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SUMMARY

Climate change adaptation involves the management of climate-related risks, and the Intergovern-
mental Panel on Climate Change says we must prioritize adaptation immediately. However, re-
searchers and policymakers have little systematic understanding of which adaptations are effective
at reducing risks, including under different climate conditions. Drawing on data from human commu-
nities past and present, we review how features of climate variability—temporal autocorrelation, fre-
quency, and severity—may predict which candidate climate change adaptations communities innovate
or adopt. Using a case study of climate and remittances in Africa, we outline how researchers can
characterize features of climate data relevant to adaptation—autocorrelation, frequency, and
severity—and then qualitatively compare these data to candidate adaptations. We include suggestions
for how to involve communities in these explorations, from setting climate thresholds to identifying
impactful hazards. By better understanding the relationship between climate variability and common
solutions used by communities, researchers and policymakers can better support communities as
they adapt to contemporary climate change.
INTRODUCTION

As climate continues to change, communities on the frontlines

are increasingly being impacted by compounding climate

events that are upending people’s lives, resources, well-being,

and livelihoods.1 With an eye to these impacts, leaders are call-

ing for increased focus on and funding for climate change

adaptation domestically and internationally,2 where adaptation

broadly refers to managing risks associated with climate

change (e.g., risks to homes, livelihoods, health, infrastructure).

Not everyone agrees on what climate change adaptation will

require going forward: whether communities can generate the

solutions that work best for them,3 whether the world needs

all-new, transformative solutions,4 or a combination of the

two. However, for any of these approaches to work, there is

an urgent need to understand what makes climate change

adaptation effective1,4,5—including which adaptations tend to

work well given different characteristics of climate, as not all

are identical in their impacts on lives, resources, and livelihoods

(e.g., Zscheischler et al.1).

To understand what makes climate adaptation effective, re-

searchers, organizations, and policymakers need to look at the
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interplay between the characteristics of climate variability and

the climate change adaptations people have used successfully

in the past and present. This requires a decidedly local

approach, involving attention to local experiences of climate

variability and extremes.6 Much of climate science has largely

focused on studying climate extremes at coarse regional scales,

motivated by the need to characterize how the climate is chang-

ing, improve predictability on various timescales, evaluate soci-

etal and ecosystem impacts, and galvanize and informmitigation

efforts.1,6,7

In this Perspective, we provide an overview of adaptation to

climate change, and we draw on social data—from archeol-

ogy, ethnography, and more—to illustrate how features of

climate variability shape adaptation: first, the temporal auto-

correlation and frequency of climate events, whether of uni-

variate hazards (e.g., floods) or multivariate hazards (e.g.,

hot and dry conditions); and second, the duration, intensity,

magnitude, and severity (DIMS) of events. Temporal autocor-

relation, frequency, and DIMS capture how climate events

cluster together in time, how often they recur, how long they

last, and their peak and cumulative severity. These features

of climate variability are not usually considered together and
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some, such as temporal autocorrelation, are understudied,

making it difficult for researchers to systematically examine

observed data for links between climate characteristics and

the climate change adaptations communities use to reduce

risk effectively.

To encourage the study of these links by climate-focused

researchers across disciplines and to generate datasets that

are usable for studying climate change adaptation,6 we offer a

framework for characterizing climate data by their temporal

autocorrelation, frequency, and DIMS. Such a framework is

particularly important in middle and low income countries that

are at the frontlines of climate change, where lives, livelihoods,

and resources are more vulnerable to climate hazards,8 and

where there is an urgent need to better understand and inform

adaptation efforts.4 Further, given voices from the Global South

are often missing from climate research, in no small part due to

hurdles like limited funding,9,10 we illustrate how to deploy this

framework using publicly available data and we make recom-

mendations for how researchers can use it in collaboration

with communities—efforts that can both improve empirical

work on climate change adaptation and allow us to support com-

munities as they adapt.

CLIMATE CHANGE ADAPTATION IS CULTURAL
ADAPTATION

The Intergovernmental Panel on Climate Change (IPCC) defines

adaptation in human systems as ‘‘the process of adjustment to

actual or expected climate and its effects.’’11 This process of

adjustment is cultural12–14—regardless of whether candidate ad-

aptations emerge locally, among community stakeholders, or

externally, among policymakers or organizations.15 Researchers

often refer to ‘‘behavioral adaptations’’ (e.g., reducing water

consumption, planting crops earlier) as cultural,4 and they are.

However, culture is transmitted between individuals, between

communities, and across generations, and it has impacts on

people’s behavior, social structure, human-constructed objects,

and the environment.16 Accordingly, even if the focus is on

infrastructure,17 resource management strategies,15,16,18 and

other interventions popular in the development sector, what re-

searchers, organizations, and policymakers think is adaptive or

is not is a product of culture too.14,19

Innovations that may manage risk, or ‘‘candidate adapta-

tions,’’ originate in communities or are introduced into commu-

nities from the outside—for example, by communities sharing

ideas with one another, or by policymakers or governmental or

non-governmental organizations. If a candidate adaptation is

effective at reducing risk locally, it can be called an adaptation

in that local context. Relative to innovations less effective at

reducing risk, adaptations are more likely to be transmitted—

whether, e.g., from individual to individual, from community to

community, or via the interventions of organizations—across

space and time.20 If conditions change, individuals and commu-

nitiesmaymodify an adaptation and retain themodified version if

it continues to reduce risk.12,14 In short, the process of adapta-

tion involves innovation, transmission, modification, and persis-

tence, in a manner broadly analogous to genetic evolution.21

Climate change adaptation is cultural adaptation.5,12,19 (For def-

initions of terms we use in this paper, see Box 1, Glossary. For
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overviews of cultural adaptation to climate change, see Pisor

et al.14 and Waring et al.20)

When candidate adaptations emerge at the local level, this

process is sometimes called community-based adaptation,37

autonomous adaptation,38 or autochthonous adaptation,12,39

each with a slightly different meaning. Importantly, candidate

climate change adaptations that emerge locally can be more

effective at both reducing the negative impacts of climate events

and at persisting through time3,40–42—that is, can be adaptive.

Unfortunately, the impact of candidate climate change adapta-

tions on risk reduction and their persistence through time, the

very things that make adaptations adaptive, are often not stud-

ied.4 In other words, we know little about the effectiveness of

different candidate climate change adaptations, let alone given

different climate impacts across space and time.

HOW CLIMATE VARIABILITY IMPACTS CULTURAL
ADAPTATION

We also know little about which characteristics of climate

events are related to which kinds of adaptations—that is, why

one particular innovation emerged or was adopted given the

local experiences of climate. This is not to say that researchers

do not consider the context in which adaptations occur. For

example, focus on complex risk7 or social and ecological re-

gimes43 emphasizes the importance of context, including inte-

grated social and environmental systems.44 These approaches

are key to risk assessments: when, for example, governments

or organizations contract researchers to help them better pre-

pare for climate change.7 However, because regime-focused

research and risk assessments are explicitly aimed at under-

standing risk and human responses in context, it makes it diffi-

cult to study the relationship between characteristics of climate

and climate change adaptation systematically across con-

texts—at scale and across time—providing insight into which

characteristics of climate are systematically related to which

adaptations.

One of the quintessential features of contemporary climate

change is change in day-to-day, season-to-season, or year-to-

year climate variability23 (see Box 1 for definitions). Risk is inher-

ently about variance in outcomes—deviations from some ex-

pected conditions or long-term mean45—and researchers

recognize that these changes in variability impact human lives

and livelihoods.8,46 Climate variability is not just one thing: it

has different patterns and features, on timescales from seasonal

to multi-decadal, that can impact which candidate adaptations

reduce risk and where (e.g., Ember et al.,34 Piero et al.,47 and

Pisor and Jones48). For example, are climate events clustered

in time or of long duration, eliminating people’s savings? Are

they frequent, such that communities expect another one is

coming and form risk-sharing networks accordingly? Are they

widespread, such that neighboring communities experience

the same hazard simultaneously, limiting the value of risk pool-

ing? Communities ‘‘in 96 countries on all continents report

increased duration and severity of climate hazards, like droughts

and storms, and changes in their predictability.’’8 Characterizing

the features of, for example, climate variability and comparing

these patterns with climate adaptations in use can provide

insight into which candidate adaptations are likely to emerge,



Box 1. Glossary

Adaptation/to adapt. Noun: A trait (behavioral, cultural, physical, or physiological) that effectively manages risk posed by a given

environment, thereby promoting the persistence and/or replication of an entity (e.g., an individual, a group) in a particular environ-

ment. Verb: The process by which an entity becomes better able to manage the risk posed by its environment. Drawing on con-

cepts from biology, adaptation often occurs through innovation, modification of innovations to better match risks, persistence of

those that work well, and transmission—which can both spread adaptations across space and promote their continuity

across time.

Candidate adaptation. A trait that may effectively manage risk, but its effects on persistence and/or transmission in a particular

environment have not yet been determined.

Climate change. A change in the statistics (e.g., mean, day-to-day variability, skewness) of climate variables (e.g., temperature)

that persists over multiple decades or longer due to natural processes or external forcings in the Earth system. Human-caused

climate change refers to changes that are attributed to human activities such as emissions of greenhouse gasses and anthropo-

genic aerosols or land-use/land-cover changes including deforestation and agricultural expansion and intensification.

Climate variability. Fluctuations of a climate variable from the mean state on timescales including weeks to decades and longer.

Climate variability typically refers to variations due to natural climate processes or natural forcings. Modes of natural climate vari-

ability such as the El Niño Southern Oscillation can lead to coherent climate fluctuations across large regions. However, climate

variability has changed under anthropogenic climate change in many regions through changes in the frequency and magnitude of

low and high extremes.

Climate change adaptation. A change (noun) or the process of change (verb) in response to existing experiences of climate

change or in anticipation of future climate change.

Climate event. An instantiation of a climate hazard. Usually the beginning and end of an event are identified by exceedances of

absolute or relative thresholds in climate variables (e.g., precipitation, temperature) demarcated by researchers and/or community

members.

Exchange. Exchange is commodity-for-commodity trade, including exchanging the commodity of currency for a good.22

Force. Refers to robbery, theft, and armed conflict, including raiding and warfare. Force is typically used against those who have

desired resources—for example, because of long-standing social inequality, resources are discontinuous across space and indi-

viduals are defending them, or some individuals were less affected by recent climate events than others.

Hazard.Generally, risk of negative outcomes; in practice, often used in the phrase ‘‘climate hazards,’’ referring to physical climate

events that can cause negative outcomes for people.23 Here, we refer to ‘‘types of hazards’’ accordingly, e.g., flood, drought, hur-

ricane, etc.

Livelihood diversification. Livelihood diversification means drawing on various resource streams,24 increasing mean return for a

given level of variability. Diversification can apply to diet breadth,25,26 crops planted or animals raised, locations where crops are

planted or animals are kept,27,28 or income streams, often realized by performing different tasks.24,29

Migration. Short-term migration is a common response to climate variability, including seasonality—for example, in the form of

migrant labor (e.g., Clech et al.30), circular migration,31 and visitation (e.g., Wiessner32)—long-termmigration is less common given

the potential costs of lost capital and moving (or abandoning) possessions and one’s community. In the face of climate change,

long-term migration is often used when all other adaptations have failed33,31 (though cf. Ember et al.34), in which case it is some-

times called ‘‘forced migration.’’

Risk. Variation in outcomes; sometimes outcomes may be positive, but in the context of climate change, they are often negative.

Risk pooling. Smooths risk across people, as individuals with a surplus provide resources to those with a deficit; this may occur

via, for example, transferring money between households, sharing food, and sharing labor.

Savings. Called storage,33 technological storage,35 and rationing36 when applied to food, savings broadly refers to caching re-

sources—including money—to buffer potential future events.
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spread, and persist in the face of which features of climate vari-

ability.

Existing social data provide a useful starting point, allowing

researchers to both (1) identify which characteristics of climate

variability likely matter for climate change adaptation, and (2)

make informed predictions about how these characteristics in-

fluence which climate change adaptations individuals use. Hu-

mans have myriad climate change adaptations, but many of

those that emerge in communities fall into six larger cate-

gories: risk pooling, exchange and markets, mobility and

migration, savings, livelihood diversification, and force, like

armed conflict and theft27,33,36,39,48–50 (see Box 1 for a brief

overview of each). Of course, not all adaptations can be attrib-
uted to climate; social network structure affects the transmis-

sion of adaptations,12 for example, while path dependence can

constrain the innovation of new adaptations.51 Further, not all

of the adaptation types are equally desirable. What is adaptive

for an individual may have negative impacts on their commu-

nity or society20: for example, theft and other kinds of force,

which may become more common with continuing climate

change (e.g., with floods and droughts),52–54 harm others,

can undercut other adaptation strategies, and can worsen

already existing global conflicts, even if theft helps an individ-

ual manage climate risk in the moment. Understanding the

conditions that make force more likely can help us prepare

to intervene before it is used.
One Earth 6, December 15, 2023 1667



Figure 1. Illustration of autocorrelation, duration, intensity, magnitude, and severity for precipitation in Burkina Faso
Monthly precipitation data come from the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) dataset, standardized using month-specific
distributions for a grid point from 1991 to 2009 (thin gray line). The 10th and 90th month-specific percentiles are used for dry and wet thresholds, respectively. We
provide examples of different durations (D) and autocorrelation for extremely dry (red points) or wet (blue points) months. The calculation of intensity (I), magnitude
(M), and severity (S) is also shown for a 2-month wet event with a departure of i1 and i2 from the threshold. The 5-year movingmean (thick gray line) and ± standard
deviation (gray shading) are also shown.
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As an illustration of the relationship between climate and

candidate climate change adaptations, consider migration and

risk pooling—such as sharing or gifts, exchange, loans, remit-

tances, and microinsurance, all of which can involve households

in one or multiple communities. On the one hand, climate events

that have high temporal autocorrelation and high DIMS ‘‘can

overwhelm the capacity of natural and human systems to

cope.’’1 In that case, households may exhaust their existing

risk-management solutions and turn to migration55; this will be

especially true if the events are high in DIMS but low in fre-

quency, such that households do not anticipate them and do

not have the adaptations in place to cope.56,57 On the other

hand, when events have higher frequency, individuals can antic-

ipate the events will recur and, assuming variance in outcomes

across households, invest in social relationships or local ar-

rangements that permit risk pooling (e.g., Ncube et al.58). In

some cases, households in societies with high mobility, like

fishers or pastoralists, may use migration when events are high

frequency (that is, occur regularly) as part of a suite of adap-

tations.47

Importantly, these climate events could involve different haz-

ard types, such as (1) high heat and humidity that compound

heat stress (e.g., Rogers et al.59); (2) high heat and low precip-

itation that compound drought conditions (e.g., Diffenbaugh

et al.60 and Sarhadi et al.61); (3) co-occurring heavy rains,

winds, and storm surge that compound flooding risks in coastal

communities (e.g., Bevacqua et al.62); or (4) periods of severe

droughts followed by heavy rains that compound agricultural

impacts (e.g., Raymond et al.63). Accordingly, when consid-

ering time series of events that may impact communities and,

in turn, community-based adaptation, researchers must both

establish which climate events impact communities on the

ground8 and consider how they might compound—for

example, by including multivariate hazard types in a single

time series. Efforts to characterize such compound events

are needed, especially in the Global South where data and
1668 One Earth 6, December 15, 2023
studies are more limited but compound events are already

acutely impacting vulnerable communities.64

As becomes clear, the temporal autocorrelation of climate

events, their frequency, and severity-related measures we call

DIMS impact how adaptation unfolds (Figure 1). Climate scien-

tists rarely characterize climate time series by all these dimen-

sions, insteadmainly focusing on frequency and one or two com-

ponents of DIMS (e.g., intensity-duration-frequency curves used

commonly in hydrology); further, while recent contributions to

the compound events literature have started to investigate

temporally correlated risks, these studies are largely limited to

certain hazards and are disproportionately focused on regions

in the Global North. Characterizing all of these dimensions—

temporal correlation, frequency, and DIMS—will help systemat-

ically understand how the impacts of contemporary climate

change on lives, resources, well-being, and livelihoods translate

into adaptations.48 This basic science is the first step; after es-

tablishing which candidate adaptations tend to be associated

with which features of climate variability, applied research op-

portunities and policy recommendations may then emerge. For

example, given projections of climate hazards with warming,

we can potentially predict (with appropriate uncertainty) which

adaptations may emerge in which places; risk assessments

could then incorporate the projected efficacy of adaptations

likely to emerge given other features of a particular place, like

population density and existing cultural practices.

Temporal autocorrelation
Climate events such as heatwaves, droughts, and heavy precip-

itation can be temporally autocorrelated, occurring back-to-

back or in clusters65–67 (Figure 1). Such clustering can have com-

pounding impacts on human lives and livelihoods, and can limit

people’s coping capacity by depleting resources; for example,

storm landfalls are projected to become more sequential along

the Gulf Coast of the United States, meaning households have

less time to recover between storms.68 Another example is
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that back-to-back heatwaves are projected to occur more often

with warming, with the largest increase in their risk in tropical

countries.67 Indeed, temporal autocorrelation in temperature is

increasing with anthropogenic climate change and is expected

to continue increasing across this century.69

Climate events can be temporally autocorrelated across

scales of days, months, seasons, or even years, and each type

of autocorrelation can affect the types of human adaptation in

use. Autocorrelation across days is very common and is often

managed with savings33,70 (think ‘‘rainy day funds’’) or through

within-community risk pooling—sharing within a household or

between neighboring households.71 Temporal autocorrelation

across seasons and across years (think of two bad harvests in

a row or multiple years of drought) requires different solutions,

as savings can be depleted. Diversifying crops, livestock, or in-

come sources can buffer against multiple consecutive bad har-

vests: for example, for pastoralists in sub-Saharan Africa, cattle

are preferred as livestock but goats are more resilient to

drought.72,73 That said, the longer the run of climate events,

the more likely it is that individuals will exhaust local options,

including savings and within-community risk pooling48; this is

often when individuals rely on options like migration or on be-

tween-community risk-pooling.55

Importantly, temporal autocorrelation in climate variables,

like temperature or precipitation, can impact adaptation even

if the measures do not cross an event threshold; for example,

consecutive hot days can desiccate crops or cause negative

health impacts or heat-related mortality, even if temperature

data do not cross thresholds set for identifying heatwaves.

The difficulty in detecting these impacts can be overcome by

the use of multiple thresholds to identify different levels of ex-

tremes (e.g., National Oceanic and Atmospheric Administration

Drought Monitor), or by using more complex definitions that

capture the cumulative impact of sequential extremes and

short ‘‘breaks’’ between extremes (e.g., across extreme tem-

perature events that occur over a season67). Further, in consul-

tation with communities or using local data on how climate vari-

ables translate into impacts, researchers may consider using

lower relative thresholds (e.g., 90th percentile instead of 95th

percentile), identifying absolute thresholds, or using different

criteria to establish extreme events; see below.

Frequency
The frequency or recurrence interval is the number of times the

data exceed threshold(s) within a predefined time interval

(Figure 1). These thresholds are often (1) a known magnitude

for a climate variable, usually specific to a region and/or season

(e.g., R45C on the Indian plains74); (2) the percentile of the

observed distribution (e.g., exceedance 99th percentile of daily

rainfall to capture extreme wet events, or falling below the 20th

percentile of monthly rainfall to capture drought events); or (3)

using a specified return interval to establish a threshold (e.g.,

20-year rainfall event). Frequency often appears in the climate

literature (1) as part of intensity-duration-frequency curves (IDF

curves, e.g., in flooding75), which assess the continuous relation-

ship among the threemeasures; (2) as part of assessing the num-

ber of ‘‘exceptional events’’ (e.g., in extreme temperature, air

quality, or landslide time series76,77); or (3) as a contributor to

temporal compounding: for example, a higher frequency of
events can affect the ability of communities to cope even to

less extreme events.1

Important to the frequency of a time series is accounting for

the non-stationarity of its mean and variance; changes to each

can have different impacts on the frequency of extremes—that

is, crossing of thresholds. For example, increasing variance

may favor adaptations to frequent hot and cold extremes. That

said, if the mean increases without an increase in variance, or

if the mean increases faster than the variance, hot extremes

may become more frequent and cold extremes less frequent,

with subsequent impacts on climate change adaptation.78

Though we focus here on climate variability, emerging literature

shows that future climates will be shaped by changes in both the

mean and variance of the climate,79 and therefore, adaptation

measures will need to account for both.

Social data suggest that people aremore likely to have cultural

adaptations for responding to events that are not low frequency

because they know such events will happen again.80,81 For

example, when individuals anticipate rough times ahead, the

marginal value of saving for the future is higher82–84 and individ-

uals tend to invest in diversification, which lowers overall returns

but hedges against risk.24 When events are low frequency or

‘‘rare,’’ however, marginal returns to saving and diversification

are lower. As we discuss above, when candidate adaptations

do not offer benefits, individuals are less likely to retain or trans-

mit them.85 This may partially explain why risk pooling becomes

less common and things like theft more common when societies

face rare megadroughts: cultural adaptations for managing the

risks they pose are not in circulation.86–88

DIMS: Duration, intensity, magnitude, and severity
When climate scientists discuss different kinds of climate

events, they may focus on the duration of an event, its intensity,

its magnitude, its severity, or some combination of the four (e.g.,

intensity and duration for tropical storms89; intensity and magni-

tude for floods90). Various definitions for these characteristics

exist—we provide the common ones here—but what all defini-

tions share is their focus on the severity of impact. Duration re-

fers to the length of an event—usually implicitly scaled relative

to other events of the same hazard, given extreme events can

manifest on sub-hourly (e.g., tornadoes) to multi-annual (e.g.,

droughts) time scales. For example, a long-duration hurricane

is of long duration relative to other hurricanes. Severity is the total

excess (e.g., flood) or deficit (e.g., droughts) of a climate variable

across an event—the area under or over the curve.91,92 Intensity

is typically severity divided by a unit of time, often byminute (e.g.,

for tornado intensity93) or by day (e.g., for precipitation ex-

tremes65). Magnitude refers to the cumulative value or most

extreme value on a scale of measurement during an event or

time interval. For tornadoes, for example, this can be the highest

value on the Enhanced Fujita Scale during an event,93 while for

floods, this can be the maximum discharge of water on a daily

or annual interval.94

We treat duration, intensity, magnitude, and severity

together—calling them DIMS—because, regardless of the haz-

ard type or means of quantification, researchers are estimating

the severity of impact of a single event (Figure 1); for this reason,

these characteristics are often discussed in the context of com-

pounding.1 That said, in contrast to some treatments in the
One Earth 6, December 15, 2023 1669



Figure 2. Our recommended steps for characterizing climate data
on dimensions relevant for climate change adaptation
Note that steps 1 and 2a should be reversed if researchers are collaborating
with communities.
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literature on compounding, we recommend separating DIMS

from autocorrelation and from frequency to systematically study

how the characteristics of individual events—or even these

average characteristics across a time series of events—affect

adaptation to climate change.

When an event has low DIMS, it is more easily managed by

cultural adaptations like savings, diversification, and risk pool-

ing; however, when an event has high DIMS, it can exhaust the

resources these cultural adaptations provide.53,56,85,95 When

these options are exhausted, individuals may be more likely to
1670 One Earth 6, December 15, 2023
turn to candidate adaptations that can reflect desperation. How-

ever, if a series of events happens both to be high DIMS and to

recur with some frequency, individuals may turn to some of their

weaker social ties—those with whom they are connected but

interact less frequently or less intensively—to pool risk.

CHARACTERIZING ADAPTATION-RELEVANT CLIMATE
DIMENSIONS

Existing social data indicate that characteristics of climate—

temporal autocorrelation, frequency, and severity-related mea-

sures (DIMS)—impact which cultural adaptations to climate

change are innovated, sustained, and transmitted in human pop-

ulations. Targeted study of the relationships between climate

and cultural adaptation is important for at least two reasons: first,

so researchers can assess the strength and generalizability of

the relationships described above across communities and

geographies, and second, looking to the future, potentially

leveraging this insight to help organizations and policymakers

anticipate how communities will respond, or which candidate

adaptations introduced by organizations might work for commu-

nities, as they face the impacts of climate change over the com-

ing years.

Here, we overview how to characterize climate data by tempo-

ral autocorrelation, frequency, and DIMS (Figure 2)—an

approach that could help researchers meet the above empirical

and applied goals. In a perfect world, such approaches would

involve communities in this work—identifying the climate haz-

ards that matter for them, ground-truthing the data collected,

and delivering data they can use (if they choose) to guide their

selection of different candidate adaptations, as is often the

case in risk-assessment approaches.7,96 However, because

our framework focuses on larger geographic areas, ground-

truthing can be especially challenging because the experience

of one community may not generalize to others.96 Further, we

recognize that not all researchers will be able to work directly

with communities, partly due to limited funding to support field

travel and community engagement. Accordingly, we begin by re-

viewing how to obtain relevant public climate data and charac-

terize its temporal autocorrelation, frequency, and DIMS, work-

ing through an example of precipitation and remittances in

Burkina Faso. We then detail some of the benefits of community

collaboration (including improving the empirics of climate

change adaptation research) and, drawing on existing examples

and their limitations, provide suggestions for engaging in com-

munity collaborations. We recognize that some researchers will

not need a primer on working with climate data, and some will

not need a primer on collaborating with communities; however,

we provide details on both, as we recognize that the majority

of researchers will be unfamiliar with some aspects of the frame-

work we describe below.

Working with publicly available data
Researchers may start with some a priori expectations about the

relationship between climate characteristics and adaptation, as

we do here. Remittances are between-community risk pooling,

as money and other resources move across space—often be-

tween places with different experiences with climate.97 Like

other kinds of risk pooling, decisions to remit do not occur in a
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vacuum affected only by climate; for example, the availability of

government social safety nets or services may have a more im-

mediate effect on people’s everyday lives.98,99 However, looking

systematically at how climate variability is related to cultural

adaptation across space and time, we expect that all else equal,

people are more likely to maintain connections that span dis-

tance when climate events (1) frequently affect their lives, re-

sources, well-being, and livelihoods, such that individuals

expect they will recur, and (2) have either high temporal autocor-

relation or high DIMS, as both can exhaust resources available

through locally based adaptations (e.g., storage andwithin-com-

munity risk pooling); individuals can then call on these connec-

tions during climate events.48 There are detailed data available

on both remittances and precipitation for six countries in

Africa; as a case example, given variability in precipitation across

its provinces, we present exploratory analyses on Burkina

Faso here.

First, assemble relevant time series

There are numerous free sources of high-quality climate data

publicly available, many of which can be found through the Na-

tional Center for Atmospheric Research Climate Data Guide.100

We recommend using the finest-grain, reliable data available,

multiple data sources where possible to improve the match of

climate data to on-the-ground experiences in communities,

and using datasets that include satellite data, given sparse sta-

tion coverage in rural areas and in the Global South. In our illus-

trative example, we work with Climate Hazards Group InfraRed

Precipitation with Station (CHIRPS) data,101 which combine sta-

tion and satellite data with model interpolation to achieve high

coverage, with a granularity of 0.05�, of most of the globe. All

data processing and visualization were done using Python

version 3.11.1.102 Data and annotated code are available in Py-

thon at https://github.com/detouma/adaptation.

To capture people’s experience of climate variability on the

ground, researchers should consider creating a multivariate

time series of multiple climate variables—for example, both

near-surface temperature, precipitation, and humidity. This

may involve downloading more than one dataset, characterizing

the variability in each, and thenmerging the resulting time series.

In our example, we use a univariate time series of precipitation

for assessing dry extremes.

Second, characterize the data

If researchers have not consulted with communities, they can

adopt commonly used thresholds for identifying extreme ob-

servations. We recommend (1) a knownmagnitude for a climate

variable usually specific to a region, season, and/or resource,

e.g., daily rainfall amounts exceeding 100 mm that have the po-

tential to cause flooding; (2) a percentile of the observed distri-

bution, e.g., exceedance 95th/99th percentile of daily rainfall to

capture extremewet events; or (3) using a specified return inter-

val to establish a threshold (e.g., 20-year rainfall event). We then

create a binary variable that identifies if a data point is an

extreme observation or not. In our example, we use the 10th

percentile of monthly rainfall, and we identify drought events

as those that fall below that threshold. (Though using a variable

that also accounts for deficits due to evapotranspiration is

preferred for drought characterization, we opted to use precip-

itation only for illustrative purposes.)
Note that in the absence of relevant data, these characteriza-

tions reflect assumptions. First, without community input, our

choice of thresholds may not reflect salient event thresholds

on the ground. Second, here we assume that a 5-year interval

is relevant for calculating the frequency and the averages for

DIMS—in other words, we assume that events occurring over

a 5-year interval have effects on adaptations in use (in our

case, that events in Burkina Faso from 2005 to 2009 are associ-

ated with remittances in 2009). In general, researchers have few

data about the time intervals over which climate events can

impact human behavior. Hurricane Katrina offers one counter-

example. Following the powerful hurricane, flooded households

used candidate adaptations from some of the six categories

identified here: members of flooded households were likely to

move away from the city, either temporarily or permanently,

and drew on their storage (i.e., retirement savings) and available

risk pooling (i.e., flood insurance).103,104 Two to 5 years later, de-

pending on themeasure, flooded households weremore likely to

be without wage income and to have impacted credit scores,

and wealthier houses were still making early withdrawals on their

retirement savings.103,104 Drawing on this case study, we chose

a 5-year interval, but the question of appropriate interval length is

an empirical one researchers can address through examining

adaptation and climate data.

DIMS, frequency, and autocorrelation can be quantified using

basic or more complex definitions. In our case example, we use

well-known, basic definitions to quantify each (illustrated in

Figure 1). For all grid points in Burkina Faso from 2005 to 2009,

we first identify all drought events when the time series falls

below the threshold for at least 1 month and calculate the fre-

quency of those events. We then calculate the characteristics

for each event: D is the length of the event, and I, M, and S are

the average, maximum, and total departure from the threshold

during the event, respectively. To calculate temporal autocorre-

lation of a time series of binary events, we use a dispersion

metric that divides the variance by themean.105We then average

the characteristics of all the events for each grid point over the

time period of interest. Our results for this example are shown

in Figure 3; Python code is available at https://doi.org/10.5281/

zenodo.10002023.

Third, compare processed time series with

adaptation data

Some researchers may wish to stop once they have completed

the above characterizations and make the resulting time series

available to colleagues or the public. However, some may wish

to compare the characterized climate variability data with social

data, to investigate the relationship between climate and cul-

tural adaptation. With an eye to four of the six cultural adapta-

tions to climate change we identified—migration, livelihood

diversification, savings, and risk pooling—we highlight several

sources of free, publicly available data in Table 1.

In our case example, we downloaded Migration and Remit-

tance Survey data from the World Bank106 for Burkina Faso in

2009. Participants from 2,106 households answered questions

about members of their social networks, both from the same

household and different households; participants indicated

whether members of these networks lived elsewhere and, if so,

if they were sending food or money (remittances).
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Figure 3. Example of drought frequency, dispersion (temporal autocorrelation), and DIMS for Burkina Fasowith remittance data (percentage
of households receiving remittances) overlaid
Frequency, temporal autocorrelation, and DIMS are calculated for the interval 2005–2009.
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In Figure 3, we plot the locations of these participants, indi-

cating the percentage of households in each province that re-

ported receiving remittances from connections living elsewhere

(gray) or not (white) on top of the frequency, DIMS, and disper-

sion metric data. Focusing just on locations with >50% remit-

tances, we see lots of variance in frequency, DIMS, and disper-

sion. For example, the locations in the southeast have relatively
1672 One Earth 6, December 15, 2023
high drought frequency (up to 1.5 events/year) but relatively low

DIMS and dispersion, while the locations in the northwest

have relatively low frequency, but relatively high duration (up to

2 months/event). Statistical or machine learning methods

can quantitatively assess the strength and significance of rela-

tionships between remittance and climate characteristics—for

example, by using appropriate multilevel models that account



Table 1. Candidate sources of freely available social data on one or more of four categories of adaptation: Migration, livelihood

diversification, savings, and risk pooling

Source Link Data Resolution

Geographical

coverage Time period

World Bank microdata https://microdata.

worldbank.org/index.

php/home

censuses and surveys individual-

level

varies varies

ICPSR (Inter-university

Consortium for Political and

Social Research)

https://www.icpsr.umich.

edu/web/pages/ICPSR/

index.html

censuses and surveys individual-

level

varies varies

D-Place (Database of

Places, Language, Culture

and Environment)

https://d-place.org/

parameters

coded ethnographic data culture-level quasi-global varies
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for participant location. Researchers could also collaborate

directly with communities to understand which hazards impact

them themost, whether between-community risk pooling affects

their livelihoods and well-being or whether other adaptations

have stronger impacts, and more.

Best practices: Collaborating with communities

When possible, we recommend that researchers directly collabo-

ratewith communities on the frontlines of climate change—atmin-

imum, to use their research to support climate change adapta-

tion.2,96 Collaborating with communities helps us establish which

climate characteristics, alone or in combination, create risks to

lives, resources, well-being, and livelihoods on the ground,8,107

and identify which candidate adaptations reduce risk given these

conditions. Consultations need not involve months in the field,

but rather can use rapid-assessment techniques: a few days in

the field can be sufficient to produce a timeline for locally salient

hazards and types of adaptations that communities have adopted

or are considering—especially when following best practices for

these short trips, which will often include working with community

leadership and/or local organizations and institutions.108 In Note

S1, we provide detailed recommendations of how to consult with

communities to establish relevant hazards, construct time series

of events, and establish which candidate adaptations commu-

nities are using. If collaborating with communities, researchers

should wait to download pertinent data until they have first

completed consultations (that is, reverse steps 1 and 2a in

Figure 2).

Using time series of past climate variability constructed in

collaboration with communities, organizations and policymakers

may engage in scenario planning—they can work with commu-

nities to plan for a variety of future scenarios using data on

past climate variability, future projections of climate hazards,

and different hypothetical socio-economic and development

scenarios.109 However, this is just one of several possible uses

of these datasets; for example, another may be to allocate sup-

port for risk pooling based on a locale’s experience of climate

variability over the last 5 years. We provide detailed suggestions

and resources for leveraging these time series in Note S1.

WHY THIS FRAMEWORK—AND WHAT NEXT?

In their February 2022 report, the IPCC Working Group II called

for more effective climate change adaptation, but warned of ‘‘un-

intended consequences . [which] can be avoided by involving
everyone in planning, attention to equity and justice, and drawing

on Indigenous and local knowledge.’’2 There are two hurdles to

meeting this challenge, however: first, researchers, organiza-

tions, and policymakers have very few data on which candidate

climate change adaptations are effective in reducing risk and

persisting across time,4 and second, the solutions local commu-

nities already have for managing climate risks are often sidelined

in favor of those from the development sector.5 Researchers

should expect that the candidate adaptations communities inno-

vate, or even the suggested candidate adaptations they adopt,

reflect both the climate risks they face and Indigenous and local

knowledge of risk management passed on through generations;

in other words, different climate characteristics likely favor

different solutions.12 Understanding which candidate adapta-

tions emerge in response to which climatic conditions, and

which candidate adaptations are actually effective under those

conditions, requires not just targeted study of adaptation in com-

munities,5 as is common in risk-assessment frameworks96 or in

the integrated socio-environmental systems literature.7 It re-

quires characterizing climate along the dimensions that have

shaped human adaptation before, and then systematically inves-

tigating the relationship between climate characteristics and

candidate adaptations in use, across space and across time.

Here, we drew on social data to highlight dimensions of

climate variability that have been associated with different hu-

man adaptations: temporal autocorrelation, frequency, and

DIMS (duration, intensity, magnitude, and severity). Climate

data from observations or models are often not characterized

along these dimensions—for example, recent focus has shifted

to how risks can compound or cascade to make impacts

worse.1,7 However, examining temporal autocorrelation, fre-

quency, andDIMS separately allows study of the relationship be-

tween features of climate and the candidate adaptations that

emerge or are adopted, and persist—or fail to. We outlined a

framework for how researchers can use publicly available data-

sets to characterize climate along these dimensions—in a per-

fect world, in collaboration with communities, who knows best

which hazards and which adaptations have the most impact

on the ground. Using climate and remittance data from Burkina

Faso, we provided an illustration of how to use these tools.

With this framework, researchers from across fields can better

study the relationship between characteristics of climate and

adaptation, including which candidate adaptations tend to

emerge under which conditions. Studying these associations
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opens up additional possibilities, such as investigating whether

adaptations will be effective under projected climate scenarios,

including ‘‘extreme extremes’’110—data and knowledge more

directly usable for understanding and informing adaptation

research.

In addition to the temporal characteristics of climate dis-

cussed here, spatially correlated risks can impact where people

migrate to or where their risk-pooling partners are located; how-

ever, because the question of ‘‘where’’ is secondary to the ques-

tion of what adaptations are in use locally, we chose not to focus

on spatial autocorrelation in this article. Once researchers have

better data on the relationship between candidate adaptations

and climate characteristics, researchers will be better equipped

to tackle such second-order questions.

In sum, by paying attention to adaptations that have success-

fully managed risk for communities before, and by investigating

which of these adaptations are most successful given different

characteristics of climate variability, researchers, organizations,

and policymakers will better understand the relationship be-

tween features of climate, climate change adaptation, and its

effectiveness. With this improved understanding, organizations

and policymakers will be better positioned to heed the IPCC’s

warning and direct adaptation funding into programs and efforts

that can better support communities as they respond to ongoing

change.
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et al., eds. (2022). Climate Change 2022: Impacts, Adaptation, and
Vulnerability. Contribution of Working Group II to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change (Cambridge
University Press).

12. Jones, J.H., Ready, E., and Pisor, A.C. (2021). Want climate-change
adaptation? Evolutionary theory can help. Am. J. Hum. Biol. 33, e23539.

13. Richerson, P.J., and Boyd, R. (2000). Climate, culture, and the evolution
of cognition. In Evolution of Cognition, C. Heyes and L. Huber, eds. (MIT
Press)), pp. 329–346.

14. Pisor, A., Lansing, J.S., and Magargal, K. (2023). Climate change adap-
tation needs a science of culture. Philos. Trans. R. Soc. Lond. B Biol.
Sci. 378, 20220390.

15. Currie, T.E., Campenni, M., Flitton, A., Njagi, T., Ontiri, E., Perret, C., and
Walker, L. (2021). The cultural evolution and ecology of institutions.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 20200047.

16. Mesoudi, A., Whiten, A., and Laland, K.N. (2006). Towards a unified sci-
ence of cultural evolution. Behav. Brain Sci. 29, 329–347.

17. Yu, D.J., Chang, H., Davis, T.T., Hillis, V., Marston, L.T., Oh, W.S., Siva-
palan, M., and Waring, T.M. (2020). Socio-hydrology: an interplay of
design and self-organization in a multilevel world. Ecol. Soc. 25, art22.

18. Waring, T.M., Kline, M.A., Brooks, J.S., Goff, S.H., Gowdy, J., Janssen,
M.A., Smaldino, P.E., and Jacquet, J. (2015). A multilevel evolutionary
framework for sustainability analysis. Ecol. Soc. 20, art34.

19. Kaaronen, R.O., Mulder, M.B., and Waring, T. (2022). Applying Cultural
Evolution to Address Climate and Environmental Challenges. BMC
Biol. 18, 51.

20. Waring, T., Niles, M., Kling, M., Hebert-Dufresne, L., Sabzian, H., Miller,
S., Gotelli, N.J., and McGill, B. (2023). Operationalizing cultural adapta-
tion to climate change: contemporary examples from United States agri-
culture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 378, 20220397.

mailto:danielle.touma@utexas.edu
https://doi.org/10.5281/zenodo.10002023
https://doi.org/10.1016/j.oneear.2023.11.005
https://doi.org/10.1016/j.oneear.2023.11.005
https://doi.org/10.5065/D6RX99HX
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref1
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref1
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref1
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref1
https://www.ipcc.ch/report/ar6/wg2/resources/press/press-release/
https://www.ipcc.ch/report/ar6/wg2/resources/press/press-release/
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref3
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref3
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref3
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref3
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref4
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref4
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref4
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref4
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref5
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref5
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref5
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref5
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref6
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref6
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref7
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref7
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref7
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref7
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref8
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref8
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref8
https://www.carbonbrief.org/analysis-how-the-diversity-of-ipcc-authors-has-changed-over-three-decades/
https://www.carbonbrief.org/analysis-how-the-diversity-of-ipcc-authors-has-changed-over-three-decades/
https://www.carbonbrief.org/analysis-how-the-diversity-of-ipcc-authors-has-changed-over-three-decades/
https://www.carbonbrief.org/analysis-the-lack-of-diversity-in-climate-science-research/
https://www.carbonbrief.org/analysis-the-lack-of-diversity-in-climate-science-research/
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref11
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref11
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref11
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref11
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref11
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref11
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref12
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref12
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref13
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref13
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref13
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref14
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref14
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref14
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref15
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref15
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref15
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref16
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref16
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref17
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref17
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref17
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref18
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref18
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref18
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref19
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref19
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref19
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref20
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref20
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref20
http://refhub.elsevier.com/S2590-3322(23)00508-0/sref20


ll
OPEN ACCESSPerspective
21. Mesoudi, A. (2016). Cultural evolution: A review of theory, findings and
controversies. Evol. Biol. 43, 481–497.

22. Demps, K., andWinterhalder, B. (2018). ‘‘Every tradesmanmust also be a
merchant’’: Behavioral ecology and household-level production for
barter and trade in premodern economies. J. Archaeol. Res. 27, 49–90.

23. IPCC (2019). Annex I: Glossary. In IPCCSpecial Report on the Ocean and
Cryosphere in a Changing Climate, N.M. Weyer, ed. (Cambridge Univer-
sity Press), p. 755.

24. Ellis, F. (2000). The Determinants of Rural Livelihood Diversification i n
Developing Countries. J. Agric. Econ. 51, 289–302.

25. Hill, K. (1988). Macronutrient modification in optimal foraging theory: An
approach using indifference curves applied to some modern foragers.
Hum. Ecol. 16, 157–198.

26. Otarola-Castillo, E., Torquato, M.G., and Hill, M.E., Jr. (2020). Intensifica-
tion Mechanisms Driving Dietary Change Among the Great Plains Big
Game Hunters of (North America).

27. Bollig, M. (2006). Risk Management in a Hazardous Environment: A
Comparative Study of Two Pastoral Societies (Springer).

28. Halstead, P. (1981). From determinism to uncertainty: Social storage and
the rise of the Minoan palace. In Economic Archaeology, A. Sheridan and
G. Bailey, eds. (B.A.R.)), pp. 187–213.

29. Shipton, P. (1990). African Famines and Food Security: Anthropological
Perspectives. Annu. Rev. Anthropol. 19, 353–394.

30. Clech, L., Jones, J.H., and Gibson, M. (2020). Inequality in the household
and rural–urban migration in Ethiopian farmers. Evol. Hum. Sci. 2, e9.

31. McLeman, R.A., and Hunter, L.M. (2010). Migration in the context of
vulnerability and adaptation to climate change: insights from analogues.
WIREs Clim. Change 1, 450–461.

32. Wiessner, P. (1982). Risk, reciprocity and social influences on !Kung San
economics. In Politics and History in Band Societies (Cambridge Univer-
sity Press), pp. 61–84.

33. Agrawal, A. (2010). Local institutions and adaptation to climate change.
In Social Dimensions of Climate Change: Equity and Vulnerability in a
Warming World, R. Mearns and A. Norton, eds., pp. 173–198.

34. Ember, C.R., Ringen, E.J., Dunnington, J., and Pitek, E. (2020). Resource
stress and subsistence diversification across societies. Nat. Sustain. 3,
737–745.

35. Morgan, C. (2012). Modeling Modes of Hunter-Gatherer Food Storage.
Am. Antiq. 77, 714–736.

36. Thornton, T.F., and Manasfi, N. (2010). Adaptation—Genuine and
Spurious: Demystifying Adaptation Processes in Relation to Climate
Change. Environ. Soc. 1, 132–155.

37. Forsyth, T. (2013). Community-based adaptation: a review of past and
future challenges. WIREs Clim. Change 4, 439–446.

38. Christoplos, I., Anderson, S., Arnold, M., Galaz, V., Hedger, M., Klein,
R.J.T., and Le Goulven, K. (2009). The Human Dimension of Climate
Adaptation: The Importance of Local and Institutional Issues.

39. Howard, P.L. (2019). Human adaptation to invasive species: A concep-
tual framework based on a case study metasynthesis. Ambio 48,
1401–1430.

40. Bronen, R., and Cochran, P. (2021). Decolonize climate adaptation
research. Science 372, 1245.

41. Barnes, M.L., Wang, P., Cinner, J.E., Graham, N.A.J., Guerrero, A.M.,
Jasny, L., Lau, J., Sutcliffe, S.R., and Zamborain-Mason, J. (2020). Social
determinants of adaptive and transformative responses to climate
change. Nat. Clim. Change 10, 823–828.

42. Nyadzi, E., Ajayi, O.C., and Ludwig, F. (2021). Indigenous knowledge and
climate change adaptation in Africa: a systematic review. CAB Rev. Per-
spect. Agric. Vet. Sci. Nutr. Nat. Resour. 2021, 29.

43. Fischer, A.P., Spies, T.A., Steelman, T.A., Moseley, C., Johnson, B.R.,
Bailey, J.D., Ager, A.A., Bourgeron, P., Charnley, S., Collins, B.M.,
et al. (2016). Wildfire risk as a socioecological pathology. Front. Ecol. En-
viron. 14, 276–284.

44. Turner II, B., Esler, K.J., Bridgewater, P., Tewksbury, J., Sitas, N., Abra-
hams, B., Chapin, F.S., Chowdhury, R.R., Christie, P., Diaz, S., et al.
(2016). Socio-Environmental Systems (SES) Research: what have we
learned and how canwe use this information in future research programs.
Curr. Opin. Environ. Sustain. 19, 160–168.

45. Kacelnik, A., and Bateson, M. (1996). Risky Theories—The Effects of
Variance on Foraging Decisions1. Am. Zool. 36, 402–434.

46. Thornton, P.K., Ericksen, P.J., Herrero, M., and Challinor, A.J. (2014).
Climate variability and vulnerability to climate change: a review. Global
Change Biol. 20, 3313–3328.
47. Pierro, R., Ember, C.R., Pitek, E., and Skoggard, I. (2022). Local knowl-
edge and practice in disaster relief: A worldwide cross-cultural compar-
ison of coping mechanisms. Int. J. Disaster Risk Reduc. 76, 102988.

48. Pisor, A.C., and Jones, J.H. (2021). Do people manage climate risk
through long-distance relationships? Am. J. Hum. Biol. 33, e23525.

49. Halstead, P., and O’Shea, J. (1982). A friend in need is a friend indeed:
Social storage and the origins of social ranking. In Ranking, Resource
and Exchange, C. Renfrew and S. Shennan, eds. (Cambridge University
Press), pp. 92–99.

50. Spielmann, K.A. (1986). Interdependence among egalitarian societies.
J. Anthropol. Archaeol. 5, 279–312.

51. Tekwa, E.W., Fenichel, E.P., Levin, S.A., and Pinsky, M.L. (2019). Path-
dependent institutions drive alternative stable states in conservation.
Proc. Natl. Acad. Sci. USA 116, 689–694.

52. Winterhalder, B., Lu, F., and Tucker, B. (1999). Risk-Sensitive Adaptive
Tactics: Models and Evidence from Subsistence Studies in Biology and
Anthropology. J. Archaeol. Res. 7, 301–348.

53. Colson, E. (1979). In good years and in bad: Food strategies of self-reliant
societies. J. Anthropol. Res. 35, 18–29.

54. Mach, K.J., Kraan, C.M., Adger, W.N., Buhaug, H., Burke, M., Fearon,
J.D., Field, C.B., Hendrix, C.S., Maystadt, J.-F., O’Loughlin, J., et al.
(2019). Climate as a risk factor for armed conflict. Nature 571, 193–197.

55. Few, R., Spear, D., Singh, C., Tebboth, M.G.L., Davies, J.E., and Thomp-
son-Hall, M.C. (2021). Culture as a mediator of climate change adapta-
tion: Neither static nor unidirectional. WIREs Clim Change 12, e687.

56. Halstead, P., and O’Shea, J. (1989). Introduction: Cultural responses to
risk and uncertainty. In Bad Year Economics: Cultural Responses to
Risk and Uncertainty, P. Halstead and J. O’Shea, eds. (Cambridge Uni-
versity Press), pp. 1–7.

57. McLeman, R. (2018). Thresholds in climate migration. Popul. Environ. 39,
319–338.

58. Ncube, M., Madubula, N., Ngwenya, H., Zinyengere, N., Zhou, L., Fran-
cis, J., Mthunzi, T., Olivier, C., and Madzivhandila, T. (2016). Climate
change, household vulnerability and smart agriculture: The case of two
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