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Abstract

In this paper, we study the asymptotics of the equivariant analytic torsions for a
certain sequence of flat vector bundles over a compact locally symmetric space.
Our approach is combining the twisted trace formula with an explicit geometric
formula for the twisted orbital integrals. We show that the leading term of
asymptotic equivariant analytic torsion is given in terms of W -invariants with
oscillating coefficients.
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1. Introduction

The purpose of this paper is to study the leading terms in the asymptotic ex-
pansions of the equivariant Ray-Singer real analytic torsions for compact locally
symmetric spaces.

Let (M, gTM ) be a closed oriented Riemannian manifold, let (F,∇F,f , hF )
be a Hermitian flat vector bundle on M . Let DZ,F,2 be the de Rham-Hodge
Laplacian associated with the de Rham complex (Ω•(M,F ), dM,F ). The real
analytic torsion T (gTM ,∇F,f , hF ) is a (graded) spectral invariant of DM,F,2

introduced by Ray and Singer [RS71, RS73]. When dimRM is odd, it does not
depend on the choices of gTM , hF . The theorems of Cheeger [Che79] and Müller
[Mül78] say that, for unitarily flat vector bundle F , this invariant coincides with
the Reidemeister torsion, a topological invariant defined via CW complexes of
M . Using the Witten deformation, Bismut and Zhang [BZ91, BZ92] gave an
extension of the Cheeger-Müller theorem for arbitrary flat vector bundles.

Let Σ be a compact Lie group which acts on (F,∇F,f ) → M equivariantly.
Then Σ acts on (Ω•(M,F ), dM,F ). In [LR91], Lott and Rothenberg introduced
an equivariant version of Ray-Singer analytic torsion. If σ ∈ Σ, set

ϑσ(gTM ,∇F,f , hF )(s) = −Trs

[
NΛ·(T∗M)σM (DM,F,2)−s

]
. (1.0.1)

Then ϑσ(gTM ,∇F,f , hF )(s) extends to a meromorphic function of s ∈ C, which
is holomorphic at 0. The σ-equivariant Ray-Singer analytic torsion is defined as

Tσ(gTM ,∇F,f , hF ) =
1

2

∂ϑσ(gTM ,∇F,f , hF )

∂s
(0). (1.0.2)

If σ = IdG, we just get the ordinary analytic torsion T (gTM ,∇F,f , hF ).
When Σ is a finite group, in [Rot78], for a Σ-CW complex ofM , Rothenberg

constructed an equivariant version of the Reidemeister torsion. In [LR91], when
F is unitarily flat, an extension of the Cheeger-Müller theorem was established
by comparing the equivariant Reidemeister torsion and Ray-Singer analytic tor-
sion. Then Bismut and Zhang [BZ94] generalized these results for arbitrary flat
vector bundles with an equivariant action of a compact Lie group. Also Bunke
[Bun99] showed that when F is unitarily flat, the equivariant analytic torsion
can be determined by counting the cells of a Σ-CW decomposition of M , up to
a locally constant function on Σ.

Now, let G be a connected linear real reductive Lie group with compact
center, and let X = G/K be the associated symmetric space. Let Γ be a
cocompact torsion-free discrete subgroup of G. In this paper, we work on the
compact locally symmetric spaceM = Γ\X equipped with a compact Lie group
action generated by suitable σ ∈ Aut(G). We will consider a certain sequence
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of flat vector bundles Fd, d ∈ N on M , and we evaluate the leading term in the
asymptotic expansion of Tσ(gTM ,∇Fd,f , hFd) as d→ +∞.

Bergeron and Venkatesh [BV13] have considered the asymptotic behavior
of the Ray-Singer analytic torsion under a tower of finite coverings of M , and
then by Cheeger-Müller theorem, they studied the asymptotic growth of the
torsions in homology. In [BL17], under finite coverings and acyclic base change,
Bergeron and Lipnowski studied the asymptotic equivariant analytic torsions
and then considered the growth of torsion cohomology under twisting action.

Müller [Mül12] initiated the study of the analytic torsion for symmetric
powers of a given flat vector bundle on hyperbolic manifolds. Also Bismut-Ma-
Zhang [BMZ11, BMZ17] and Müller-Pfaff [MP13b, MP13a] studied the case
where one considers a sequence of flat vector bundles on M associated with
multiples of a given highest weight of an irreducible G-representation. Moreover,
Marshall-Müller [MM13] and Müller-Pfaff [MP14] applied the related results to
study the asymptotic growth of torsion cohomology for a family of local systems
on certain compact arithmetic manifolds.

Using methods of harmonic analysis, Ksenia Fedosova [Fed, Fed15] studied
the asymptotic analytic torsions for compact hyperbolic orbifolds for a sequence
of homogeneous flat vector bundles. Then in [Liu20], the author extended her
results to arbitrary compact locally symmetric orbifolds of noncompact type via
applying Bismut’s explicit formula [Bis11] for orbital integrals.

Here, we introduce an equivariant analog to the settings in [BMZ17, Section
8] and [MP13a], and we study the asymptotics of the equivariant Ray-Singer
analytic torsion for M . Let us give more details on the results of this paper.

Let θ ∈ Aut(G) be the Cartan involution, whose fixed point set is the max-
imal compact subgroup K of G. Let g, k denote the Lie algebras of G, K
respectively. Then θ acts on g and fixes k. Let p ⊂ g be the eigenspace of θ
associated with the eigenvalue −1. The Cartan decomposition of g is

g = p⊕ k. (1.0.3)

Let B be a G- and θ-invariant nondegenerate symmetric bilinear form on g,
which is positive on p and negative on k. When g is not semisimple, we do not
have a canonical choice of B such as the Killing form due to the nontrivial center
of g, but here we always fix one choice once and for all. Let U be compact form
of G with Lie algebra u =

√
−1p⊕ k. Then U is a compact linear Lie group. We

extend the bilinear form B to u.
Let gTX be the Riemannian metric on X induced from B|p. Then the group

G acts on X isometrically. Taking quotient by Γ, we get a compact locally
symmetric manifold (M = Γ\X, gTM ). Set m = dim p = dimX = dimM .

Let σ ∈ Aut(G) be such that it commutes with θ and preserves B and Γ.
Then it induces an isometry on X which descends to an isometry of M . Let
Σσ ⊂ Aut(G) be the closure of the subgroup generated by σ, which is a compact
Abelian subgroup. We assume that the action of σ on u lifts to U . Set

Gσ = Go Σσ, Uσ = U o Σσ, (1.0.4)
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where o denotes the semi-direct product.
If σ ∈ Σ, we define the σ-twisted conjugation Cσ so that if h, γ ∈ G,

Cσ(h)γ = hγσ(h−1). (1.0.5)

Let Zσ(γ) ⊂ G be the σ-twisted centralizer of γ. Since σ preserves Γ, let [Γ]σ
denote the set of σ-twisted conjugacy classes in Γ. If γ ∈ Γ is such that γσ
acting on X has fixed points, then we call [γ]σ ∈ [Γ]σ an elliptic class. In this
case, let X(γσ) ⊂ X denote the fixed point set of γσ, which is a symmetric
space associated with Zσ(γ).

Let (E, ρE , hE) be an irreducible unitary representation of Uσ, then it ex-
tends uniquely to a representation of Gσ via unitary trick. This way, (F =
G ×K E, hF ) becomes a Hermitian vector bundle on X equipped with an Gσ-
invariant flat connection ∇F,f . It descends to a flat bundle onM equipped with
an equivariant Σσ-action, so that Tσ(gTM ,∇F,f , hF ) is well-defined.

In Theorem 3.3.2, we get several criteria to make Tσ(gTM ,∇F,f , hF ) vanish.
In particular, we show that if E is not irreducible as U -representation, then

Tσ(gTM ,∇F,f , hF ) = 0. (1.0.6)

This theorem extends some classical results on the usual analytic torsions such
as [MS91, Corollary 2.2], [Lot94, Proposition 9], [BL95, Theorem 3.26], [Bis11,
Section 7.9], [BMZ17, Theorem 8.6], etc.

As a consequence of (1.0.6), we only need to focus on the irreducible Uσ-
representations which are also irreducible when restricting to U . They corre-
spond exactly the essential representations considered in [BL17]. In the context
of [BMZ17, Section 8] and [MP13a], this condition means that we are concerned
with a σ-fixed dominant weight λ of U with respect to a suitable root system.

Let Nλ be the flag manifold associated with λ, on which Uσ acts holomor-
phically. This Uσ-action also lifts to the canonical line bundle Lλ → Nλ. The
rigorous construction is given in Subsection 4.2. Then for each d ∈ N, Uσ acts
on Ed = H(0,0)(Nλ, L

d
λ). This way, we get a canonical sequence of irreducible

unitary representations (Ed, ρ
Ed , hEd) of Uσ such that each (Ed, ρ

Ed) is the ir-
reducible U -representation with highest weight dλ. It defines a sequence of flat
vector bundles {Fd}d∈N over M on which Σσ acts equivariantly.

For a nice spectral gap of the Hodge Laplacians, we also need to introduce
a nondegeneracy condition on λ (Definition 4.1.2, Subsection 4.3). Equiva-
lently, λ is called nondegenerate if (E1, ρ

E1) is not isomorphic to (E1, ρ
E1 ◦ θ)

as U -representations. On a given closed Riemannian manifold, the W -invariant
was introduced in [BMZ17]. Here, for a nondegenerate λ, it is a universally con-
structed G-invariant sectionWλ of Λ·(T ∗X) (see Subsection 4.1). It is expressed
in terms of the Duistermaat-Heckman integrals [DH82, DH83] associated with
Lλ → Nλ. Let [Wλ]max denote the coefficient of the (oriented) volume element
on X of norm 1 in Wλ. Since Wλ is G-invariant, [Wλ]max here becomes a real
constant. Put nλ = dimCNλ. A result of [BMZ17] is that when the fundamental
rank δ(G) = 1, as d→ +∞, we have

d−nλ−1T (gTM ,∇Fd,f , hFd) = Vol(M)[Wλ]max +O(d−1). (1.0.7)
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Then Vol(M)[Wλ]max is a topological invariant for M . Note that if δ(G) 6= 1,
we have T (gTM ,∇Fd,f , hFd) = 0, and the connected linear simple Lie groups
with δ(G) = 1 are completely classified (cf. [Bis11, Remark 7.9.2]).

As shown by the computations in [MP13b, MP13a], [BMZ17, Section 8],
[Liu20, Subsections 7.3 & 7.4], given a concrete symmetric pair (G,K) with
δ(G) = 1 and a nondegenerate λ as above, the associated quantity [Wλ]max can
be evaluated explicitly in terms of λ and a root system of g. Then we can use
these W -invariants to describe other geometric objects for symmetric spaces.

We now present the main result of this paper, where the sequence {Fd}d∈N
is constructed as above. Our notation will be made explicitly in Subsection 4.6.
In particular, E1,max

σ is a finite subset of elliptic classes in [Γ]σ, and J (γ)max is
a finite set determined by γ. Each W j

γσ is a W -invariant for a symmetric space
X(γσ) associated with a linear reductive Lie group of fundamental rank 1. The
complex numbers rγ,j are all of modulo 1.

Theorem 1.0.1. If E1,max
σ 6= ∅, there exists m(σ) ∈ N such that as d→ +∞,

d−m(σ)−1Tσ(gTM ,∇Fd,f , hFd)

=
∑

[γ]σ∈E1,max
σ

Vol(Γ ∩ Zσ(γ)\X(γσ))
( ∑
j∈J (γ)max

rdγ,jϕ
j
γ [W j

γσ]max
)

+O(d−1),

(1.0.8)

where the constants rγ,j, ϕjγ can be explicitly computed in terms of λ, σ and
root data of u (Proposition 4.2.6).

If E1,max
σ = ∅, then there exists constant c > 0, as d→ +∞,

Tσ(gTM ,∇Fd,f , hFd) = O(e−cd). (1.0.9)

Let σM denote the fixed point set of σ in M . In Subsection 2.6, we show
that σM can be identified with a disjoint union of Γ∩Zσ(γ)\X(γσ) associated
with each elliptic class [γ]σ in [Γ]σ. Therefore, (1.0.8) relates the asymptotic
σ-equivariant analytic torsion of M to the W -invariants on σM .

A difference from the result (1.0.7) of [BMZ17, Section 8] is that the coeffi-
cients of W j

γσ have oscillating factors rdγ,j as d varies. Moreover, if σ is of finite
order N0, then each rγ,j is a N0-th root of unity (cf. Corollary 4.6.3).

Note that in the asymptotic analytic torsions for compact locally symmetric
orbifolds in [Fed15] and [Liu20], the oscillating coefficients also appear in the
evaluation of elliptic orbital integrals. Here in (1.0.8), they come from the σ-
twisted orbital integrals associated with elliptic classes [γ]σ ∈ [Γ]σ.

Now we explain our approach to Theorem 1.0.1. By (1.0.1) and Mellin
transform, we need to study the asymptotic behavior of

Trs[(N
Λ•(T∗M) − m

2
)σM exp(−tDM,Fd,2/2)], t > 0, (1.0.10)

where Trs[·] denotes the supertrace with respect to the Z2-grading on Λ•(T ∗M).
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At first, we apply the twisted Selberg’s trace formula to M = Γ\X. For
[γ]σ ∈ [Γ]σ, let Trs

[γσ][(NΛ•(T∗X)− m
2 ) exp(−tDX,Fd,2/2)] denote the associated

twisted orbital integral (Subsection 2.5). Then

Trs[(N
Λ•(T∗M) − m

2
)σM exp(−tDM,Fd,2/2)]

=
∑

[γ]σ∈[Γ]σ

Vol(Γ ∩ Zσ(γ)\X(γσ))Trs
[γσ][(NΛ•(T∗X) − m

2
) exp(−tDX,Fd,2/2)].

(1.0.11)

In [Liu18, Section 5], using the Bismut’s theory of hypoelliptic Laplacian for
symmetric space, an explicit geometric formula was obtained for the twisted
orbital integrals appeared in the right-hand side of (1.0.11).

In the sum of (1.0.11), if [γ]σ is elliptic with δ(Zσ(γ)0) 6= 1, then its con-
tribution is zero. For the case δ(Zσ(γ)0) = 1, we can compute the leading
terms in the asymptotics of Trs

[γσ][(NΛ•(T∗X)− m
2 ) exp(−tDX,Fd,2/2)], so that,

after Mellin transform, we obtain exactly an oscillating combination of some
W -invariants for the compact locally symmetric space Γ ∩ Zσ(γ)\X(γσ). The
oscillating factor rdγ,j comes from the action of γσ on Ldλ → Nλ on the fixed
points. To get exactly the asymptotic expansion in (1.0.8), in Theorem 4.4.1, we
also obtain several important uniform estimate for the twisted orbital integrals
when t > 0 is small and large.

The second step is to handle the contribution of the nonelliptic [γ]σ ∈ [Γ]σ,
we use a spectral gap of DM,Fd,2 due to the nondegeneracy of λ. By [BMZ11,
Théorème 3.2], [BMZ17, Theorem 4.4] which holds for a more general setting (cf.
also [MP13a, Proposition 7.5, Corollary 7.6] for a proof by using representation
theory), there exist constants C > 0, c > 0 such that for d ∈ N,

DM,Fd,2 ≥ cd2 − C. (1.0.12)

Then for d large enough, Fd is acyclic flat vector bundle on M . Combining
(1.0.12) with the fact that nonelliptic elements γσ, γ ∈ Γ admit a uniform
positive lower bound for their displacement distances on X (Proposition 2.6.3),
we prove that the contribution from nonelliptic classes of [Γ]σ to (1.0.10) is
exponentially small as d→ +∞. As a consequence, we get (1.0.9).

This paper is organized as follows. In Section 2, we describe our setting
for the locally symmetric space with a twisting action of σ, and we recall the
explicit formula for the twisted orbital integrals obtained in [Liu18, Section 5].

In Section 3, we consider the flat Hermitian vector bundle F on M de-
fined from the unitary representations of Uσ, and we study the associated
Tσ(gTM ,∇F,f , hF ). In particular, we get a vanishing theorem for it.

Finally, in Section 4, for an irreducible Uσ-representation with a σ-fixed
highest weight λ, we construct a canonical sequence of representations {Ed}d∈N
of Uσ. This way, we get a sequence of flat vector bundles Fd on M . We also
recall the nondegeneracy condition for λ as in [BMZ17, Section 8]. At last, we
prove Theorem 1.0.1.
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The results contained in this paper are mainly from the second part of the
author’s thesis [Liu18] and were announced in [Liu19]. Note that (1.0.8) is a
refinement of [Liu19, Theorem 4.5].

In the sequel, if V is a real vector space and if E is a complex vector space,
we will denote by V ⊗ E the complex vector space V ⊗R E. We use the same
convention for the tensor products of vector bundles. If E = E+ ⊕E− is a Z2-
graded vector space, if A ∈ End(E) has the diagonal elements A+ ∈ End(E+),
A− ∈ End(E−), then the supertrace is defined as

Trs
E [A] = TrE

+

[A+]− TrE
−

[A−]. (1.0.13)

If H is a Lie group, let H0 denote the connected component of identity.
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2. Twisted orbital integrals and locally symmetric spaces

In this section, we consider the action of a certain compact subgroup Σσ ⊂
Aut(G) on the symmetric space X = G/K, and we recall an explicit ge-
ometric formula for twisted orbital integrals obtained in the author’s thesis
[Liu18, Liu19]. Then, given a cocompact torsion-free discrete subgroup Γ ⊂ G
preserved by Σσ, we recall the twisted trace formula for M = Γ\X.

As in the introduction, we always consider (G, θ,B) to be a connected linear
real reductive Lie group with compact center. Set

m = dim p, n = dim k. (2.0.1)

We also use the notation Ad(·), ad(·) for the adjoint actions of G, g respectively.

2.1. Real reductive Lie group and symmetric space
The bilinear form B induces a symmetric bilinear form B∗ on g∗, which

extends to a bilinear form on Λ·(g∗). The K-invariant bilinear form 〈·, ·〉 =
−B(·, θ·) is a scalar product on g, which extends to a scalar product on Λ·(g∗).
We will use | · | to denote the norm under this scalar product.
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Let Ug be the universal enveloping algebra of g. Let Cg ∈ Ug be the
Casimir element associated with B, i.e., if {ei}i=1,··· ,m+n is a basis of g, and if
{e∗i }i=1,··· ,m+n is the dual basis of g with respect to B, then

Cg = −
∑

e∗i ei. (2.1.1)

We can identify Ug with the algebra of left-invariant differential operators over
G, then Cg is a second-order differential operator, which is Ad(G)-invariant.
Similarly, let Ck denote the Casimir operator associated with (k, B|k).

Let i =
√
−1 denote one fixed square root of −1. Put

u =
√
−1p⊕ k. (2.1.2)

If a ∈ p, we use notation ia ∈
√
−1p ⊂ u to denote the corresponding vector.

Then u is a (real) Lie algebra, which is called the compact form of g. Then
gC = uC. Let GC be the complexification of G with Lie algebra gC. Then G is
the analytic subgroup of GC with Lie algebra g. Let U ⊂ GC be the analytic
subgroup associated with u. By [Kna86, Proposition 5.3], since G has compact
center, then U is a compact Lie group and a maximal compact subgroup of GC.

Let Uu, UgC be the enveloping algebras of u, gC respectively. Then UgC can
be identified with the left-invariant holomorphic differential operators on GC.
Let Cu be the Casimir operator of U associated with B, by (2.1.1), we have

Cu = Cg ∈ Ug ∩ Uu ⊂ UgC. (2.1.3)

Set
X = G/K. (2.1.4)

ThenX is a smooth manifold, and it is diffeomorphism to p by the global Cartan
decomposition of G.

Let ωg ∈ Ω1(G, g) be the canonical left-invariant 1-form on G. Then by the
splitting (1.0.3), we write

ωg = ωp + ωk. (2.1.5)

Let p : G → X denote the obvious projection. Then p is a K-principal
bundle over X. Then ωk is a connection form of this principal bundle. The
associated curvature form

Ωk = dωk +
1

2
[ωk, ωk] = −1

2
[ωp, ωp]. (2.1.6)

Moreover, the adjoint action of K on p gives us exactly the tangent bundle

TX = G×K p. (2.1.7)

The bilinear form B restricting to p defines a Riemannian metric gTX , and
ωk induces the associated Levi-Civita connection ∇TX . Let d(·, ·) denote the
Riemannian distance on X.
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Let Aut(G) be the Lie group of automorphism of G [Hoc52, Theorem 2].
The semidirect product of G and Aut(G) is defined as

Go Aut(G) := {(g, φ) | g ∈ G,φ ∈ Aut(G)}, (2.1.8)

with the group multiplication:

(g1, φ1) · (g2, φ2) = (g1φ1(g2), φ1φ2). (2.1.9)

In the sequel, we will often write gφ instead of (g, φ) ∈ Go Aut(G).

Definition 2.1.1. Put

Σ := {φ ∈ Aut(G) : φθ = θφ, φ preserves the bilinear form B}. (2.1.10)

Then Σ is a compact Lie subgroup of Aut(G). The action of Σ on G preserves
K, and the induced action of Σ on g preserves the splitting (1.0.3) and the
scalar product of g. Note that Σ contains all the inner automorphisms defined
by elements in K. Moreover, Go Σ is a closed Lie subgroup of Go Aut(G).

Given σ ∈ Σ, the map g ∈ G → σ(g) ∈ G descends to a diffeomorphism
of X, which we also denote by σ. By (2.1.7), (2.1.10), the derivative of σ is
given by (g, f) → (σ(g), σ(f)) with g ∈ G, f ∈ p. This way, G o Σ acts on X
isometrically and transitively, and we have the following identification,

X = (Go Σ)/(K o Σ). (2.1.11)

2.2. Twisted conjugation
In the sequel, we fix an element σ ∈ Σ. If g, g′ ∈ G, the σ-twisted conjugation

of g on g′ is defined as follows,

Cσ(g)g′ := gg′σ(g−1) ∈ G. (2.2.1)

The map Cσ(g) is not always a Lie group automorphism except σ = IdG. But
Cσ(·) defines a left action of G on itself.

If g ∈ G, the stabilizer of Cσ-action at g is called σ-twisted centralizer of g
in G, denoted by Zσ(g). More precisely, we have

Zσ(g) = {h ∈ G | Cσ(h)g = g.} (2.2.2)

It is a closed Lie subgroup of G. Let zσ(g) ⊂ g denote the Lie algebra of Zσ(g).
If σ = IdG, then Zσ(g) is just the centralizer Z(g) of g in G with Lie algebra
z(g). The orbit under this Cσ-action containing g ∈ G is called the σ-twisted
conjugacy class of g in G.

Since we already fix the element σ, we often use the word twisted instead of
σ-twisted in the above terminologies.
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2.3. Casimir operator and heat kernel
Let Σσ be the closure of the subgroup of Σ generated by σ, then it is a closed

Lie subgroup of Σ. Set

Gσ = Go Σσ, Kσ = K o Σσ. (2.3.1)

As in (2.1.11),
X = Gσ/Kσ. (2.3.2)

If k ∈ K, then kσ = (k, σ) ∈ Kσ, and its adjoint action on f ∈ p is given by

Ad(kσ)(f) = Ad(k)σ(f) ∈ p. (2.3.3)

Then, analog to (2.1.7), we have

TX = Gσ ×Kσ p. (2.3.4)

If ρE : Kσ → U(E, hE) is a finite dimensional representation, then set

F = Gσ ×Kσ E. (2.3.5)

The metric hE defines a Hermitian metric hF on F . The action of Σσ lifts to
F → X, where σ-action is represented by (g, v)→ (σ(g), ρE(σ)v), g ∈ G, v ∈ E.

If we restrict ρE to K, we can view (E, hE) as a unitary representation of
K. Then the above vector bundle F is equivalently defined as G×K E → X. It
is equipped with a unitary connection ∇F induced by ωk.

Remark 2.3.1. An interesting question is what kind of representation of K can
be extended to a representation of Kσ. For simplicity, we temporarily view σ
just as an element in Aut(K). Let Irr(·) denote the set of equivalent classes
of irreducible (complex) representations of a compact Lie group. In [Liu18,
Subsection 2.4], when K is semisimple, there exists an automorphism τ of K
with finite order which lies in the connected component of Aut(K) containing
σ. Moreover, τ acts on the set P++(K,T ) of dominant weights of K for certain
root system. Set Kτ = K o 〈τ〉. Then we proved the following bijections

Irr(Σσ)\Irr(Kσ) ' Irr(〈τ〉)\Irr(Kτ ) ' 〈τ〉\P++(K,T ). (2.3.6)

We refer to the proof of Proposition 3.3.5 for understanding precisely the above
bijections, where K is replaced by U .

Let C∞(G,E) denote the set of smooth map from G into E. If k ∈ K,
s ∈ C∞(G,E), we define the dot-action of K by (k.s)(g) = ρE(k)s(gk). Let
C∞K (G,E) be the set of K-dot-invariant maps in C∞(G,E). Let C∞(X,F )
denote the smooth sections of F over X. Then

C∞(X,F ) = C∞K (G,E). (2.3.7)

Moreover, the left action of Gσ on F → X induces an action of Gσ on C∞(X,F ).
Also ∇F is invariant under this action of Gσ.
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The Casimir operator Cg acting on C∞(G,E) preserves C∞K (G,E), so it
induces an operator Cg,X acting on C∞(X,F ). Let ∆H,X be the Bochner
Laplacian acting on C∞(X,F ) given by ∇F , and let Ck,E ∈ End(E) be the
action of the Casimir Ck on E via ρE . The element Ck,E induces an self-adjoint
section of End(F ) over X. Then

Cg,X = −∆H,X + Ck,E . (2.3.8)

Let Ck,p ∈ End(p), Ck,k ∈ End(k) be the actions of Ck on p, k via the adjoint
actions. Given A ∈ End(E) commuting with Kσ, we view it as a parallel section
of End(F ) over X. Let dx denote the Riemannian volume element of (X, gTX).

Definition 2.3.2. Let LX,FA be the Bochner-like Laplacian acting on C∞(X,F )
given by

LX,FA =
1

2
Cg,X +

1

16
Trp[Ck,p] +

1

28
Trk[Ck,k] +A. (2.3.9)

If A = 0, we denote this operator simply by LX,F . For t > 0, x, x′ ∈ X, let
pXt (x, x′) denote its heat kernel with respect to dx′.

Since Cg is invariant under the adjoint action of Gσ, the operator LX,FA

commutes with Gσ-action on C∞(X,F ). Then pXt (x, x′) lifts to a function
pXt (g, g′) on G×G valued in End(E) such that for g′′ ∈ G, k, k′ ∈ K,

pXt (g′′g, g′′g′) = pXt (g, g′),

pXt (gk, g′k′) = ρE(k−1)pXt (g, g′)ρE(k′),

pXt (σ(g), σ(g′)) = ρE(σ)pXt (g, g′)ρE(σ−1).

(2.3.10)

Let pXt (·) be the smooth function on G valued in End(E) such that

pXt (g) = pXt (1, g). (2.3.11)

In the sequel, we will often regard the heat kernel pXt (x, x′) and the function
pXt (g) as the same object.

2.4. Semisimple element
Recall that for γ ∈ G, γσ ∈ Gσ acts on X isometrically. The associated

displacement function dγσ is the function on X defined as

dγσ(x) = d(x, γσ(x)) , x ∈ X. (2.4.1)

Put mγσ = infx∈X dγσ(x) ∈ R≥0.
Since X has nonpositive sectional curvature, by [Ebe96, Chapter 1, Example

1.6.6], dγσ is a continuous nonnegative convex function on X, and d2
γσ is a

smooth convex function.
Definition 2.4.1. The element γσ ∈ Gσ is called semisimple if dγσ(x) reaches
its infimum mγσ in X. An element γσ is called elliptic if it has fixed points in
X, which is always semisimple by definition. If γσ is semisimple, put

X(γσ) = {x ∈ X | dγσ(x) = mγσ}. (2.4.2)
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A semisimple element γσ as above shares many similar properties as a
semisimple matrix in GLn(R) or a semisimple element in a linear reductive Lie
group [Ebe96, Section 2.19]. A detailed discussion can be found in the [Liu18,
Section 1]. We recall some of the results in the sequel.

If γ ∈ G and if γσ is semisimple, then there exists g ∈ G such that

γ = geak−1σ(g−1), a ∈ p, k ∈ K,Ad(k−1)σ(a) = a. (2.4.3)

An equivalent way to state the first identity in (2.4.3) is

γσ = Cσ(g)(eak−1)σ = g(eak−1σ)g−1 ∈ Gσ. (2.4.4)

Moreover, we get

Zσ(γ) = gZσ(eak−1)g−1 ⊂ G,
X(γσ) = g−1X(eak−1σ) ⊂ X, mγσ = meak−1σ = |a|.

(2.4.5)

Therefore, we may and we will focus on a semisimple element γσ such that

γ = eak−1, a ∈ p, k ∈ K,Ad(k−1)σ(a) = a. (2.4.6)

Let Z(a) ⊂ G be the centralizer of a under the adjoint action of G. Let
z(a) be its Lie algebra. Similar to the Jordan decomposition properties of a
semisimple matrix, we have the following identities [Liu18, Proposition 1.3.5],

Zσ(γ) = Z(ea) ∩ Zσ(k−1), Z(ea) = Z(a). (2.4.7)

Correspondingly, we have

zσ(γ) = z(ea) ∩ zσ(k−1), z(ea) = z(a). (2.4.8)

The Cartan involution θ preserves Zσ(γ), Z(ea) and Zσ(k−1), so that the cor-
responding Cartan decompositions of their Lie algebras hold true as in (1.0.3).
In particular, by [Kna02, Proposition 7.25], Zσ(γ) is reductive.

Set
Kσ(γ) = Zσ(γ) ∩K. (2.4.9)

Moreover, Kσ(γ) is a maximal compact subgroup of Zσ(γ), which meets every
connected components of Zσ(γ).

Let kσ(γ) ⊂ zσ(γ) be the Lie algebra of Kσ(γ). Then

kσ(γ) = zσ(γ) ∩ k. (2.4.10)

Put
pσ(γ) = zσ(γ) ∩ p. (2.4.11)

Then the Cartan decomposition of z(γ) with respect to θ is given by

zσ(γ) = kσ(γ)⊕ pσ(γ). (2.4.12)
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Moreover, the bilinear form B|zσ(γ) is positive on pσ(γ), and negative on kσ(γ).
The splitting in (2.4.12) is orthogonal with respect to B.

The minimizing set X(γσ) is a totally geodesic submanifold of X, which is
again a symmetric space. More precisely, by [Liu18, Lemma 1.4.6, Theorem
1.4.7], Zσ(γ) and its identity component Zσ(γ)0 act on X(γσ) transitively, and
we have the following identifications,

X(γσ) ' Zσ(γ)/Kσ(γ) = Zσ(γ)0/Kσ(γ)0. (2.4.13)

Under the identification X ' p via the global geodesic coordinate, we have
X(γσ) ' pσ(γ).

2.5. An explicit formula for twisted orbital integrals
In this subsection, we give an explicit geometric formula for twisted orbital

integral Tr[γσ][exp(−tLXA )] for pXt associated with a semisimple γσ. We still
assume that γ ∈ G is given by (2.4.6).

Let dg be the left-invariant Haar measure on G induced by (g, 〈·, ·〉). Since
G is unimodular, then dg is also right-invariant. Let dk be the Haar measure
on K induced by −B|k, then

dg = dxdk. (2.5.1)

Let dy be the Riemannian volume element of X(γσ), and let dz be the bi-
invariant (positive) Haar measure on Zσ(γ) induced by B|zσ(γ). Let dkσ(γ) be
the Haar measure on Kσ(γ) such that

dz = dydkσ(γ). (2.5.2)

Let Vol(Kσ(γ)\K) be the volume of Kσ(γ)\K with respect to dk, dkσ(γ). Then

Vol(Kσ(γ)\K) =
Vol(K)

Vol(Kσ(γ))
. (2.5.3)

Let dv be the G-right-invariant measure on Zσ(γ)\G such that

dg = dzdv. (2.5.4)

For t > 0, the twisted orbital integral Tr[γσ][exp(−tLX,FA )] is defined as

Tr[γσ][exp(−tLX,FA )] =
1

Vol(Kσ(γ)\K)

∫
Zσ(γ)\G

TrE [ρE(σ)pXt (v−1γσ(v))]dv

(2.5.5)
By [Liu18, Propositions 4.2.1 & 4.4.1], the integral in (2.5.5) is well-defined. As
indicated by the notation, it only depends on the conjugacy class [γσ] of γσ
in Gσ, and then it only depends on the σ-twisted conjugacy class of γ in G.
This kind of integrals play an important role in base change theory, we refer to
[Lan80, Clo84, AC89, BL17] for more details.

In [Liu18, Subsection 4.2] [Liu19, Definition 2.1], a geometric formula for
Tr[γσ][exp(−tLX,FA )] is established. We explain it as follows. Let NX(γσ)/X be
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the orthogonal normal bundle of X(γσ) in X, and let NX(γσ)/X denote its total
space. Then NX(γσ)/X ' X via the normal geodesics. For x ∈ X(γσ), let df
be the Euclidean volume element on NX(γσ)/X,x. Then there exists a positive
function r(f) on NX(γσ)/X,x such that dx = r(f)dydf . We have

Tr[γσ][exp(−tLX,FA )] =

∫
NX(γσ)/X,x

TrF [pXt (expx(f), γσ expx(f))γσ]r(f)df,

(2.5.6)
where the right-hand side of (2.5.6) does not depend on the choice of x ∈ X(γσ).

An explicit formula for Tr[γσ][exp(−tLX,FA )] was obtained in [Liu18, Theorem
5.2.1] [Liu19, Theorem 3.3] via the theory of hypoelliptic Laplacian developed by
Bismut, which generalizes Bismut’s formula for orbital integrals [Bis11, Theorem
6.1.1]. We now recall this formula.

To save the notation length, put

z0 = z(a), p0 = ker ad(a) ∩ p, k0 = ker ad(a) ∩ k. (2.5.7)

Let z⊥0 , p⊥0 , k⊥0 be the orthogonal subspaces to z0, p0, k0 in g, p, k with respect
to B. Then

z0 = p0 ⊕ k0, z⊥0 = p⊥0 ⊕ k⊥0 . (2.5.8)

By (2.4.8),
zσ(γ) = z0 ∩ zσ(k). (2.5.9)

Also pσ(γ), kσ(γ) are subspaces of p0, k0 respectively. Let z⊥σ,0(γ), p⊥σ,0(γ), k⊥σ,0(γ)
be the orthogonal spaces to zσ(γ), pσ(γ), kσ(γ) in z0, p0, k0. Then

z⊥σ,0(γ) = p⊥σ,0(γ)⊕ k⊥σ,0(γ). (2.5.10)

Also the action ad(a) gives an isomorphism between p⊥0 and k⊥0 .
For y ∈ kσ(γ), ad(y) preserves pσ(γ), kσ(γ), p⊥σ,0(γ), k⊥σ,0(γ), and it is an an-

tisymmetric endomorphism with respect to the scalar product.
Recall that the function Â(x) = x/2

sinh(x/2) . Let H be a finite-dimensional

Hermitian vector space. If B ∈ End(H) is self-adjoint, then
B/2

sinh(B/2)
is a

self-adjoint positive endomorphism. Put

Â(B) = det 1/2

[
B/2

sinh(B/2)

]
. (2.5.11)

In (2.5.11), the square root is taken to be the positive square root.
If y ∈ kσ(γ), the following function A(y) has a natural square root that is

analytic in y ∈ kσ(γ),

A(y) =
1

det(1−Ad(k−1σ))|z⊥σ,0(γ)

·
det(1− exp(−iad(y))Ad(k−1σ))|k⊥σ,0(γ)

det(1− exp(−iad(y))Ad(k−1σ))|p⊥σ,0(γ)

.

(2.5.12)
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Its square root is denoted by[
1

det(1−Ad(k−1σ))|z⊥σ,0(γ)

·
det(1− exp(−iad(y)Ad(k−1σ))|k⊥σ,0(γ)

det(1− exp(−iad(y)Ad(k−1σ))|p⊥σ,0(γ)

]1/2

.

(2.5.13)
The value of (2.5.13) at y = 0 is taken to be such that

1

det(1−Ad(k−1)σ)|p⊥σ,0(γ)

. (2.5.14)

We recall an important function defined in [Liu18, Definition 5.1.2] [Liu19,
Definition 3.2]

Definition 2.5.1. Let Jγσ(y) be the analytic function of y ∈ kσ(γ) given by

Jγσ(y) =
1

|det(1−Ad(γσ))|z⊥0 |
1/2

Â(iad(y)|pσ(γ))

Â(iad(y)|kσ(γ))[
1

det(1−Ad(k−1σ))|z⊥σ,0(γ)

det(1− exp(−iad(y))Ad(k−1σ))|k⊥σ,0(γ)

det(1− exp(−iad(y))Ad(k−1σ))|p⊥σ,0(γ)

]1/2

.

(2.5.15)

By (2.5.1), there exists Cγσ > 0, cγσ > 0 such that if y ∈ kσ(γ),

|Jγσ(y)| ≤ Cγσecγσ|y|. (2.5.16)

Put p = dim pσ(γ), q = dim kσ(γ). Then r = dim zσ(γ) = p+ q. By [Liu18,
Theorem 5.2.1] [Liu19, Theorem 3.3], for t > 0, we have

Tr[γσ][exp(−tLX,FA )]

=
1

(2πt)p/2

∫
kσ(γ)

Jγσ(y)TrE
[
ρE(k−1σ) exp(−iρE(y)− tA)

]
e−|y|

2/2t dy

(2πt)q/2
.

(2.5.17)

Remark 2.5.2. In [BL17], under suitable conditions in base change setting (then
σ is of finite order), Bergeron and Lipnowski managed to express certain twisted
orbital integrals in terms of ordinary orbital integrals, where they can make use
of Harish-Chandra’s theory to compute them.

2.6. Compact locally symmetric space M with twisting action
Let Γ be a cocompact torsion-free discrete subgroup of G, which is preserved

by σ. Even we do not require σ to be of finite order, the group Σσ descends to
a finite Abelian subgroup of Aut(Γ). Also note that in many interesting cases
such as the base change setting, or for G simple, σ will be of finite order.

By [Sel60, Lemmas 1,2], we have the following results.
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Lemma 2.6.1. If Γ is a cocompact discrete subgroup of G, if γ ∈ Γ, then it
is semisimple in G, and Γ ∩ Z(γ) is a cocompact discrete subgroup of Z(γ).
Generally, if γ ∈ Γ, then γσ ∈ Gσ is also semisimple, and Γ ∩ Zσ(γ) is a
cocompact discrete subgroup of Zσ(γ).

Definition 2.6.2. We denote by [Γ]σ the set of σ-twisted conjugacy classes in Γ.
If γ ∈ Γ, let [γ]σ be the σ-twisted conjugacy class of γ in Γ. If γσ is elliptic, we
say that [γ]σ is an elliptic class.

Let Eσ be the set of elliptic classes in [Γ]σ. By [Liu18, Lemma 1.8.3], Eσ is
a finite set. Note that mγσ ∈ R≥0 only depends on the class [γ]σ of γ ∈ Γ. Set

cΓ,σ = inf {mγσ | [γ]σ ∈ [Γ]σ\Eσ} ≥ 0. (2.6.1)

Proposition 2.6.3. We have
cΓ,σ > 0. (2.6.2)

Proof. Suppose that we have a sequence of [γi]σ ∈ [Γ]σ\Eσ, i ∈ N such that
mγiσ → 0 as i → +∞. Let V ⊂ G be the compact connected fundamental
domain for the quotient Γ\G. Then for each class [γi]σ, there exists γ′i ∈ [γi]σ,
xi ∈ p(V ) such that

dγ′iσ(xi) = mγiσ. (2.6.3)

Since V is compact, we may and we will assume that {xi}i∈N is a convergent
sequence with limit x ∈ p(V ). Then

d(x, γ′iσ(x)) ≤ d(x, xi) + d(xi, γ
′
iσ(xi)) + d(γ′iσ(xi), γ

′
iσ(x)). (2.6.4)

By the assumption, there exists i0 ∈ N such that if i ≥ i0, then

d(x, γ′iσ(x)) ≤ 1/2. (2.6.5)

Since Γ is discrete, there exists only finite number of γ′i such that (2.6.5)
holds. This contradicts the assumption that mγiσ → 0 as i → +∞, which
completes our proof.

Since Γ is torsion-free, a modification of the arguments in the proof of
[MP13b, Proposition 3.2] shows the following lemma. Note that it is also a
special case of [MM15, Eq.(3.19)].

Lemma 2.6.4. There exist c > 0, C > 0 such that for R > 0, x ∈ X, we have

#{γ ∈ Γ | γσ non-elliptic, dγσ(x) ≤ R} ≤ C exp(cR). (2.6.6)

Put M = Γ\X = Γ\G/K. The tangent vector bundle TX descends to the
tangent vector bundle TM of M . Since Γ-action is isometric, gTX induces a
Riemannian metric gTM on TM . Then M is a compact locally symmetric Rie-
mannian manifold. Moreover, the Hermitian bundle (F,∇F , hF ) on X defined
in Subsection 2.3 descends to a Hermitian vector bundle on M , which we still
denote by the same notation.
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Since σ preserves Γ, then Σσ acts onM isometrically, and this action lifts to
Hermitian bundle F on M . We will use σM denote the action of σ on F →M .

If g ∈ G, we denote by [g]X = pg (resp. [g]M ) the corresponding point in X
(resp. M). If A ⊂ X, we denote by [A]M ⊂ M the image of A ⊂ X under the
quotient projection X →M .

Let σM ⊂M be the fixed point set of σ inM . The following result is proved
in [Liu18, Lemma 1.8.7].

Lemma 2.6.5. If γ1, γ2 ∈ Γ are σ-twisted conjugate in Γ, then

[X(γ1σ)]M = [X(γ2σ)]M ⊂M. (2.6.7)

If g ∈ G, then [g]M ∈ σM if and only if there is γ ∈ Γ such that γσ is elliptic
and that [g]X ∈ X(γσ) ⊂ X. If [γ1]σ, [γ2]σ ∈ Eσ are distinct classes, then

[X(γ1σ)]M ∩ [X(γ2σ)]M = ∅. (2.6.8)

By Lemma 2.6.5, we get that

σM = ∪[γ]σ∈Eσ [X(γσ)]M . (2.6.9)

Moreover, the right-hand side in (2.6.9) is a finite disjoint union.
By Lemma 2.6.1, Γ ∩ Zσ(γ) is a cocompact discrete subgroup of Zσ(γ).

Moreover, since Γ is torsion-free, so is Γ ∩ Zσ(γ), and Γ ∩ Zσ(γ)\X(γσ) is a
compact locally symmetric manifold.

Take [γ]σ ∈ Eσ, let γ ∈ Γ be one representative of [γ]σ. If x ∈ X(γσ), if
γ0 ∈ Γ is such that γ0x ∈ X(γσ), then γ0 ∈ Zσ(γ). Thus the projection X →M
induces an identification between Γ ∩ Zσ(γ)\X(γσ) and [X(γσ)]M ⊂M . Then
(2.6.9) can be rewritten as

σM = ∪[γ]σ∈EσΓ ∩ Zσ(γ)\X(γσ). (2.6.10)

Let C∞(M,F ) be the vector space of smooth sections of F on M , and let
C∞(X,F )Γ be the subspace of C∞(X,F ) of Γ-invariant sections over X. Then
we have a canonical identification

C∞(M,F ) = C∞(X,F )Γ. (2.6.11)

By (2.3.7), (2.6.11), we get

C∞(M,F ) = C∞K (G,E)Γ. (2.6.12)

Recall that the Bochner-like Laplacian LX,FA is defined by (2.3.9). Since it
commutes with Gσ, then it descends to a Bochner-like Laplacian LM,F

A acting
on C∞(M,F ) and commuting with Σσ.

For t > 0, let pMt (z, z′), z, z′ ∈ M be the heat kernel of LM,F
A with respect

to the Riemannian volume element dz′. If z, z′ are identified with their lifts in
X, then

pMt (z, z′) =
∑
γ∈Γ

γpXt (γ−1z, z′) =
∑
γ∈Γ

pXt (z, γz′)γ. (2.6.13)
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Theorem 2.6.6 (Twisted trace formula). For t > 0, we have

Tr[σM exp(−tLM,F
A )] =

∑
[γ]σ∈[Γ]σ

Vol(Γ ∩ Zσ(γ)\X(γσ))Tr[γσ][exp(−tLX,FA )].

(2.6.14)

Here the convergences of the integrals and infinite sums are already guaran-
teed by the results in [Bis11, Chapters 2 & 4] and in [She18, Section 4D]. The
proof to this formula can be found in many literature on base change theory,
one can also find a detailed proof in [Liu18, Subsection 4.5].

3. Equivariant real analytic torsion for locally symmetric space

In this section, we explain how to make use of (2.5.17) and the twisted trace
formula (2.6.14) to study the equivariant Ray-Singer analytic torsions of M .

We extend σ-action to gC as a complex linear automorphism of gC, which
preserves Lie subalgebra u. We also assume that σ-action on u extends to an
automorphism of U , this way, it acts on GC bi-holomorphically. Set

Uσ = U o Σσ. (3.0.1)

3.1. The de Rham operator associated with a flat bundle
In the sequel, we take (E, ρE , hE) to be a unitary representation of Uσ.

By Weyl’s unitary trick, every irreducible unitary representation of Uσ extends
uniquely to an irreducible representation of Gσ. We use the same notation ρE
for the restrictions of this representation to G, to K and to Kσ. By (2.1.3),

Cu,E = Cg,E ∈ End(E). (3.1.1)

As in Subsection 2.3, put F = G×KE. Let ∇F be the Hermitian connection
induced by the connection form ωk. Then the map (g, v) ∈ G×K E → ρE(g)v ∈
E gives a canonical identification of vector bundles on X,

G×K E = X × E. (3.1.2)

Then F is equipped with a canonical flat connection ∇F,f so that

∇F,f = ∇F + ρE(ωp). (3.1.3)

Since G has compact center, (F, hF ,∇F,f ) is a unimodular flat vector bundle.
Let (Ω•c(X,F ), dX,F ) be the (compactly supported) de Rham complex asso-

ciated with (F,∇F,f ). Let dX,F,∗ be the adjoint operator of dX,F with respect
to the L2-metric on Ω•c(X,F ). The Dirac operator DX,F is

DX,F = dX,F + dX,F,∗. (3.1.4)

The Clifford algebras c(TX), ĉ(TX) of (TX, gTX) act on Λ•(T ∗X). We still
use e1, · · · , em to denote an orthonormal basis of p or TX.

18



Let ∇Λ•(T∗X)⊗F,u be the unitary connection on Λ•(T ∗X) ⊗ F induced by
∇TX and ∇F . Then the standard Dirac operator is given by

DX,F =

m∑
j=1

c(ej)∇Λ•(T∗X)⊗F,u
ej . (3.1.5)

By [BMZ17, Eq.(8.42)], we have

DX,F = DX,F +

m∑
j=1

ĉ(ej)ρ
E(ej). (3.1.6)

In the same time, Cg descends to an elliptic differential operator Cg,X acting
on C∞(X,Λ•(T ∗X)⊗ F ). Let κg ∈ Λ3(g∗) be such that if a, b, c ∈ g,

κg(a, b, c) = B([a, b], c). (3.1.7)

Then κg is a Gσ-invariant closed 3-form on G. The bilinear form B induces a
corresponding bilinear form B∗ on Λ•(g∗). By [Bis11, Eq.(2.6.11)], we have

B∗(κg, κg) =
1

2
Trp[Ck,p] +

1

6
Trk[Ck,k]. (3.1.8)

Let LX,F be the operator in Definition 2.3.2 but associated with the repre-
sentation Λ•(p∗)⊗ E. By [BMZ17, Proposition 8.4] and (3.1.8), we have

DX,F,2

2
= LX,F − 1

2
Cg,E − 1

8
B∗(κg, κg),

=
1

2
Cg,X − 1

2
Cg,E .

(3.1.9)

3.2. Equivariant Ray-Singer real analytic torsions on M
Let Γ be a cocompact torsion-free discrete subgroup of G preserved by σ. Let

M = Γ\X be the compact locally symmetric manifold considered in Subsection
2.6. The flat vector bundle F defined in last subsection descends to a flat vector
bundle on M , which we still denote by F on which Σσ acts equivariantly.

Note that since X is contractible, then

π1(M) = Γ. (3.2.1)

When restricting the representation ρE to Γ, we associate it with a flat vector
bundle (or a local system) Γ\(X × E) on M . By (3.1.2), this is an equivalent
way to define (F,∇F,f ).

The de Rham-Dirac operator DX,F in (3.1.4) descends to the corresponding
Dirac operator DM,F on M , so that

DM,F = dM,F + dM,F,∗. (3.2.2)
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Then DM,F commutes with Σσ. Let H•dR(M,F ) be the de Rham cohomology
group of (Ω•(M,F ), dM,F ). By Hodge theory,

kerDM,F ' H•dR(M,F ). (3.2.3)

Let NΛ•(T∗M) denote the number operator on Ω•(M,F ), i.e. multiplication
by the degrees of forms. Let (DM,F,2)−1 be the inverse of DM,F,2 acting on the
orthogonal space of kerDM,F in Ω•(M,F ).
Definition 3.2.1. For s ∈ C, Re(s) big enough, set

ϑσ(gTM ,∇F,f , hF )(s) = −Trs

[
NΛ·(T∗M)σM (DM,F,2)−s

]
. (3.2.4)

By standard heat equation methods [See67], ϑσ(gTM ,∇F,f , hF )(s) extends
to a meromorphic function of s ∈ C, which is holomorphic near s = 0.
Definition 3.2.2. Put

Tσ(gTM ,∇F,f , hF ) =
1

2

∂ϑσ(gTM ,∇F,f , hF )

∂s
(0). (3.2.5)

The quantity in (3.2.5) is called the equivariant Ray-Singer real analytic torsion.
We now explain a method to compute Tσ(gTM ,∇F,f , hF ) by Mellin trans-

form. For t > 0, as in [BL08, Eq.(1.8.5)], put

bt(F, h
F ) =

1

2
(1 + 2t

∂

∂t
)Trs

[(
NΛ•(T∗M) − m

2

)
σM exp(−tDM,F,2/4)

]
. (3.2.6)

Put

χσ(M,F ) =

m∑
j=0

(−1)jTrH
j
dR(M,F )[σ],

χ′σ(M,F ) =

m∑
j=0

(−1)jjTrH
j
dR(M,F )[σ].

(3.2.7)

By [BL08, Eqs.(1.8.7),(1.8.8)], we have

bt(F, h
F ) =

{
O(
√
t) as t→ 0,

1
2χ
′
σ(M,F )− m

4 χσ(M,F ) +O(1/
√
t) as t→ +∞,

(3.2.8)

where O(·) is the big-O convention.
Set

b∞(F, hF ) =
1

2
χ′σ(M,F )− m

4
χσ(M,F ). (3.2.9)

Let Γ(s) be the Gamma function. By [BL08, Eq.(1.8.11)], we have

Tσ(gTM ,∇F,f , hF ) = −
∫ 1

0

bt(F, h
F )
dt

t
−
∫ +∞

1

(bt(F, h
F )− b∞(F, hF ))

dt

t

−(Γ′(1) + 2(log 2− 1))b∞(F, hF ).

(3.2.10)
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3.3. A vanishing theorem on the equivariant analytic torsions
Let T be a maximal torus of K with Lie algebra t, put

b = {f ∈ p : [f, t] = 0}. (3.3.1)

Put h = b⊕t, then h is a Cartan subalgebra of g. LetH be analytic subgroup
of G associated with h, then it is also a Cartan subgroup of G. Moreover, dim t
is just the complex rank of K, and dim h is the complex rank of G.
Definition 3.3.1. Using the above notations, the deficiency of G, or the funda-
mental rank of G is defined as

δ(G) = rkCG− rkCK = dimR b. (3.3.2)

The integer m− δ(G) is even.
We assume at first that γσ is a semisimple element given by (2.4.6), i.e.,

γ = eak−1, a ∈ p, k ∈ K, Ad(k−1)σ(a) = a. (3.3.3)

Let S be a maximal torus of Kσ(γ)0 with Lie algebra s ⊂ kσ(γ). Set

bσ(γ) = {f ∈ pσ(k−1) | [f, s] = 0}. (3.3.4)

Then
a ∈ bσ(γ), dimR bσ(γ) ≥ δ(Zσ(γ)0). (3.3.5)

In general, for γ ∈ Γ, if γ is Cσ-conjugate to eak−1 as in (3.3.3), put

ε(γσ) = dim bσ(eak−1). (3.3.6)

Note that
ε(γσ) ≥ δ(Zσ(γ)0). (3.3.7)

In particular, if γσ is elliptic, then ε(γσ) = δ(Zσ(γ)0); if γσ is non-elliptic, then
ε(γσ) ≥ δ(Zσ(γ)0) ≥ 1. The integer ε(γσ) depends only on the class [γ]σ ∈ [Γ]σ.

We now state a vanishing theorem on Tσ(gTM ,∇F,f , hF ) as follows. For
simplicity, we assume that the representation (E, ρE , hE) of Uσ is irreducible.

Theorem 3.3.2. If one of the following four assumptions is verified:
(i) m is even and σ preserves the orientation of p;
(ii) m is odd and σ does not preserve the orientation of p;
(iii) (E, ρE) is irreducible as Uσ-representation, but not irreducible when re-

stricting to U ;
(iv) For γ ∈ Γ, ε(γσ) 6= 1, or δ(Zσ(γ)0) 6= 1;
then we have

Tσ(gTM ,∇F,f , hF ) = 0 (3.3.8)

Before proving the above theorem, we need to do some computations on the
twisted orbital integrals in order to evaluate the right-hand side of (3.2.6).

Let NΛ•(p∗), NΛ•(T∗X) be the number operators on Λ•(p∗), Λ•(T ∗X).
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Proposition 3.3.3. Assume γ is given by (3.3.3). For t > 0, we have

Trs
[γσ]

[(
NΛ•(T∗X) − m

2

)
exp(−tDX,F,2/2)

]
=

exp(−|a|2/2t)
(2πt)p/2

exp(
t

48
Trk[Ck,k] +

t

16
Trp[Ck,p])

∫
kσ(γ)

Jγσ(y)

Trs
Λ•(p∗)⊗E

[(
NΛ•(p∗) − m

2

)
ρΛ•(p∗)⊗E(k−1σ)

exp(−iρΛ•(p∗)⊗E(y) +
t

2
Cg,E)

]
exp(−|y|2/2t) dy

(2πt)q/2
.

(3.3.9)

If m is even and σ acting on p preserves the orientation, or m is odd and σ does
not preserve the orientation of p, or if dim bσ(γ) ≥ 2, then (3.3.9) vanishes.

Proof. The identity (3.3.9) follows from (2.5.17), (3.1.9).
Inside the integrand in (3.3.9), the supertrace term splits as the product

of the supertrace on Λ•(p∗) and the trace on E. By a direct computation on
matrix, we get that under the conditions listed in our proposition, for y ∈ kσ(γ),

Trs
Λ•(p∗)

[(
NΛ•(p∗) − m

2

)
ρΛ•(p∗)(k−1σ) exp(−iρΛ•(p∗)(y))

]
= 0. (3.3.10)

This way, we complete the proof to our proposition.

Corollary 3.3.4. If γ = k−1 ∈ K, i.e., γσ is elliptic, and if dim bσ(γ) = 0,
then for t > 0,

Trs
[γσ]
[(
NΛ•(T∗X) − m

2

)
exp(−tDX,F,2/2)

]
= 0. (3.3.11)

Proof. Note that when γ = k−1 ∈ K, bσ(γ)⊕ s is a Cartan subalgebra of zσ(γ).
If dim bσ(γ) = 0, then dim pσ(γ) is even. If σ preserves the orientation of p, then
dim p⊥σ (γ) is even. If σ does not preserves the orientation of p, then dim p⊥σ (γ)
is odd. By Proposition 3.3.3, we get (3.3.11).

Recall that Irr(·) denotes the set of equivalent classes of irreducible (complex)
representations of a compact Lie group.

Proposition 3.3.5. If (E, ρE) ∈ Irr(Uσ) and if the restriction of (E, ρE) to U
is not irreducible, then for k ∈ U , we have

TrE [ρE(σ)ρE(k)] = 0. (3.3.12)

Moreover, in this case, if γ ∈ G is such that γσ is semisimple, then for t > 0,

Trs
[γσ]
[(
NΛ•(T∗X) − m

2

)
exp(−tDX,F,2/2)

]
= 0. (3.3.13)
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Proof. We firstly assume that U is semisimple. Let Inn(U) denote the inner
automorphism group of U . The outer automorphism group of U is

Out(U) = Aut(U)/Inn(U). (3.3.14)

By fixing a maximal torus TU of U and a positive root system R+, Out(U) can
be realized as a finite subgroup of Aut(U) whose elements preserve TU and R+

[Bou04, Chapter VIII, §4.4 and Chapter IX, §4.10]. Moreover,

Aut(U) = Inn(U) o Out(U). (3.3.15)

Take k0 ∈ U , τ ∈ Out(U) such that for k ∈ U ,

σ(k) = k0τ(k)k−1
0 . (3.3.16)

Let Uτ be the subgroup of U o Out(U) generated by U and τ . We claim that
there exists cτ ∈ C such that if set

ρE,′(τ) = cτρ
E(k−1

0 )ρE(σ), ρE,′(k) = ρE(k), (3.3.17)

then (E, ρE,′) is an irreducible representation of Uτ . Note that such number cτ
is not unique, it depends on the order of τ and the choice of k0.

Indeed, set
A = ρE(k−1

0 )ρE(σ) ∈ End(E). (3.3.18)

Let N0 ≥ 1 be the order of τ in Out(U). Set

k̂ = k0τ(k0) · · · τN0−1(k0) ∈ U. (3.3.19)

Then
σ(k̂) = k̂ ∈ U, σN0 = Ad(k̂) ∈ Inn(U). (3.3.20)

Also we have
AN0 = ρE(k̂−1)ρE(σN0). (3.3.21)

We can verify directly that AN0 commutes with Uσ. Since (E, ρE) is irreducible
as Uσ-representation, then AN0 is a non-zero scalar endomorphism of E, then
we take cτ ∈ C such that cN0

τ AN0 = IdE .
We define ρE,′ as in (3.3.17). Then for k ∈ U ,

ρE,′(τ)ρE,′(k)ρE,′(τ−1) = ρE,′(τ(k)). (3.3.22)

Therefore, (E, ρE,′) become an irreducible representation of Uτ .
For proving (3.3.12), it is enough to prove that for k ∈ U , one has

TrE [ρE,′(τ)ρE,′(k)] = 0. (3.3.23)

Let P++ be the dominant weights for the pair (U, TU ) with respect to R+.
Then τ acts on P++. If λ ∈ P++, let Vλ ∈ Irr(U) denote the one with the
highest weight λ.
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Now we take a dominant weight λ ∈ P++ such that Vλ embeds into (E, ρE) as
a U -subrepresentation. Let {τ i(λ)}d−1

i=0 ⊂ P++ be the orbit of λ under the action
of τ . Note that d ≥ 1 is the length of the orbit and d |N0. By the description
of all the irreducible representations of non-connected compact Lie groups in
[DK00, Corollary 4.13.2 and Proposition 4.13.3], we get that the representation
(E, ρE,′) restricting on U is of the form

⊕d−1
i=0 Vτ i(λ). (3.3.24)

Moreover, the action ρE,′(τ) on E sends the component Vτ i(λ) to Vτ i+1(λ).
If (E, ρE) restricting to U is not irreducible, then d ≥ 2, and (3.3.23) holds,

so does (3.3.12). The identity (3.3.13) follows from (3.3.9) and (3.3.12).
If U is not semisimple, let Z0

U be the identity component of the center of
U , and let Uss be the analytic subgroup of U associated with the semisimple
subalgebra uss = [u, u]. Then Z0

U × Uss is a finite cover of U . Note that Z0
U is a

torus, the action of σ on it is of finite order. Then if we proceed as in the above
for Uss, we can still apply [DK00, Corollary 4.13.2 and Proposition 4.13.3] to
get (3.3.12). This completes the proof of our proposition.

Proof to Theorem 3.3.2. If m and σ verify either of the first two cases in our
theorem, then by (2.6.14) and Proposition 3.3.3, for t > 0,

Trs[
(
NΛ·(T∗Z) − m

2

)
σZ exp(−tDZ,F,2/4)] = 0. (3.3.25)

By (3.2.6), (3.3.25), the function bt(F, gF ) vanishes identically. In particular,

b∞(F, gF ) = 0. (3.3.26)

Then by (3.2.10), we get (3.3.8).
If (E, ρE) ∈ Irr(Uσ) is not irreducible when restricting to U , then by Propo-

sition 3.3.5, we get that (3.3.25), (3.3.26) still hold. Then (3.3.8) follows.
If γ ∈ Γ is such that γσ is nonelliptic, then ε(γσ) ≥ 1. If the fourth assump-

tion is verified, then by Theorem 3.3.3, Corollary 3.3.4, the identity (3.3.25) still
holds, which implies (3.3.8). This completes the proof to our theorem.

4. The asymptotics of the equivariant real analytic torsion

In this section, we compute the asymptotics of the equivariant Ray-Singer
analytic torsions associated with a certain sequence of flat vector bundles on a
compact locally symmetric space M = Γ\X. We extend the results of [MP13a],
[BMZ17, Section 8] to the equivariant setting.

This section is organized as follows. In Subsection 4.1, we recall the con-
struction of the W -invariant on X = G/K under a nondegeneracy condition.
This construction will be applied to X(γσ) = Zσ(γ)0/Kσ(γ)0 with γ ∈ K.

In Subsection 4.2, for an irreducible Uσ-representation with a σ-fixed highest
weight λ, we construct a canonical sequence of representations Ed, d ∈ N of Uσ.
This way, we get a sequence of flat vector bundles Fd on X or M .
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In Subsection 4.3, we show that the nondegeneracy condition of λ for G
implies the nondegeneracy condition of λ for Zσ(γ)0 with γ ∈ K.

In Subsection 4.4, when γ ∈ K and dim bσ(γ) = 1, for t > 0, we compute
the asymptotics as d→ +∞ of Trs

[γσ]
[(
NΛ•(T∗X) − m

2

)
exp(−tDX,Fd,2/2d2)

]
.

In Subsection 4.5, we recall some results on the spectral gap of Hodge Lapla-
cian obtained in [BMZ17, Section 4] under the nondegeneracy condition.

Finally, in Subsection 4.6, we give a proof to Theorem 1.0.1.

4.1. The forms et, dt and the W -invariant
Let Sg be the symmetric algebra of g, which can be identified with the alge-

bra of real differential operators with constant coefficients on g. By Poincaré-
Birkhoff-Witt theorem, let σ : Ug→ Sg be the symbol map of Ug, which is an
isomorphism of vector spaces. Let p̂ be another copy of p. Together with the
symbol map of Clifford algebras, we get a symbol map

σ : ĉ(p̂)⊗ Ug→ Λ•(p̂∗)⊗ Sg, (4.1.1)

which is an identification of filtered Z2-graded vector spaces.
Let e1, · · · , em be an orthonormal basis of p, then ê1, · · · , êm is a basis of

p̂, and let ê1, · · · , êm be the corresponding dual basis of p̂∗. Put

β =

m∑
i=1

êiei ∈ p̂∗ ⊗ g. (4.1.2)

By [BMZ17, Eq.(1.8)], β2 ∈ Λ2(p̂∗)⊗ k is given by

β2 =
1

2
[β, β] =

1

2
êiêj [ei, ej ]. (4.1.3)

Let β be the corresponding element of β in Λ•(p̂∗)⊗Ug. Then β2 ∈ Λ2(p̂∗)⊗
Ug coincides with β2 in (4.1.3). Let ∆p be the Laplacian of Euclidean vector
space p. Set

|β|2 =

m∑
i=1

e2
i = ∆p ∈ Sg, |β|2 =

p∑
i=1

β(êi)
2 ∈ Ug. (4.1.4)

By [BMZ17, Eqs.(1.10), (1.14)], we have

|β|2 ∈ S2g ∩ S2u, |β|2 = −|iβ|2 ∈ S2gC,

|β|2 ∈ Ug ∩ Uu, |β|2 = −|iβ|2 ∈ UgC.
(4.1.5)

Then
σ(|β|2) = |β|2. (4.1.6)

Set

ĉ(β) =

m∑
i=1

ĉ(êi)β(êi) ∈ ĉ(p̂)⊗ Ug. (4.1.7)
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Then we have
σ(ĉ(β)) = β. (4.1.8)

Let gr be a copy of the vector bundle G×K g on X but equipped with the
Lie bracket on the fibre. Similarly, put

Ugr = G×K Ug, Sgr = G×K Sg. (4.1.9)

Let T̂X (resp. T̂ ∗X) be another copies of TX (resp. T ∗X) on X. Recall
that ∇TX is the Levi-Civita connection of TX. Let ∇gr,û be the connections on
T̂ ∗X⊗gr induced by the connection form ωk, and let ∇Ugr,û be the connections
on T̂ ∗X ⊗ Ugr induced by ωk. We still denote by ∇Ugr,û the corresponding
connection on ĉ(T̂X)⊗ Ugr.

Then ωp can be considered as a section of T ∗X ⊗ gr, and β, β can be
considered as a section of T̂ ∗X ⊗ gr, T̂ ∗X ⊗ Ugr respectively. By [BMZ17,
Eq.(1.41)], we have

∇gr,ûβ = 0, ∇Ugr,ûβ = 0. (4.1.10)

Definition 4.1.1. For t ≥ 0, let At be the superconnection

At = ∇Ugr,û +
√
tĉ(β). (4.1.11)

By [BMZ17, Def. 1.2], A2
t is a smooth section of [Λ•(T ∗X)⊗̂ĉ(T̂X)]even ⊗

Ugr, so that σ(A2
t ) is a smooth section of [Λ•(T ∗X)⊗̂Λ•(T̂ ∗X)]even ⊗ Sgr.

If µ, ν ∈ Λ•(p∗) or Λ•(p̂∗), a, b ∈ k, we define

〈µ⊗ a, ν ⊗ b〉′ = µ ∧ ν〈a, b〉. (4.1.12)

By [BMZ17, Theorem 1.3 & Eq.(8.70)], we have

σ(A2
t ) = −1

2
〈ωp,2, β2〉′ − ωp,2 + t|β|2 + tβ2. (4.1.13)

Let N be a compact complex manifold, and let ηN be a smooth real closed
nondegenerate (1, 1)-form on N . We assume that U acts holomorphically on N
and preserves the form ηN . Let µ : N → u∗ be the moment map associated
with the action of U and ηN .

If y ∈ u, set

R̃(y) =

∫
N

exp(2πi〈µ, y〉+ ηN ). (4.1.14)

Then R̃ is U -invariant function, we can extend it to a holomorphic function
uC → C. If y ∈ uC, let Im(y) denote the component of y in iu.

The algebra Su acts on R̃(y), by [BMZ17, Eq.(1.24)],

exp(−t|β|2)R̃(y) =

∫
N

exp(−4π2t|〈µ, iβ〉|2 + 2πi〈µ, y〉+ ηN ). (4.1.15)

We regard k∗ as a subspace of u∗ by the metric dual of k ⊂ u.
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Definition 4.1.2. We say that (N,µ) is nondegenerate (with respect to ωp) if

µ(N) ∩ k∗ = ∅. (4.1.16)

Equivalently, there exists c > 0 such that

|〈µ, iβ〉|2 ≥ c. (4.1.17)

By [BMZ17, Eq.(1.27)], if (N,µ) is nondegenerate, there exists C0 > 0,
C1 > 0 such that, if y ∈ uC,

| exp(−t|β|2)R̃(y)| ≤ C0 exp(−tc+ C1|Im(y)|). (4.1.18)

If there is no confusion, we also say that the function R̃ is nondegenerate with
respect to ωp.

Definition 4.1.3. The Berezin integral
∫ B̂

: Λ•(T ∗X)⊗̂Λ•(T̂ ∗X)→ Λ•(T ∗X) is
a linear map such that, if α ∈ Λ•(T ∗X), α′ ∈ Λ•(T̂ ∗X),∫ B̂

αα′ = 0, if degα′ < m;∫ B̂

αê1 ∧ · · · ∧ êm =
(−1)m(m+1)/2

πm/2
α.

(4.1.19)

More generally, let o(p̂) be the orientation line of p̂, which can be identified with

o(p). Then
∫ B̂ defines a map from Λ•(T ∗X)⊗̂Λ•(T̂ ∗X) into Λ•(T ∗X)⊗̂o(p̂).

Let ψ be the endomorphism of Λ•(T ∗X)⊗RC which maps α ∈ Λk(T ∗X)⊗RC
into (2πi)−k/2α. Set

L =

m∑
i=1

ei ∧ êi. (4.1.20)

Definition 4.1.4. For t ≥ 0, set

dt = −(2πi)m/2ψ

∫ B̂ √
t
ωp ∧ β

2
exp(−σ(A2

t ))R̃(0),

et = (2πi)m/2ψ

∫ B̂ L

4
√
t

exp(−σ(A2
t ))R̃(0).

(4.1.21)

Then dt, et are smooth real forms on X.
Note that the action of G on X lifts to gr, Ugr and Sgr. Then the sections

ωp, β, β are G-invariant. Therefore, et, dt are G-invariant forms, so that they
are determined by their values at the point p1 ∈ X.

Let Ψ be the canonical element of norm 1 in Λm(p∗)⊗ o(p) (respectively, a
section of norm 1 of Λm(T ∗X) ⊗ o(TX)). For α ∈ Λ•(p∗) ⊗ o(p) (respectively
Λ•(T ∗X) ⊗ o(TX)), for 0 ≤ l ≤ m, let α(l) be the component of α of degree l.
We define [α]max ∈ R by

α(m) = [α]maxΨ. (4.1.22)
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Then [dt]
max, [et]

max are constant on X. By [BMZ17, Theorem 2.10],

(1 + 2t
∂

∂t
)[et]

max = [dt]
max. (4.1.23)

Also if (N,µ) is nondegenerate, there exists c > 0 such that, on X, as t→ +∞,

dt = O(e−ct), et = O(e−ct). (4.1.24)

Definition 4.1.5. If (N,µ) is nondegenerate, set

W = −
∫ +∞

0

dt
dt

t
. (4.1.25)

Then W is a G-invariant smooth form on X with values in o(TX), so that
[W ]max is a real constant.

As explained in Introduction, in [BMZ17], the authors showed that W
appears naturally as the leading term in the asymptotic analytic torsions of
M . The quantity Vol(M)[W ]max is called a W -invariant, we refer to [MP13b,
MP13a], [BMZ17, Section 8], [Liu20, Subsections 7.3 & 7.4] for more concrete
computations on them. Here, we use abusively this name for the form W .

The purpose of the rest of this paper is to develop an analog of [BMZ17,
Section 8] in the context of the equivariant analytic torsions. If (E, ρE) ∈
Irr(Uσ) is not irreducible when restricting to U , then by Proposition 3.3.2,

Tσ(gTM ,∇F,f , hF ) = 0 (4.1.26)

Then the only non-trivial case is that (E, ρE) is also a U -irreducible represen-
tation, then it will correspond to a σ-fixed dominant weight λ of U . In the
next subsections, we will construct a sequence of flat vector bundles Fd, d ∈ N
associated with this λ and ρE . In Subsection 4.6, we will show that the leading
term of asymptotic Tσ(gTM ,∇Fd,f , hFd) as d → +∞ is described in terms of
W -invariants of σM , the fixed point set of σ in M .

4.2. A sequence of unitary representations of Uσ

Let ureg be the set of regular elements in u. Recall that uss = [u, u] is
semisimple and that Uss is the associated analytic subgroup of U . By [DK00,
Lemma (3.15.4)], [u, u](σ) contains regular elements in [u, u]. Then there exists
v ∈ u(σ)∩ureg. If tU = u(v), then tU is a Cartan subalgebra of u. Let TU ⊂ U be
the corresponding maximal torus. Let RU be the associated (real) root system,
and let WU be the associated Weyl group. Let c ⊂ tU be the Weyl chamber
containing v, and let R+

U (c) denote the corresponding positive root system (i.e.
the root α ∈ RU such that α(v) > 0). Let P++(c) be the set of the dominant
weights on u with respect to c. Then σ acts on tU and on its dual, which
preserves R+

U (c) and P++(c).
If (E, ρE) ∈ Irr(Uσ) is irreducible as U -representation with highest weight

λ ∈ P++(c), then σ fixes λ, i.e., λ ∈ a∗. Actually, the converse also holds
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true, i.e., if λ ∈ P++(c) is fixed by σ-action, then the corresponding irreducible
(complex) U -representation (Eλ, ρ

Eλ) extends to a representation of Uσ. As
explained in Remark 2.3.1, such extension is not unique, they are different by
twisting with elements in Irr(Σσ).

From now on, we fix a λ ∈ P++(c) such that σλ = λ, then we construct a
sequence of irreducible representations (Ed, ρ

Ed), d ∈ N of Uσ such that each
(Ed, ρ

Ed) is an irreducible U -representation with highest weight dλ. In general,
such sequence is not unique. Here, we use the flag manifoldNλ to get a canonical
construction in the sense that it is determined uniquely by (E1, ρ

E1) ∈ Irr(Uσ).
More precisely, set

Uσ(λ) = {u ∈ Uσ | Ad(u)λ = λ}, U(λ) = Uσ(λ) ∩ U. (4.2.1)

Then
Uσ(λ) = U(λ) o Σσ. (4.2.2)

By [Wal73, Lemma 6.2.2], U(λ) is a connected. Moreover, TU ⊂ U(λ).
Note that TU is also a maximal torus of U(λ). Let RU(λ) be the associated

(real) root system of U(λ), then RU(λ) = {α ∈ RU | 〈α, λ〉 = 0}. Let c1 denote
the Weyl chamber containing v for (u(λ)C, tU ). Then R+

U(λ)(c1) = R+
U (c) ∩

RU(λ) is the corresponding positive root system of RU(λ). Note that λ is also a
dominant weight for (U(λ), TU ) with respect to R+

U(λ)(c1).
If α ∈ R+

U (c)\R+
U(λ)(c1), β ∈ RU(λ) and α+β is a (real) root, then 〈α, λ〉 > 0

so that α+ β ∈ R+
U (c)\R+

U(λ)(c1). Set

b+ =
∑

α∈R+
U (c)\R+

U(λ)
(c1)

uα, (4.2.3)

then
[u(λ), b+] ⊂ b+, [b+, b+] ⊂ b+. (4.2.4)

Moreover, σ preserves b+.
Set

Nλ = U/U(λ) = Uσ/Uσ(λ). (4.2.5)

Then by [Wal73, Lemma 6.2.13], Nλ has a complex structure such that the
holomorphic tangent bundle TNλ is

TNλ = U ×U(λ) b+ = Uσ ×Uσ(λ) b+. (4.2.6)

Moreover, Uσ acts holomorphically on Nλ. Put nλ = dimCNλ.

Lemma 4.2.1. Let (V λ, ρV
λ

) ∈ Irr(U(λ)) be the one with highest weight λ.
Then dimC V

λ = 1, and for u ∈ U(λ),

ρV
λ

(σ(u)) = ρV
λ

(u). (4.2.7)

Therefore, after tensoring (V λ, ρV
λ

) with any element in Irr(Σσ), we extend it
as a representation of Uσ(λ).
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Proof. Note that if α ∈ R+
U(λ)(c1), then 〈α, λ〉 = 0. Set

ρu(λ) =
1

2

∑
α∈R+

U(λ)
(c1)

α. (4.2.8)

By the dimension formula [BtD85, Chapter VI, Theorem (1.7)], we have

dimC V
λ =

∏
α∈R+

U(λ)
(c1)

〈α, λ+ ρu(λ)〉
〈α, ρu(λ)〉

= 1. (4.2.9)

Since σ fixes λ, we get (V λ, ρV
λ

) ' (V λ, ρV
λ ◦ σ) ∈ Irr(U(λ)). Then (4.2.7)

follows, so that it extends to Uσ(λ). This completes the proof of our lemma.

We fix an extension (V λ, ρV
λ

) ∈ Irr(Uσ(λ)) as in Lemma 4.2.1. Put

Lλ = Uσ ×Uσ(λ) V
λ. (4.2.10)

By [Wal73, Proposition 6.3.3], Lλ is a holomorphic line bundle on Nλ on which
Uσ acts holomorphically. If d ∈ N>0, put

Ed = H(0,0)(Nλ, L
d
λ). (4.2.11)

Then each (Ed, ρ
Ed) is a unitary representation of Uσ, which is also an irre-

ducible representation of U with highest weight dλ ∈ P++(c).

Remark 4.2.2. Let (E, ρE) ∈ Irr(Uσ) be irreducible as U -representation with
highest weight λ ∈ P++(c). Let Eb+ ⊂ E be the vector space

Eb+ = {w ∈ E : if f ∈ b+, then ρE(f)w = 0}. (4.2.12)

Then Eb+ is preserved by Uσ(λ), which is exactly the irreducible representation
of U(λ) with highest weight λ. Then by the dimension formula (4.2.9), we get
dimCE

b+ = 1, so that it is just the highest weight line (λ-eigenspace) of (E, ρE).
In (4.2.10), if we take V λ = Eb+ to define Lλ, then by [Wal73, Theorem 6.3.7],
we have (E1, ρ

E1) = (E, ρE) as Uσ-representation.

Let χd be the character of (Ed, ρ
Ed) on Uσ. In the sequel, we study the

asymptotics of χd(u0σe
y/d) as d→ +∞ for u0 ∈ U , y ∈ uσ(u0).

Set U(σ) = Uσ(1) and u(σ) = uσ(1). Put a = tU ∩ u(σ). Then a is a Cartan
subalgebra of u(σ). Let A ⊂ U(σ)0 be the corresponding maximal torus. If
u0 ∈ U , then by [Seg68, Proposition I.4], there exists u ∈ U , t0 ∈ A such that

u0 = ut0σ(u−1). (4.2.13)

Put Z = Uσ(u0), the σ-twisted centralizer of u0 in U . Let z ⊂ u be its Lie
algebra. By (4.2.13), we get

Z = uUσ(t0)u−1, Z0 = uU0
σ(t0)u−1. (4.2.14)
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Then Ad(u)(A) is a maximal torus of Z0.
Let NU (TU ) be the normalizer of TU in U . Put

NU (TU )(σ) = {g ∈ NU (TU ) | Ad(g)|tU commutes with σ|tU }. (4.2.15)

Let NU (A) be the normalizer of A in U , then

NU (TU )(σ) = NU (A). (4.2.16)

If g ∈ NU (A), then
Ad(g)λ ∈ a∗. (4.2.17)

Let u0σNλ be the fixed point set of u0σ in Nλ, which is a complex subman-
ifold (it may have several connected components). If u′ ∈ U , it depends to a
point [u′]λ ∈ Nλ. Recall that v ∈ c ∩ ureg ∩ u(σ).

Lemma 4.2.3. We have

u0σNλ = Z0uNU (A)U(λ)/U(λ) ⊂ Nλ. (4.2.18)

Let J (u0) denote the index set for connected components of u0σNλ, then J (u0)
is a finite set.

If u′ ∈ uNU (A), and if we take the Weyl chamber of (z,Ad(u)a) contain-
ing Ad(u′)v, then Ad(u′)λ is a dominant weight for Z0. Then the connected
component of [u′]λ is isomorphic to the flag manifold Z0/Z0(Ad(u′)λ) as com-
plex manifolds. Under this identification, H(0,0)(Z0/Z0(Ad(u′)λ), Lλ) is the
irreducible representation of Z0 with highest weight Ad(u′)λ.

Proof. Let Oλ ⊂ u∗ denote the orbit of λ by the adjoint action of U . Then
Nλ ' Oλ. Then the fixed point set of u0σ is just Oλ ∩ z∗. Let ηλ be the
canonical symplectic form on Oλ ⊂ u∗ [BGV04, Sections 7.5, 8.2]. Then

c1(Lλ, g
Lλ) = ηλ. (4.2.19)

The corresponding moment map µ : Nλ → u∗ associated with the U -action is
just the embedding i : Oλ ⊂ u∗.

If λ is regular, then (4.2.18) follows exactly from [DHV84, I.2 : Lemme (7)]
and [Bou87, Lemme 6.1.1]. In general, (4.2.18) is a consequence of [Bou87,
Lemma 7.2.2]. This proves the first part of our lemma.

Fix u′ ∈ uNU (A) and x = [u′]λ ∈ u0σNλ. The stabilizer of x under the
action of Z0 is Z0(Ad(u′)λ). Then we can identify the connected component of
[u′]λ in u0σNλ with the quotient Z0/Z0(Ad(u′)λ) as Z0-manifolds.

Let NU (c) be the normalizer of c in U . Put

t = (u′)−1u0σ(u′) ∈ NU (A). (4.2.20)

A direct computation shows that t ∈ NU (c) ∩ U(λ). Then the action of u0σ on
TxNλ is identified with the adjoint action of tσ on b+, so that

Tx
u0σNλ = b+(tσ). (4.2.21)
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Note that Ad(u′)b+(tσ) ⊂ zC. By taking the Weyl chambers containing Ad(u′)v
for z and z(Ad(u′)(λ)) with respect to Ad(u′)a, similar to (4.2.3) - (4.2.6), we
get a complex structure on Z0/Z0(Ad(u′)λ) such that the holomorphic tangent
bundle is given by Ad(u′)b+(tσ), which is exactly the same one inherited from
the complex structure of Nλ.

Since λ ∈ P++(c), Ad(u′)λ is a dominant weight for Z0 with respect to
the above Weyl chamber. Using the identification Nλ ' Oλ, we get that Lλ
restricting to the connected component Z0/Z0(Ad(u′)λ) is just the canonical
line bundle associated with the dominant weight Ad(u′)λ. The last assertion
follows from the Borel-Weil theorem. This completes our proof.

If j ∈ J (u0), let u0σN j
λ denote the corresponding connected component of

u0σNλ. Let µ : Nλ → u∗ be the moment map associated with the action of
U on Lλ → Nλ. As explained in the proof of Lemma 4.2.3, the restriction of
µ to each u0σN j

λ is just the moment map associated with the action of Z0 on
Lλ → u0σN j

λ.
Definition 4.2.4. If y ∈ z, j ∈ J (u0), set

Rju0,λ
(y) =

∫
u0σNjλ

exp
(
2πi〈µ, y〉+ c1(Lλ|u0σNλ , g

Lλ|u0σNλ )
)
. (4.2.22)

Note that Rju0,λ
(y) is a function of the same type as the one given in (4.1.14).

We can verify that Rju0,λ
is a Z0-invariant function on z. Also Rju0,λ

(y) can be
computed by the localization formulas in [DH82, DH83], [BGV04, Chapter 7].
Let ∆z be the standard Laplacian on z, then by [BMZ17, Eq.(8.146)], we have

∆zRju0,λ
= −4π2|λ|2Rju0,λ

. (4.2.23)

Let q be the orthogonal subspace of z in u with respect to B. If u′ ∈
Z0uNU (A), let z(Ad(u′)λ) be Lie algebra of Z0(Ad(u′)λ), and let z⊥(Ad(u′)λ)
be the orthogonal of z(Ad(u′)λ) in z. Put

q(Ad(u′)λ) = q ∩ u(Ad(u′)λ). (4.2.24)

Let q⊥(Ad(u′)λ) be the orthogonal of q(Ad(u′)λ) in q. Then

u(Ad(u′)λ) = z(Ad(u′)λ)⊕ q(Ad(u′)λ). (4.2.25)

By Lemma 4.2.3, the (real) vector space q⊥(Ad(u′)λ) can be identified with
the holomorphic normal vector space of u0σNλ at [u′]λ, so that it inherits a
complex structure Ju′ and u0σ acts on it as a complex linear map. Set

ϕu0
(u′) =

1

detC(1−Ad(u0σ)−1)|(q⊥(Ad(u′)λ),Ju′ )

. (4.2.26)

Lemma 4.2.5. If x = [u′]λ ∈ u0σNλ with u′ ∈ Z0uNU (A), then the map
x 7→ ϕu0

(u′) defines a locally constant function ϕu0
(x) on u0σNλ. In particular,

for j ∈ J (u0), let ϕju0
∈ C denote the value of ϕu0

on the component u0σN j
λ.
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Proof. By (4.2.18), (4.2.26), ϕu0(x) is well-defined on u0σNλ. If h ∈ Z0, then

q⊥(Ad(hu′)λ) = Ad(h)q⊥(Ad(u′)λ). (4.2.27)

Since h acts on Nλ holomorphically and commutes with u0σ, then ϕu0
(x) is a

Z0-invariant function on u0σNλ. This completes the proof of our lemma.

Put
n(u0σ) = max{dimC

u0σN j
λ | j ∈ J (u0)}. (4.2.28)

We call n(u0σ) the (maximal) dimension of u0σNλ. Let J (u0)max be the subset
of J (u0) of the index j with dimC

u0σN j
λ = n(u0σ), i.e. the index set for the

connected component of u0σNλ of the maximal dimension.

Proposition 4.2.6. For j ∈ J (u0), if uj ∈ U is such that xj ∈ [uj ]λ ∈ u0σN j
λ,

then u−1
j u0σ(uj) ∈ U(λ), and ru0,j = ρV

λ

(u−1
j u0σ(uj)) ∈ S1 only depends on

j ∈ J (u0). The action of u0σ on fibre Lλ,xj is given by the multiplication of
the number ru0,j.

If y ∈ z, as d→ +∞, then

χd(u0σe
y/d) = dn(u0σ)

∑
j∈J (u0)max

rdu0,jϕ
j
u0
Rju0,λ

(y) +O(dn(u0σ)−1). (4.2.29)

Proof. The first part of our proposition follows from the definition of Nλ, Lλ
and (4.2.18). We will use a fixed point formula of Berline and Vergne [BV85,
Theorem 3.23] to get (4.2.29). If B is a complex (q, q) matrix, Let Td(B) denote
the Todd function of B [BMZ17, Subsection 3.4]. Set

e(B) = detB. (4.2.30)

Let ∇TNλ be the Chern connection on TNλ, and let RTNλ be its curvature.
If y ∈ u, let yNλ be the associated real vector field on Nλ let LTNλy be the natural
action of y on the smooth sections of TNλ. Let νTNλ(y) be the map given by

2πiνTNλ(y) = ∇TNλ
yNλ
− LTNλy . (4.2.31)

If x ∈ u0σNλ, let eiθ1 , · · · , eiθl , 0 ≤ θj < 2π be the distinct eigenvalues of
u0σ acting on TxNλ. Since u0σ is parallel, these eigenvalues are locally constant
on u0σNλ. Then TNλ|u0σNλ splits holomorphically as an orthogonal sum of the
subbundles TNθj

λ . The Chern connection ∇TNλ|u0σNλ also splits as the sum of
the Chern connection on TNθj

λ . Let Rθj denote the corresponding curvature.
If y ∈ z, let νTNλ|u0σNλ (y) be the restriction of νTNλ(y) to u0σNλ, which is

given by the same formula as in (4.2.31) with respect to the action of Z0 on
TNλ|u0σNλ . The action of νTNλ|u0σNλ (y) preserves the splitting of TNλ|u0σNλ .
The equivariant Todd genus is given by

Tdu0σ
y (TNλ|u0σNλ , g

TNλ|u0σNλ )

= Td(− R
0

2πi
+ νTN

0
λ(y))

∏
θj 6=0

(Td

e

)(
− Rθj

2πi
+ νTN

θj
λ (y) + iθj

)
.

(4.2.32)
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We will denote by Tdu0σ
y (TNλ|u0σNλ) the its equivariant cohomology class. We

refer to [BV85], [BGV04, Chapter 7] for more details.
Let ru0

∈ S1 denote the action of u0σ on Lλ|u0σNλ , which is equal to ru0,j

on u0σN j
λ. The equivariant Chern character form of Ldλ|u0σNλ is given by

chu0σ
y (Ldλ|u0σNλ , g

Ldλ|u0σNλ ) = rdu0
exp

(
2πid〈µ, y〉+ dc1(Lλ|u0σNλ , g

Lλ|u0σNλ )
)
.

(4.2.33)

By [BV85, Theorem 3.23], if y is in a small neighborhood of z, we have

χd(u0σe
y) =

∫
u0σNλ

Tdu0σ
y (TNλ|u0σNλ)rdu0

exp
(
2πid〈µ, y〉+ dc1(Lλ|u0σNλ , g

Lλ|u0σNλ )
)
.

(4.2.34)

For y ∈ z, when taking the asymptotics of χd(u0σe
y/d) as d → +∞, only

the maximal dimensional components of u0σNλ contribute to the leading term.
For the leading term, Tdu0σ

y/d (TNλ|u0σNλ) only contributes the degree 0 com-
ponent of Tdu0σ

0 (TNλ|u0σNλ), which is just ϕu0 defined in Lemma 4.2.5. If
j ∈ J (u0)max, the integration of exp

(
2πi〈µ, y〉 + dc1(Lλ|u0σNλ , g

Lλ|u0σNλ )
)
on

u0σN j
λ is just dn(u0σ)Rju0,λ

(y). Then we get (4.2.29). This completes the proof
of our proposition.

4.3. The nondegeneracy condition on λ
Recall thatNλ is identified with the coadjoint orbitOλ in u∗. Dual to (2.1.2),

u∗ =
√
−1p∗ ⊕ k∗. (4.3.1)

Then the nondegeneracy condition defined in Definition 4.1.2 is equivalent to
that each vector v ∈ Oλ has a nonzero component in

√
−1p∗.

Take k ∈ K, then kσ is an elliptic element in Gσ. We can also consider
it as an element in Uσ. Recall that Uσ(k)0 denotes the identity component of
σ-twisted centralizer of k in U . Then it is the compact form of Zσ(k)0. By
the discussion in Subsection 2.4, Zσ(k)0 is still a linear reductive group with
the Cartan involution induced by θ, and Kσ(k)0 is the corresponding maximal
compact subgroup of Zσ(k)0. Recall that

X(kσ) = Zσ(k)0/Kσ(k)0. (4.3.2)

Let ωzσ(k) = ωkσ(k) + ωpσ(k) be the canonical 1-form on Zσ(k)0 as in (2.1.5).
By Lemma 4.2.3, we have

kσNλ = ∪j∈J (k)
kσN j

λ. (4.3.3)

If j ∈ J (k), the function Rjk,λ is defined in (4.2.22). Then proceeding as in
Subsection 4.1, by using instead (Zσ(k)0,Kσ(k)0) and ωpσ(k), associated with
Rjk,λ, we get the invariant differential forms ejk,t, d

j
k,t, t > 0 on X(kσ).
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If the function Rjk,λ satisfies the nondegeneracy condition with respect to
ωpσ(k), then there exists cj > 0 such that, as t→ +∞,

ejk,t = O(e−cjt), djk,t = O(e−cjt). (4.3.4)

Put

W j
kσ = −

∫ +∞

0

djk,t
dt

t
. (4.3.5)

We say that W j
kσ is the W -invariant associated with kσ and Rjk,λ.

Proposition 4.3.1. Take k ∈ K. If (Nλ, µ) defined in Subsection 4.2 is nonde-
generate with respect to ωp, then for j ∈ J (k), (kσN j

λ, µ|kσNjλ) is nondegenerate
with respect to ωpσ(k).

Proof. As in the proof of Lemma 4.2.3, we have

kσNλ ' Oλ ∩ uσ(k)∗. (4.3.6)

The splitting (4.3.1) induces a splitting of uσ(k)∗,

uσ(k)∗ =
√
−1pσ(k)∗ ⊕ kσ(k)∗. (4.3.7)

By Definition 4.1.2, if (Nλ, µ) is nondegenerate, then µ(Nλ)∩ k∗ = ∅, so that
µ(kσN j

λ) ∩ kσ(k)∗ = ∅, which says that (kσN j
λ, µ|kσMj

λ
) is nondegenerate with

respect to ωpσ(k). This completes the proof of our proposition.

In the sequel, we always assume that (Nλ, µ) is nondegenerate with respect
to ωp (or for short, λ is nondegenerate). For a general elliptic element γσ with
γ ∈ G, we can not always regard it as an element of Uσ. But there exists
g ∈ G such that k = gγσ(g−1) ∈ K. Then we construct the corresponding
triplets (rk,j , ϕ

j
k, R

j
k,λ)j∈J (k) and the associated invariant forms ejk,t, d

j
k,t, W

j
kσ,

j ∈ J (k) on X(kσ).
If we take another g′ ∈ G such that k′ = g′γσ(g′−1) ∈ K, then Zσ(k) and

Zσ(k′) can be identified by the conjugation of h = g′g−1 ∈ G. But we still use
the Cartan involution on Zσ(k′) induced from θ to define the associated forms
ejk′,t, d

j
k′,t, W

j
k′σ, j ∈ J (k′) on X(k′σ).

Lemma 4.3.2. Let γ ∈ G, k, k′ ∈ K be as above. Then we have n(kσ) =
n(k′σ). Moreover, there is an identification between J (k) and J (k′) such that
if j ∈ J (k) = J (k′), we have

rk,j = rk′,j , ϕ
j
k = ϕjk′ , [W j

kσ]max = [W j
k′σ]max. (4.3.8)

Proof. By the Cartan decomposition of G, there exist unique f ∈ p, k0 ∈ K
such that h = k0e

f . Since hkσ(h−1) = k′, we get k0kσ(k−1
0 ) = k′. Moreover,

k0Zσ(k)k−1
0 = Zσ(k′), k0Uσ(k)k−1

0 = Uσ(k′). (4.3.9)

35



The fixed point sets of kσ and k′σ in Nλ are identified via the action of
k0. This way, we identify J (k) with J (k′). On the fixed point sets, the ac-
tions of kσ on the bundles TNλ, Lλ are identified with the corresponding ac-
tions of k′σ. Therefore, the data (rk′,j , ϕ

j
k′ , R

j
k′,λ)j∈J (k′) can be identified with

(rk,j , ϕ
j
k, R

j
k,λ)j∈J (k) via the action of k0. In particular, n(kσ) = n(k′σ) and

rk,j = rk′,j , ϕ
j
k = ϕjk′ . The last identity of (4.3.8) follows from (4.3.9) and

the fact that the Cartan involutions on Zσ(k), Zσ(k′) that we use to define the
W -invariants are identified by the conjugation of k0.

4.4. Asymptotics of the elliptic twisted orbital integrals
Let (Ed, ρ

Ed), d ∈ N be the sequence of irreducible unitary representations
of Uσ constructed in Subsection 4.2 with the nondegenerate σ-fixed λ ∈ P++(c).
We extend it to a sequence of representations of Gσ. Then we get a family of flat
homogeneous vector bundles Fd = G×K Ed, d ∈ N on X. Recall that DX,Fd,2

is the Hodge Laplacian associated with Fd.
In this subsection, we consider the case γ = k−1 ∈ K. Then

uσ(γ) =
√
−1pσ(γ)⊕ kσ(γ). (4.4.1)

As explained in the beginning of Subsection 4.2, there exists v′ ∈ kσ(γ)∩kreg.
If t = k(v′), then t is a Cartan subalgebra of k. Let T be the corresponding
maximal torus of K. Put

s = t ∩ kσ(γ). (4.4.2)
Then s is a Cartan subalgebra of kσ(γ). Recall that bσ(γ) ⊂ p is defined in
(3.3.4), then bσ(γ) ⊕ s is a Cartan subalgebra of zσ(γ). By Theorem 3.3.3,
Corollary 3.3.4, the twisted orbital integral in (3.3.9) associated with this γσ
vanishes except the case dim bσ(γ) = 1.

In the sequel, we also assume that dim bσ(γ) = 1, then dim pσ(γ) is odd
and δ(Zσ(γ)0) = 1. This assumption also implies that δ(G) ≥ 1, which is a
necessary condition for the existence of the nondegenerate (Nλ, µ) discussed in
Subsections 4.2 and 4.3.

Recall that for the triplets (rγ,j , ϕ
j
γ , R

j
γ,λ)j∈J (γ) and the associated invariant

forms ejγ,t, d
j
γ,t, W j

γσ, j ∈ J (γ) on X(γσ) are constructed in Subsection 4.2,
4.3. The main results of this subsection are as follows.

Theorem 4.4.1. Suppose that dim bσ(γ) = 1. For t > 0, as d→ +∞,

d−n(γσ)−1Trs
[γσ]

[(
NΛ•(T∗X) − m

2

)
exp(−tDX,Fd,2/2d2)

]
= 2

∑
j∈J (γ)max

rdγ,jϕ
j
γ [ejγ,t/2]max +O(d−1),

d−n(γσ)−1Trs
[γσ]

[(
NΛ•(T∗X) − m

2

)
(1− tDX,Fd,2

d2
) exp(−tDX,Fd,2/2d2)

]
= 2

∑
j∈J (γ)max

rdγ,jϕ
j
γ [djγ,t/2]max +O(d−1).

(4.4.3)
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There exists C ′ > 0 such that for d > 1, we have∣∣∣∣d−n(γσ)−1

∫ d

1

Trs
[γσ]
[(
NΛ•(T∗X) − m

2

)
exp(−tDX,Fd,2/2d2)

]dt
t

− 2
∑

j∈J (γ)max

rdγ,jϕ
j
γ

∫ d

1

[ejγ,t/2]max dt

t

∣∣∣∣ ≤ C ′

d
.

(4.4.4)

There exists C > 0 such that for d ∈ N>0, 0 < t ≤ 1,∣∣∣∣d−n(γσ)−1Trs
[γσ]
[(
NΛ•(T∗X) − m

2

)
exp(−tDX,Fd,2/2d2)

]∣∣∣∣ ≤ C/√t∣∣∣∣d−n(γσ)−1Trs
[γσ]
[(
NΛ•(T∗X) − m

2

)
(1− tDX,Fd,2/d2)

exp(−tDX,Fd,2/2d2)
]∣∣∣∣ ≤ C√t.

(4.4.5)

There exists c > 0, c′ > 0 such that for t ≥ 1, d large enough, we have∣∣∣∣d−n(γσ)−1Trs
[γσ]
[(
NΛ•(T∗X) − m

2

)
exp(−tDX,Fd,2/2d2)

]∣∣∣∣ ≤ ce−c′t. (4.4.6)

Proof. Note that (4.4.3) is an extension of [BMZ17, Theorem 8.14].
Recall that p = dimR pσ(γ), q = dimR kσ(γ). By (3.3.9), for d ∈ N>0, we get

Trs
[γσ]

[(
NΛ•(T∗X) − m

2

)
exp(−tDX,Fd,2/2d2)

]
=

dp

(2πt)p/2
exp(

t

48d2
Trk[Ck,k] +

t

16d2
Trp[Ck,p])

∫
kσ(γ)

Jγσ(
√
ty/d)

· Trs
Λ•(p∗)[

(
NΛ•(p∗) − m

2

)
ρΛ•(p∗)(k−1σ) exp(−iρΛ•(p∗)(

√
ty/d))]

· TrEd [ρEd(k−1σ) exp(−iρEd(
√
ty/d) +

t

2d2
Cg,Ed)] exp(−|y|

2

2
)

dy

(2π)q/2
.

(4.4.7)

In this proof, we denote by C or c a positive constant independent of the
variables d, t and y ∈ kσ(γ). We use the symbol Oind to denote the big-O
convention which does not depend on d, t and y. Set 〈y〉 =

√
1 + |y|2.

By (2.5.15), for d ≥ 1, t > 0 and y ∈ kσ(γ), we have

Jγσ(
√
ty/d) =

1

det(1−Ad(k−1σ))|p⊥σ (γ)

+Oind(

√
t|y|
d

eC
√
t|y|
d ). (4.4.8)

Let b⊥σ (γ) ⊂ pσ(γ) be the space orthogonal to the one-dimensional line bσ(γ)
in pσ(γ). If y ∈ s, by [BMZ17, Eq.(8.133)], we have

Trs
Λ•(p∗)[

(
NΛ•(p∗) − m

2

)
ρΛ•(p∗)(k−1σ) exp(−iρΛ•(p∗)(

√
ty/d))]

= −det(1− exp(−iad(
√
ty/d)))|b⊥σ (γ)

· det(1−Ad(k−1σ) exp(−iad(
√
t|y|/d)))|p⊥σ (γ).

(4.4.9)
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By (4.4.9) if y ∈ s, d ≥ 1 and if t > 0, we get

dp−1

t(p−1)/2
Trs

Λ•(p∗)[
(
NΛ•(p∗) − m

2

)
ρΛ•(p∗)(k−1σ) exp(−iρΛ•(p∗)(

√
ty/d))]

= −det(iad(y))|b⊥σ (γ) det(1−Ad(k−1σ))|p⊥σ (γ) +Oind(

√
t|y|
d

eC
√
t|y|
d ).

(4.4.10)

Let Ω̂zσ(γ) ∈ Λ2(p̂σ(γ)∗)⊗ kσ(γ) be a copy of Ωzσ(γ). Let L and the Berezin
integral be the ones as in (4.1.10) and (4.1.19) associated with pσ(γ). Note that
dim pσ(γ) is odd, then by (4.1.19), we have

π−p/2 det(iad(y))|b⊥σ (γ) = −
[ ∫ B̂

L exp(〈y,Ωzσ(γ) + Ω̂zσ(γ)〉)
]max

. (4.4.11)

Combining (4.4.10) and (4.4.11), we get that if y ∈ s, d ≥ 1 and if t > 0,

π−p/2(
d√
t
)p−1Trs

Λ•(p∗)[
(
NΛ•(p∗) − m

2

)
ρΛ•(p∗)(k−1σ) exp(−iρΛ•(p∗)(

√
ty/d))]

=

[ ∫ B̂

L exp(〈y,Ωzσ(γ) + Ω̂zσ(γ)〉)
]max

det(1−Ad(k−1σ))|p⊥σ (γ)

+ Oind(

√
t|y|
d

eC
√
t|y|
d ).

(4.4.12)

Using the adjoint invariance, the equation (4.4.12) extends to y ∈ kσ(γ).
Note that since (Nλ, µ) is nondegenerate, then there exists a small constant

ε ∈]0, |λ|2 ] such that on Nλ, for y ∈ kσ(γ)

|〈µ, y〉| ≤ (|λ| − ε)|y|. (4.4.13)

Then by (4.2.22), we have

|Rjγ,λ(−i
√
ty)| ≤ Ce2π

√
t(|λ|−ε)|y|. (4.4.14)

By (4.2.34) and (4.4.13), we get that for d ≥ 1, t > 0 and y ∈ kσ(γ),

d−n(γσ)TrEd [ρEd(k−1σ) exp(−iρEd(
√
ty/d))]

=
∑

j∈J (γ)max

rdγ,jϕ
j
γR

j
γ,λ(−i

√
ty) +Oind

( (
√
t+ 1)〈y〉
d

e2π
√
t(|λ|−ε)|y|+C

√
t
d |y|

)
.

(4.4.15)

Combining (4.4.8), (4.4.12), (4.4.14) and (4.4.15), we get that for d ≥ 1,
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t > 0 and y ∈ kσ(γ),

dp−1−n(γσ)

πp/2t(p−1)/2
Jγσ(

√
ty

d
)Trs

Λ•(p∗)
[(
NΛ•(p∗) − m

2

)
ρΛ•(p∗)(k−1σ)e−iρ

Λ•(p∗)(
√
ty/d)

]
·TrEd [ρEd(k−1σ) exp(−iρEd(

√
ty/d))]

=
∑

j∈J (γ)max

rdγ,jϕ
j
γ

[ ∫ B̂

L exp(〈y,Ωzσ(γ) + Ω̂zσ(γ)〉)
]max

Rjγ,λ(−i
√
ty)

+ Oind

( (
√
t+ 1)〈y〉
d

e2π
√
t(|λ|−ε)|y|+C

√
t
d |y|

)
.

(4.4.16)

Let ρu be the half of the sum of the positive roots in R+
U (c). By [Bis11,

Proposition 7.5.2] and (3.1.8), we have

t

48d2
Trk[Ck,k] +

t

16d2
Trp[Ck,p] +

t

2d2
Cg,E = −2π2t|dλ+ ρu|2

d2
. (4.4.17)

Using exactly the arguments as in [BMZ17, Eqs.(8.143)-(8.154)], we get that
for each j ∈ J (γ)max,

e−2π2t|λ|2

2p/2
√
t

∫
kσ(γ)

[ ∫ B̂

L exp(〈y,Ωzσ(γ) + Ω̂zσ(γ)〉)
]max

Rjγ,λ(−i
√
ty)

· exp(−|y|2/2)
dy

(2π)q/2
= 2[ejγ,t/2]max.

(4.4.18)

By (4.4.7), (4.4.16), (4.4.18), we get

d−n(γσ)−1Trs
[γσ]
[(
NΛ•(T∗X) − m

2

)
exp(−tDX,Fd,2/2d2)

]
= 2 exp(−2π2t|dλ+ ρu|2

d2
+ 2tπ2|λ|2)

∑
j∈J (γ)max

rdγ,jϕ
j
γ [ejγ,t/2]max +R(t, d).

(4.4.19)

Here R(t, d) is an error term such that

|R(t, d)| ≤ C
√
t+ 1√
t

e−
2π2t
d2 |dλ+ρu|2

d

∫
kσ(γ)

〈y〉e2π
√
t(|λ|−ε)|y|+C

√
t|y|
d −|y|2/2dy.

(4.4.20)
Set c0 = 2π2(|λ|2 − (|λ| − ε)2) > 0. Then for d ≥ 1, t > 0,

|R(t, d)| ≤ C
√
t+ 1√
t

tq/2

d
e−c0t+

ct
d . (4.4.21)

By (4.4.19), (4.4.21), we get the first identity in (4.4.3). By (4.1.23), we get
the second identity in (4.4.3). Then using (4.4.19), (4.4.21) for 0 ≤ t ≤ 1 and
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by (4.1.21), we get the first estimate of (4.4.5). Note that there exists d0 ∈ N
large enough such that if d ≥ d0, then

c

d
≤ 1

4
c0 (4.4.22)

Recall that ejγ,t/2 has the exponential decay of as t→ +∞ described in (4.1.24).
Together with (4.4.19), (4.4.21) and (4.4.22), we get (4.4.6). Note that for d > 1∫ d

1

|R(t, d)|dt
t
≤ C ′

d
. (4.4.23)

Then (4.4.4) follows from (4.4.19) and (4.4.23).
We now prove the second estimate in (4.4.3). If y ∈ kσ(γ), set

f(y) = Jγσ(y) det(1−Ad(k−1σ) exp(−iad(y)))|p⊥σ (γ)

·d−n(γσ)TrEd [ρEd(k−1σ) exp(−iρEd(y))].
(4.4.24)

Then f(y) is an analytic function on kσ(γ). If y ∈ s, by (4.4.9), (4.4.24),

dp−n(γσ)−1

tp/2
Jγσ(

√
ty

d
)Trs

Λ•(p∗)
[(
NΛ•(p∗) − m

2

)
Ad(k−1σ) exp(−iρΛ•(p∗)(

√
ty

d
))
]

TrEd [ρEd(k−1σ) exp(−iρEd(
√
ty/d))]

=
1√
t
f(

√
ty

d
)
dp−1

t(p−1)/2
det(1− exp(−iad(

√
ty/d)))|b⊥σ (γ).

(4.4.25)

Let ∇f(y) be the gradient of f on kσ(γ) with respect to the Euclidean scalar
product of kσ(γ). Put

I(t, y, d) =
∂

∂t

(
f(

√
ty

d
)
dp−1

t(p−1)/2
det(1− exp(−iad(

√
ty/d)))|b⊥σ (γ)

)
=

1

t
〈∇f(

√
ty

d
),

√
ty

2d
〉 dp−1

t(p−1)/2
det(1− exp(−iad(

√
ty/d)))|b⊥σ (γ)

+f(

√
ty

d
)
∂

∂t

(
dp−1

t(p−1)/2
det(1− exp(−iad(

√
ty/d)))|b⊥σ (γ)

)
.

(4.4.26)

Since Trb
⊥
σ (γ)[ad(y)] = 0, then there exists c′ > 0, C ′ > 0 such that for

d ∈ N>0, 0 < t ≤ 1, and y ∈ s,

∂

∂t

(
dp−1

t(p−1)/2
det(1− exp(−iad(

√
ty/d)))|b⊥σ (γ)

)
≤ C ′ exp(c′|y|). (4.4.27)

Also since dim b⊥σ (γ) is even, when taking the Taylor expansion of the func-
tion as follows

1

t
〈∇f(

√
ty

d
),

√
ty

2d
〉 dp−1

t(p−1)/2
det(1− exp(−iad(

√
ty/d)))|b⊥σ (γ), (4.4.28)
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the terms of even power of y have no negative powers of the parameter t in their
coefficient. Using the conjugation invariance of the left-hand side of (4.4.25),
the above consideration holds for y ∈ kσ(γ).

By (4.4.26), (4.4.27), there exist C > 0 such that for d ∈ N>0, 0 < t ≤ 1,∣∣∣∣ ∫
kσ(γ)

I(t, y, d) exp(−|y|2/2)dy

∣∣∣∣ ≤ C. (4.4.29)

Using the fact that the two quantities in (4.4.5) are related by the operator
1 + 2t ∂∂t , and by (4.4.25), (4.4.29), we get the second estimate in (4.4.5). This
completes the proof of our theorem.

4.5. A lower bound for the Hodge Laplacian on X
We use the notation as in Subsection 3.1. Recall that e1, · · · , em is an

orthogonal basis of TX or p. Set

Cg,H = −
m∑
i=1

e2
i ∈ Ug. (4.5.1)

Let Cg,H,E be its action on E. Then

Cg,E = Cg,H,E + Ck,E . (4.5.2)

Let ∆H,X be the Bochner-Laplace operator on bundle Λ·(T ∗X)⊗ F . Put

Θ(E) =
SX

4
− 1

8
〈RTX(ei, ej)ek, e`〉c(ei)c(ej)ĉ(ek)ĉ(e`)

−Cg,H,E +
1

2

(
c(ei)c(ej)− ĉ(ei)ĉ(ej)

)
RF (ei, ej).

(4.5.3)

Then Θ(E) is a self-adjoint section of End(Λ·(T ∗X)⊗ F ), which is parallel
with respect to ∇Λ·(T∗X)⊗F,u. By [BMZ17, Eq.(8.39)], we have

DX,F,2 = −∆H,X + Θ(E). (4.5.4)

Let 〈·, ·〉L2
be the L2 scalar product of Ω·c(X,F ). If s ∈ Ω·c(X,F ), we have

〈DX,F,2s, s〉L2
≥ 〈Θ(E)s, s〉L2

. (4.5.5)

Let ∆H,X,i denote the Bochner-Laplace operator acting on Ωi(X,F ), and
let pH,it (x, x′) be the kernel of exp(t∆H,X,i/2) on X with respect to dx′. We
denote by pH,it (g) ∈ End(Λi(p∗)⊗ E) its lift to G explained in Subsection 2.3.

Let ∆X
0 be the scalar Laplacian on X with the heat kernel pX,0t . Let

||pH,it (g)|| be the operator norm of pH,it (g) in End(Λi(p∗) ⊗ E). By [MP13b,
Proposition 3.1], if g ∈ G, then

||pH,it (g)|| ≤ pX,0t (g). (4.5.6)
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Let pHt be the kernel of exp(t∆H,X/2), then

pHt = ⊕pi=1p
H,i
t . (4.5.7)

Let qX,Ft be the heat kernel associated with DX,F,2/2, by (4.5.4), for x, x′ ∈ X,

qX,Ft (x, x′) = exp(−tΘ(E)/2)pHt (x, x′). (4.5.8)

Now we consider the representations (Ed, ρ
Ed), d ∈ N constructed in Sub-

section 4.2 for a nondegenerate λ. By [BMZ17, Theorem 4.4 & Remark 4.5],
there exist c > 0, C > 0 such that, for d ∈ N,

Θ(Ed) ≥ cd2 − C. (4.5.9)

By (4.5.4), (4.5.5), (4.5.9), we get

DX,Fd,2 ≥ cd2 − C. (4.5.10)

Lemma 4.5.1. There exists d0 ∈ N and c0 > 0 such that if d ≥ d0, x, x′ ∈ X

||qX,Fdt (x, x′)|| ≤ e−c0d
2tpX,0t (x, x′). (4.5.11)

Proof. By (4.5.9), there exist d0 ∈ N, c′ > 0 such that if d ≥ d0,

Θ(Ed) ≥ c′d2. (4.5.12)

Then if t > 0,
|| exp(−tΘ(Ed)/2)|| ≤ e−c

′d2t/2. (4.5.13)
By (4.5.6) - (4.5.8), (4.5.13), we get (4.5.11). This completes our proof.

Recall that Γ is a cocompact torsion-free discrete subgroup of G preserved
by σ. For t > 0, x ∈ X, γ ∈ Γ, set

vt(Fd, γσ, x) =
1

2
Trs

Λ·(T∗X)⊗Fd
[(
NΛ·(T∗X) − m

2

)
qX,Fdt/2 (x, γσ(x))γσ

]
. (4.5.14)

Then Lemma 4.5.1 implies the following lemma.

Lemma 4.5.2. There exist C0 > 0, c0 > 0 such that if d is large enough, for
t > 0, x ∈ X, γ ∈ Γ,

|vt(Fd, γσ, x)| ≤ C0 dim(Ed)e
−c0d2tpX,0t/2 (x, γσ(x)). (4.5.15)

Proposition 4.5.3. There exist constants C > 0, c > 0 such that if x ∈ X,
t ∈ ]0, 1], then ∑

γ∈Γ,γσ nonelliptic

pX,0t (x, γσ(x)) ≤ C exp(−c/t). (4.5.16)

Proof. By [Don79, Theorem 3.3], there exists C0 > 0 such that when 0 < t ≤ 1,

pX,0t (x, x′) ≤ C0t
−m/2 exp(−d

2(x, x′)

4t
). (4.5.17)

By Proposition 2.6.3, we have cΓ,σ > 0. Then using Lemma 2.6.4, (4.5.17), and
the arguments as in the proof of [MP13b, Proposition 3.2], we get (4.5.16).
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4.6. A proof to Theorem 1.0.1
Now we work onM = Γ\X. The flat vector bundle Fd in previous subsection

descends toM , which we still denote by Fd. The action of Σσ lifts to Fd so that
the de Rham-Dirac operator DM,Fd commutes with its action.

By (4.5.10), we have
DM,Fd,2 ≥ cd2 − C. (4.6.1)

Then if d is large enough, we have

H•dR(M,Fd) = 0. (4.6.2)

By (3.2.5), (3.2.7), if d is large enough, we have

χσ(M,Fd) = 0, χ′σ(M,Fd) = 0. (4.6.3)

Recall that the function bt(Fd, h
Fd) is defined in (3.2.6). Then by (3.2.9),

(3.2.10), (4.6.3), we have

Tσ(gTM ,∇Fd,f , hFd) = −
∫ +∞

0

bt(Fd, h
Fd)

dt

t
. (4.6.4)

Recall that Eσ is the finite set of elliptic classes in [Γ]σ. Set

E1
σ = {[γ]σ ∈ Eσ | δ(Zσ(γ)0) = 1}. (4.6.5)

Proposition 4.6.1. There exists c > 0 such that for d large enough,

Tσ(gTM ,∇Fd,f , hFd) = −1

2

∑
[γ]σ∈E1

σ

Vol(Γ ∩ Zσ(γ)\X(γσ))

·
∫ d

0

Trs
[γσ]

[(
NΛ•(T∗X) − m

2

)
(1− t

2d2
DX,Fd,2)e−

t
4d2 DX,Fd,2

]
dt

t
+O(e−cd).

(4.6.6)

If E1
σ = ∅, as d→ +∞,

Tσ(gTM ,∇Fd,f , hFd) = O(e−cd). (4.6.7)

Proof. By (4.6.4), we have

Tσ(gTM ,∇Fd,f , hFd) = −
∫ +∞

1/d

bt(Fd, h
Fd)

dt

t
−
∫ d

0

bt/d2(Fd, h
Fd)

dt

t
. (4.6.8)

By (4.6.1) and using the same arguments as in [BMZ17, Subsection 7.2], we
can get that there exists c > 0 such that∫ +∞

1/d

bt(Fd, h
Fd)

dt

t
= O(e−cd). (4.6.9)
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By (3.2.6), (4.5.14), we get

bt(Fd, h
Fd) = (1 + 2t

∂

∂t
)

∫
M

∑
γ∈Γ

vt(Fd, γσ, z)dz. (4.6.10)

We split the sum in (4.6.10) into two parts:∑
γ∈Γ,γσ elliptic

+
∑

γ∈Γ,γσ nonelliptic

(4.6.11)

When writing down the integrals explicitly with the heat kernels, the integral of
the first part in (4.6.11) is just the sum of the twisted orbital integrals associated
with the elliptic classes in Eσ. If [γ]σ ∈ Eσ and if [γ]σ /∈ E1

σ, then by Theorem
3.3.3, Corollary 3.3.4, we get that for t > 0,

Trs
[γσ]

[(
NΛ·(T∗X) − m

2

)
exp(−tDX,Fd,2/4d2)

]
= 0. (4.6.12)

This gives the the first sum in the right-hand side of (4.6.6).
If x ∈ X, put

ht(Fd, h
Fd , x) =

∑
γ∈Γ,γσ nonelliptic

vt(Fd, γσ, x). (4.6.13)

Then it is enough to prove that∫ d

0

(1 + 2t
∂

∂t
)

∫
M

ht/d2(Fd, h
Fd , z)dz

dt

t
= O(e−cd). (4.6.14)

Indeed, using Lemma 4.5.2 and Proposition 4.5.3, there exists C > 0, c′ > 0,
c′′ > 0 such that if d is large enough, 0 < t ≤ d, then

|ht/d2(Fd, h
Fd , x)| ≤ C dim(Ed)e

−c′t exp(−c′′d2/t). (4.6.15)

Recall that nλ = dimCNλ. By (4.2.34), there exists C0 > 0 such that

dim(Ed) ≤ C0d
nλ . (4.6.16)

By (4.6.15), (4.6.16), we have

∣∣ ∫ 1

0

ht/d2(Fd, h
Fd , x)

dt

t

∣∣ ≤ Ce−c′′d2/2 dim(Ed)

∫ 1

0

e−c
′′d2/2t dt

t
= O(e−cd),

∣∣ ∫ d

1

ht/d2(Fd, h
Fd , x)

dt

t

∣∣ ≤ Ce−c′′d dim(Ed)

∫ d

1

e−c
′t dt

t
= O(e−cd).

(4.6.17)

By (4.6.15) - (4.6.17), we get (4.6.14). The equation (4.6.7) follows from
(4.6.6). This completes the proof of our proposition.
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By (2.6.10), σM has different connected components, each component is also
a compact locally symmetric space associated with an elliptic class [γ]σ. Then
(4.6.6) says that only the components with the fundamental rank 1 contribute
to the leading terms of the asymptotics of Tσ(gTM ,∇Fd,f , hFd) as d→ +∞.

Now suppose that E1
σ 6= ∅. We use the notation of Subsection 4.2. As

explained in the end of Subsection 4.3, for each [γ]σ ∈ E1
σ, we fix g ∈ G, k ∈ K

such that k−1 = gγσ(g−1). Then put J (γ) = J (k−1). For j ∈ J (γ), let n(γσ),
Rjγ,λ, rγ,j , ϕ

j
γ , e

j
γ,t, d

j
γ,t W

j
γσ be the ones associated with k−1. By Lemma 4.3.2,

these quantities do not depend on the choice of g or k. Set

m(σ) = max{n(γσ) | [γ]σ ∈ E1
σ},

E1,max
σ = {[γ]σ ∈ E1

σ | n(γσ) = m(σ)}.
(4.6.18)

Theorem 4.6.2. If E1
σ 6= ∅, as d→ +∞,

d−m(σ)−1Tσ(gTM ,∇Fd,f , hFd)

=
∑

[γ]σ∈E1,max
σ

Vol(Γ ∩ Zσ(γ)\X(γσ))
[ ∑
j∈J (γ)max

rdγ,jϕ
j
γ [W j

γσ]max
]

+O(
1

d
).

(4.6.19)

Proof. For [γ]σ ∈ E1
σ, γ is Cσ-conjugate to k−1. Then

Trs
[k−1σ]

[(
NΛ•(T∗X) − m

2

)
exp(−tDX,Fd,2/2)

]
= Trs

[γσ]
[(
NΛ•(T∗X) − m

2

)
exp(−tDX,Fd,2/2)

]
.

(4.6.20)

If [γ]σ ∈ E1
σ, by Theorem 4.4.1 and by (4.6.12), (4.6.20), as d→ +∞,∫ 1

0

Trs
[γσ]
[(
NΛ•(T∗X) − m

2

)
(1− tDX,Fd,2/2d2) exp(−tDX,Fd,2/4d2)

]dt
t

= 2dn(γσ)+1
∑

j∈J (γ)max

rdγ,jϕ
j
γ

∫ 1

0

[djγ,t/4]max dt

t
+O(dn(γσ)).

(4.6.21)

Note that∫ d

1

Trs
[γσ]
[(
NΛ•(T∗X) − m

2

)
(1− t

2d2
DX,Fd,2) exp(− t

4d2
DX,Fd,2)

]dt
t

=

∫ d

1

Trs
[γσ]
[(
NΛ•(T∗X) − m

2

)
exp(− t

4d2
DX,Fd,2)

]dt
t

+ 2Trs
[γσ]
[(
NΛ•(T∗X) − m

2

)
exp(− 1

4d
DX,Fd,2)

]
− 2Trs

[γσ]
[(
NΛ•(T∗X) − m

2

)
exp(− 1

4d2
DX,Fd,2)

]
.

(4.6.22)
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Similarly, by (4.1.23), we have∫ d

1

[djγ,t/4]max dt

t
=

∫ d

1

[ejγ,t/4]max dt

t
+ 2[ejγ,d/4]max − 2[ejγ,1/4]max. (4.6.23)

Also we have ∫ +∞

d

djγ,t/4
dt

t
= O(e−cd). (4.6.24)

Combining (4.4.3) - (4.4.6) with (4.6.22) - (4.6.24), we get that as d→ +∞

d−n(γσ)−1

∫ d

1

Trs
[γσ]
[(
NΛ•(T∗X) − m

2

)
(1− tDX,Fd,2

2d2
) exp(−tDX,Fd,2/4d2)

]dt
t

= 2
∑

j∈J (γ)max

rdγ,jϕ
j
γ

∫ +∞

1

[djγ,t/4]max dt

t
+O(

1

d
).

(4.6.25)

By (4.3.5), (4.6.6), (4.6.18), (4.6.21), (4.6.25), we get (4.6.19). This completes
the proof of our theorem.

Combing Proposition 4.6.1 and Theorem 4.6.2, we get Theorem 1.0.1.

Corollary 4.6.3. If σ ∈ Σ is of finite order N0 and preserves Γ, then each
number rγ,j appeared in right-hand side of (4.6.19) is a N0-th root of unity.

Proof. If γ ∈ Γ is such that γσ is elliptic, then (γσ)N0 ∈ Γ is elliptic. Since Γ is
torsion-free, then

(γσ)N0 = 1. (4.6.26)

Let k−1 ∈ K be an element that is Cσ-conjugate to γ. Then we also have
(k−1σ)N0 = 1. By Proposition 4.2.6, rγ,j represents the unitary action of k−1σ
on the fiber Lλ at its fixed points, thus it must be a N0-th root of unity.
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