p(V) such that

A1 (Ti) = M0 (2.6.3)

Since V' is compact, we may and we will assume that {x;};en is a convergent
sequence with limit = € p(V'). Then
d(x,yi0(x)) < d(x, ;) + d(zi, vio (2:)) + d(vio (i), vio(z)). (2.6.4)
By the assumption, there exists 79 € N such that if ¢ > i, then

d(z,~io(x)) < 1/2. (2.6.5)

Since T' is discrete, there exists only finite number of 7} such that (2.6.5)
holds. This contradicts the assumption that m.,, — 0 as i — 400, which
completes our proof. O

Since T' is torsion-free, a modification of the arguments in the proof of
[MP13b, Proposition 3.2] shows the following lemma. Note that it is also a
special case of [MM15, Eq.(3.19)].

Lemma 2.6.4. There exist ¢ > 0, C > 0 such that for R > 0, x € X, we have
#{v €T | yo non-elliptic,d,,(x) < R} < Cexp(cR). (2.6.6)

Put M =T\X =T\G/K. The tangent vector bundle TX descends to the
tangent vector bundle TM of M. Since I'-action is isometric, g7¥ induces a
Riemannian metric g”™ on TM. Then M is a compact locally symmetric Rie-
mannian manifold. Moreover, the Hermitian bundle (F, V', hf") on X defined
in Subsection 2.3 descends to a Hermitian vector bundle on M, which we still
denote by the same notation.
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Since o preserves I', then X7 acts on M isometrically, and this action lifts to
Hermitian bundle F on M. We will use ¢ denote the action of o on F' — M.

If g € G, we denote by [g]x = pg (resp. [g]ar) the corresponding point in X
(resp. M). If A C X, we denote by [A]psr C M the image of A C X under the
quotient projection X — M.

Let M C M be the fixed point set of o in M. The following result is proved
in [Liul8, Lemma 1.8.7].

Lemma 2.6.5. If v1,v2 € T' are o-twisted conjugate in T, then
[(X(m0)]lm = [X(120)]m C M. (2.6.7)

If g € G, then [g]ar € “M if and only if there is v € T such that yo is elliptic
and that [g]x € X(yo) C X. If [1ls, [2le € Ex are distinct classes, then

(X (v10)]ar N [X (y20)]as = 0. (2.6.8)
By Lemma 2.6.5, we get that
"M =Up),ep, [X(70)]m- (2.6.9)

Moreover, the right-hand side in (2.6.9) is a finite disjoint union.

By Lemma 2.6.1, T' N Z,(v) is a cocompact discrete subgroup of Z, (7).
Moreover, since I' is torsion-free, so is I' N Z, (), and I' N Z,(y)\X (yo) is a
compact locally symmetric manifold.

Take [y]o € E,, let v € T' be one representative of [y],. If v € X(vyo), if
o € I"is such that yoz € X (y0), then 79 € Z,(y). Thus the projection X — M
induces an identification between I' N Z, (v)\ X (yo) and [X (yo)]p C M. Then
(2.6.9) can be rewritten as

"M = U, e, TN Zs(y)\X (v0). (2.6.10)

Let C°°(M, F) be the vector space of smooth sections of F' on M, and let
C>(X, F)' be the subspace of C°°(X, F) of [-invariant sections over X. Then
we have a canonical identification

C>®(M,F)=C>®(X,F)". (2.6.11)
By (2.3.7), (2.6.11), we get
C>®(M,F)=C¥(G,E)". (2.6.12)

Recall that the Bochner-like Laplacian Cf’F is defined by (2.3.9). Since it
commutes with G7, then it descends to a Bochner-like Laplacian E%’F acting
on C*°(M, F) and commuting with £°.

For t > 0, let pM(2,2), 2,2’ € M be the heat kernel of E%’F with respect

to the Riemannian volume element dz’. If z, 2’ are identified with their lifts in
X, then

pM(z,2) = Z X (v 1z, ) = Zth (z,72')y. (2.6.13)
yel yel
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Theorem 2.6.6 (Twisted trace formula). Fort > 0, we have

Trlo™ exp(—tLY ") = Y Vol(T' N Zy (1)\X (v0)) Tl [exp(—tLy 7).
el (2.6.14)

Here the convergences of the integrals and infinite sums are already guaran-
teed by the results in [Bisll, Chapters 2 & 4] and in [Shel8, Section 4D]. The
proof to this formula can be found in many literature on base change theory,
one can also find a detailed proof in [Liul8, Subsection 4.5].

3. Equivariant real analytic torsion for locally symmetric space

In this section, we explain how to make use of (2.5.17) and the twisted trace
formula (2.6.14) to study the equivariant Ray-Singer analytic torsions of M.

We extend o-action to gc as a complex linear automorphism of g¢, which
preserves Lie subalgebra u. We also assume that o-action on u extends to an
automorphism of U, this way, it acts on G¢ bi-holomorphically. Set

U’ =U x%°. (3.0.1)

3.1. The de Rham operator associated with a flat bundle

In the sequel, we take (E,p” h%) to be a unitary representation of U°?.
By Weyl’s unitary trick, every irreducible unitary representation of U’ extends
uniquely to an irreducible representation of G°. We use the same notation p¥
for the restrictions of this representation to G, to K and to K°. By (2.1.3),

c*E = 0%F ¢ End(E). (3.1.1)

As in Subsection 2.3, put F = G x g E. Let V¥ be the Hermitian connection
induced by the connection form w®. Then the map (g,v) € G xx E — p¥(g)v €
FE gives a canonical identification of vector bundles on X,

GxgE=XxE. (3.1.2)
Then F is equipped with a canonical flat connection V/ so that
VIS = VF 4 pB(wP). (3.1.3)

Since G has compact center, (F, h¥, VF>/) is a unimodular flat vector bundle.

Let (Q2(X, F),d*T) be the (compactly supported) de Rham complex asso-
ciated with (F, V). Let d**F* be the adjoint operator of dX-¥" with respect
to the Ly-metric on Q2(X, F). The Dirac operator DX is

D = g%t 4 g, (3.1.4)
The Clifford algebras ¢(TX), ¢(TX) of (T X, g7¥) act on A*(T*X). We still

use e, -+, €, to denote an orthonormal basis of p or T X.
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Let VAT(T"X)®Fu he the unitary connection on A*(T*X) ® F induced by
VTX and VF. Then the standard Dirac operator is given by

DXF _ Zc(ej)vé\j’(T*X)@’Fvu. (3.1.5)
=1

By [BMZ17, Eq.(8.42)], we have

DX = DX N " 2e;)p" (e)). (3.1.6)
j=1
In the same time, C'9 descends to an elliptic differential operator C%X acting
on C®(X,A*(T*X) ® F). Let x% € A3(g*) be such that if a,b,c € g,
k%(a,b,c) = B([a,b],c). (3.1.7)

Then «? is a G%-invariant closed 3-form on . The bilinear form B induces a
corresponding bilinear form B* on A®*(g*). By [Bisll, Eq.(2.6.11)], we have

1 1
B (1%, 1%) = STHP[CH) + SO, (3.1.8)

Let £5F be the operator in Definition 2.3.2 but associated with the repre-
sentation A®(p*) ® E. By [BMZ17, Proposition 8.4] and (3.1.8), we have

DX,F,Q 1 1
5 = ,CX’F — §CQ7E — gB*(K}g,KZg),
, ) (3.1.9)
= -C%¥ — _C%~.
2 2

3.2. Equivariant Ray-Singer real analytic torsions on M

Let T" be a cocompact torsion-free discrete subgroup of G preserved by o. Let
M =T\X be the compact locally symmetric manifold considered in Subsection
2.6. The flat vector bundle F' defined in last subsection descends to a flat vector
bundle on M, which we still denote by F' on which 37 acts equivariantly.
Note that since X is contractible, then

m (M) =T. (3.2.1)

When restricting the representation p¥ to I', we associate it with a flat vector
bundle (or a local system) I'\(X x E) on M. By (3.1.2), this is an equivalent
way to define (F, V7).

The de Rham-Dirac operator D*¥" in (3.1.4) descends to the corresponding
Dirac operator D*-¥" on M, so that

DM,F _ dM,F + dMaFv*' (322)
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Then D¥ commutes with 7. Let H3z (M, F) be the de Rham cohomology
group of (Q*(M, F),d-F). By Hodge theory,

ker DM-¥' ~ H3. (M, F). (3.2.3)

Let NA*(T"M) denote the number operator on Q°*(M, F), i.e. multiplication
by the degrees of forms. Let (D:#2)~! be the inverse of DM:#2 acting on the
orthogonal space of ker DM in Q®*(M, F).

Definition 3.2.1. For s € C, Re(s) big enough, set
0y (g™, VI hF)(s) = —Trg[NA (T M) M (DMF2)=5] (3.2.4)

By standard heat equation methods [See67], ¥, (g7™, VFF hF)(s) extends
to a meromorphic function of s € C, which is holomorphic near s = 0.
Definition 3.2.2. Put
laﬁg(gTM, VF’f, hF) (0)
2 ds '
The quantity in (3.2.5) is called the equivariant Ray-Singer real analytic torsion.

We now explain a method to compute 7, (g”™, VF/ hF) by Mellin trans-
form. For ¢ > 0, as in [BL08, Eq.(1.8.5)], put

To(g™, V5 B = (3.2.5)

be(F, ) = %(1 + Qt%)Trs[(NA.(T*M) - %)UM exp(—tDMF2/4)]. (3.2.6)

Put
Yo(M,F) = Z(fl)jTngi‘R,(MfF) o],
0 (3.2.7)
X (M, F) = (1) jTr an M) g,
J=0
By [BL08, Egs.(1.8.7),(1.8.8)], we have
t 4
by(F, hF) = (19<)[) " ast =0, (3.2.8)
IXL(M,F) — 2x,(M,F)+ O(1//t) ast— +oo,
where O(+) is the big-O convention.
Set
F 1 ! m
boo(F7h ):§XJ(M7F)_ZXJ(M7F) (329)
Let T'(s) be the Gamma function. By [BL08, Eq.(1.8.11)], we have
! dt [t dt
Tolg™ ) = [t [ b m )G
0 1
—(T’(1) + 2(log 2 — 1))buo (F, h").
(3.2.10)
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8.8. A vanishing theorem on the equivariant analytic torsions
Let T be a maximal torus of K with Lie algebra t, put

b={fep: [f =0} (3.3.1)

Put hh = b&t, then b is a Cartan subalgebra of g. Let H be analytic subgroup
of G associated with b, then it is also a Cartan subgroup of G. Moreover, dim t
is just the complex rank of K, and dim b is the complex rank of G.

Definition 3.3.1. Using the above notations, the deficiency of G, or the funda-
mental rank of G is defined as

5<G) = I‘kcG — I‘k([jK = dimR b. (332)

The integer m — 6(G) is even.

We assume at first that yo is a semisimple element given by (2.4.6), i.e.,
y=e%k"t acyp, ke K, Ad(k Y)o(a) = a. (3.3.3)

Let S be a maximal torus of K, (v)? with Lie algebra s C £,(7). Set

bo(7) = {f € po(k™") | [f,5] = O}. (3.3.4)
Then
a € by(y), dimgb,(7) > 0(Zs(7)"). (3.3.5)
In general, for v € T, if v is C,-conjugate to e®k~! as in (3.3.3), put
e(yo) = dim b, (k1. (3.3.6)
Note that
e(vo) > 6(Z-(7)°). (3.3.7)

In particular, if yo is elliptic, then e(yo) = 6(Z,(7)?); if yo is non-elliptic, then

e(yo) > 6(Z,(7)°) > 1. The integer £(yo) depends only on the class [y], € [[],.
We now state a vanishing theorem on 7, (g™™,VF/ hF) as follows. For

simplicity, we assume that the representation (E, p¥, h¥) of U is irreducible.

Theorem 3.3.2. If one of the following four assumptions is verified:
(i) m is even and o preserves the orientation of p;

(i) m is odd and o does not preserve the orientation of p;

(i) (B, p¥) is irreducible as U° -representation, but not irreducible when re-
stricting to U;

(iv) For v €T, e(yo) # 1, or §(Z,(7)°) # 1;
then we have
To(g™™ VEF BF) =0 (3.3.8)

Before proving the above theorem, we need to do some computations on the
twisted orbital integrals in order to evaluate the right-hand side of (3.2.6).
Let NA*(®07) NA*(T"X) be the number operators on A®(p*), A®(T*X).
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Proposition 3.3.3. Assume v is given by (3.3.3). Fort >0, we have

Tr, ! {(NA'(T*X) - %) exp(—tDX’F’Q/Q)}

exXpl—|a 2
= W exp(Z*STrE[C’E’E] + %GTYP [C5P)) / Jyo (y)

t() (3.3.9)
Tp AT GT)0E [(NA.(*’*) B %)pA-(p*)®E(k—10)
. A% (p)RE t 9,.F 2 dy

If m is even and o acting on p preserves the orientation, or m is odd and o does
not preserve the orientation of p, or if dimb,(y) > 2, then (3.3.9) vanishes.

Proof. The identity (3.3.9) follows from (2.5.17), (3.1.9).

Inside the integrand in (3.3.9), the supertrace term splits as the product
of the supertrace on A®(p*) and the trace on E. By a direct computation on
matrix, we get that under the conditions listed in our proposition, for y € ¢, (v),

LIS ®  x m o x . o x
Tr A )[(NA (") 5)[)[\ ®) (ko) exp(—iph"® )(y))} =0. (3.3.10)

This way, we complete the proof to our proposition. O

Corollary 3.3.4. If v = k™! € K, i.e., yo is elliptic, and if dimb,(y) = 0,
then fort > 0,

T, Do [(NA (T X) %) exp(—tD*F2/2)] = 0. (3.3.11)

Proof. Note that when v = k~! € K, b, () @5 is a Cartan subalgebra of 3, (7).
If dim b, (y) = 0, then dim p, (7y) is even. If o preserves the orientation of p, then
dim pt(7) is even. If o does not preserves the orientation of p, then dim p(7)
is odd. By Proposition 3.3.3, we get (3.3.11). O

Recall that Irr(-) denotes the set of equivalent classes of irreducible (complex)
representations of a compact Lie group.

Proposition 3.3.5. If (E,p%) € Irr(U°) and if the restriction of (E,p¥) to U
is not irreducible, then for k € U, we have

Te¥[pE (0)pP (k)] = 0. (3.3.12)
Moreover, in this case, if v € G is such that vyo is semisimple, then fort > 0,

T, D [(NAT (T X) %) exp(—tD¥F2/2)] = 0. (3.3.13)
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Proof. We firstly assume that U is semisimple. Let Inn(U) denote the inner
automorphism group of U. The outer automorphism group of U is

Ouwt(U) = Aut(U)/Inn(U). (3.3.14)

By fixing a maximal torus Ty of U and a positive root system RT, Out(U) can
be realized as a finite subgroup of Aut(U) whose elements preserve Ty and R™
[Bou04, Chapter VIII, §4.4 and Chapter IX, §4.10]. Moreover,

Aut(U) = Inn(U) x Out(U). (3.3.15)
Take ko € U, 7 € Out(U) such that for k € U,
o(k) = kot (k)ky . (3.3.16)

Let U™ be the subgroup of U x Out(U) generated by U and 7. We claim that
there exists ¢, € C such that if set

pP(7) = crpP (kg PP (0), ™' (k) = p”(k), (3.3.17)

then (E, pP+') is an irreducible representation of UT. Note that such number c,
is not unique, it depends on the order of 7 and the choice of k.
Indeed, set
A= pP(kghp¥ (o) € End(E). (3.3.18)

Let Ng > 1 be the order of 7 in Out(U). Set

k = kot (ko) - - 70" (ko) € U. (3.3.19)
Then R R R
o(k) =k e U, o™ = Ad(k) € Inn(U). (3.3.20)
Also we have N
ANo = pE(E=1) pE (o N0). (3.3.21)

We can verify directly that Ao commutes with U?. Since (E, p¥) is irreducible
as U“-representation, then ANo is a non-zero scalar endomorphism of E, then
we take ¢, € C such that cNoANo = Idp.

We define pP as in (3.3.17). Then for k € U,

PP (7)™ (k)™ (r7h) = pP (7 (k). (3.3.22)

Therefore, (E, pP') become an irreducible representation of UT.
For proving (3.3.12), it is enough to prove that for k£ € U, one has

TeE [pB (1) pB (k)] = 0. (3.3.23)

Let P, be the dominant weights for the pair (U, Ty) with respect to RT.
Then 7 acts on Pri. If A € Piy, let V) € Irr(U) denote the one with the
highest weight .
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Now we take a dominant weight A\ € P, , such that Vi embeds into (E, p¥) as
a U-subrepresentation. Let {7%(\) ;_1;01 C Py be the orbit of A under the action
of 7. Note that d > 1 is the length of the orbit and d| Ny. By the description
of all the irreducible representations of non-connected compact Lie groups in
[DKO0O, Corollary 4.13.2 and Proposition 4.13.3], we get that the representation
(E, pP') restricting on U is of the form

DG Vii(ny- (3.3.24)

Moreover, the action p¥/(7) on E sends the component Vi 10 Viieaony.

If (E, pP) restricting to U is not irreducible, then d > 2, and (3.3.23) holds,
so does (3.3.12). The identity (3.3.13) follows from (3.3.9) and (3.3.12).

If U is not semisimple, let Zf; be the identity component of the center of
U, and let Ug be the analytic subgroup of U associated with the semisimple
subalgebra uss = [u,u]. Then ZJ; x Uy is a finite cover of U. Note that ZJ is a
torus, the action of ¢ on it is of finite order. Then if we proceed as in the above
for Us, we can still apply [DK00, Corollary 4.13.2 and Proposition 4.13.3] to
get (3.3.12). This completes the proof of our proposition. O

Proof to Theorem 3.3.2. If m and o verify either of the first two cases in our
theorem, then by (2.6.14) and Proposition 3.3.3, for ¢ > 0,

Tr [(NA (T°2) — %)UZ exp(—tDZF2/4)] = 0. (3.3.25)

By (3.2.6), (3.3.25), the function b;(F, g¥") vanishes identically. In particular,
boo (F, ") = 0. (3.3.26)

Then by (3.2.10), we get (3.3.8).

If (E,p¥) € Irr(U?) is not irreducible when restricting to U, then by Propo-
sition 3.3.5, we get that (3.3.25), (3.3.26) still hold. Then (3.3.8) follows.

If v € T is such that yo is nonelliptic, then e(yo) > 1. If the fourth assump-
tion is verified, then by Theorem 3.3.3, Corollary 3.3.4, the identity (3.3.25) still
holds, which implies (3.3.8). This completes the proof to our theorem. O

4. The asymptotics of the equivariant real analytic torsion

In this section, we compute the asymptotics of the equivariant Ray-Singer
analytic torsions associated with a certain sequence of flat vector bundles on a
compact locally symmetric space M = I'\ X. We extend the results of [MP13a],
[BMZ17, Section 8] to the equivariant setting.

This section is organized as follows. In Subsection 4.1, we recall the con-
struction of the W-invariant on X = G/K under a nondegeneracy condition.
This construction will be applied to X (y0) = Z,(7)°/K,(7)? with v € K.

In Subsection 4.2, for an irreducible U?-representation with a o-fixed highest
weight A\, we construct a canonical sequence of representations Ey, d € N of U”.
This way, we get a sequence of flat vector bundles F; on X or M.
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In Subsection 4.3, we show that the nondegeneracy condition of A for G
implies the nondegeneracy condition of A for Z,(v)? with v € K.

In Subsection 4.4, when v € K and dimb,(v) = 1, for ¢t > 0, we compute
the asymptotics as d — 400 of Try"! [(NA'(T*X) — 1) exp(—tD* 22 /24%)].

In Subsection 4.5, we recall some results on the spectral gap of Hodge Lapla-
cian obtained in [BMZ17, Section 4] under the nondegeneracy condition.

Finally, in Subsection 4.6, we give a proof to Theorem 1.0.1.

4.1. The forms es, di and the W -invariant

Let Sg be the symmetric algebra of g, which can be identified with the alge-
bra of real differential operators with constant coefficients on g. By Poincaré-
Birkhoff-Witt theorem, let o : Ug — Sg be the symbol map of Ug, which is an
isomorphism of vector spaces. Let p be another copy of p. Together with the
symbol map of Clifford algebras, we get a symbol map

o:¢(p)@Ug— A*(p*) ® Sg, (4.1.1)
which is an identification of filtered Zs-graded vector spaces.
Let e1, - -+, e, be an orthonormal basis of p, then €3, ---, €, is a basis of
p, and let €', ---, €™ be the corresponding dual basis of p*. Put
B=> @e;cp ®g. (4.1.2)

i=1

By [BMZ17, Eq.(1.8)], 8% € A?(p*) @ £ is given by
, 1 1,
B = 5[5)6] = 56 € [61‘,6]‘]. (413)

Let f8 be the corresponding element of 8 in A®(p*)®Ug. Then gz e AN (pH)®
Ug coincides with 32 in (4.1.3). Let AP be the Laplacian of Euclidean vector
space p. Set

m p

B = e} =AP e Sg, B> = p@)* €Uy (4.1.4)
=1 =1

By [BMZ17, Eqgs.(1.10), (1.14)], we have

|B|2 € S%gn S?u, |ﬁ\2 = —|zﬂ|2 € S%gc,

415
81> € Ugn U, B> = —[if|* € Ugc. (4-1.5)
Then
o(181*) = [B[*. (4.1.6)
Set .
aB) =Y e@)p@) €ep) @ Ug. (4.1.7)

i=1
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Then we have
o(c(p)) =B (4.1.8)

Let g, be a copy of the vector bundle G X g g on X but equipped with the
Lie bracket on the fibre. Similarly, put

Ug, =G xg Ug, Sg, =G xg Sg. (4.1.9)

Let TX (resp. 1{*7() be another copies of TX (resp. T*X) on X. Recall
that VTX is the Levi-Civita connection of TX. Let V9% be the connections on
T*X ®g, induced by the connection form w®, and let VV9% be the connections
on T*X ® Ug, induced by wt. We still denote by VY8 the corresponding
connection on ¢(TX) ® Ug,.

Then w® can be considered as a section of T*X ® g,, and 3, S8 can be

considered as a section of T*X R gr, T*X ® Ug, respectively. By [BMZ17,
Eq.(1.41)], we have

Verig =0, VU918 = 0. (4.1.10)
Definition 4.1.1. For t > 0, let A; be the superconnection
Ay = VU 4 VER(B). (4.1.11)

By [BMZ17, Def. 1.2|, A? is a smooth section of [A‘(T*X)@E(ﬁ)]eve“ ®
Ug,, so that o(A?) is a smooth section of [A®(T*X)®A®(T*X)]*V*" @ Sg,.
If u,v € A*(p*) or A*(p*), a,b € &, we define

(p@a,v@b) =pAvia,b). (4.1.12)

By [BMZ17, Theorem 1.3 & Eq.(8.70)], we have
1
(A7) = =5 (P2, B) — wh? 4 2| + 1. (4.1.13)

Let N be a compact complex manifold, and let Y be a smooth real closed
nondegenerate (1, 1)-form on N. We assume that U acts holomorphically on N
and preserves the form ™. Let p : N — u* be the moment map associated
with the action of U and n™.

If y € u, set

R(y) = /Nexp(Qm'(,u,w + ™). (4.1.14)

Then R is U-invariant function, we can extend it to a holomorphic function
uc = C. If y € ug, let Im(y) denote the component of y in iu.
The algebra Su acts on R(y), by [BMZ17, Eq.(1.24)],

exp(—t|32)R(y) = /N exp(—4nt] (1, iB)* + 2mi(,y) +ny). (4.1.15)

We regard t* as a subspace of u* by the metric dual of £ C u.
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Definition 4.1.2. We say that (N, u) is nondegenerate (with respect to w?) if
p(N)YNnE =0. (4.1.16)
Equivalently, there exists ¢ > 0 such that

[(u,iB)* > c. (4.1.17)

By [BMZ17, Eq.(1.27)], if (V,p) is nondegenerate, there exists Cy > 0,
C4 > 0 such that, if y € uc,

lexp(—t|B)R(y)| < Coexp(—tc + Cy[Im(y))). (4.1.18)

If there is no confusion, we also say that the function Ris nondegenerate with
respect to w”.

Definition 4.1.3. The Berezin integral [” : A*(T* X)BA*(T*X) — A*(T*X) is
a linear map such that, if « € A*(T*X), o’ € A'(Y{*?()7
B
/ ad’ =0, if dega’ < m;
_ (4.1.19)

B _1\m(m+1)/2
adtnopem = CNTTT
Tm/2

More generally, let o(p) be the orientation line of p, which can be identified with
o(p). Then fB defines a map from A‘(T*X)@A‘(’_Z{*K') into A*(T*X)®o(p).

Let ¢ be the endomorphism of A*(7T*X)®rC which maps a € A*(T*X)®gC
into (27i)~%/2a.. Set

L=>) e ne. (4.1.20)
i=1
Definition 4.1.4. For t > 0, set
\m/2 B wPAp 2\\ B
dy = —(miy™p [ VI exp(o (42) R(0),

- (4.1.21)
o= 2miy/y [ %ﬂexm—a(A%))E(o»

Then dg, e; are smooth real forms on X.

Note that the action of G on X lifts to g,, Ug, and Sg,. Then the sections
wP, B, B are G-invariant. Therefore, e;, d; are G-invariant forms, so that they
are determined by their values at the point pl € X.

Let ¥ be the canonical element of norm 1 in A™(p*) ® o(p) (respectively, a
section of norm 1 of A" (T*X) ® o(TX)). For a € A®*(p*) ® o(p) (respectively
A (T*X) ® o(TX)), for 0 <1 < m, let oY) be the component of a of degree .
We define [a]™** € R by

o™ = [a]maxp, (4.1.22)
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Then [d;]™**, [e;]™** are constant on X. By [BMZ17, Theorem 2.10],

)
(L 2t e ™™ = [di] ™. (4.1.23)

Also if (N, u) is nondegenerate, there exists ¢ > 0 such that, on X, as t — +o0,
dy = O0(e™), e, = O(e™). (4.1.24)

Definition 4.1.5. If (N, u) is nondegenerate, set
e dt

W = —/ dy—. (4.1.25)
0 t

Then W is a G-invariant smooth form on X with values in o(T'X), so that
[W]™a* is a real constant.

As explained in Introduction, in [BMZ17], the authors showed that W
appears naturally as the leading term in the asymptotic analytic torsions of
M. The quantity Vol(M)[W]™a ig called a W-invariant, we refer to [MP13b,
MP13a], [BMZ17, Section 8|, [Liu20, Subsections 7.3 & 7.4] for more concrete
computations on them. Here, we use abusively this name for the form W.

The purpose of the rest of this paper is to develop an analog of [BMZ17,
Section 8] in the context of the equivariant analytic torsions. If (E,p¥) €
Irr(U?) is not irreducible when restricting to U, then by Proposition 3.3.2,

To(g™™ VS hFYy =0 (4.1.26)

Then the only non-trivial case is that (E, p¥) is also a U-irreducible represen-
tation, then it will correspond to a o-fixed dominant weight A of U. In the
next subsections, we will construct a sequence of flat vector bundles Fj;, d € N
associated with this A and p¥. In Subsection 4.6, we will show that the leading
term of asymptotic T, (g7, VFa-f hFa) as d — +oo is described in terms of
W-invariants of “ M, the fixed point set of ¢ in M.

4.2. A sequence of unitary representations of U°

Let u™8 be the set of regular elements in u. Recall that us = [u,u] is
semisimple and that Uss is the associated analytic subgroup of U. By [DKO00,
Lemma (3.15.4)], [u,u](0) contains regular elements in [u,u]. Then there exists
v € u(o)Nue. If tyy = u(v), then ty is a Cartan subalgebra of u. Let Ty C U be
the corresponding maximal torus. Let Ry be the associated (real) root system,
and let Wy be the associated Weyl group. Let ¢ C ty be the Weyl chamber
containing v, and let Rﬁ(c) denote the corresponding positive root system (i.e.
the root @ € Ry such that a(v) > 0). Let P4 (c) be the set of the dominant
weights on u with respect to ¢. Then o acts on ty and on its dual, which
preserves Ry (c) and Py (c).

If (E,pP) € Irr(U?) is irreducible as U-representation with highest weight
A € Pyi(c), then o fixes A, i.e.,, A € a*. Actually, the converse also holds
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true, i.e., if A € P44 (c) is fixed by o-action, then the corresponding irreducible
(complex) U-representation (Ey,pF*) extends to a representation of U?. As
explained in Remark 2.3.1, such extension is not unique, they are different by
twisting with elements in Irr(37).

From now on, we fix a A € P;4(c) such that oA = A, then we construct a
sequence of irreducible representations (Eg4, p¥¢), d € N of U such that each
(Eq, pF4) is an irreducible U-representation with highest weight d\. In general,
such sequence is not unique. Here, we use the flag manifold V) to get a canonical
construction in the sense that it is determined uniquely by (Eq, pt) € Irr(U?).

More precisely, set

U(N) ={ueU’ | Ad(u)A=A}, UN)=U°AN)NU. (4.2.1)
Then
U(N)=U(\) x X7. (4.2.2)

By [Wal73, Lemma 6.2.2], U()) is a connected. Moreover, Ty C U()).

Note that Ty is also a maximal torus of U()). Let Ry (y) be the associated
(real) root system of U(A), then Ryy) = {a € Ry | (o, A) = 0}. Let ¢; denote
the Weyl chamber containing v for (u(\)c,ty). Then RZ(A)(Q) = Ri(c)N
Ry (y) is the corresponding positive root system of Ry (y). Note that A is also a
dominant weight for (U(X), Tyy) with respect to R;(A)(cl).

Iface RZ}(C)\R;(A)(Q), B € Ry(xy and a+ 3 is a (real) root, then {a, A) >0
so that a4+ f € R;(c)\R;;(A)(cl). Set

b, = > U, (4.2.3)

aERﬁ(c)\Rzr/(A)(cl)

then
[u()‘)7 b+} - b-‘rv [b+7 b+} - b-‘r' (424)
Moreover, o preserves b .
Set
Ny =U/UN) =U/U(N). (4.2.5)

Then by [Wal73, Lemma 6.2.13], N, has a complex structure such that the
holomorphic tangent bundle T'N), is

TN)\:UXU(A) b+:UU XU (A) b+. (426)
Moreover, U’ acts holomorphically on Ny. Put n) = dimc¢ Ny.

Lemma 4.2.1. Let (VA,pVX) € Irr(U(N)) be the one with highest weight A.
Then dime V* = 1, and for u € U(N),

P (o(u) = p¥" (u). (4.2.7)

Therefore, after tensoring (V’\,pVA) with any element in Irr(X7), we extend it
as a representation of U7 ().
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Proof. Note that if a € R;O\)(cl), then (a, A\) = 0. Set

1
Py =5 D, @ (4.2.8)

O(ER;()\)(CI)

By the dimension formula [BtD85, Chapter VI, Theorem (1.7)], we have

A+ pu
dime V* = H (o A+ pue) 1. (4.2.9)

a7
aeR;(A)(cl) < pu()\)>

Since o fixes A, we get (V’\,pVA) ~ (V*p" o o) € Irr(U(XN)). Then (4.2.7)
follows, so that it extends to U7 (). This completes the proof of our lemma. O

We fix an extension (V/\,pvx) € Irr(U?(N)) as in Lemma 4.2.1. Put
Ly =U% xgon) V. (4.2.10)

By [Wal73, Proposition 6.3.3], Ly is a holomorphic line bundle on Ny on which
U? acts holomorphically. If d € Ny, put

Ey = HOO(N,, LY). (4.2.11)

Then each (Eg, pP4) is a unitary representation of U?, which is also an irre-
ducible representation of U with highest weight d\ € Py (c).

Remark 4.2.2. Let (E,pP) € Irr(U°) be irreducible as U-representation with
highest weight A € P, (c). Let E*+ C E be the vector space

E' ={we€ FE : if f € by, then p¥(f)w = 0}. (4.2.12)

Then E°+ is preserved by U?(\), which is exactly the irreducible representation
of U(A) with highest weight A. Then by the dimension formula (4.2.9), we get
dim¢ E°+ = 1, so that it is just the highest weight line (M-eigenspace) of (E, p%).
In (4.2.10), if we take V* = E®+ to define Ly, then by [Wal73, Theorem 6.3.7],
we have (Ey, pPt) = (E, p¥) as U?-representation.

Let xq be the character of (E4,p¥?) on U°. In the sequel, we study the
asymptotics of x4(upoe?/?) as d — 400 for ug € U, y € u, (up).

Set U(o) = Uy(1) and u(o) = u,(1). Put a =ty Nu(o). Then a is a Cartan
subalgebra of u(c). Let A C U(0)® be the corresponding maximal torus. If
uo € U, then by [Seg68, Proposition 1.4], there exists u € U, tg € A such that

ug = utgo(u™t). (4.2.13)

Put Z = U,(up), the o-twisted centralizer of up in U. Let 3 C u be its Lie
algebra. By (4.2.13), we get

Z =uU,(to)u™ ", Z° = uU2(to)u™". (4.2.14)
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Then Ad(u)(A) is a maximal torus of Z°.
Let Ny (Ty) be the normalizer of Ty in U. Put

Ny(Ty)(o) ={g € Ny(Tv) | Ad(9)|¢, commutes with o, }. (4.2.15)
Let Ny (A) be the normalizer of A in U, then

If g € Ny(A), then
Ad(g) € a*. (4.2.17)

Let “0? N be the fixed point set of ugo in Ny, which is a complex subman-
ifold (it may have several connected components). If v’ € U, it depends to a
point [u']y € Ny. Recall that v € cNu™s Nu(o).

Lemma 4.2.3. We have
w7 Ny = ZoUNy (A)U(N)/U(N) C Ny. (4.2.18)

Let J(ug) denote the index set for connected components of “°° Ny, then J (ug)
is a finite set.

If u' € uNy(A), and if we take the Weyl chamber of (3,Ad(u)a) contain-
ing Ad(u')v, then Ad(u')X\ is a dominant weight for Z°. Then the connected
component of [u']x is isomorphic to the flag manifold Z°/Z°(Ad(v/)\) as com-
plex manifolds. Under this identification, H(®0(Z"/Z%(Ad(u/)N),Ly) is the
irreducible representation of Z° with highest weight Ad(u)A.

Proof. Let Oy C u* denote the orbit of A\ by the adjoint action of U. Then
Ny = O). Then the fixed point set of ugo is just Oy N 3*. Let ny be the
canonical symplectic form on Oy C u* [BGV04, Sections 7.5, 8.2]. Then

c1(Lyx, g™) = n. (4.2.19)

The corresponding moment map p : Ny — u* associated with the U-action is
just the embedding i : Oy C u*.

If X is regular, then (4.2.18) follows exactly from [DHV84, 1.2 : Lemme (7)]
and [Bou87, Lemme 6.1.1]. In general, (4.2.18) is a consequence of [Bou87,
Lemma 7.2.2]. This proves the first part of our lemma.

Fix v’ € uNy(A) and z = [o/]x € “°7N). The stabilizer of « under the
action of Z° is Z°(Ad(u’)A). Then we can identify the connected component of
[u']5 in "7 Ny with the quotient Z°/Z°(Ad(u/))\) as Z°-manifolds.

Let Ny (¢) be the normalizer of ¢ in U. Put

t = (u)tugo(u') € Ny(A). (4.2.20)

A direct computation shows that t € Ny (c) NU(N). Then the action of ugo on
T, N, is identified with the adjoint action of to on b, so that

T, "7 Ny = b (to). (4.2.21)
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Note that Ad(u')by (to) C 5. By taking the Weyl chambers containing Ad(u’)v
for 3 and 3(Ad(u')(N)) w1th respect to Ad(u')a, similar to (4.2.3) - (4.2.6), we
get a complex structure on Z°/Z°(Ad(uw')\) such that the holomorphic tangent
bundle is given by Ad(u’)by (to), which is exactly the same one inherited from
the complex structure of Ny.

Since A € Py (c), Ad(u/)\ is a dominant weight for Z° with respect to
the above Weyl chamber. Using the identification Ny ~ O, we get that Ly
restricting to the connected component Z°/Z"(Ad(u’)\) is just the canonical
line bundle associated with the dominant weight Ad(u/)A. The last assertion
follows from the Borel-Weil theorem. This completes our proof. O

If j € J(ug), let “7 N f\ denote the corresponding connected component of
“0oNy. Let p : Ny — u* be the moment map associated with the action of
U on Ly — N,. As explained in the proof of Lemma 4.2.3, the restriction of
u to each “O‘TNJ is just the moment map associated with the action of Z° on
Ly — uOUNJ

Definition 4.2.4. If y € 3, j € T (uo), set

woe Ny, gAMYL (4.2.22)

Rio AY) = / i exp (27rz'<,u,y> +ci(Ly
ugo NI

Note that Ri )\(y) is a function of the same type as the one given in (4.1.14).

We can verify that R o IS a Z°-invariant function on 3. Also Ru A(y) can be
computed by the localization formulas in [DHS2, DHS3], [BGV04 Chapter 7).
Let Al be the standard Laplacian on 3, then by [BMZ17, Eq.(8.146)], we have

AR = —4Am’| AR . (4.2.23)

Let g be the orthogonal subspace of 3 in u with respect to B. If u €
Z°uNy (A), let 3(Ad(w/)X) be Lie algebra of Z°(Ad(u))), and let 3 (Ad(u)\)
be the orthogonal of 3(Ad(u')A) in 3. Put

q(Ad(u")X) = g Nu(Ad(u')N). (4.2.24)
Let g (Ad(u’)A) be the orthogonal of q(Ad(u/)A) in . Then
u(Ad(u")N) = 3(Ad(u)A) @ q(Ad(u')N). (4.2.25)

By Lemma 4.2.3, the (real) vector space q-(Ad(u/)A) can be identified with
the holomorphic normal vector space of “02 Ny at [u]), so that it inherits a
complex structure .J,» and ugo acts on it as a complex linear map. Set

1
Puo () = _ :
’ detc(1 — Ad(uoo) ™1)|(q+ (Ad(u)N), 700

(4.2.26)

Lemma 4.2.5. If x = [u/]y € ““Ny with v’ € Z°uNy(A), then the map
T = @y, (u') defines a locally constant function @, (x) on “?Ny. In particular,
for j € T(ug), let cp{m € C denote the value of ¢, on the component “°7 Nj.
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Proof. By (4.2.18), (4.2.26), @, () is well-defined on “?Ny. If h € Z°, then
g (Ad(hu')X\) = Ad(h)q™(Ad(u)N). (4.2.27)

Since h acts on N holomorphically and commutes with upo, then ¢, (x) is a
Z"-invariant function on “0°Ny. This completes the proof of our lemma. O

Put
n(ugo) = max{dime “ N7 | j € T (uo)}. (4.2.28)
We call n(ugo) the (maximal) dimension of “0“ Ny. Let J (ug)™** be the subset
of J(ug) of the index j with dim¢ ““ N = n(ugo), i.e. the index set for the
connected component of “0? Ny of the maximal dimension.

Proposition 4.2.6. For j € J(uo), if u; € U is such that x; € [u;]y € “7 N,
then uj_luoa(uj) e U, and ry, ; = pVA(uj_luoa(uj)) € St only depends on
J € J(uo). The action of upo on fibre Ly ., is given by the multiplication of
the number 1y, ;.

Ify €3, as d — +oo, then

Xalwore?/ ) = o) STl G R () + 0@ ), (4:2.29)
JET (ug)max

Proof. The first part of our proposition follows from the definition of Ny, Ly
and (4.2.18). We will use a fixed point formula of Berline and Vergne [BV85,
Theorem 3.23] to get (4.2.29). If B is a complex (g, ¢) matrix, Let Td(B) denote
the Todd function of B [BMZ17, Subsection 3.4]. Set

e(B) = det B. (4.2.30)

Let VN2 be the Chern connection on T'Ny, and let RTN* be its curvature.
If y € u, let y™ be the associated real vector field on Ny let LZTNA be the natural
action of y on the smooth sections of TNy. Let vT™*(y) be the map given by

2miv™ (y) = VI - Ly (4.2.31)
If £ € WoNy, let 01, ... e 0 < 0; < 2m be the distinct eigenvalues of

ugo acting on T, Ny. Since ugo is parallel, these eigenvalues are locally constant
on “?Ny. Then T'Nj|uo- n, splits holomorphically as an orthogonal sum of the

subbundles Tij. The Chern connection VN0~ also splits as the sum of
the Chern connection on Tij . Let R% denote the corresponding curvature.

If y €3, let yTNAlwoe ny (y) be the restriction of 7N (y) to “0? Ny, which is
given by the same formula as in (4.2.31) with respect to the action of Z° on
T Ny|woon, . The action of yTNAlm07 x5 (1)) preserves the splitting of TNy |uoo N,y -
The equivariant Todd genus is given by

T (TN ey g7 1075

B RO Lo Td,, R%
=Td(—5—+v A(2»/))6]1;[0 (7)(—%
J

05 . 4.2.32
+ v (y) +465). ( )
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We will denote by Td,°?(T'Nx|«o-n,) the its equivariant cohomology class. We
refer to [BV85], [BGV04, Chapter 7] for more details.

Let r,, € S* denote the action of ugo on Ly|uoey,, which is equal to Tug.j
on "7 N /J\ The equivariant Chern character form of Lf\

woo v, 1S given by

chy? (LY woo vy, gAMYL

(4.2.33)

d
UOUNMQLAMMNA) = rffo exp (2m’d<,u, y) + deq (L

By [BV85, Theorem 3.23|, if % is in a small neighborhood of 3, we have

Xa(uooe?) :/ Ty (TN w7, )74,
0o Ny (4.2.34)

exp (2m’d<,u7 y) + dey (L |woo Ny gL*\“WNA ))

For y € 3, when taking the asymptotics of xa(upoe?/?) as d — +oo, only
the maximal dimensional components of “°? N contribute to the leading term.
For the leading term, TdZ?g(TNﬂumNA) only contributes the degree 0 com-

ponent of Tdg°” (I'Ny|woon, ), which is just ¢,, defined in Lemma 4.2.5. If
j € J(ug)™, the integration of exp (2mi(u,y) + dey (L/\|uoangL*|”0"NA)) on
v N is just d”(“o")Rfm,/\(y). Then we get (4.2.29). This completes the proof
of our proposition. O

4.3. The nondegeneracy condition on A
Recall that Ny is identified with the coadjoint orbit Oy in u*. Dual to (2.1.2),

ut = V—1pt e b (4.3.1)

Then the nondegeneracy condition defined in Definition 4.1.2 is equivalent to
that each vector v € Oy has a nonzero component in /—1Ip*.

Take k € K, then ko is an elliptic element in G°. We can also consider
it as an element in U?. Recall that U, (k)° denotes the identity component of
o-twisted centralizer of k in U. Then it is the compact form of Z,(k)°. By
the discussion in Subsection 2.4, Z,(k)? is still a linear reductive group with
the Cartan involution induced by @, and K, (k) is the corresponding maximal
compact subgroup of Z,(k)?. Recall that

X (ko) = Z,(k)° /K, (k)°. (4.3.2)

Let wie(®) = (k) 4 ¥ (k) be the canonical 1-form on Z,(k)° as in (2.1.5).
By Lemma 4.2.3, we have

kaN)\ = Ujej(k)kUNi. (433)

If j € J(k), the function Ri’/\ is defined in (4.2.22). Then proceeding as in
Subsection 4.1, by using instead (Z,(k)°, K, (k)°) and wP=(¥) associated with
Ry, 5, we get the invariant differential forms ej ,, d, ,, t >0 on X (ko).
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If the function Ri , satisfies the nondegeneracy condition with respect to
wP=®) then there exists c¢; > 0 such that, as t — +o0,

e, =0 %Y, dj,=0(e ") (4.3.4)
Put .
nga = _/ di’t%- (435)
0

We say that W,gg is the W-invariant associated with ko and Ri’ \-

Proposition 4.3.1. Take k € K. If (Ny, 1) defined in Subsection 4.2 is nonde-
generate with respect to w®, then for j € J(k), (" N3, ptlxo i) s nondegenerate
A

with respect to wPe®).

Proof. As in the proof of Lemma 4.2.3, we have
FONy ~ Oy N, (k)" (4.3.6)
The splitting (4.3.1) induces a splitting of u, (k)*,
Uy (k)" =V —1p, (k)" @, (k)" (4.3.7)

By Definition 4.1.2, if (Ny, 41) is nondegenerate, then p(Ny)N€* = 0, so that
p(**N{) Nty (k)* = 0, which says that (**NY, u|s, i) is nondegenerate with
A

respect to wPe(¥). This completes the proof of our proposition. O

In the sequel, we always assume that (Ny, ) is nondegenerate with respect
to w® (or for short, A is nondegenerate). For a general elliptic element yo with
v € G, we can not always regard it as an element of U?. But there exists
g € G such that k = gyo(¢g~') € K. Then we construct the corresponding
triplets (rxj, 3., Ry y)jes (k) and the associated invariant forms ey, ,, diw Wi,
je J(k)on X(ko).

If we take another ¢’ € G such that k' = ¢'vo(¢g'"!) € K, then Z,(k) and
Z, (k') can be identified by the conjugation of h = ¢g'g~! € G. But we still use
the Cartan involution on Z, (k') induced from 6 to define the associated forms
€ s Ao gy Wiig, 5 € J(K') on X(K'o).

’
it?

Lemma 4.3.2. Let v € G, k,k' € K be as above. Then we have n(ko) =
n(k'c). Moreover, there is an identification between J(k) and J(k') such that
if j € J(k)=J(k'), we have

Thy = Th gy h = Phs (W™ = W], ] (4.3.8)

Proof. By the Cartan decomposition of G, there exist unique f € p, kg € K
such that h = koef. Since hka(h™') = k/, we get koko(ky ') = k’. Moreover,

kOZU(k)ko_l = Za(k/)a kOUo(k)ko_l = Uo(k/)' (439)
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The fixed point sets of ko and k’c in N, are identified via the action of
ko. This way, we identify J(k) with J(k’). On the fixed point sets, the ac-
tions of ko on the bundles T'Ny, L) are identified with the corresponding ac-
tions of k'o. Therefore, the data (14 5, ¥}, Ri. \)jes k) can be identified with

(rk,j,(p']i,R']i’A)jej(k) via the action of kg. In particular, n(ko) = n(k'c) and
Tk = Tk gai = @i,. The last identity of (4.3.8) follows from (4.3.9) and

the fact that the Cartan involutions on Z,(k), Z, (k') that we use to define the
W-invariants are identified by the conjugation of k. O

4.4. Asymptotics of the elliptic twisted orbital integrals

Let (Eg4, p¥4), d € N be the sequence of irreducible unitary representations
of U? constructed in Subsection 4.2 with the nondegenerate o-fixed A € Py (c).
We extend it to a sequence of representations of G?. Then we get a family of flat
homogeneous vector bundles F; = G xx E4, d € N on X. Recall that DX Fa,2
is the Hodge Laplacian associated with Fy.

In this subsection, we consider the case v = k~! € K. Then

Uy () = V—=1p,(7) ® £, (7). (4.4.1)

As explained in the beginning of Subsection 4.2, there exists v' € €, () NEE.

If t = £(v'), then t is a Cartan subalgebra of €. Let T be the corresponding
maximal torus of K. Put

s=tN¢E, (7). (4.4.2)

Then s is a Cartan subalgebra of ¢,(y). Recall that b,(vy) C p is defined in
(3.3.4), then b,(v) @ s is a Cartan subalgebra of 3,(y). By Theorem 3.3.3,
Corollary 3.3.4, the twisted orbital integral in (3.3.9) associated with this yo
vanishes except the case dim b, () = 1.

In the sequel, we also assume that dimb,(y) = 1, then dimp,(y) is odd
and §(Z,(y)?) = 1. This assumption also implies that §(G) > 1, which is a
necessary condition for the existence of the nondegenerate (Ny, ) discussed in
Subsections 4.2 and 4.3. 4

Recall that for the triplets (75, ;, @Z/, R]% x)jed () and the associated invariant

forms e?‘%w dz/l? WJ,, j € J(y) on X(yo) are constructed in Subsection 4.2,

4.3. The main results of this subsection are as follows.

Theorem 4.4.1. Suppose that dimb,(y) =1. Fort >0, as d — 400,

dfn(’ya')flTrs['yU (NA°(T*X) _ %) exp(_tDX,Fd,Z/de)]

= 2 Z T$7j<p2‘y[ei,t/2}max + O(dil)a

JET (y)max
I o (x DAXJ:‘d72
d—n(’yo‘)—lTrs["yo'] (NA (T*X) _ %)(1 _ t d2 )exp(_tDX7Fd,2/2d2):|
SERD DA 1 L)

jET (yymex
(4.4.3)
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There exists C' > 0 such that for d > 1, we have

d
o e dt
‘dn(wcr)l/ Trs['ya] [(NA (T*X) _ %) CXp(—tDX’Fd’2/2d2)] 7
1
d ) (4.4.4)
. ; dt C
d max
) Z r%j(pgy/ [eJ%t/z] a - < FE
JET (y)max !
There exists C > 0 such that for d € Nsg, 0 <t <1,
‘dn(wa)lTrS['ya} [(NA°(T*X) o %) eXp(ftDX’Fd’2/2d2)] < C/\/Z
’ 4O (VA0 T (YR ) (4.4.5)

eXp(—tDX’Fd’z/ZdQ)]‘ < CWt.
There exists ¢ > 0, ¢’ > 0 such that for t > 1, d large enough, we have

‘d_"('ya)_lTrs['y”] [(NA.(T*X) — %) exp(—tDX’Fd’Q/Zdz)] < ce 't (4.4.6)

Proof. Note that (4.4.3) is an extension of [BMZ17, Theorem 8.14].
Recall that p = dimg p,(7y), ¢ = dimg &, (7). By (3.3.9), for d € N+, we get

Trs['ya] |:(NA°(T*X) _ %) eXp(—tDX’Fd’2/2d2):|

dr t B e i ¢ /
T [C* —TyP[CHP J.o(Vty/d
(27t )p/2 exp(48d2 [C*] + 1642 [C™P]) b () gl (Viy/d)

o * o/ * m o/ x _ . o/
(T MDA = )M (ko) exp(—ipN P (Vi /d))]

TP pPa (1 _ipFd b oo ,@ dy
T (1) expl i (Vi )+ 5 o) expl )

(4.4.7)

In this proof, we denote by C' or ¢ a positive constant independent of the
variables d, t and y € &,(y). We use the symbol Oi,q to denote the big-O
convention which does not depend on d, ¢ and y. Set (y) = /1 + |y|?.

By (2.5.15), for d > 1, ¢t > 0 and y € £,(7), we have

1 t tly
+ Oind(gmec%).

Tro(Viy/d) = — (4.4.8)

e (1 — Ad(k‘_lo'))hjé_(,y)

Let b () C po(7) be the space orthogonal to the one-dimensional line b, ()
in p,(y). If y € 5, by [BMZ17, Eq.(8.133)], we have

Te A PO [(NATRD) - %)PA.(p*)(k_la) exp(—ip™ ") (Viy/d))]
= —det(1 — exp(—iad(\/zy/d)))|b§('y) (4.4.9)
~det(1 — Ad(k™'o) exp(—iad(Vt|y|/d)))]pz ()-
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By (4.4.9)ify€s,d>1and if t > 0, we get

ar=t

o I DN = 0D (o) exp(—ip 0 (Vi )

t tly
le@c%)

(4.4.10)

= —det(iad(y))[p1 () det(1 — Ad(k o Nlpx () + Oma(

Let 03 € A2(P,(7)*) ® £, (7) be a copy of Q3. Let L and the Berezin
integral be the ones as in (4.1.10) and (4.1.19) associated with p, (). Note that
dim p, () is odd, then by (4.1.19), we have

max

B
w—p/Qdet(iad(y))mw:—[ / LeXp((y,Qé”(V)—FQa”(")})} . (4.4.11)

Combining (4.4.10) and (4.4.11), we get that if y € s, d > 1 and if t > 0,

d

W_p/Q(\/E

YP I AT (VA7) — 5 )pA‘(P J(k~to) exp(—ip" ) (Viy/d))]

é max
= [/ Lexp({y, Q3= +Qé"(”)>)] det(1 — Ad(k™0))|ps ()
\/gy\ec@).

(4.4.12)

+ Oind(

Using the adjoint invariance, the equation (4.4.12) extends to y € €, (7).
Note that since (NVy, 1) is nondegenerate, then there exists a small constant

€]0, %‘] such that on Ny, for y € £,(7)
{9} < (1Al = )yl (4.4.13)
Then by (4.2.22), we have
|R! \(—iv/ty)| < CemYViAI=alul (4.4.14)
By (4.2.34) and (4.4.13), we get that for d > 1, ¢ > 0 and y € €,(v),
d="OD T pPa (ko) exp(—ip® (Viy/d))]
. Vi+1 AN e Vi
= Y R (Civi) + Oma(t . )Y) 2Nl +0 o1y,
JET (y)max

(4.4.15)

Combining (4.4.8), (4.4.12), (4.4.14) and (4.4.15), we get that for d > 1,
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t>0andy € t,(v),

qp—1-n(vo) \/{y

12777\ )Tr MO [(NATED) - T)p!\'(p*)(k—lo)e_ip/\‘w*)(\/;y/d)]
T

2
TrPa[pPe (k™" o) exp(—ip™ (Viy/d))]

max

B
= Y | [ remlmer @ on] R iviy

jej(,y)rnax

1 ;
n @ind(@e%ﬂ(m—e)lmc%ww
(4.4.16)

Let p, be the half of the sum of the positive roots in Rj;(c). By [Bisll,
Proposition 7.5.2] and (3.1.8), we have

t t t 27m2t|dA + py?
T 4 e, T p €p _ eE _ u .
me O e e T gm0 &
Using exactly the arguments as in [BMZ17, Eqs.(8.143)-(8.154)], we get that
for each j € J(y)™,

(4.4.17)

e—2w2t|)\\2 BL e () ﬁ;, ) maij \[
—_— exp({y, 3= 4 Qi —iVt
s | | et | R
dy j max
. exp(—|y|2/2) (271')‘1/2 = 2[egy,t/2] .
By (4.4.7), (4.4.16), (4.4.18), we get
d—n('ya)—lTrs[’yn] [(NA.(T*X) _ %) eXp(—tDX’FdQ/de)}
27‘(2t|d)\ +p ‘2 i1,.J max
= 2exp(—Tu + 2tm2|\?) Z rf/7jcpgy[ezy7t/2} + R(t,d).
jej(,y)max
(4.4.19)

Here R(t,d) is an error term such that

2
VE+ 1 e 2z ldteal

|R(t,d)] < C i y / <y>e2m/%(\/\|—e)|y\+c@_|y\2/2dy.
EU('Y)
(4.4.20)
Set co = 22(|A|2 — (|]A| — €)?) > 0. Then for d > 1, ¢ > 0,
t 4 1¢9/2 ot
Rt d)] < oYL et (4.4.21)

Vi d

By (4.4.19), (4.4.21), we get the first identity in (4.4.3). By (4.1.23), we get
the second identity in (4.4.3). Then using (4.4.19), (4.4.21) for 0 < ¢ < 1 and
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by (4.1.21), we get the first estimate of (4.4.5). Note that there exists dyg € N
large enough such that if d > dy, then

< (4.4.22)

Ul O
yMH

Recall that ¢’ /2 has the exponential decay of as ¢ — +oo described in (4.1.24).
Together With (4.4.19), (4.4.21) and (4.4.22), we get (4.4.6). Note that for d > 1

!
/ |R(t,d |@ < Q (4.4.23)

Then (4.4.4) follows from (4.4.19) and (4.4.23).
We now prove the second estimate in (4.4.3). If y € ¢, (), set

f(y) = Jyo(y) det(1 — Ad(k " o) exp(—iad(y)))|pL (1)

4.4.24
4" O T Fa[pPa (1) exp(—ip (y))]. e

Then f(y) is an analytic function on ¢, (7). If y € s, by (4.4.9), (4.4.24),

% 70(%)TI~SA'(|J*)[(NA°(!J*) )Ad(k‘ 0.) exp(—i A’(p )(\/y))]
TrEd[PEd(k; U) eXp(—zp (\fy/d))]

Viy, dP!

P ) =7 det(l = exp(—iad(VEy/d)))|os (7)-

(4.4.25)

:\f

Let V f(y) be the gradient of f on £, () with respect to the Euclidean scalar
product of €,(v). Put

1) = 5 (#4085 et = expl—iad Vi)l |
<Vf(\/y)7 \zfidy>t(p—1)/2 det(1 — exp(—iad(\/%y/d)))\b#(,y) (4.4.26)
+f(%)g (s den(1 = expl-ind( Vi s )

Since Tr% (") [ad(y)] = 0, then there exists ¢ > 0, C' > 0 such that for
de€Nsp,0<t<1,and y € s,

0 ( drt )
o <t(P1/ det(1 — exp(—zad(\/iy/d))ﬂbé(,y)) < C'exp(clyl).  (4.4.27)

Also since dim b () is even, when taking the Taylor expansion of the func-
tion as follows

Viy, Viy, dP!
¥< f(T)de>t(p,1)/2

det(1 — exp(—iad(Vty/d)))los (), (4.4.28)
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the terms of even power of y have no negative powers of the parameter ¢ in their
coefficient. Using the conjugation invariance of the left-hand side of (4.4.25),
the above consideration holds for y € £, (7).

By (4.4.26), (4.4.27), there exist C' > 0 such that for d € N5y, 0 < ¢ < 1,

’/ I(t,y,d)exp(—|y|*/2)dy| < C. (4.4.29)
& (7)

Using the fact that the two quantities in (4.4.5) are related by the operator

14+ 2t%, and by (4.4.25), (4.4.29), we get the second estimate in (4.4.5). This

completes the proof of our theorem. O

4.5. A lower bound for the Hodge Laplacian on X

We use the notation as in Subsection 3.1. Recall that e;, ---, e,, is an
orthogonal basis of TX or p. Set

CoH =3 "e? e Ug. (4.5.1)
=1

Let C%:F be its action on E. Then
CoE = ovHE 4 O8F, (4.5.2)

Let A#:X be the Bochner-Laplace operator on bundle A" (7T*X) ® F. Put

X
O(F) = G (R™X (es, €5)ex, er)c(es)c(e;)clex)eler)

4 8 ) (4.5.3)
—COE 4 2 (elen)eley) — eleq)eley)) R (einey).

Then O(F) is a self-adjoint section of End(A (T*X) ® F'), which is parallel
with respect to VA (T"X)®Fu_ By [BMZ17, Eq.(8.39)], we have

DXF2 = _AHX | o(E). (4.5.4)
Let {-,-)1, be the Ly scalar product of Q. (X, F). If s € Q. (X, F), we have
(DXF25 5\, > (O(E)s, s)1,. (4.5.5)

Let AH:%X% denote the Bochner-Laplace operator acting on Q(X, F), and
let p/*(z,2') be the kernel of exp(tAH:X/2) on X with respect to dz’. We
denote by p/(g) € End(A(p*) ® E) its lift to G explained in Subsection 2.3.

Let A{ be the scalar Laplacian on X with the heat kernel th’O. Let
Il (g)|| be the operator norm of pf"*(g) in End(A’(p*) ® E). By [MP13b,
Proposition 3.1], if g € G, then

e (@)l < 17 (9)- (4.5.6)
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Let p be the kernel of exp(tAHX/2) then
pil = a?_pi. (4.5.7)
Let ¢;*"" be the heat kernel associated with DX-F2/2 by (4.5.4), for z,2’ € X,
G (2,') = exp(—10(E) 2)pf (. ). (15.5)

Now we consider the representations (Eg4, p¥¢), d € N constructed in Sub-
section 4.2 for a nondegenerate A\. By [BMZ17, Theorem 4.4 & Remark 4.5],
there exist ¢ > 0, C' > 0 such that, for d € N,

O(Ey) > cd* - C. (4.5.9)
By (4.5.4), (4.5.5), (4.5.9), we get
DX Fa2 > ¢d? — O, (4.5.10)
Lemma 4.5.1. There exists dg € N and cy > 0 such that if d > dy, z,2’' € X
g (@, 2| < e 0, 2. (4.5.11)
Proof. By (4.5.9), there exist dyg € N, ¢ > 0 such that if d > d,
O(Ey) > dd*. (4.5.12)
Then if t > 0,
|| exp(—tO(Eq)/2)|| < e~ /2, (4.5.13)

By (4.5.6) - (4.5.8), (4.5.13), we get (4.5.11). This completes our proof. O

Recall that I' is a cocompact torsion-free discrete subgroup of G preserved
by o. Fort >0,z € X, v €T, set

1 - o~ m
vy (Fy,yo,z) = §TrsA (T X)®Fq (NA (T"X) _ g)qu’QFd (x,vo(x))vo|. (4.5.14)

Then Lemma 4.5.1 implies the following lemma.
Lemma 4.5.2. There exist Cy > 0, cg > 0 such that if d is large enough, for
t>0,xeX,yeT,
M —C 2 )
|vs(Fy,vo, )| < Codim(Eq)e™ ¢ tpfj?(m,’ya(x)). (4.5.15)
Proposition 4.5.3. There exist constants C' > 0, ¢ > 0 such that if z € X,
t €]0,1], then
S p o) < Coxp(~c/i). (45.16)
v€TD,vo nonelliptic
Proof. By [Don79, Theorem 3.3|, there exists Cjy > 0 such that when 0 < ¢ < 1,
d*(z, ")
4t

By Proposition 2.6.3, we have cr , > 0. Then using Lemma 2.6.4, (4.5.17), and
the arguments as in the proof of [MP13b, Proposition 3.2], we get (4.5.16). O

0 (z,2') < Cot~™/? exp(— ). (4.5.17)
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4.6. A proof to Theorem 1.0.1

Now we work on M = I'\ X. The flat vector bundle F} in previous subsection
descends to M, which we still denote by F,;. The action of X7 lifts to Fy so that
the de Rham-Dirac operator D™:¥a commutes with its action.

By (4.5.10), we have

DM Fa2 > ¢d? — C. (4.6.1)

Then if d is large enough, we have
Higr (M, Fy) =0. (4.6.2)
By (3.2.5), (3.2.7), if d is large enough, we have
Xo(M,Fy) =0, x,(M,F;)=0. (4.6.3)

Recall that the function b;(F,, hf?) is defined in (3.2.6). Then by (3.2.9),
(3.2.10), (4.6.3), we have

To (g™, Vel pFa) = — / be(Fa, )2 (4.6.4)
0

Recall that E, is the finite set of elliptic classes in [['],. Set
El={lo € B, | 8(Z5(7)") = 1}. (4.6.5)

Proposition 4.6.1. There exists ¢ > 0 such that for d large enough,

To(g™ wFal ) 7% S VoIl N Z, (1)\X (v0))

o€EL
d
o ® x m t __t_pDX.Fg,2 dt —c
A TI'S[‘Y ] |:(NA (T"x) _ 5)(1 — ﬁDX’Fd’Z)e 4d2D ¢ 7 + O(e d).
(4.6.6)
IfEL =0, as d — +oo,
To(g™, Vel jFe) = O(eed). (4.6.7)
Proof. By (4.6.4), we have
TM Faif 1 F oo AN ¢ Nl
7;-(g ,V @ ,h d) = — bt(Fd,h d)? — bt/dQ(Fd,h d)7 (468)
1/d 0

By (4.6.1) and using the same arguments as in [BMZ17, Subsection 7.2], we
can get that there exists ¢ > 0 such that

e Fay Gt —ed
be(Fa, hF) 2 = O (e, (4.6.9)
1/d t
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By (3.2.6), (4.5.14), we get
Fu 9

be(Fa, ) = (1+2t =) | wn(Fay 0, 2)de. (4.6.10)

t" M

yer

We split the sum in (4.6.10) into two parts:

oo+ > (4.6.11)
~v€Tl',vo elliptic  vy€I',yo nonelliptic

When writing down the integrals explicitly with the heat kernels, the integral of
the first part in (4.6.11) is just the sum of the twisted orbital integrals associated
with the elliptic classes in E,. If [y], € E, and if [], ¢ EL, then by Theorem
3.3.3, Corollary 3.3.4, we get that for ¢t > 0,

TI'S[’YG] (NA-(T*X) — %) exp(tDX’Fd’2/4d2):| = 0 (4612)

This gives the the first sum in the right-hand side of (4.6.6).
If z € X, put

he(Fg, hF, z) = > vy(Fy,v0, ). (4.6.13)
v€T',yo nonelliptic

Then it is enough to prove that

d
/ W4 202y [ by (Fa nPe, 2= % = 0. (4.6.14)
0 ot" I t

Indeed, using Lemma 4.5.2 and Proposition 4.5.3, there exists C > 0, ¢’ > 0,
¢’ > 0 such that if d is large enough, 0 < ¢ < d, then

\he a2 (Fa, hF, 2)| < C dim(Eg)e™ " exp(—c"d?/t). (4.6.15)
Recall that ny = dim¢ Ny. By (4.2.34), there exists Cy > 0 such that
dim(E,) < Cod™. (4.6.16)

By (4.6.15), (4.6.16), we have

1 dt "2 1 "2 dt
‘/ ht/dz(Fd7hFd7$)7| < Ce /2 dim(Ed)/ e cd /Qt? = O(e™),
0 0

d d
dt 1 ! dt
\/ ht/dz(Fd,hFd,:v)?] < Ce© ddim(Ed)/ e_“f? =
1 1

O(e4).
(4.6.17)
By (4.6.15) - (4.6.17), we get (4.6.14). The equation (4.6.7) follows from
(4.6.6). This completes the proof of our proposition. O
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By (2.6.10), M has different connected components, each component is also
a compact locally symmetric space associated with an elliptic class [y],. Then
(4.6.6) says that only the components with the fundamental rank 1 contribute
to the leading terms of the asymptotics of T, (g™, VFef hFe) as d — +oo.

Now suppose that E! # (). We use the notation of Subsection 4.2. As
explained in the end of Subsection 4.3, for each [], € EL, we fix g€ G, k € K
such that k™' = gyo(g~"). Then put J(v) = J(k~!). For j € J(v), let n(yo),
R]%)\, Toy.j> P, € 4y & W1, be the ones associated with k="', By Lemma 4.3.2,
these quantities do not depend on the choice of g or k. Set

m(c) = max{n(yo) | ]o € E,},

N X (4.6.18)
Eg"% ={[1]e € E; | n(yo) = m(0)}.
Theorem 4.6.2. If EL # 0, as d — +oo,
d—m(a’)—lr]—o_(gTM, VFd’f, hFd)
j j 1max 1
= > VTN Z\X(e)[ D @I + o).
ly], € ELmax JET (y)max
(4.6.19)
Proof. For [y], € EL, 7 is C?-conjugate to k~!. Then
Trs[kflg] [(NA-(T*X) o %) eXp(—tDX7Fd’2/2)]
(4.6.20)

= T, (N7 - 2) exp(—tD 02 2)].

If [y], € EL, by Theorem 4.4.1 and by (4.6.12), (4.6.20), as d — +o0,

1

. * dt

/ Tr P [(NATTT0 — %)(1 — D02 /2) exp(—tD P02 /4d?) | —
0

n(yo j L maxdt n(yo
— o+t 3O r;{fpg/o @]l O ),

JET (y)mex
(4.6.21)
Note that
d
(T~ t t dt
Te oI (VAT (T X) _ My _ L pXFa2 _ U X, F2y1
/1 T [( 5 )( 22 ) exp( AP )] -
d
® ik t dt
— [ T (N Y (- L pXFa &
/1 -l )5 5 (4.6.22)
o 1
2T (VA0 — ) exp(— D))
o . * m 1
- 2T [V - ) (s DY)
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Similarly, by (4.1.23), we have

¢ 7 maxdt ¢ 7 maxdt 7 max 7 max
18 G = [ 1T 20 ™ 20 ) (46.2)

Also we have

e J dt —cd
p d'y,t/4? = O(e ) (4624)

Combining (4.4.3) - (4.4.6) with (4.6.22) - (4.6.24), we get that as d — +o0

d X,Fy,2

dfn(va)fl/ Trs[fyg} [(NA°(T*X) B E)(l B tD 2d )exp(*tDX’Fd’2/4d2)] ﬁ

1 2 2d t
R dt 1
d max

=2 ¥ il [ o)
JET (yymax !

(4.6.25)

By (4.3.5), (4.6.6), (4.6.18), (4.6.21), (4.6.25), we get (4.6.19). This completes
the proof of our theorem. U

Combing Proposition 4.6.1 and Theorem 4.6.2, we get Theorem 1.0.1.

Corollary 4.6.3. If 0 € X is of finite order Ny and preserves I, then each
number r., ; appeared in right-hand side of (4.6.19) is a No-th root of unity.

Proof. If oy € T is such that o is elliptic, then (yo)™o € T is elliptic. Since I' is
torsion-free, then
(yo)No = 1. (4.6.26)

Let k~! € K be an element that is C,-conjugate to v. Then we also have
(k~to)No = 1. By Proposition 4.2.6, r., ; represents the unitary action of k1o
on the fiber Ly at its fixed points, thus it must be a Ny-th root of unity. O
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