
Logical Methods in Computer Science
Volume 19, Issue 4, 2023, pp. 35:1–35:19
https://lmcs.episciences.org/

Submitted Oct. 28, 2022
Published Dec. 21, 2023

EXISTENTIAL DEFINABILITY OVER THE SUBWORD ORDERING

PASCAL BAUMANN , MOSES GANARDI , RAMANATHAN S. THINNIYAM ,
AND GEORG ZETZSCHE

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
e-mail address: {pbaumann, ganardi, thinniyam, georg}@mpi-sws.org

Abstract. We study first-order logic (FO) over the structure consisting of finite words
over some alphabet A, together with the (non-contiguous) subword ordering. In terms
of decidability of quantifier alternation fragments, this logic is well-understood: If every
word is available as a constant, then even the Σ1 (i.e., existential) fragment is undecidable,
already for binary alphabets A.

However, up to now, little is known about the expressiveness of the quantifier alternation
fragments: For example, the undecidability proof for the existential fragment relies on
Diophantine equations and only shows that recursively enumerable languages over a
singleton alphabet (and some auxiliary predicates) are definable.

We show that if |A| ≥ 3, then a relation is definable in the existential fragment over A
with constants if and only if it is recursively enumerable. This implies characterizations
for all fragments Σi: If |A| ≥ 3, then a relation is definable in Σi if and only if it belongs
to the i-th level of the arithmetical hierarchy. In addition, our result yields an analogous
complete description of the Σi-fragments for i ≥ 2 of the pure logic, where the words of A∗

are not available as constants.

1. Introduction

The subword ordering. A word u is a subword of another word v if u can be obtained
from v by deleting letters at an arbitrary set of positions. The subword ordering has
been studied intensively over the last few decades. On the one hand, it appears in many
classical results of theoretical computer science. For example, subwords have been a
central topic in string algorithms [BY91, ERW08, Mai78]. Moreover, their combinatorial
properties are the basis for verifying lossy channel systems [AJ96]. Particularly in recent
years, subwords have received a considerable amount of attention. Notable examples
include lower bounds in fine-grained complexity [BK15, BK18], algorithms to compute the
set of all subwords of formal languages [ACH+16, AMMS17, BCCP20, CPSW16, HMW10,
HKO16, Zet15a, Zet15b, Zet16, Zet18, GLHK+20, AZ23], and applications thereof to infinite-
state verification [ABQ11, TMW15, BMTZ22, MTZ22, BMTZ20, BGM+23b, BGM+23a].
Subwords are also the basis of Simon’s congruence [SS97], which has recently been studied
from algorithmic [FK18, GKK+21, FKK+23] and combinatorial [BFH+20, DFK+21, KKS15,
KS19, SV23] viewpoints.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(4:35)2023
© P. Baumann, M. Ganardi, R. S. Thinniyam, and G. Zetzsche
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-9371-0807
https://orcid.org/0000-0002-0775-7781
https://orcid.org/0000-0002-9926-0931
https://orcid.org/0000-0002-6421-4388
http://creativecommons.org/about/licenses

35:2 P. Baumann, M. Ganardi, R. S. Thinniyam, and G. Zetzsche Vol. 19:4

First-order logic over subwords. The importance of subwords has motivated the study
of first-order logics (FO) over the subword ordering. This has been considered in two
variants: In the pure logic, one has FO over the structure (A∗,≼), where A is an alpha-
bet and ≼ is the subword ordering. In the version with constants, we have the structure
(A∗,≼, (w)w∈A∗), which has a constant for each word from A∗. Traditionally for FO, the pri-
mary questions are decidability and definability, particularly regarding quantifier alternation
fragments Σi. Here, decidability refers to the truth problem: Given a formula φ in a particular
fragment over (A∗,≼) or (A∗,≼, (w)w∈A∗), respectively, does φ hold? By definability, we
mean understanding which relations can be defined by formulas in a particular fragment.
The Σi-fragment consists of formulas in prenex form that begin with existential quantifiers
and then alternate i− 1 times between blocks of universal and existential quantifiers. For
example, the formula

∃x : (a ̸≼ x ∨ b ̸≼ x) ∧ x ̸≼ u ∧ x ≼ v

belongs to the Σ1-fragment, also called the existential fragment over (A∗,≼, (w)w∈A∗) with
A = {a, b}. The formula has free variables u, v and refers to the constants a and b. It holds
if and only if v has more b’s or more a’s than u.

For FO over subwords, decidability is well-understood. In the pure logic, the Σ2-fragment
is undecidable, already over two letters [HSZ17, Corollary III.6], whereas the Σ1-fragment (i.e.,
existential formulas) is decidable [Kus06, Theorem 2.2] and NP-complete [KS15, Theorem
2.1]. This fueled hope that the Σ1-fragment might even be decidable with constants, but this
turned out to be undecidable, already over two letters [HSZ17, Theorem III.3]. Decidability
(and complexity) have also been studied for the two-variable fragment [KS15, KS19, KS20],
and extended with counting quantifiers and regular predicates [KS20, KZ19].

Nevertheless, little is known about definability. Kudinov, Selivanov, and Yartseva
have shown that using arbitrary first-order formulas over (A∗,≼), one can define exactly
the relations from the arithmetical hierarchy1 that are invariant under automorphisms of
(A∗,≼) [KSY10, Theorem 5], if |A| ≥ 2. However, this does not explain definability of the
Σi-fragments. For example, in order to define all recursively enumerable languages, as far as
we can see, their proof requires several quantifier alternations. An undecidability proof by
Karandikar and Schnoebelen [KS15, Theorem 4.6] for the Σ2-fragment can easily be adapted
to show that for each alphabet A, there exists a larger alphabet B such that every recursively
enumerable language L ⊆ A∗ is definable in the Σ2-fragment over (B∗,≼, (w)w∈B∗). However,
a full description of the expressiveness of the Σ2-fragment is missing.

Existential formulas. The expressiveness of existential formulas is even further from being
understood. The undecidability proof in [HSZ17] reduces from solvability of Diophantine
equations, i.e., polynomial equations over integers, which is a well-known undecidable prob-
lem [Mat93]. To this end, it is shown in [HSZ17] that the relations ADD = {(am, an, am+n) |
m,n ∈ N} and MULT = {(am, an, am·n) | m,n ∈ N} are definable existentially using the
subword ordering, if one has at least two letters. Since Diophantine equations can be used to
define all recursively enumerable relations over natural numbers, this implies that all recur-
sively enumerable relations involving a single letter are definable existentially. However, this
says little about which languages (let alone relations) over more than one letter are definable.
For example, it is not clear whether the language of all w ∈ {a, b}∗ that do not contain aba

1Also known as the Kleene–Mostowski hierarchy

Vol. 19:4 EXISTENTIAL DEFINABILITY OVER THE SUBWORD ORDERING 35:3

as an infix, or the reversal relation REVA = {(u, v) | u, v ∈ A∗, v is the reversal of u}, are
definable—it seems particularly difficult to define them over the subword ordering using the
methods from [HSZ17].

Contribution. We show that for any alphabet A with |A| ≥ 3, every recursively enumerable
relation R ⊆ (A∗)k, k ∈ N, is existentially definable in (A∗,≼, (w)w∈A∗). In fact, similarly
to an observation made in [HSZ17], we even show that there is a single sufficiently complex
word W ∈ A∗ such that the structure (A∗,≼,W) with just this single constant symbol
suffices to existentially define all recursively enumerable relations. Since every existentially
definable relation is clearly recursively enumerable (via a simple enumerative algorithm),
this completely describes the expressiveness of existential formulas for |A| ≥ 3. Despite the
undecidability of the existential fragment [HSZ17], we find it surprising that all recursively
enumerable relations—including relations like REVA—are existentially definable.

Our result yields characterizations of the Σi-fragments for every i ≥ 2: It implies that for
each i ≥ 2, the Σi-fragment over (A∗,≼, (w)w∈A∗) can define exactly the relations in Σ0

i , the
i-th level of the arithmetical hierarchy, assuming |A| ≥ 3. This also provides a description of
Σi in the pure logic: It follows that in the Σi-fragment over (A∗,≼), one can define exactly
the relations in Σ0

i that are invariant under automorphisms of (A∗,≼), if |A| ≥ 3.
Since [HSZ17] shows that all recursively enumerable languages over one letter are

definable in (A∗,≼, (w)w∈A∗) if |A| ≥ 2, it would suffice to define a bijection between a∗ and
A∗ using subwords. However, since this seems hard to do directly, our proof follows a different
route. We first show how to define rational transductions and then a special language from
which one can build every recursively enumerable relation via rational transductions and
intersections. In particular, a byproduct is a direct proof of undecidability of the existential
fragment in the case of |A| ≥ 3 that avoids using undecidability of Diophantine equations2.

Key ingredients. The undecidability proof for the existential fragment from [HSZ17]
shows that the relations ADD and MULT are definable, in addition to auxiliary predicates
that are needed for this, such as concatenation and letter counting predicates of the form
“|u|a = |v|b”. With these methods, it is difficult to express that a certain property holds
locally—by which we mean: at every position in a word. Using concatenation, we can define
languages like (anb)∗ for each n ∈ N (see Section 3), which “locally look like anb”. But if we
want to express that, e.g., aba does not occur as an infix, this is of little help, because words
avoiding an infix need not be periodic. The ability to disallow infixes would aid us in defining
rational transductions via runs of transducers, as these are little more than configuration
sequences where pairs of configurations that are not connected by a transition do not occur
as infixes. Such local properties are often easy to state with universal quantification, but
this is not available in existential formulas.

An important theme in our proof is to express such local properties by carefully
constructing long words in which w has to embed in order for w to have the local property.
For example, our first lemma says: Each set X ⊆ A=ℓ can be characterized as the set of
words (of length ≥ ℓ) that embed into each word in a finite set P . This allows us to define
sets X∗.

2Our proof relies on the definability of concatenation and certain counting predicates (see Section 3),
which was shown directly in [HSZ17], without using computational completeness of Diophantine equations.

35:4 P. Baumann, M. Ganardi, R. S. Thinniyam, and G. Zetzsche Vol. 19:4

Steps I–III of our proof use techniques of this type to express rational transductions.
In Step IV, we then define the special language G = {anbn | n ≥ 0}∗, which has the
property that all recursively enumerable languages can be obtained from G using rational
transductions and intersection. This yields all recursively enumerable relations over two
letters in Step V.

In sum, Steps I–V let us define all recursively enumerable relations over {a, b}, provided
that the alphabet A contains an additional auxiliary letter. It then remains to define
recursively enumerable relations that can also involve all other letters in A. We do this in
Step VI by observing that each word w ∈ A∗ is determined by its projections to binary
alphabets B ⊆ A. This allows us to compare words by looking at two letters at a time and
use the other (currently unused) letters for auxiliary means.

A conference version of this paper appeared in [BGTZ22].

2. Main results

We say that u is a subword of v, written u ≼ v, if there exist words u1, . . . , un and v0, . . . , vn
such that u = u1 · · ·un and v = v0u1v1 · · ·unvn.

Subword logic. We consider first-order logic over the structure (A∗,≼), first-order logic over
the structure (A∗,≼, w1, . . . , wn) enriched with finitely many constant symbols w1, . . . , wn ∈
A∗, and first-order logic over the structure (A∗,≼, (w)w∈A∗) enriched with constant symbols
w for every word w ∈ A∗. A first-order formula φ with free variables x1, . . . , xk defines a
relation R ⊆ (A∗)k if R contains exactly those tuples of words (v1, . . . , vk) that satisfy

3 the
formula φ.

Let us define the quantifier alternation fragments of first-order logic. A formula without
quantifiers is called Σ0-formula or Π0-formula. For i ≥ 1, a Σi-formula (resp. Πi-formula)
is one of the form ∃x1 · · · ∃xnφ (resp. ∀x1 · · · ∀xnφ), where φ is a a Πi−1-formula (resp.
Σi−1-formula), x1, . . . , xn are variables, and n ≥ 0. In other words, a Σi-formula is in prenex
form and its quantifiers begin with a block of existential quantifiers and alternate at most i−1
times between universal and existential quantifiers. The Σi-fragment (Πi-fragment) consists
of the Σi-formulas (Πi-formulas). In particular, the Σ1-fragment (called the existential
fragment) consists of the formulas in prenex form that only contain existential quantifiers.

Expressiveness with constants. Our main technical contribution is the following.

Theorem 2.1. Let A be an alphabet with |A| ≥ 3. A relation is definable in the Σ1-fragment
over (A∗,≼, (w)w∈A∗) if and only if it is recursively enumerable.

We prove Theorem 2.1 in Section 3. Theorem 2.1 in particular yields a description of what is
expressible using Σi-formulas for each i ≥ 1. Recall that the arithmetical hierarchy consists
of classes Σ0

1,Σ
0
2, . . ., where Σ0

1 = RE is the class of recursively enumerable relations, and

for i ≥ 2, we have Σ0
i = REΣ0

i−1 . Here, for a class of relations C, REC denotes the class of
relations recognized by oracle Turing machines with access to oracles over the class C.

3The correspondence between the entries in the tuple and the free variables of φ will always be clear,
because the variables will have an obvious linear order by sorting them alphabetically and by their index.
For example, if φ has free variables xi for 1 ≤ i ≤ k and yj for 1 ≤ j ≤ ℓ, then we order them as
x1, . . . , xk, y1, . . . , yℓ.

Vol. 19:4 EXISTENTIAL DEFINABILITY OVER THE SUBWORD ORDERING 35:5

Corollary 2.2. Let A be an alphabet with |A| ≥ 3 and let i ≥ 1. A relation is definable in
the Σi-fragment over (A∗,≼, (w)w∈A∗) if and only if it belongs to Σ0

i .

By [HSZ21, Theorem 3.5] the undecidability of the Σ1-fragment already holds for (A∗,≼,W)
where W ∈ A∗ is a sufficiently complex constant. Using the same ideas we show that the
characterizations from Theorem 2.1 and Corollary 2.2 also already hold for a single constant,
which will be proven in Section 4.

Remark 2.3. Let |A| ≥ 3. There exists a word W ∈ A∗ so that Theorem 2.1 and
Corollary 2.2 still hold for (A∗,≼,W) instead of (A∗,≼, (w)w∈A∗).

Expressiveness of the pure logic. Corollary 2.2 completely describes the relations
definable in the structure (A∗,≼, (w)w∈A∗) if |A| ≥ 3. We can use this to derive a description
of the relations definable without constants, i.e., in the structure (A∗,≼). The lack of
constants slightly reduces the expressiveness; to make this precise, we need some terminology.
An automorphism (of (A∗,≼)) is a bijection α : A∗ → A∗ such that u ≼ v if and only if
α(u) ≼ α(v). A relation R ⊆ (A∗)k is automorphism-invariant if for every automorphism α,
we have (v1, . . . , vk) ∈ R if and only if (α(v1), . . . , α(vk)) ∈ R. It is straightforward to check
that every formula over (A∗,≼) defines an automorphism-invariant relation. Thus, in the
Σi-fragment over (A∗,≼), we can only define automorphism-invariant relations inside Σ0

i .

Corollary 2.4. Let A be an alphabet with |A| ≥ 3 and let i ≥ 2. A relation is definable in
the Σi-fragment over (A∗,≼) if and only if it is automorphism-invariant and belongs to Σ0

i .

To give some intuition on automorphism-invariant sets, let us recall the classification of
automorphisms of (A∗,≼), shown implicitly by Kudinov, Selivanov, and Yartseva in [KSY10]
(for a short and explicit proof, see [HSZ21, Lemma 3.8]): A map α : A∗ → A∗ is an
automorphism of (A∗,≼) if and only if (i) the restriction of α to A is a permutation of A, and
(ii) α is either a word morphism, i.e., α(a1 · · · ak) = α(a1) · · ·α(ak) for any a1, . . . , ak ∈ A,
or a word anti-morphism, i.e., α(a1 · · · ak) = α(ak) · · ·α(a1) for any a1, . . . , ak ∈ A.

Finally, Corollary 2.4 raises the question of whether the Σ1-fragment over (A∗,≼) also
expresses exactly the automorphism-invariant recursively enumerable relations. It does not:

Observation 2.5. Let |A| ≥ 2. There are undecidable binary relations definable in the
Σ1-fragment over (A∗,≼). However, not every automorphism-invariant regular language is
definable in it.

3. Existentially defining recursively enumerable relations

In this section, we prove Theorem 2.1. Therefore, we now concentrate on definability in the
Σ1-fragment. Moreover, for an alphabet A, we will sometimes use the phrase Σ1-definable
over A as a shorthand for definability in the Σ1-fragment over the structure (A∗,≼, (w)w∈A∗).

35:6 P. Baumann, M. Ganardi, R. S. Thinniyam, and G. Zetzsche Vol. 19:4

Notation. For an alphabet A, we write A=k, A≥k, and A≤k for the set of words over A
that have length exactly k, at least k, and at most k, respectively. We write |w| for the
length of a word w. If B ⊆ A is a subalphabet of A then |w|B denotes the number of
occurrences of letters a ∈ B in w, or simply |w|a if B = {a} is a singleton. Furthermore, we
write πB : A∗ → B∗ for the projection morphism which keeps only the letters from B. If
B = {a, b}, we also write πa,b for π{a,b}. The downward closure of a word v ∈ A∗ is defined
as v↓ := {u ∈ A∗ | u ≼ v}.

Basic relations. We will use two kinds of relations, concatenation and counting letters,
which are shown to be Σ1-definable in (A∗,≼, (w)w∈A∗) as part of the undecidability proof
of the truth problem in [HSZ17, Theorem III.3]. The following relations are Σ1-definable if
|A| ≥ 2.

Concatenation: The relation {(u, v, w) ∈ (A∗)3 | w = uv}.
Counting letters: The relation {(u, v) ∈ (A∗)2 | |u|a = |v|b} for any a, b ∈ A.

Moreover, we will make use of a classical fact from word combinatorics: For u, v ∈ A∗, we
have uv = vu if and only if there is a word r ∈ A∗ with u ∈ r∗ and v ∈ r∗ [Ber79]. In
particular, if p is primitive, meaning that p ∈ A+ and there is no r ∈ A∗ with |r| < |p| and
p ∈ r∗, then up = pu is equivalent to u ∈ p∗. Furthermore, note that by counting letters
as above, and using concatenation, we can also say |u|a = |vw|a, i.e., |u|a = |v|a + |w|a for
a ∈ A. With these building blocks, we can state arbitrary linear equations over terms |u|a
with u ∈ A∗ and a ∈ A. For example, we can say |u| = 3 · |v|a + 2 · |w|b for u, v, w ∈ A∗ and
a, b ∈ A. This also allows us to state modulo constraints, such as ∃v : |u|a = 2 · |v|a, i.e.,
“|u|a is even”. Finally, counting letters lets us define projections: Note that for B ⊆ A and
u, v ∈ A∗, we have v = πB(u) if and only if v ≼ u and |v|b = |u|b for each b ∈ B as well as
¬(a ≼ v) for every a ∈ A \B.

For any subalphabet B ⊆ A one can clearly define B∗ over A. Hence definability of a
relation over B also implies definability over the larger alphabet A.

Finite state transducers. An important ingredient of our proof is to define regular
languages in the subword order, and, more generally, rational transductions, i.e., relations
recognized by finite state transducers.

For k ∈ N, a k-ary finite state transducer T = (Q,A, δ, q0, Qf) consists of a finite set of
states Q, an input alphabet A, an initial state q0 ∈ Q, a set of final states Qf ⊆ Q, and a

transition relation δ ⊆ Q× (A ∪ {ε})k ×Q. For a transition (q, a1, . . . , ak, q
′) ∈ δ, we also

write q
(a1,...,ak)−−−−−−→ q′.

The transducer T recognizes the k-ary relation R(T) ⊆ (A∗)k containing precisely those

k-tuples (w1, . . . , wk), for which there is a transition sequence q0
(a1,1,...,ak,1)−−−−−−−−→ q1

(a1,2,...,ak,2)−−−−−−−−→
. . .

(a1,m,...,ak,m)
−−−−−−−−−→ qm with qm ∈ Qf and wi = ai,1ai,2 · · · ai,m for all i ∈ {1, . . . , k}. Such a

transition sequence is called an accepting run of T . We sometimes prefer to think of the
wi as produced output rather than consumed input and thus occasionally use terminology
accordingly. A relation T is called a rational transduction if it is recognized by some finite
state transducer T . Unary transducers (i.e., k = 1) recognize the regular languages.

Vol. 19:4 EXISTENTIAL DEFINABILITY OVER THE SUBWORD ORDERING 35:7

Overview. As outlined in the introduction, our proof consists of six steps. In Steps I–III,
we show that we can define all rational transductions T ⊆ (A∗)k over the alphabet B, if
|B| ≥ |A| + 1. In Step IV, we define the special language G = {anbn | n ≥ 0}∗. From G,
all recursively enumerable languages can be obtained using rational transductions and
intersection, which in Step V allows us to define over B all recursively enumerable relations
over A, provided that |B| ≥ |A| + 1. Finally, in Step VI, we use projections to binary
alphabets to define arbitrary recursively enumerable relations over A, if |A| ≥ 3.

Step I: Defining Kleene stars. We first define the languages X∗, where X consists of
words of equal length. To this end, we establish an alternative representation for such sets.

Example 3.1. Before proving the general statement, let us illustrate how to define the
language {ab, ba}∗ using an auxiliary symbol #. It suffices to define the language {ab#, ba#}∗
and then project to {a, b}. The simple but key observation is that

u ∈ {ab, ba} ⇐⇒ u ≼ bab and u ≼ aba and |u| ≥ 2. (3.1)

We claim that a word w belongs to {ab#, ba#}∗ if and only if

∃n ∈ N : w ≼ (aba#)n ∧ w ≼ (bab#)n ∧ |w|# = n ∧ |w| = 3n. (3.2)

The “only if”-direction is immediate. For the “if”-direction consider a word w satisfying
(3.2), i.e. w = w1# · · ·wn# where each wi belongs to {a, b}∗. Then each word wi is a
subword of aba and bab. Since |w| = 3n either all words wi have length 2 and therefore
wi ∈ {ab, ba} by (3.1); or, there exists some wi with |wi| > 2. But then again wi ∈ {ab, ba}
by (3.1), contradicting |wi| > 2.

Lemma 3.2. Every nonempty set X ⊆ A=ℓ can be written as X = A≥ℓ ∩
⋂

p∈P p↓ for some
finite set P ⊆ A∗.

Proof. We can assume ℓ ≥ 1 since otherwise X = {ε} = A≥0 ∩ ε↓. Let w ∈ A∗ be any
permutation of A (i.e., each letter of A appears exactly once in w). If a ∈ A, then (w \ a)
denotes the word obtained from w by deleting a. For any nonempty word u = a1 · · · ak ∈ A+,
a1, . . . , ak ∈ A, define the word

pu = (w \ a1) (w \ a1) a1 (w \ a2) (w \ a2) a2 · · · (w \ ak−1) (w \ ak−1) ak−1 (w \ ak) (w \ ak).
Note that pu does not contain u as a subword: In trying to embed each letter ai of u into pu,
the first possible choice for a1 comes after the initial sequence (w \ a1) (w \ a1). Similarly,
the next possible choice for each subsequent ai is right after (w \ ai) (w \ ai). However, this
only works until ak−1, since there is no ak at the end of pu.

On the other hand, observe that pu contains every word v ∈ A≤k \ {u} as a subword:
Suppose that v = b1 · · · bm, b1, . . . , bm ∈ A, and let i ∈ [1,m+ 1] be the minimal position
with bi ̸= ai or i = m + 1. The prefix b1 · · · bi−1 = a1 · · · ai−1 occurs as a subword of pu,
which in the case i = m+ 1 already is the whole word v. If i ≤ m then bi occurs in (w \ ai),
and bi+1 · · · bm embeds into the subword (w \ ai) ai · · · (w \ ak−1) ak−1 of pu. Thus, we can
write

X = A≥ℓ ∩
⋂

u∈(A=ℓ\X)∪A=ℓ+1

pu↓.

Here u ∈ A=ℓ+1 was added to also exclude all words of length greater than ℓ.

Lemma 3.3. Let A ⊆ B be finite alphabets and # ∈ B \A. Let X ⊆ A=k and Y ⊆ A=ℓ be
sets. Then (X#Y#)∗ and X∗ are Σ1-definable over B.

35:8 P. Baumann, M. Ganardi, R. S. Thinniyam, and G. Zetzsche Vol. 19:4

Proof. We can clearly assume that X,Y are nonempty. By Lemma 3.2 we can write
X = A≥k ∩

⋂
p∈P p↓ and Y = A≥ℓ ∩

⋂
q∈Q q↓ for some finite sets P,Q ⊆ A∗. We claim that

w ∈ (A ∪ {#})∗ belongs to (X#Y#)∗ if and only if

∃n ∈ N : |w|# = 2n ∧ |w|A = (k + ℓ) · n ∧
∧

p∈P,q∈Q
w ≼ (p#q#)n. (3.3)

Observe that the number n is uniquely determined by |w|#. The “only if”-direction is
clear. Conversely, suppose that w ∈ (A ∪ {#})∗ satisfies the formula. We can factorize
w = x1#y1# . . . xn#yn# where each xi is a subword of each word p ∈ P , and each yi is a
subword of each word q ∈ Q. If some word xi were strictly longer than k, then it would
belong to X by the representation of X, and in particular would have length k, contradiction.
Therefore each word xi has length at most k, and similarly each word yi has length at most ℓ.
However, since the total length of x1y1 . . . xnyn is (k + ℓ) · n, we must have |xi| = k and
|yi| = ℓ, and hence xi ∈ X and yi ∈ Y for all i ∈ [1, n]. This proves our claim.

Finally, (3.3) is equivalent to the following Σ1-formula:

(k + ℓ) · |w|# = 2 · |w|A ∧
∧

p∈P,q∈Q
∃u ∈ (p#q#)∗ : (w ≼ u ∧ |u|# = |w|#)

Here, we express u ∈ (p#q#)∗ as follows. If p ≠ q, then p#q# is primitive and u ∈ (p#q#)∗

is equivalent to u(p#q#) = (p#q#)u. If p = q, then u ∈ (p#q#)∗ is equivalent to
up# = p#u and |u|# being even. Finally, to define X∗ we set Y = {ε} and obtain
X∗ = πA((X#Y#)∗).

Step II: Blockwise transductions. On our way towards rational transductions, we work
with a subclass of transductions. If T ⊆ A∗ ×A∗ is any subset, then we define the relation

T ∗ = {(x1 · · ·xn, y1 · · · yn) | n ∈ N, (x1, y1), . . . , (xn, yn) ∈ T}.

We call a transduction blockwise if it is of the form T ∗ for some T ⊆ A=k ×A=ℓ and k, ℓ ∈ N.

Lemma 3.4. Let A ⊆ B be finite alphabets with |B| ≥ |A|+1. Every blockwise transduction
R ⊆ A∗ ×A∗ is Σ1-definable over B.

Proof. Let # ∈ B \A be a symbol. Suppose that R = T ∗ for some T ⊆ A=k ×A=ℓ. Define
the language L = {x#y# | (x, y) ∈ T}∗. Note that

w ∈ L ⇐⇒ w ∈ (A=k#A=ℓ#)∗ ∧ πA(w) ∈ {xy | (x, y) ∈ T}∗,

and hence L is Σ1-definable over B by Lemma 3.3. The languages X = (A=k##)∗ and
Y = (#A=ℓ#)∗ are also definable over B by Lemma 3.3. Then (x, y) ∈ R if and only if

∃w ∈ L, x̂ ∈ X, ŷ ∈ Y : x̂, ŷ ≼ w ∧ |w|# = |x̂|# = |ŷ|# ∧ x = πA(x̂) ∧ y = πA(ŷ).

Vol. 19:4 EXISTENTIAL DEFINABILITY OVER THE SUBWORD ORDERING 35:9

Step III: Rational transductions. We are ready to define arbitrary rational transductions.

Lemma 3.5. Let A ⊆ B be finite alphabets where |A|+1 ≤ |B| and |B| ≥ 3. Every rational
transduction T ⊆ (A∗)k is Σ1-definable over B.

Proof. Let a, b ∈ B. Let us first give an overview. Suppose the transducer for T has n
transitions. Of course, we may assume that every run contains at least one transition. The
idea is that a sequence of transitions is encoded by a word, where transition j ∈ {1, . . . , n}
is represented by ajbn+1−j . We will define predicates run and inputi for i ∈ {1, . . . , k} with

(w1, . . . , wk) ∈ T ⇐⇒ ∃w ∈ {a, b}∗ : run(w) ∧
k∧

i=1

inputi(w,wi).

Here, run(w) states that w encodes a sequence of transitions that is a run of the transducer.
Moreover, inputi(w,wi) states that wi ∈ A∗ is the input of this run in the i-th coordinate.

We begin with the predicate run. Let us call the words inX = {ajbn+1−j | j ∈ {1, . . . , n}}
the transition codes. Let ∆ be the set of all words aibn+1−iajbn+1−j for which the target
state of transition i and the source state of transition j are the same. Note that a word
w ∈ X∗ represents a run if

(1) w begins with a transition that can be applied in an initial state,
(2) w ends with a transition that leads to a final state, and
(3) either w ∈ ∆∗ ∩X∆∗X or w ∈ X∆∗ ∩∆∗X, depending on whether the run has an even

or an odd number of transitions.

Thus, we can define run(w) using prefix and suffix relations and membership to sets ∆∗. The
prefix and suffix relation can be defined over {a, b} using concatenation, see also [HSZ17,
Theorem III.3, step 14]. Finally, we can express w ∈ X∗, w ∈ ∆∗ and similar with Lemma 3.3.

It remains to define the inputi predicate. In the case that every transition reads a single
letter on each input (i.e., no ε input), we can simply replace each transition code in w by
its i-th input letter using a blockwise transduction. To handle ε inputs, we define inputi in
two steps. Fix i and let A = {a1, . . . , am}. We first obtain an encoded version ui of the
i-th input from w: For every transition that reads aj , we replace its transition code with
abjabm−ja. Moreover, for each transition that reads ε, we replace the transition code by
bm+3. Using Lemma 3.4, this replacement is easily achieved using a blockwise transduction.
Hence, each possible input in A ∪ {ε} is encoded using a block from Y ∪ {bm+3}, where
Y = {abjabm−ja | j ∈ {1, . . . ,m}}.

Suppose we have produced the encoded input ui ∈ (Y ∪ {bm+3})∗. In the next step, we
want to define the word vi ∈ Y ∗, which is obtained from ui by removing each block bm+3

from ui. We do this as follows:

vi ∈ Y ∗ ∧ vi ≼ ui ∧ |vi|a = |ui|a.
Note that here, we can express vi ∈ Y ∗ because of Lemma 3.3. In the final step, we turn vi
into the input wi ∈ A by replacing each block abjabm−ja with aj for j ∈ {1, . . . ,m}. This is
just a blockwise transduction and can be defined by Lemma 3.4 because |B| ≥ |A|+ 1.

Remark 3.6. We do not use this here, but Lemma 3.5 also holds without the assumption
|B| ≥ 3. Indeed, if |B| = 2, then this would imply |Ai| = 1 for every i. Then we can write
Ai = {ai} for (not necessarily distinct) letters a1, . . . , ak. Since T is rational, the set of all
(x1, . . . , xk) ∈ Nk with (ax1

1 , . . . , a
xk
k) ∈ T is semilinear, and thus Σ1-definable in (N,+, 0). It

follows from the known predicates that T is Σ1-definable using subwords over {a1, . . . , ak}.

35:10 P. Baumann, M. Ganardi, R. S. Thinniyam, and G. Zetzsche Vol. 19:4

Step IV: Generator language. Our next ingredient is to express a particular non-regular
language G (and its variant G#):

G = {anbn | n ≥ 0}∗, G# = {anbn# | n ≥ 0}∗.
This will be useful because from G, one can produce all recursively enumerable sets by way
of rational transductions and intersection.

Lemma 3.7. The language {ab,#}∗ is Σ1-definable over {a, b,#}.

Proof. Note that

u ∈ {ab,#}∗ ⇐⇒ ∃v ∈ #∗ab#∗, w ∈ v∗ : u ≼ w ∧ πa,b(u) = πa,b(w).

Here, the language #∗ab#∗ can be defined using concatenation. Moreover, since every word
in #∗ab#∗ is primitive, we express w ∈ v∗ by saying vw = wv.

Lemma 3.8. Let {a, b} ⊆ A and |A| ≥ 3. The language G is Σ1-definable over A.

Proof. Suppose # ∈ A \ {a, b}. Since G = πa,b(G#), it suffices to define G#. We can define
the language a∗b∗# as a concatenation of a∗, b∗, and #. The next step is to define the
language K = (a∗b∗#)∗. To this end, notice that

w ∈ K ⇐⇒ ∃u ∈ a∗b∗#, v ∈ u∗ : w ≼ v ∧ |w|# = |v|#.
Here, since the words in a∗b∗# are primitive, we can express v ∈ u∗ by saying vu = uv.
Thus, we can define K. Using K and Lemma 3.7, we can define G#, since

w ∈ G# ⇐⇒ w ∈ K ∧ ∃v ∈ {ab,#}∗ : πa,#(w) = πa,#(v) ∧ πb,#(w) = πb,#(v).

Step V: Recursively enumerable relations over two letters. We are now ready to
define all recursively enumerable relations over two letters in (A∗,≼, (w)w∈A∗), provided
that |A| ≥ 3. For two rational transductions T ⊆ A∗×B∗ and S ⊆ B∗×C∗, and a language
L ⊆ A∗, we denote application of T to L as TL = {v ∈ B∗ | ∃u ∈ L : (u, v) ∈ T} ⊆ B∗, and
we denote composition of S and T as S ◦ T = {(u,w) | ∃v ∈ B∗ : (u, v) ∈ T ∧ (v, w) ∈ S} ⊆
A∗ × C∗. The latter is again a rational transduction (see e.g. [Ber79]).

Lemma 3.9 (Hartmanis & Hopcroft 1970). Every recursively enumerable language L can
be written as L = α(T1G# ∩ T2G#) with a morphism α and rational transductions T1, T2.

Proof. This follows directly from [HH70, Theorem 1] and the proof of [HH70, Theorem 2].

Let us briefly sketch the proof of Lemma 3.9. It essentially states that every recursively
enumerable language can be accepted by a machine with access to two counters that work in
a restricted way. The two counters have instructions to increment, decrement, and zero test
(which correspond to the letters a, b, and # in G#). The restriction, which we call “locally
one-reversal” (L1R) is that in between two zero tests of some counter, the instructions of
that counter must be one-reversal : There is a phase of increments and then a phase of
decrements (in other words: after a decrement, no increments are allowed until the next
zero test).

To show this, Hartmanis and Hopcroft use the classical fact that every recursively
enumerable language can be accepted by a four counter machine (without the L1R property).
Then, the four counter values p, q, r, s can be encoded as 2p3q5r7s in a single integer register
that can (i) multiply with, (ii) divide by, (iii) test non-divisibility by the constants 2, 3, 5, 7.

Vol. 19:4 EXISTENTIAL DEFINABILITY OVER THE SUBWORD ORDERING 35:11

Such a register, in turn, is easily simulated using two L1R-counters: For example, to multiply
by f ∈ {2, 3, 5, 7}, one uses a loop that decrements the first counter and increments the
second by f , until the first counter is zero. The other instructions are similar.

Lemma 3.10. For every recursively enumerable relation R ⊆ ({a, b}∗)k, there is a rational
transduction T ⊆ ({a, b}∗)k+2 such that

(w1, . . . , wk) ∈ R ⇐⇒ ∃u, v ∈ G : (w1, . . . , wk, u, v) ∈ T. (3.4)

Proof. We shall build T out of several other transductions. These will be over larger
alphabets, but since we merely compose them to obtain T , this is not an issue.

A standard fact from computability theory states that a relation is recursively enumerable
if and only if it is the homomorphic image of some recursively enumerable language. In
particular, there is a recursively enumerable language L ⊆ B∗ and morphisms β1, . . . , βk such
that R = {(β1(w), . . . , βk(w)) | w ∈ L}. By Lemma 3.9, we may write L = α(T1G# ∩ T2G#)
for a morphism α : C∗ → B∗ and rational transductions T1, T2 ⊆ {a, b,#}∗ × C∗.

Notice that if γ : {a, b,#}∗ → {a, b}∗ is the morphism with γ(a) = a, γ(b) = b, and
γ(#) = abab, then G# = (a∗b∗#)∗ ∩ γ−1(G). Taking the pre-image under a morphism
(here γ) and then intersecting with the regular language (here (a∗b∗#)∗) can be performed
by a single rational transduction [Ber79, Theorem 3.2]. This means, there is a rational
transduction S ⊆ {a, b}∗ × {a, b,#}∗ with G# = SG. Therefore, we can replace G# in the
above expression for L and arrive at L = α

(
(T1(SG)∩ (T2(SG)

)
= α

(
(T1 ◦S)G∩ (T2 ◦S)G

)
.

In sum, we observe that (w1, . . . , wk) ∈ R if and only if there exists a w ∈ C∗ with
w ∈ (T1 ◦ S)G and w ∈ (T2 ◦ S)G such that wi = βi(α(w)) for i ∈ {1, . . . , k}. Consider the
relation

T = {(β1(α(w)), . . . , βk(α(w)), u, v) | w ∈ C∗, (u,w) ∈ T1 ◦ S, (v, w) ∈ T2 ◦ S}.
Note that T is rational: A transducer can guess w, letter by letter, and on track i ∈ {1, . . . , k},
it outputs the image under βi(α(·)) of each letter. To compute the output on tracks k + 1
and k+2, it simulates transducers for T1 ◦S and T2 ◦S. Moreover, we have T ⊆ ({a, b}∗)k+2

and our observation implies that (3.4) holds.

Lemma 3.11. Let A be an alphabet with {a, b} ⊆ A and |A| ≥ 3. Then every recursively
enumerable relation R ⊆ ({a, b}∗)k is Σ1-definable over A.

Proof. Take the rational transduction T as in Lemma 3.10. Since T ⊆ ({a, b}∗)k+2 and
|A| ≥ |{a, b}|+ 1, Lemma 3.5 and Lemma 3.8 yield the result.

Step VI: Arbitrary recursively enumerable relations. We have seen that if |A| ≥ 3,
then we can define over A every recursively enumerable relation over two letters. In the
proof, we use a third letter as an auxiliary letter. Our last step is to define all recursively
enumerable relations that can use all letters of A freely. This clearly implies Theorem 2.1.
To this end, we observe that every word is determined by its binary projections.

Lemma 3.12. Let A be an alphabet with |A| ≥ 2 and let u, v ∈ A∗ such that for every
binary alphabet B ⊆ A, we have πB(u) = πB(v). Then u = v.

Proof. Towards a contradiction, suppose u ̸= v. We clearly have |u| = |v|. Thus, if w ∈ A∗

is the longest common prefix of u and v, then u = wau′ and v = wbv′ for some letters a ̸= b
and words u′, v′ ∈ A∗. But then the words πa,b(u) and πa,b(v) differ: After the common
prefix πa,b(w), the word πa,b(u) continues with a and the word πa,b(v) continues with b.

35:12 P. Baumann, M. Ganardi, R. S. Thinniyam, and G. Zetzsche Vol. 19:4

We now fix a, b ∈ A with a ̸= b. For any binary alphabet B ⊆ A let ρB : A∗ → {a, b}∗
be any morphism with ρB(B) = {a, b} and ρB(c) = ε for all c ∈ A \B, i.e., ρB first projects

a word over A to B and then renames the letters from B to {a, b}. Recall that
(|A|

2

)
is the

number of binary alphabets B ⊆ A. We define the encoding function e : A∗ → ({a, b}∗)(
|A|
2)

which maps a word u ∈ A∗ to the tuple consisting of all words ρB(u) for all binary alphabets
B ⊆ A (in some arbitrary order). Note that e is injective by Lemma 3.12.

Lemma 3.13. If |A| ≥ 3, then e : A∗ → ({a, b}∗)(
|A|
2) is Σ1-definable over A.

Proof. For binary alphabets B,C ⊆ A, a map σ : B∗ → C∗ is called a binary renaming if
(i) σ is a word morphism and (ii) σ restricted to B is a bijection of B and C. If, in addition,
there is a letter # ∈ B ∩ C such that σ(#) = #, then we say that σ fixes a letter.

Observe that if we can Σ1-define all binary renamings, then the encoding function e
can be Σ1-defined using projections and binary renamings. Thus, it remains to define all
binary renamings. For this, note that every binary renaming can be written as a composition
of (at most three) binary renamings that each fix some letter. Hence, it suffices to define
any binary renaming that fixes a letter. Suppose σ : {c,#}∗ → {d,#}∗ with σ(c) = d and
σ(#) = #. Without loss of generality, we assume c ̸= d. Then σ is Σ1-definable since

σ(u) = v ⇐⇒ ∃w ∈ {cd,#}∗ : u = πc,#(w) ∧ v = πd,#(w).

and {cd,#}∗ is definable by Lemma 3.7.

Theorem 3.14. Let A be an alphabet with |A| ≥ 3. Then every recursively enumerable
relation R ⊆ (A∗)k is Σ1-definable in (A∗,≼, (w)w∈A∗).

Proof. The encoding function e is clearly computable and injective by Lemma 3.12. Therefore
a relation R ⊆ (A∗)k is recursively enumerable if and only if the image

e(R) = {(e(w1), . . . , e(wk)) | (w1, . . . , wk) ∈ R} ⊆ ({a, b}∗)k·(
|A|
2)

is recursively enumerable. This means that e(R) is Σ1-definable over A by Lemma 3.11.
Thus, we can define R as well, since we have

(w1, . . . , wk) ∈ R ⇐⇒ (e(w1), . . . , e(wk)) ∈ e(R),

and the function e is Σ1-definable over A by Lemma 3.13.

4. Restricting the signature to a single constant

In [HSZ17, Remark 3.4] the authors observe that their undecidability result for the existential
fragment of subword logic with constants still holds, even if only a finite set of constant
symbols is allowed. More precisely, they show that for any alphabet A with |A| ≥ 2 there
are finitely many words w1, . . . , wn ∈ A∗ such that the truth problem for the Σ1-fragment
over the structure (A∗,≼, w1, . . . , wn) is undecidable. Furthermore, they remark that one
can strengthen this result even more to only requiring a single constant W ∈ A∗. The proof
of the latter can be found in the extended version [HSZ21, Theorem 3.5]. Using similar
techniques, we can likewise strengthen our Σ1-definability result for alphabets of size at least
3:

Theorem 4.1. Let A be an alphabet with |A| ≥ 3. Then there is a fixed word W ∈ A∗ such
that every recursively enumerable relation R ⊆ (A∗)k is Σ1-definable in (A∗,≼,W).

Vol. 19:4 EXISTENTIAL DEFINABILITY OVER THE SUBWORD ORDERING 35:13

Like in [HSZ21], we make use of the fact that any word of length at least 3 is uniquely
defined by its set of strict subwords:

Lemma 4.2 ([KS15]). Let u, v be words with |u| ≥ 3 and |v| ≥ 3. Then u = v if and only if
u↓ \ {u} = v↓ \ {v}.

Note that Lemma 4.2 does not hold for words of length 2 since ab↓ \ {ab} = {ε, a, b} =
ba↓ \ {ba}.

Proof of Theorem 4.1. We begin with the case A = {a, b, c}, i.e. |A| = 3.
Recall that concatenation is Σ1-definable in the structure (A∗,≼, (w)w∈A∗). Let w1, . . . , wn

be the constant symbols that appear in the formula defining the concatenation relation. We
choose W = am+1bm+2cm+3, where m = max1≤i≤n |wi| is the maximal length among these
constants. Since every word is a concatenation of letters, it now suffices to show that the
letters a, b, c and words w1, . . . , wn are all Σ1-definable over (A∗,≼,W).

In the following we use u ≺ v as a shorthand for u ≼ v ∧ u ̸= v. The formula

v3m+5 ≺W ∧
3m+4∧
i=0

vi ≺ vi+1

defines a sequence of subwords v0, . . . , v3m+5 ofW with |vi| = i. In particular, we have v1 ∈ A.
If we repeat the same formula for two more sets of variables u0, . . . , u3m+5, t0, . . . , t3m+5,
and additionally require

v1 ̸= u1 ∧ v1 ̸= t1 ∧ u1 ̸= t1,

then we have defined a, b, and c, but only up to renaming of letters. To ensure v1 = c we
use the following formula:

u1 ̸≼ v′m+3 ∧ t1 ̸≼ v′m+3 ∧ v′m+3 ≼W ∧
m+2∧
i=0

v′i ≺ v′i+1.

It defines a sequence of v′0, . . . v
′
m+3 of subwords of W , among which the letters u1 and t1

do not occur. Therefore this sequence is comprised of words in v∗1, and by choice of W a
sequence of this length cannot exist for v1 = a or v1 = b. Observe that also |v′i| = i, which
means that we have now additionally defined the words c0 = ε to cm+3. Using two similar
formulas with m+ 3 and m+ 2 variables, respectively, we can now define the words b0 to
bm+2 and a0 to am+1 as well.

Observe that for any word w and any letter a′, |w|a′ = ℓ is equivalent to aℓ ≼ w∧aℓ+1 ̸≼ w.
Using this fact we can fix the number of occurrences of each letter a′, and therefore also
fix the total length of a word. We continue by defining the remaining words of length ≤ 2,
which are ab, ba, ac, ca, bc, cb. The formula

a ≼ s01 ∧ aa ̸≼ s01 ∧ b ≼ s01 ∧ bb ̸≼ s01 ∧ c ̸≼ s01 ∧ s01 ≼W

defines the word s01 = ab. By copying this formula for a new free variable s10 and replacing
the last conjunct by s10 ̸≼ W , we can likewise define s10 = ba. Similarly, we can also
distinguish ac from ca, as well as bc from cb, since in both cases one of them is a subword of
W while the other is not.

Finally we inductively define all constants up to length m. Let w be a word of length
3 ≤ |w| ≤ m. Then by induction hypothesis we have defined all constants up to length

|w| − 1. Furthermore for every a′ ∈ A we have defined the constants a′|w|a′ and a′|w|a′+1,

35:14 P. Baumann, M. Ganardi, R. S. Thinniyam, and G. Zetzsche Vol. 19:4

since |w|a′ ≤ |w| ≤ m. By Lemma 4.2 the word w is uniquely defined by its set of strict
subwords. Therefore the following formula defines s = w:

a|w|a ≼ s ∧ a|w|a+1 ̸≼ s ∧ b|w|b ≼ s ∧ b|w|b+1 ̸≼ s ∧ c|w|c ≼ s ∧ c|w|c+1 ̸≼ s

∧
∧

|w′|≤|w|,w′≼w

w′ ≼ s ∧
∧

|w′|≤|w|,w′ ̸≼w

w′ ̸≼ s.

Since a, b, c and w1, . . . , wn have at most length m, we have successfully defined all of the
required constants. To conclude the case |A| = 3, we add existential quantifiers for all the
variables representing constants that we do not use outside of these auxiliary formulas. Since
we only ever used existential quantification, we have shown definability in the Σ1-fragment
of (A∗,≼,W).

The case A = {a1, . . . , ak} for k ≥ 4 is very similar. We define the number m in

the same way as before and choose W = am+1
1 · · · am+k

k . Then we can again define all

constants a0i to am+1
i for every letter ai. We also proceed to define all remaining words

of length 2, in the same way as in the previous case. Finally, Lemma 4.2 and the fact
|w|ai = ℓ ⇐⇒ aℓi ≼ w∧ aℓ+1

i ̸≼ w allow us to inductively define all constants w up to length
m, like before.

Remark 4.3. In the proof of Theorem 4.1 we show that there is a number m ∈ N such
that for the alphabet A = {a1, . . . , ak} with k ≥ 4 the word am+1

1 · · · am+k
k is a valid choice

for the constant symbol W . Moreover, the proof still works for any number m′ > m and

W = am
′+1

1 · · · am′+k
k . Therefore the theorem does not just hold for one fixed word W , but

an infinite family of words Wm′ .

5. Further consequences

In this section, we prove Corollary 2.2, Corollary 2.4 and Observation 2.5. When working
with higher levels (Σ0

i for i ≥ 2) of the arithmetic hierarchy, it will be convenient to use a
slightly different definition than the one using oracle Turing machines: [Koz10, Theorem 35.1]
implies that for i ≥ 1, a relation R ⊆ (A∗)k belongs to Σ0

i+1 if and only if it can be written

as R = π((A∗)k+ℓ \ S), where S ⊆ (A∗)k+ℓ is a relation in Σ0
i and π : (A∗)k+ℓ → (A∗)k is

the projection to the first k coordinates.

Proof of Corollary 2.2. It is immediate that every predicate definable in the Σi-fragment of
(A∗,≼, (w)w∈A∗) belongs to Σ0

i , because the subword relation is recursively enumerable. We
show the converse using induction on i, such that Theorem 2.1 is the base case.

Now suppose that every relation in Σ0
i is definable in the Σi-fragment of (A∗,≼, (w)w∈A∗)

and consider a relation R ⊆ (A∗)k in Σ0
i+1. Then we can write R = π((A∗)k+ℓ \ S) for some

ℓ ≥ 0, where π : (A∗)k+ℓ → (A∗)k is the projection to the first k coordinates, and S ⊆ (A∗)k+ℓ

is a relation in Σ0
i . By induction, S is definable by a Σi-formula φ over (A∗,≼, (w)w∈A∗).

By negating φ and moving all negations inwards, we obtain a Πi-formula ψ that defines
(A∗)k+ℓ \ S. Finally, adding existential quantifiers for the variables corresponding to the last
ℓ coordinates yields a Σi+1-formula for R = π((A∗)k+ℓ \ S).

Note that if instead of Theorem 2.1 we use Theorem 4.1 as the base case in the induction
above, it follows that there exists a word W ∈ A∗ such that Corollary 2.2 also holds for the

Vol. 19:4 EXISTENTIAL DEFINABILITY OVER THE SUBWORD ORDERING 35:15

structure (A∗,≼,W) instead of (A∗,≼, (w)w∈A∗). This together with Theorem 4.1 yields
Remark 2.3.

Finally, we look at the expressive power of the pure logic (A∗,≼). We start by proving
Corollary 2.4, which characterizes relations definable in the Σi-fragment of (A∗,≼) for i ≥ 2.

Proof of Corollary 2.4. Clearly, every relation definable with a Σi-formula over (A∗,≼) must
be automorphism-invariant and must define a relation in Σ0

i .
Conversely, consider an automorphism-invariant relation R ⊆ (A∗)k in Σ0

i . Then R
is definable using a Σi-formula φ with free variables x1, . . . , xk over (A∗,≼, (w)w∈A∗) by
Corollary 2.2. Let w1, . . . , wℓ be the constants occurring in φ. From φ, we construct the
Σi-formula φ′ over (A∗,≼), by replacing each occurrence of wj by a fresh variable yj .

It was shown in [KS15, Sections 4.1 and 4.2] that from the tuple (w1, . . . , wℓ) ∈ (A∗)ℓ,
one can construct a Σ2-formula ψ with free variables y1, . . . , yℓ over (A∗,≼) such that
ψ(u1, . . . , uℓ) is true if and only if there exists an automorphism of (A∗,≼) mapping uj to
wj for each j. We claim that the formula χ = ∃y1, . . . , yℓ : ψ ∧ φ′ defines the set R. Since ψ
belongs to Σ2 and thus χ belongs to Σi, this implies Corollary 2.4.

Clearly, every (v1, . . . , vk) ∈ R satisfies χ. Moreover, if χ(v1, . . . , vk), then there are
u1, . . . , uℓ ∈ A∗ with φ′(v1, . . . , vk, u1, . . . , uℓ) and an automorphism α mapping uj to
wj for each j. Since α is an automorphism, the formula φ′ is also satisfied on the tu-
ple (α(v1), . . . , α(vk), α(u1), . . . , α(uℓ)) = (α(v1), . . . , α(vk), w1, . . . , wℓ) and thus we have
(α(v1), . . . , α(vk)) ∈ R. Since R is automorphism-invariant, this implies (v1, . . . , vk) ∈ R.

The expressiveness of the existential fragment of (A∗,≼) is not well understood. Partial
results are summarized in Observation 2.5.

Proof of Observation 2.5. Take a recursively enumerable, but undecidable subset S ⊆ N.
Fix a letter a ∈ A and define the unary language L = {an | n ∈ S}. By [HSZ21, Theorem 3.5]
there exists a wordW ∈ A∗ and a Σ1-formula φ(x) over (A∗,≼,W) which defines L. Consider
the formula φ′ in the Σ1-fragment of (A∗,≼) obtained by replacing each occurrence of W
by a fresh variable y. Then (v,W) satisfies φ′ if and only if v ∈ L. Thus, φ′ defines an
undecidable relation.

For the second statement, we claim that every language L ⊆ A∗ that is Σ1-definable in
(A∗,≼) satisfies A∗LA∗ ⊆ L. Hence, many automorphism-invariant regular languages such
as

⋃
a∈A a

∗ are not definable. Note that for a ∈ A and u, v ∈ A∗, we have u ≼ v if and only if

au ≼ av. Thus, every Σ0-definable relation R ⊆ (A∗)k satisfies (w1, . . . , wk) ∈ R if and only
if (aw1, . . . , awk) ∈ R. Symmetrically, (w1, . . . , wk) ∈ R is equivalent to (w1a, . . . , wka) ∈ R.
As a projection of a Σ0-definable relation, L thus satisfies A∗LA∗ ⊆ L.

Observation 2.5 raises the question whether there are undecidable Σ1-definable languages in
(A∗,≼), which we leave as an open problem. In fact, all examples of Σ1-definable languages
that we have constructed are regular. While each individual Σ1-definable language could be
decidable, the following observation implies that the membership problem for Σ1-definable
languages is not decidable, if the formula is part of the input.

Observation 5.1. Let |A| ≥ 2. There exists a word W ∈ A∗ such that the following
problem is undecidable: Given a Σ1-formula φ(x) over (A∗,≼), does W satisfy φ(x)?

Proof. By [HSZ21, Theorem 3.5] there exists a word W ∈ A∗ so that the truth problem
for Σ1-formulas over (A∗,≼,W) is undecidable, which asks whether a given a sentence φ
(formula without free variables) is true. In other words, testing whether W satisfies the

35:16 P. Baumann, M. Ganardi, R. S. Thinniyam, and G. Zetzsche Vol. 19:4

formula obtained from φ by replacing each occurrence of W by a fresh free variable is
undecidable.

6. Conclusion

We have shown how to define all recursively enumerable relations in the existential fragment
of the subword order with constants for each alphabet A with |A| ≥ 3. If |A| = 1, then the
relations definable in (A∗,≼, (w)w∈A∗) correspond to relations over N definable in (N,≤)
with constants. Hence, this case is very well understood: This structure admits quantifier
elimination [Pél92, Theorem 2.2(b)], which implies that the Σ1-fragment is expressively
complete and also that a subset of A∗ is only definable if it is finite or co-finite. In particular,
Theorem 2.1 does not hold for |A| = 1.

We leave open whether Theorem 2.1 still holds over a binary alphabet. If this is the
case, then we expect that substantially new techniques are required. In order to express
non-trivial relations over two letters, our proof often uses a third letter as a separator and
marker for “synchronization points” in subword embeddings.

References

[ABQ11] Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. Context-bounded analysis for
concurrent programs with dynamic creation of threads. Log. Methods Comput. Sci., 7(4), 2011.
doi:10.2168/LMCS-7(4:4)2011.

[ACH+16] Mohamed Faouzi Atig, Dmitry Chistikov, Piotr Hofman, K. Narayan Kumar, Prakash Saivasan,
and Georg Zetzsche. The complexity of regular abstractions of one-counter languages. In
Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July
5-8, 2016, pages 207–216. ACM, 2016. doi:10.1145/2933575.2934561.

[AJ96] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable channels. informa-
tion and computation, 127(2):91–101, 1996.

[AMMS17] Mohamed Faouzi Atig, Roland Meyer, Sebastian Muskalla, and Prakash Saivasan. On the
upward/downward closures of Petri nets. In Kim G. Larsen, Hans L. Bodlaender, and Jean-
François Raskin, editors, 42nd International Symposium on Mathematical Foundations of
Computer Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, volume 83 of LIPIcs,
pages 49:1–49:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/
LIPIcs.MFCS.2017.49.

[AZ23] Ashwani Anand and Georg Zetzsche. Priority downward closures. In Guillermo A. Pérez and
Jean-François Raskin, editors, 34th International Conference on Concurrency Theory, CONCUR
2023, September 18-23, 2023, Antwerp, Belgium, volume 279 of LIPIcs, pages 39:1–39:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.CONCUR.2023.39.

[BCCP20] David Barozzini, Lorenzo Clemente, Thomas Colcombet, and Pawel Parys. Cost automata,
safe schemes, and downward closures. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli,
editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP
2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs,
pages 109:1–109:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/
LIPIcs.ICALP.2020.109.

[Ber79] Jean Berstel. Transductions and Context-Free Languages. Teubner, 1979.
[BFH+20] Laura Barker, Pamela Fleischmann, Katharina Harwardt, Florin Manea, and Dirk Nowotka.

Scattered factor-universality of words. In Developments in Language Theory - 24th International
Conference, DLT 2020, Tampa, FL, USA, May 11-15, 2020, Proceedings, volume 12086 of Lecture
Notes in Computer Science, pages 14–28. Springer, 2020. doi:10.1007/978-3-030-48516-0_2.

https://doi.org/10.2168/LMCS-7(4:4)2011
https://doi.org/10.1145/2933575.2934561
https://doi.org/10.4230/LIPIcs.MFCS.2017.49
https://doi.org/10.4230/LIPIcs.MFCS.2017.49
https://doi.org/10.4230/LIPICS.CONCUR.2023.39
https://doi.org/10.4230/LIPIcs.ICALP.2020.109
https://doi.org/10.4230/LIPIcs.ICALP.2020.109
https://doi.org/10.1007/978-3-030-48516-0_2

Vol. 19:4 EXISTENTIAL DEFINABILITY OVER THE SUBWORD ORDERING 35:17

[BGM+23a] Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg
Zetzsche. Checking refinement of asynchronous programs against context-free specifications. In
Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on
Automata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany,
volume 261 of LIPIcs, pages 110:1–110:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPICS.ICALP.2023.110.

[BGM+23b] Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg
Zetzsche. Context-bounded analysis of concurrent programs (invited talk). In Kousha Etessami,
Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages,
and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs,
pages 3:1–3:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.
ICALP.2023.3.

[BGTZ22] Pascal Baumann, Moses Ganardi, Ramanathan S. Thinniyam, and Georg Zetzsche. Existential
definability over the subword ordering. In Petra Berenbrink and Benjamin Monmege, editors,
39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022, March
15-18, 2022, Marseille, France (Virtual Conference), volume 219 of LIPIcs, pages 7:1–7:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.STACS.2022.7.

[BK15] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 79–97. IEEE
Computer Society, 2015. doi:10.1109/FOCS.2015.15.

[BK18] Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of longest
common subsequence. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1216–1235.
SIAM, 2018. doi:10.1137/1.9781611975031.79.

[BMTZ20] Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. The
complexity of bounded context switching with dynamic thread creation. In Artur Czumaj, Anuj
Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages,
and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference),
volume 168 of LIPIcs, pages 111:1–111:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPICS.ICALP.2020.111.

[BMTZ22] Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. Context-
bounded verification of thread pools. Proc. ACM Program. Lang., 6(POPL):1–28, 2022. doi:
10.1145/3498678.

[BY91] Ricardo A. Baeza-Yates. Searching subsequences. Theoretical Computer Science, 78(2):363–376,
1991.

[CPSW16] Lorenzo Clemente, Pawel Parys, Sylvain Salvati, and Igor Walukiewicz. The diagonal problem
for higher-order recursion schemes is decidable. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016,
pages 96–105. ACM, 2016. doi:10.1145/2933575.2934527.

[DFK+21] Joel D. Day, Pamela Fleischmann, Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer.
The edit distance to k-subsequence universality. In 38th International Symposium on Theoretical
Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken, Germany (Virtual
Conference), volume 187 of LIPIcs, pages 25:1–25:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.STACS.2021.25.

[ERW08] Cees Elzinga, Sven Rahmann, and Hui Wang. Algorithms for subsequence combinatorics.
Theoretical Computer Science, 409(3):394–404, 2008.

[FK18] Lukas Fleischer and Manfred Kufleitner. Testing Simon’s congruence. In 43rd International
Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018,
Liverpool, UK, volume 117 of LIPIcs, pages 62:1–62:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018. doi:10.4230/LIPIcs.MFCS.2018.62.

[FKK+23] Pamela Fleischmann, Sungmin Kim, Tore Koß, Florin Manea, Dirk Nowotka, Stefan Siemer,
and Max Wiedenhöft. Matching patterns with variables under simon’s congruence. In Olivier
Bournez, Enrico Formenti, and Igor Potapov, editors, Reachability Problems - 17th International
Conference, RP 2023, Nice, France, October 11-13, 2023, Proceedings, volume 14235 of Lecture

https://doi.org/10.4230/LIPICS.ICALP.2023.110
https://doi.org/10.4230/LIPICS.ICALP.2023.3
https://doi.org/10.4230/LIPICS.ICALP.2023.3
https://doi.org/10.4230/LIPICS.STACS.2022.7
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1137/1.9781611975031.79
https://doi.org/10.4230/LIPICS.ICALP.2020.111
https://doi.org/10.1145/3498678
https://doi.org/10.1145/3498678
https://doi.org/10.1145/2933575.2934527
https://doi.org/10.4230/LIPIcs.STACS.2021.25
https://doi.org/10.4230/LIPIcs.MFCS.2018.62

35:18 P. Baumann, M. Ganardi, R. S. Thinniyam, and G. Zetzsche Vol. 19:4

Notes in Computer Science, pages 155–170. Springer, 2023. doi:10.1007/978-3-031-45286-4\
_12.

[GKK+21] Pawel Gawrychowski, Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer. Efficiently
testing Simon’s congruence. In 38th International Symposium on Theoretical Aspects of Computer
Science, STACS 2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference), volume
187 of LIPIcs, pages 34:1–34:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.STACS.2021.34.

[GLHK+20] Jean Goubault-Larrecq, Simon Halfon, Prateek Karandikar, K. Narayan Kumar, and Philippe
Schnoebelen. The Ideal Approach to Computing Closed Subsets in Well-Quasi-orderings, pages
55–105. Springer International Publishing, Cham, 2020. doi:10.1007/978-3-030-30229-0_3.

[HH70] Juris Hartmanis and John E Hopcroft. What makes some language theory problems undecidable.
Journal of Computer and System Sciences, 4(4):368–376, 1970.

[HKO16] Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. Unboundedness and downward
closures of higher-order pushdown automata. In Rastislav Bod́ık and Rupak Majumdar, editors,
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 151–163.
ACM, 2016. doi:10.1145/2837614.2837627.

[HMW10] Peter Habermehl, Roland Meyer, and Harro Wimmel. The downward-closure of Petri net
languages. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der
Heide, and Paul G. Spirakis, editors, Automata, Languages and Programming, 37th International
Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part II, volume
6199 of Lecture Notes in Computer Science, pages 466–477. Springer, 2010. doi:10.1007/
978-3-642-14162-1_39.

[HSZ17] Simon Halfon, Philippe Schnoebelen, and Georg Zetzsche. Decidability, complexity, and ex-
pressiveness of first-order logic over the subword ordering. In Proceedings of the 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, pages 1–12. IEEE Computer
Society, 2017. doi:10.1109/LICS.2017.8005141.

[HSZ21] Simon Halfon, Philippe Schnoebelen, and Georg Zetzsche. Decidability, complexity, and ex-
pressiveness of first-order logic over the subword ordering. CoRR, abs/1701.07470, 2021. URL:
http://arxiv.org/abs/1701.07470, arXiv:1701.07470.

[KKS15] Prateek Karandikar, Manfred Kufleitner, and Philippe Schnoebelen. On the index of Simon’s
congruence for piecewise testability. Inf. Process. Lett., 115(4):515–519, 2015. doi:10.1016/j.
ipl.2014.11.008.

[Koz10] Dexter C. Kozen. Theory of computation. Springer Verlag London Limited, 2010.
[KS15] Prateek Karandikar and Philippe Schnoebelen. Decidability in the logic of subsequences and

supersequences. In 35th IARCS Annual Conference on Foundation of Software Technology
and Theoretical Computer Science, FSTTCS 2015, December 16-18, 2015, Bangalore, India,
volume 45 of LIPIcs, pages 84–97. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.
doi:10.4230/LIPIcs.FSTTCS.2015.84.

[KS19] Prateek Karandikar and Philippe Schnoebelen. The height of piecewise-testable languages
and the complexity of the logic of subwords. Log. Methods Comput. Sci., 15(2), 2019. doi:
10.23638/LMCS-15(2:6)2019.

[KS20] Dietrich Kuske and Christian Schwarz. Complexity of Counting First-Order Logic for the

Subword Order. In Javier Esparza and Daniel Krá̌l, editors, 45th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2020), volume 170 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 61:1–61:12, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2020.61.

[KSY10] Oleg V. Kudinov, Victor L. Selivanov, and Lyudmila V. Yartseva. Definability in the subword
order. In Conference on Computability in Europe, pages 246–255. Springer, 2010.

[Kus06] Dietrich Kuske. Theories of orders on the set of words. RAIRO-Theoretical Informatics and
Applications, 40(01):53–74, 2006.

[KZ19] Dietrich Kuske and Georg Zetzsche. Languages ordered by the subword order. In Foundations of
Software Science and Computation Structures - 22nd International Conference, FOSSACS 2019,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS

https://doi.org/10.1007/978-3-031-45286-4_12
https://doi.org/10.1007/978-3-031-45286-4_12
https://doi.org/10.4230/LIPIcs.STACS.2021.34
https://doi.org/10.1007/978-3-030-30229-0_3
https://doi.org/10.1145/2837614.2837627
https://doi.org/10.1007/978-3-642-14162-1_39
https://doi.org/10.1007/978-3-642-14162-1_39
https://doi.org/10.1109/LICS.2017.8005141
http://arxiv.org/abs/1701.07470
http://arxiv.org/abs/1701.07470
https://doi.org/10.1016/j.ipl.2014.11.008
https://doi.org/10.1016/j.ipl.2014.11.008
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.84
https://doi.org/10.23638/LMCS-15(2:6)2019
https://doi.org/10.23638/LMCS-15(2:6)2019
https://doi.org/10.4230/LIPIcs.MFCS.2020.61

Vol. 19:4 EXISTENTIAL DEFINABILITY OVER THE SUBWORD ORDERING 35:19

2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, volume 11425 of Lecture Notes in
Computer Science, pages 348–364. Springer, 2019. doi:10.1007/978-3-030-17127-8_20.

[Mai78] David Maier. The complexity of some problems on subsequences and supersequences. Journal
of the ACM (JACM), 25(2):322–336, 1978.

[Mat93] Yuri Matiyasevich. Hilbert’s tenth problem. MIT press, 1993.
[MTZ22] Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. General decidability results

for asynchronous shared-memory programs: Higher-order and beyond. Log. Methods Comput.
Sci., 18(4), 2022. doi:10.46298/LMCS-18(4:2)2022.

[Pél92] Pierre Péladeau. Logically defined subsets of Nk. Theoretical computer science, 93(2):169–183,
1992.

[SS97] Jacques Sakarovitch and Imre Simon. Subwords. In M. Lothaire, editor, Combinatorics on
Words, Cambridge Mathematical Library, chapter 6, pages 105–142. Cambridge University Press,
2nd edition, 1997. doi:10.1017/CBO9780511566097.009.

[SV23] Philippe Schnoebelen and Julien Veron. On arch factorization and subword universality for
words and compressed words. In Anna E. Frid and Robert Mercas, editors, Combinatorics
on Words - 14th International Conference, WORDS 2023, Ume̊a, Sweden, June 12-16, 2023,
Proceedings, volume 13899 of Lecture Notes in Computer Science, pages 274–287. Springer, 2023.
doi:10.1007/978-3-031-33180-0_21.

[TMW15] Salvatore La Torre, Anca Muscholl, and Igor Walukiewicz. Safety of parametrized asynchronous
shared-memory systems is almost always decidable. In Luca Aceto and David de Frutos-Escrig,
editors, 26th International Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain,
September 1.4, 2015, volume 42 of LIPIcs, pages 72–84. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2015. doi:10.4230/LIPICS.CONCUR.2015.72.

[Zet15a] Georg Zetzsche. An approach to computing downward closures. In Automata, Languages, and
Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015,
Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science, pages 440–451. Springer,
2015. doi:10.1007/978-3-662-47666-6_35.

[Zet15b] Georg Zetzsche. Computing downward closures for stacked counter automata. In Ernst W.
Mayr and Nicolas Ollinger, editors, 32nd International Symposium on Theoretical Aspects of
Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of LIPIcs,
pages 743–756. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.
STACS.2015.743.

[Zet16] Georg Zetzsche. The complexity of downward closure comparisons. In Ioannis Chatzigiannakis,
Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, Proc. of the 43rd Inter-
national Colloquium on Automata, Languages and Programming (ICALP 2016), volume 55
of Leibniz International Proceedings in Informatics (LIPIcs), pages 123:1–123:14, Dagstuhl,
Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Zet18] Georg Zetzsche. Separability by piecewise testable languages and downward closures beyond
subwords. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages
929–938. ACM, 2018. doi:10.1145/3209108.3209201.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1007/978-3-030-17127-8_20
https://doi.org/10.46298/LMCS-18(4:2)2022
https://doi.org/10.1017/CBO9780511566097.009
https://doi.org/10.1007/978-3-031-33180-0_21
https://doi.org/10.4230/LIPICS.CONCUR.2015.72
https://doi.org/10.1007/978-3-662-47666-6_35
https://doi.org/10.4230/LIPIcs.STACS.2015.743
https://doi.org/10.4230/LIPIcs.STACS.2015.743
https://doi.org/10.1145/3209108.3209201

	1. Introduction
	The subword ordering
	First-order logic over subwords
	Existential formulas
	Contribution
	Key ingredients

	2. Main results
	Subword logic
	Expressiveness with constants
	Expressiveness of the pure logic

	3. Existentially defining recursively enumerable relations
	Notation
	Basic relations
	Finite state transducers
	Overview
	Step I: Defining Kleene stars
	Step II: Blockwise transductions
	Step III: Rational transductions
	Step IV: Generator language
	Step V: Recursively enumerable relations over two letters
	Step VI: Arbitrary recursively enumerable relations

	4. Restricting the signature to a single constant
	5. Further consequences
	6. Conclusion
	References

