
Positive Almost-Sure Termination: Complexity and Proof

Rules

RUPAK MAJUMDAR,Max Planck Institute for Software Systems (MPI-SWS), Germany

V. R. SATHIYANARAYANA,Max Planck Institute for Software Systems (MPI-SWS), Germany

We study the recursion-theoretic complexity of Positive Almost-Sure Termination (PAST) in an imperative
programming language with rational variables, bounded nondeterministic choice, and discrete probabilistic
choice. A program terminates positive almost-surely if, for every scheduler, the program terminates almost-
surely and the expected runtime to termination is �nite. We show that PAST for our language is complete
for the (lightface) co-analytic sets (Π1

1-complete). This is in contrast to the related notions of Almost-Sure

Termination (AST) and Bounded Termination (BAST), both of which are arithmetical (Π0
2- and Σ

0
2-complete

respectively).
Our upper bound implies an e�ective procedure to reduce reasoning about probabilistic termination to non-

probabilistic fair termination in a model with bounded nondeterminism, and to simple program termination
in models with unbounded nondeterminism. Our lower bound shows the opposite: for every program with
unbounded nondeterministic choice, there is an e�ectively computable probabilistic program with bounded
choice such that the original program is terminating if, and only if, the transformed program is PAST.

We show that every program has an e�ectively computable normal form, in which each probabilistic choice
either continues or terminates execution immediately, each with probability 1/2. For normal form programs,
we provide a sound and complete proof rule for PAST. Our proof rule uses trans�nite ordinals. We show

that reasoning about PAST requires trans�nite ordinals up to lCK
1 ; thus, existing techniques for probabilistic

termination based on ranking supermartingales that map program states to reals do not su�ce to reason
about PAST.

CCS Concepts: • Theory of computation → Program reasoning; • Mathematics of computing →
Probabilistic algorithms; Stochastic processes.

Additional Key Words and Phrases: probabilistic programs, demonic non-determinism, positive almost-sure
termination, computational complexity, program reasoning

ACM Reference Format:

Rupak Majumdar and V. R. Sathiyanarayana. 2024. Positive Almost-Sure Termination: Complexity and Proof
Rules. Proc. ACM Program. Lang. 8, POPL, Article 37 (January 2024), 29 pages. https://doi.org/10.1145/3632879

1 INTRODUCTION

A probabilistic program augments an imperative program with primitives for randomization.
Probabilistic programs allow direct implementation of randomized computation and probabilistic
modeling and have found applications in machine learning, bio-informatics, epidemiology, and
information retrieval amongst others; see Katoen et al. [2015] for a comprehensive presentation of
their applicability.

Authors’ addresses: Rupak Majumdar, Max Planck Institute for Software Systems (MPI-SWS), Paul-Ehrlich-Straße, Building

G26, Kaiserslautern, 67663, Germany, rupak@mpi-sws.org; V. R. Sathiyanarayana, Max Planck Institute for Software Systems

(MPI-SWS), Paul-Ehrlich-Straße, Building G26, Kaiserslautern, 67663, Germany, sramesh@mpi-sws.org.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART37

https://doi.org/10.1145/3632879

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0003-2136-0542
HTTPS://ORCID.ORG/0009-0006-5187-5415
https://doi.org/10.1145/3632879
https://orcid.org/0000-0003-2136-0542
https://orcid.org/0009-0006-5187-5415
https://doi.org/10.1145/3632879
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632879&domain=pdf&date_stamp=2024-01-05

37:2 Rupak Majumdar and V. R. Sathiyanarayana

1 x ≔ 1

2 while (x ≠ 0):

3 x ≔ x + 1 ⊕ 1
2

x ≔ x - 1

(a) This program is AST but not PAST.

1 x, y, z ≔ 0, 0, 1

2 while (x + y = 0):

3 y ≔ 0 [] y ≔ 1

4 x ≔ 0 ⊕ 1
2

x ≔ 1

5 z ≔ z * 4

6 while (x = 0 ∧ z > 0):

7 z ≔ z - 1

(b) This program is PAST but not BAST.

Prg. 1. Programs showcasing the relationships between AST, PAST, and BAST.

We study programs written in a classical imperative language with constructs for bounded
(binary) nondeterministic choice %1 [] %2 and discrete probabilistic choice %1⊕? %2. The �rst program
can nondeterministically reduce to either %1 or %2; the second reduces to %1 with probability ? and
to %2 with probability 1 − ? .
A fundamental and classical question about programs is termination: does the execution of

a program stop after a �nite number of steps? In the presence of nondeterministic choice, a
program can have many executions, depending on how the nondeterminism is resolved. Typically,
nondeterminism is modelled as being resolved demonically by an uncaring scheduler, and the
termination question is modi�ed to ask: does the program stop after a �nite number of steps no
matter how the scheduler resolves nondeterminism?

If, in addition, a program has probabilistic choice, the notion of termination has to be modi�ed to
exclude some ostensibly in�nite executions with a total measure of zero. For example, if a program
repeatedly tosses a fair coin until it lands heads, it will halt with probability one, as the probability
of observing an in�nite sequence of tails is zero.
Consequently, several qualitative notions of termination have been de�ned and studied. A

program is almost sure terminating, writtenAST, if for every scheduler, the probability of termination
is one. A program is positive almost sure terminating, written PAST, if for every scheduler, the
expected run time to termination is �nite. Finally, a program is bounded almost sure terminating,
written BAST, if there exists a global bound on expected run times to termination independent of
the scheduler.

Clearly, every BAST program is also PAST, and every PAST program is also AST. In the absence
of nondeterminism, PAST and BAST coincide. However, these notions are di�erent in general, as
illustrated in Programs 1a and 1b.
Program 1a is the famous symmetric random walker, which terminates almost surely (i.e., is

AST) but cannot expect to do so in a �nite amount of time [Pólya 1921]. Meanwhile, Program 1b
is PAST, but the longer the scheduler keeps the execution inside the �rst loop (from Lines 2 to 5),
the greater its expected runtime. Thus, it is not BAST. However, replacing Line 5 by z = z + 1

induces an upper bound of 4 over all possible expected runtimes, making it BAST.
All these notions have been studied extensively, bothwith andwithout (demonic) nondeterminism

[Bournez and Garnier 2005; Fu and Chatterjee 2019; McIver and Morgan 2005; McIver et al. 2018;
Pnueli 1983]. One main focus of these works has been the development of proof rules to prove that
a given program terminates under one of these notions. Most of this work has focused on AST and
BAST; relatively little is known for PAST.

In this paper, we characterize the recursion-theoretic complexity of PAST and provide a semanti-
cally sound and complete proof rule. Our �rst result is that membership in PAST is complete for the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

Positive Almost-Sure Termination: Complexity and Proof Rules 37:3

(lightface) co-analytic sets, that is, Π1
1-complete. This is in contrast to AST and BAST, both of which

lie in the arithmetic hierarchy (Π0
2-complete and Σ

0
2-complete, respectively [Kaminski et al. 2019]).

Hardness already holds with binary nondeterministic choice and probabilistic choice of the form

skip ⊕1/2 exit (Knievel form)

which continues execution or halts with probability 1/2 each. A consequence of our result is that
every probabilistic program has an e�ectively constructible normal form, which we call Knievel
form (after Evel Knievel, who made many such choices in his life). Our second main result is a
sound and complete proof rule for Knievel form PAST programs. We prove that proof systems for
PAST require trans�nite ordinals up to the �rst non-computable ordinal lCK

1 , also known as the
Church-Kleene ordinal. This is in contrast to AST and BAST, neither of which require trans�nite
ordinals. In fact, most proof systems for AST and BAST use ranking supermartingales that map
program states to the reals with the proviso that each program transition decreases the expected
value of the mapping by a minimum amount [Chakarov and Sankaranarayanan 2013; Fioriti and
Hermanns 2015; Fu and Chatterjee 2019]. Our result shows that such an attempt will not work
for PAST. To illustrate this claim, we describe in Section 2 a stochastic variant of the Hydra game
[Kirby and Paris 1982] that shows an intuitive example of a PAST program that requires trans�nite
ordinals up to Y0 to demonstrate termination. Recall that the complexity of valid statements in the
standard model of arithmetic is Δ1

1 [Rogers Jr. 1987]; thus, relative completeness results for PAST
must use more powerful proof systems.
Our PAST proof rule for Knievel form programs uses two ingredients. The �rst is a ranking

function from program states to ordinals up to lCK
1 with the property that only terminal states are

ranked zero. The second is a state-dependent certi�cate, based on ranking supermartingales, for a
bound on the expected time to reach a state with a lower rank independent of the scheduler.
We show that for every program—not necessarily in Knievel form—the proof rule is complete:

from every PAST program, one can extract a rank and a certi�cate. Moreover, by analyzing the
possible traces of programs in Knievel form, we show that the rule is sound: the existence of such a
ranking function and a ranking supermartingale implies that the expected running time is bounded
for each scheduler. However, soundness depends on the normal form: the rule is not sound if
applied to general programs. Since our �rst result provides an e�ective transformation to Knievel
form, we nevertheless get a semantically sound and complete proof system by �rst transforming
the program into the normal form and then applying the proof rule.

We also show that ordinals up to lCK
1 are necessary by explicitly constructing, for each ordinal

o < lCK
1 , a PAST program for which suitable ranking functions include o in their range. Our

construction encodes a recursive l-tree) into a probabilistic program % ()) such that) is well-
founded i� % ()) is PAST—recall that the constructible ordinals are coded by such trees [Kozen
2006].
Our results are related to termination and fair termination problems for non-probabilistic pro-

grams with unbounded countable nondeterministic choice [Apt and Plotkin 1986; Chandra 1978;
Harel 1986; Harel and Kozen 1984]. The Π1

1-completeness and the requirement of ordinals up to

lCK
1 for deciding termination of programs with countable nondeterministic choice was shown

by Chandra [1978] and Apt and Plotkin [1986]. Additionally, Harel [1986] showed a general re-
cursive transformation on trees with bounded nondeterministic choice and fairness that reduces
fair termination to termination, thereby providing a semantically complete proof system for fair
termination. Since fairness can simulate countable nondeterminism using bounded nondeterminism,
these results also show a lower complexity bound and the necessity of trans�nite ordinals for fair
termination. Our results show that countable nondeterminism and discrete probabilistic choice has
the same power.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

37:4 Rupak Majumdar and V. R. Sathiyanarayana

1 n ≔ 4 # initial regrowth capacity

2 while (True):

3 if (empty(hydra)): exit # Hercules has killed the Hydra

4 l ≔ Hercules(hydra) # Hercules 's choice

5 parent ≔ getParent(hydra , l) # the parent node

6 grandParent ≔ getParent(hydra , parent) # the grandparent node

7 hydra ≔ removeLeaf(hydra , l) # disconnect head

8

9 if (not empty(grandparent)): # grow new heads

10 evolve ≔ 0 [] evolve ≔ 1 # Hydra's move

11 while(evolve):

12 skip ⊕1/2 exit # die with some probability

13 n ≔ n * 4 # quadruple regrowth capacity

14 evolve ≔ 0 [] evolve ≔ 1 # Hydra's move

15 subtree ≔ getSubtree(hydra , parent) # find the place to grow heads

16 hydra ≔ growNewHeads(n - 1, grandparent , subtree) # grow new heads

Prg. 2. The Hydra Game. B1 ⊕1/2 B2 is a probabilistic choice between statements B1 and B2: the program

transitions to B1 or B2 with probability 1/2 each. B1 [] B2 is a nondeterministic choice: the program transitions

to B1 or B2 nondeterministically.

We summarize our main results below:
(1) Deciding if a probabilistic program with bounded nondeterministic and probabilistic choice

is PAST is Π1
1-complete.

(2) For any probabilistic program % , there is an e�ectively constructible Knievel form pro-
gram % and non-probabilistic program %1 with bounded nondeterministic choice and non-
probabilistic program %2 with unbounded choice such that % is PAST i� % is PAST i� %1 is
fairly terminating i� %2 is terminating.

(3) For any recursive l-tree) , there is a probabilistic program % ()) such that) is well-founded
i� % ()) is PAST. Hence, proving PAST requires ordinals up to lCK

1 .
(4) There is a sound and complete proof rule for Knievel form programs that uses a (determinis-

tic) ranking function with codomain lCK
1 and ranking supermartingales. While the rule is

complete for every PAST program, it is only sound for programs in Knievel form.

2 A HYDRA GAME: PAST REQUIRES TRANSFINITE ORDINALS

We now illustrate our main arguments in a stochastic variant of the Hydra game, a two player
game between the warrior Hercules and the Lernaean Hydra. Introduced by Kirby and Paris [1982],
the deterministic Hydra game terminates but requires trans�nite ordinals to prove as much. Our
stochastic version is PAST and similarly requires trans�nite ordinals to prove its membership.

Just like the original [Kirby and Paris 1982], our stochastic variant is a two player-game between
Hercules and the Hydra. The Hydra is a �nite rooted tree. A head of the Hydra is a leaf together
with the edge connecting the leaf to the tree. Naturally, the Hydra can have multiple heads.

Each round of the game begins with Hercules chopping o� one of the Hydra’s heads. In the
traditional game, the Hydra responds by growing two new heads and ending the round. Our variant
is a little di�erent. First, our game maintains a number n, initially 4, that measures the Hydra’s head
growth capabilities. Additionally, our Hydra can (try to) improve its chances by attempting to evolve
several times. Evolution is risky: with probability 1/2, it causes the Hydra to implode, instantly
ending the game in Hercules’ favour. However, if successful, it quadruples the Hydra’s growth
capacity n. After (possibly many) successful evolution(s), the Hydra instantly grows new heads in

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

Positive Almost-Sure Termination: Complexity and Proof Rules 37:5

After

Fig. 1. A round in the Hydra game. The curved edges represent potential intermediate nodes. The head Hercules

targets is filled in black, its parent is marked red, and its grandparent blue. The remaining subtree from the

parent is shaded in red, and is duplicated at the end of the round. Here, the Hydra hasn’t evolved, and hence

only 3 new heads are grown. Observe that the subtree shaded blue green is entirely una�ected.

the following way: if the grandparent node grandParent of the leaf chopped of by Hercules exists,
n − 1 smaller hydras are grown beneath grandParent, with each baby hydra taking the shape of
the remaining subtree rooted at the parent of the leaf that was chopped o�. Hercules now picks
and chops o� another head, moving the game onto its next round.
The game is described in greater detail in Program 2. See Fig. 1 for an illustration of a move.

Notice that the Hydra cannot evolve or grow new heads if the leaf removed by Hercules had no
grandparent.
By �xing Hercules’s strategy to any recursive function and considering the nondeterministic

choices at Lines 10 and 14 (in Program 2) demonically, the progression of this game becomes the
execution of a probabilistic program. The fact that this program has a �nite expected runtime for
every possible nondeterministic scheduler (i.e., is PAST) is observable from two facts: one, the
deterministic hydra game only has a �nite number of rounds [Kirby and Paris 1982], and two: each
round, in expectation, only takes a constant amount of time.
Our goal in this section is to illustrate the apparatus required to prove that the game is PAST.

Termination is usually demonstrated through ranking functions. In the original, deterministic, Hydra
game, there is in fact a ranking function of the form discussed by Francez [1986] and Manna [1974]
mapping program states to natural numbers tracking the upper bound on the remaining length of
the game. This is because the supremum of the game’s length from every state (varied over the
strategies employed by Hercules) is always �nite, in spite of the ordinals necessary to show this.
Unfortunately, because of nondeterministic choices, our variant does not have an upper bound on
the expected runtime independent of the scheduler.
Prior work in proving BAST for probabilistic programs [Chatterjee and Fu 2017; Fioriti and

Hermanns 2015] uses ranking supermartingales, a generalization of ranking functions. A ranking
supermartingale maps program states to real values in such a way that in expectation, the function
strictly decreases by at least some minimum amount at each execution step. Ranking supermartin-
gales form a sound and complete proof rule for BAST. Unfortunately, we show that, despite a �nite
expected run time, we cannot �nd such a function for the stochastic Hydra game. Indeed, we show
that a termination argument for the Hydra game must use trans�nite ordinals.
We begin by introducing, following Kirby and Paris [1982], a useful mapping) from nodes in

the Hydra to ordinals. The range of the mapping is Y0, the smallest solution to the ordinal equation
G = lG .

De�nition 2.1 (Ordinal mapping of nodes in the Hydra). Let hydra = (+ , �) be a �nite tree. De�ne
the mapping) : + → Y0 with following properties:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

37:6 Rupak Majumdar and V. R. Sathiyanarayana

• For every leaf node E ∈ + ,) (E) = 0

• For every internal node E ∈ + with children E1, E2, . . . E< listed in decreasing order of the
ordinals assigned to them by) ,

) (E) =
<∑
8=1

l) (E8)

In other words,) (E) is the natural sum of all l) (E′) over all children E ′ of the node E .

In each round of the Hydra game, if the Hydra survives, the ordinal assigned to the root of the
Hydra by) always reduces [Kirby and Paris 1982]. This is despite the increments to the regeneration
capacity enabled by evolution.

In this work, we attempt to generalize ranking arguments to our setting. We want to �nd ranking
functions whose range are the ordinals such that they decrease in expectation in each step, and
only terminal states are given rank zero. Since the ordinals are well-founded, this decrease in rank
resembles the expected remaining length of execution. One could imagine that perhaps the ordinals
are unnecessary and there is a clever encoding into existing ranking arguments, like the ones by
Chatterjee and Fu [2017]. Unfortunately, we show that the naturals (or even the reals) cannot serve
as an appropriate range for functions that guarantee an expected decrease of 1 in each step.
Consider a starting point of a simple line Hydra of length 2 that, after = nondeterministic

evolution steps, grows 4= − 1 new heads with probability 1/2=+1. Note that the Hydra can no longer
evolve or grow heads from this state, and the game must hence be played for exactly 4= + 1 more
steps to terminate. Suppose there is a ranking supermartingale that assigns to the line Hydra a
natural (or real) number<. This function must necessarily assign to the new Hydra a value of
greater than 4= .Our requirements on the ranking function now imply that

< ≥
1

2=+1
× 4= =⇒ < ≥ 2=−1

By engineering a su�ciently large value of =, the Hydra can invalidate this inequality. Hence,
neither the naturals nor the reals can serve as a su�cient co-domain of the desired ranking function.
However, the in�nite ordinal l is an excellent choice of rank for the line hydra.

Allowing ordinals in the ranking function creates a new challenge. What must be the rank of a
state that, with some probability 0 < ? < 1, can reach a state of rank l? For simplicity, we set the
following additional requirement on our ranking functions: if, in one round, the game can reach a
state with ordinal rank G with positive probability ? , then the source state must be ranked above G .
With this additional property, we claim that the smallest appropriate ranking function for the

Hydra game agrees with) at all ordinal outputs. This is because) assigns to the root the smallest
ordinal greater than all ordinals reachable in a single step. We formalize this in Lemma 2.2.

Lemma 2.2. From any Hydra � with root node A with) (A) ≥ l , one can reach, in one step and

with non-zero probabilities, an in�nite sequence of hydras �1, �2, . . . with roots A1, A2, . . . such that the

smallest ordinal larger than) (A1),) (A2), . . . is) (A).

Hence, the smallest appropriate ranking function for our requirements is) , indicating that at
the very least, all ordinals under Y0 are needed to reason about the expected runtime of programs
with both nondeterministic and probabilistic operators. In Section 4, we see that ordinals up to the
Church-Kleene ordinal lCK

1 are needed to reason about general probabilistic programs. We include
the proof of Lemma 2.2 in our full version [Majumdar and Sathiyanarayana 2023] for completeness.

In summary, our proof rule for proving PAST has three ingredients: a normal form for programs
in which every probabilistic choice is of the form skip ⊕1/2 exit (which, fortunately, the Hydra is
already in), an ordinal-valued ranking function (like the function) above), and a proof that the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

Positive Almost-Sure Termination: Complexity and Proof Rules 37:7

rank decreases in an expected �nite number of steps despite nondeterminism (a BAST property,
for which sound and complete proof rules exist). Putting them together, we can argue that the
stochastic Hydra is PAST: the rank decreases in an expected �nite number of steps and the rank
decreases a �nite number of times until termination. As we show later, the proof rule is semantically
sound and complete, but the normal form is essential before it can be applied.

3 PROBABILISTIC PROGRAMS AND THEIR TERMINATION

We now de�ne the program model and the various notions of termination.

3.1 Program Model

The program model we employ is a straightforward nondeterministic extension of the language
described by Kaminski et al. [2019]. The syntax mirrors pGCL, an extension of Dijkstra’s Guarded
Command Language (GCL, [Dijkstra 1976]) that adds binary probabilistic and nondeterministic
choice operators.

De�nition 3.1 (Syntax of pGCL). Let Var be a countable set of variable symbols. Programs in
pGCL obey the grammar:

ProgF ⊥ | E ≔ 4 | Prog; Prog | Prog ⊕? Prog | Prog [] Prog | while(1){ Prog; }

where E ∈ Var, 4 , ? , and 1 are arithmetical and boolean expressions over Var, ⊕? is a probabilistic
choice operator, and [] is a nondeterministic choice operator.

⊥ here is the empty program. We omit the usual exit, skip, and if structures for brevity, as
they can easily be simulated in the mentioned syntax. Note the binary branching at probabilistic
and nondeterministic operators.
In order to describe our semantics for pGCL programs, we need to formalize the notion of the

scheduler. Informally, a scheduler maps execution histories to actions at nondeterministic points in
the program. Since the execution of pGCL programs can be uniquely determined from the sequence
of decisions made at probabilistic and nondeterministic locations, we present the following more
useful non-standard (but equivalent) de�nition for schedulers:

De�nition 3.2 (Scheduler). Let Σ= = {!=, '=} and Σ? = {!? , '? }. A scheduler is simply a total
mapping from (Σ= ∪ Σ?)

∗ → Σ= . Here, the alphabets Σ= and Σ? represent the Left and Right

directions available at nondeterministic and probabilistic operators respectively.

The following operational semantics for pGCL programs extends those of Kaminski et al. [2019]
with consideration for nondeterministic choice.

De�nition 3.3 (Semantics of pGCL). Declare the following notations:

• V ≜ {[| [: Var → Q} is the set of all possible variable valuations.
• Prog is the collection of all programs derivable in the grammar speci�ed in De�nition 3.1.
• F is the set of all schedulers (de�ned in De�nition 3.2).
• P ≜ Prog × V × (Q+ ∩ [0, 1]) × {!=, '=, !? , '? }

∗ is the set of all execution states.

Additionally, let ⟦4⟧[and ⟦1⟧[be the evaluations of the arithmetical and boolean expressions
4 and 1 under the variable valuation [∈ V. The operational semantics of pGCL programs under
a scheduler 5 ∈ F is de�ned by the smallest relation ⊢5 ⊆ P × P that complies with the inference
rules illustrated in Fig. 2. Furthermore, we de�ne the transitive extensions ⊢=

5
and ⊢∗

5
by setting

⊢1
5
≜ ⊢5 and for all = ∈ N,

(f, f ′) ∈ ⊢=+15 ⇐⇒ ∃g ∈ P · (f, g) ∈ ⊢=5 ∧ (g, f ′) ∈ ⊢5 and ⊢∗5 ≜
⋃
8∈N

⊢85

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

37:8 Rupak Majumdar and V. R. Sathiyanarayana

assign
(E ≔ 4, [, 0,F) ⊢5 (⊥, [[E ↦→ ⟦4⟧[], 0,F)

concat1
(%1, [, 0,F) ⊢5 (% ′1, [

′, 0′,F ′)

(%1; %2, [, 0,F) ⊢5 (% ′1; %2, [
′, 0′,F ′)

concat2

(⊥; %2, [, 0,F) ⊢5 (%2, [, 0,F)

prob1
⟦?⟧[≤ 0

(%1 ⊕? %2, [, 0,F) ⊢5 (%2, [, 0,F · '?)

prob2
⟦?⟧[≥ 1

(%1 ⊕? %2, [, 0,F) ⊢5 (%1, [, 0,F · !?)

prob3
0 < ⟦?⟧[< 1

(%1 ⊕? %2, [, 0,F) ⊢5 (%1, [, 0 × ⟦?⟧[,F · !?)

prob4
0 < ⟦?⟧[< 1

(%1 ⊕? %2, [, 0,F) ⊢5 (%2, [, 0 × (1 − ⟦?⟧[),F · '?)

nondet1
5 (F) = !=

(%1 [] %2, [, 0,F) ⊢5 (%1, [, 0,F · !=)

nondet2
5 (F) = '=

(%1 [] %2, [, 0,F) ⊢5 (%2, [, 0,F · '=)

loop1
⟦1⟧[= 1

(while(1){% ; }, [, 0,F) ⊢5 (% ; while(1){% ; }, [, 0,F)

loop2
⟦1⟧[= 0

(while(1){% ; }, [, 0,F) ⊢5 (⊥, [, 0,F)

Fig. 2. Semantics of pGCL

In De�nition 3.3, N and Q are standard denotations for the sets of natural and rational numbers
respectively. The operation [[E ↦→ ⟦4⟧[] is standard; it refers to the variable valuation that agrees
with [on all variables in Var \ {E} and assigns to E the value ⟦4⟧[. Like Dijkstra [1976], we restrict
the range of values available to variables to the rationals; this avoids measure-theoretic apparatus
that would be required otherwise [Bertsekas and Shreve 1978; Takisaka et al. 2021]. Our semantics
extends that of Kaminski et al. [2019] in remembering the decisions made at nondeterministic
execution states in addition to the branching at probabilistic states. This additional information
facilitates compliance with the scheduler 5 .
To clarify later de�nitions, we distinguish the notion of the program state from the execution

state.

De�nition 3.4 (Program states). A program state is simply a pair of pGCL program % and a
variable valuation [. The set of all program states Σ is hence simply Prog × V.

For a �xed program % ∈ Prog, we denote the initial program state (%, [0) by f%,0, and the initial
execution state (%, [0, 1, Y) by f

4
%,0

. Here, Y is the empty word in the language (Σ? ∪ Σ=)
∗ and unless

otherwise speci�ed, the initial variable valuation [0 maps all variables in Var to 0. Furthermore,
every execution state of the form (⊥, [, ?,F) and program states of the form (⊥, [) are said to be
terminal.

De�nition 3.5 (Execution tree). Let % be a pGCL program, 5 be a scheduler, and let [0 be some �xed
initial variable valuation. Denote the initial execution state (%, [0, 1, Y) by f

4
%,0

. The execution tree of

the program % under the scheduler 5 is the subgraph of (P, ⊢5) over the vertices {f ∈ P | f4
%,0

⊢∗
5
f}

Our semantics ensures that the execution tree is a tree rooted at f4
%,0

. Incidentally, De�nition 3.3

agrees with the semantics de�ned in De�nition 4 of Kaminski et al. [2019] for programs in Prog

that do not use the nondeterministic choice operator [] .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

Positive Almost-Sure Termination: Complexity and Proof Rules 37:9

3.2 Notions of Termination

In this subsection, we formalize the various notions of termination motivated in Section 1. We
begin with two necessary projection operations.

De�nition 3.6. Prob and Hist are total functions from the set of execution states P that satisfy

Prob((_, _, ?, _)) = ? and Hist((_, _, _,F)) = F

Here, _ is shorthand for any arbitrary value.

We now turn to termination probabilities. Unlike deterministic programs, the probabilities of
termination of pGCL programs depend on the scheduler employed to resolve non-determinism.
It is quite possible for a program to fully terminate under one scheduler and run forever under
another.

De�nition 3.7 (Termination Probability). Let)4 be a function that takes in a program state
f = (%, [) and a scheduler 5 and returns the set of terminal execution states reachable from
the corresponding initial execution state f4 = (%, [, 1, Y) under the scheduler 5 . Thus,

)4 (f, 5) ≜ {(⊥, [, ?,F) ∈ P | f4 ⊢
∗
5 (⊥, [, ?,F)}

Termination probability is a function that takes in a program state f and a scheduler 5 and returns
the probability of the termination of the execution initialized at f under 5 by adding up the
probabilities of states in)4 (f, 5):

Pr
term

(f, 5) =
∑

f ′∈)4 (f,5)

Prob(f ′)

We now de�ne the set AST that we motivated in Section 1.

De�nition 3.8 (Almost-sure termination). AST (short for Almost-Surely Terminating) is the set of
all pGCL programs % that yield a termination probability of 1 from their initial states f%,0 under
every possible scheduler 5 ∈ F, i.e.,

AST = {% ∈ Prog | ∀∀ 5 ∈ F · Pr
term

(f%,0, 5) = 1}

The symbol ∀∀ indicates that 5 is a second-order variable. This is necessary because the set F is
not a countable entity. We will return to this detail in Section 4.

Before we discuss the other notions of termination motivated in Section 1, we present de�nitions
for expected runtime. We extend a useful presentation motivated by Fioriti and Hermanns [2015]:
the expected runtime is the sum of the in�nite series of the probabilities of surviving beyond =
steps.

De�nition 3.9 (Expected runtime). Let) ≤:
4 be a function that takes as input a program state

f = (%, [) and a scheduler 5 and returns the set of all terminal states reachable in ≤ : steps from
the corresponding execution state f4 = (%, [, 1, Y) under the scheduler 5 :

) ≤:
4 (f, 5) = {(⊥, [, ?,F) ∈ P | ∃= ∈ N · = ≤ : ∧ f4 ⊢

=
5 (⊥, [, ?,F)}

The expected runtime from a program state f under the scheduler 5 is the sum

ExpRuntime(f, 5) ≜
∑
:∈N

©­«
1 −

∑
f ′∈) ≤:

4 (f,5)

Prob (f ′)
ª®¬

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

37:10 Rupak Majumdar and V. R. Sathiyanarayana

Observe that, as in the case of deterministic programs, the expected runtime can diverge.
We now present two notions: that of positive almost-sure termination and bounded termination.

Positive almost-sure termination, introduced in Bournez and Garnier [2005] and re�ned in Fioriti
and Hermanns [2015], describes programs that yield �nite (meaning converging) expected runtimes
under all schedulers. This �niteness property is captured by the existence of an upper bound on
the series described in De�nition 3.9.

De�nition 3.10. The set PAST contains precisely the pGCL programs that expect to terminate in
a �nite amount of time under any schedule, i.e.,

PAST ≜
{
% ∈ Prog | ∀∀ 5 ∈ F ∃= ∈ N · ExpRuntime(f%,0, 5) < =

}
As with AST, the initial state f%,0 maps all variables in Var to 0.

The notion of bounded termination (introduced in Chatterjee and Fu [2017]) is obtained by
swapping the positions of the quanti�ers in De�nition 3.10.

De�nition 3.11. The set BAST contains precisely the pGCL programs that possess a �nite upper
bound over the expected runtimes across all schedules, i.e.,

BAST ≜
{
% ∈ Prog | ∃= ∈ N ∀∀ 5 ∈ F · ExpRuntime(f%,0, 5) ≤ =

}
In the following sections, we study the decision problems AST, PAST, and BAST, which ask:

given a pGCL program % , is % ∈ AST (respectively % ∈ PAST and % ∈ BAST)? Note that the variants
of these problems without nondeterministic choice have already been explored by Kaminski et al.
[2019].

3.3 Recursion-Theoretic Preliminaries

In order to precisely characterize the complexities of these decision problems, we need to introduce
the arithmetical and analytical hierarchies of undecidability. Informally, these hierarchies describe
increasingly undecidable problems by linking each problem to arithmetical formulas in �rst and
second-order logic. We only present relevant de�nitions here; for a full discussion of the properties
of these hierarchies, see Rogers Jr. [1987] and Kozen [2006].

De�nition 3.12 (Arithmetical Hierarchy). LetM= be the set of all total Turing machines charac-
terizing a subset of N= . For each natural number = ≥ 1, the family of sets Σ0

= contains the set ! ⊆ N
i� there exists a machine"! ∈ M=+1 such that

! = {G ∈ N | ∃~1 ∈ N ∀~2 ∈ N · · · &=~= ∈ N ·"! (G,~1, . . . ~=) = 1}

where&= is universal if = is even and existential otherwise. Additionally, de�ne Π0
= as the collection

of sets ! ⊆ N such that (N \ !) ∈ Σ
0
= .

The collections of sets
{
Σ
0
=

}
and

{
Π
0
=

}
form the Arithmetical Hierarchy and any set ! ∈ Σ

0
= (or

! ∈ Π
0
=) is said to be arithmetical.

De�nition 3.13 (Analytical Hierarchy). LetM< be the set of all total oracle Turing machines with
access to< oracles, each characterizing a total function of the form N→ N. For each natural = ≥ 1,
call Σ1

= the collection of sets ! ⊆ N with the property that each ! is associated with an"! ∈ M=

and

! =

{
G ∈ N | ∃∃ 51 ∈ N→ N ∀∀ 52 ∈ N→ N · · · Q= 5= ∈ N→ N &=+1~ ∈ N ·"

51,52,...5=
!

(G,~) = 1
}

Here,"! has oracle access to the functions 51, . . . 5= and the quanti�er Q= (and &=+1) is universal
(resp. existential) if = is even and existential (resp. universal) otherwise. The doubled symbols ∀∀ ,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

Positive Almost-Sure Termination: Complexity and Proof Rules 37:11

∃∃ , and Q= are second-order quanti�ers and the �nal quanti�er &=+1 is �rst-order. Let Π
1
= be the

collection of sets ! ⊆ N with (N \ !) ∈ Σ
1
= .

The collections
{
Σ
1
=

}
and

{
Π
1
=

}
form the Analytical Hierarchy. Any set ! ∈ Σ

1
= (or ! ∈ Π

1
=) is said

to be a (lightface) analytical set.

The speci�c classes Σ1
1 and Π

1
1 are referred to as the (lightface) analytic and co-analytic sets

respectively. It can be shown that both the Arithmetical and Analytical hierarchies are strict. Note
that De�nition 3.13 details a normal form for the Analytical hierarchy. In general, there can be
arbitrarily many �rst-order variables after Q= ; sets de�ned in this way can always be rede�ned
in the normal form [Rogers Jr. 1987]. Notice the implication that the �rst levels of the analytical
hierarchy (i.e., Σ1

1 and Π
1
1 sets) contain every arithmetical set.

The strictness of these hierarchies motivates notions of completeness for these complexity
classes.

De�nition 3.14 (Completeness). For any Γ ∈
⋃
=∈N

{
Σ
1
=,Π

1
=, Σ

0
=,Π

0
=

}
, a set ! ⊆ N is said to be

Γ-hard if, for every !′ ∈ Γ, there exists a recursive procedure that maps !′ to ! and N \ !′ to N \ !.
Furthermore, ! is Γ-complete if it is Γ-hard and ! ∈ Γ.

4 THE COMPLEXITY OF PROBABILISTIC TERMINATION

Kaminski et al. [2019] showed that the decision problems AST and BAST are arithmetical in
a language without nondeterministic choice. Their proof can be extended to the setting with
nondeterministic choice:

Proposition 4.1. The decision problem AST is Π0
2-complete and BAST is Σ0

2-complete.

We include the proof of Proposition 4.1 in our full version [Majumdar and Sathiyanarayana
2023] for completeness. In contrast, we show that PAST is signi�cantly harder.

Theorem 4.2. The decision problem PAST is Π1
1-complete.

Upper Bound. Expanding the series de�ning ExpRuntime in the de�nition of PAST gives

PAST =



% ∈ Prog | ∀∀ 5 ∈ F ∃= ∈ N ·

∑
:∈N

©­«
1 −

∑
f∈) ≤:

4 (f%,0,5)

Prob (f)
ª®¬
< =




=⇒ PAST =



% ∈ Prog | ∀∀ 5 ∈ F ∃= ∈ N ∀< ∈ N ·

∑
:≤<

©­
«
1 −

∑
f∈) ≤:

4 (f%,0,5)

Prob (f)
ª®¬
< =




(1)

It’s quite easy to build a terminating program" with oracle access to 5 that, on inputs< and =,
computes the �nite sum in the quanti�er-free section of Eq. (1). This yields

% ∈ PAST ⇐⇒ ∀∀ 5 ∈ F ∃= ∈ N ∀< ∈ N ·" 5 (%, =,<) = 1 (2)

Eq. (2) is a characterization of PAST that can be transformed into the normal form for Π1
1 (as

required by De�nition 3.13) using equivalences detailed by Rogers Jr. [1987]. Hence, PAST ∈ Π
1
1.

Lower Bound: Recursion-Theoretic Preliminaries. To show the Π1
1-hardness of PAST, we introduce a

canonical Π1
1-complete problem. Towards this, we de�ne l-trees.

De�nition 4.3 (l-trees, well-founded l-trees, and recursive l-trees). Let N∗ be the set of all �nite
sequences of natural numbers. De�ne the pre�x relation ≺= ⊆ N∗ × N∗ as

F1 ≺= F2 ⇐⇒ |F1 | < |F2 | ∧ ∀= ≤ |F1 | ·F1 (=) = F2 (=)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

37:12 Rupak Majumdar and V. R. Sathiyanarayana

1 def numGen ():

2 x, y, w ≔ 0, 0, 0

3 while (y = 0):

4 x ≔ x + 1

5 y ≔ 0 [] y ≔ 1

6 if (y = 1):

7 break

8 skip ⊕1/2 exit

9 s ≔ 2 * s

10 while (w < s):

11 w ≔ w + 1

12 return x - 1

(a) Number generation procedure numGen

13 node , s ≔ [], 1 # Globals

14 while (True):

15 x ≔ numGen ()

16 node ≔ node.append(x)

17 z ≔ execute(M, node)

18 if (z = 0):

19 n ≔ numGen ()

20 while (n--):

21 x ≔ numGen ()

22 node ≔ node.append(x)

23 z ≔ execute(M, node)

24 if (z = 1):

25 infLoop ()

(b) The program %" , calling numGen several times.

Prg. 3. The reduction %" simulating the recursive l-tree" .

Here, |F | stands for the length of the sequence andF (=) refers to the =Cℎ element ofF .
The pair (N∗, ≺=) is the complete l-tree. An l-tree is any subtree of the complete l-tree rooted

at the empty sequence Y. An l-tree is well-founded if there are no in�nite branches in the tree.
The characteristic function of anl-tree takes in sequencesF ∈ N∗ as input and returns 1whenF

is a node in the tree and 0 otherwise. An l-tree is recursive if its characteristic function is decidable.

Let ΩA42 be the set of all total Turing machines that characterize well-founded recursive l-trees.

Theorem 4.4. ΩA42 is Π
1
1-complete.

The proof of Theorem 4.4 can be found in various textbooks [Kozen 2006; Rogers Jr. 1987]. We
will reduce ΩA42 to PAST.

Lower Bound: Reduction. Our reduction leverages nondeterminism in selecting a branch in the
complete l-tree. The remainder of the reduction traverses this branch in the input l-tree to check
its �niteness.

For every Turing machine" , we construct the pGCL program %" . The program %" is detailed
in Program 3b. The simulation of" by %" , enabled by the Turing completeness of pGCL [McIver
and Morgan 2005], is encapsulated by the function execute(M, node). Here, the �nite sequence
of natural numbers node is supplied to" as input.
%" invokes a procedure called numGen multiple times in its execution. At a high level, numGen,

speci�ed in Program 3a, makes use of nondeterminism to produce a distribution over natural
numbers with the property that every “successful” execution of numGen takes, in expectation, a
roughly equal amount of time. The �rst inner loop of numGen (from Lines 3 to 9) requires scheduler
action at Line 5 to safely exit. Notice that numGen terminates execution with probability 1/2 at
every iteration of this loop; hence, the probability of staying inside the loop decreases exponentially
the longer the loop is run. The variable x tracks the number of iterations of the loop; the output of
numGen is x - 1. The global variable s doubles each time the loop is run. Being global, its value
persists through multiple executions of numGen. The overall design of the reduction ensures that
1/s tracks the probability value Prob of the current non-terminal execution state.

The second loop (from Lines 10 to 11) of numGen induces its principal feature: the stabilization
of increments to the expected runtime of the reduction %" across all executions of numGen. It

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

Positive Almost-Sure Termination: Complexity and Proof Rules 37:13

f4
%" ,0

=

g4

<

Fig. 3. An execution from f4
%" ,0

. The probabilistic operation at depth = − 1 yields one terminal and one

non-terminal node at depth =. Hence, there is at most one non-terminal node at every depth. At depth<, the

execution reaches g4 .

isn’t di�cult to show that the expected runtime increases by at least 1 during each successful (i.e.,
reaching Line 12 and returning a value) execution of numGen.
numGen is used by %" to pick a potential child of the current node in the recursive tree charac-

terized by" (stored by the variable node); this is precisely why numGen returns x - 1 at Line 12.
Accordingly, the output of numGen is appended to the end of node at Line 16, and the presence
of node in the l-tree is then checked by " at Line 17. If node is in the tree, execute(M, node)

returns 1 at Line 17, and the execution returns to Line 15 and picks another potential child of node.
Observe that the mandatory singular call to numGen in the child-choosing process increases the
expected runtime of %" by at least 1. Consequently, if" were to characterize an in�nite branch,
%" could explore this in�nite branch and, in the process, make in�nitely many calls to numGen,
pushing its expected runtime to in�nity.
In a well-founded tree, " will eventually return 0 at Line 17. Suppose this happens at node′.

From then on out (i.e., from Line 19), the program checks an edge case: Lines 19 to 22 pick an
arbitrary node of the full l-tree under node′, and the execute call at Line 23 checks if that node
is in the tree validated by " . If " characterizes a tree (and not a graph), execute(M, node) at
Line 23 will always return 0. Note that this check only requires, in expectation, a �nite amount of
additional time.
We now formally argue for the correctness of the intuitions provided above.
Case 1: " is not total. This implies that there is some number = for which " does not halt.

Accordingly, take the scheduler 5 that, on the �rst execution of numGen, exits its inner loop after
= + 1 iterations. The input to" at Line 17 is thus =. After reaching that line, %" runs inde�nitely
without ever altering its probability value.

Suppose Line 17 is reached at the<Cℎ step with probability ? > 0. For all<′ ≥ <, the probability
of termination in ≤ <′ steps must be bounded above by 1 − ? . This is because the probability of
non-termination at the (<′)Cℎ step is ? . Thus, the expected runtime ExpRuntime(f%" ,0, 5) is

∑
:∈N

©­«
1 −

∑
f∈) ≤:

4 (f%,0,5)

Prob(f)
ª®¬
≥

∑
<′∈N≥<

©­«
1 −

∑
f∈) ≤<′

4 (f%,0,5)

Prob(f)
ª®¬
≥

∑
<′∈N≥<

? = ∞

proving this case.
Case 2: The scheduler chooses to never leave the �rst loop of numGen. We label these schedulers as

badly behaved. Let 5 be one badly-behaved scheduler. The “bad” behaviour of 5 can occur after
many successful executions of numGen. Suppose %" enters the �rst loop of numGen at Line 3 for
the last time in its<Cℎ step with probability ? . This implies an amassed termination probability of
(1 − ?) after< steps.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

37:14 Rupak Majumdar and V. R. Sathiyanarayana

The design of numGen (speci�cally, the available options at the probabilistic operation at Line 8)
indicates that in every execution tree rooted at the initial state f4

%" ,0
, there is at most one non-

terminal execution state at every depth. Let the execution state at depth< in the tree induced by the
scheduler 5 be g4 . Let g be the program state corresponding to g4 andF4 = Hist(g4). Partitioning
the expected runtime series ExpRuntime(f%" ,0, 5) at the<

Cℎ step gives

ExpRuntime(f%" ,0, 5) =
∑

:∈N<<

©­­«
1 −

∑
f∈) ≤:

4 (f%" ,0,5)

Prob(f)
ª®®¬
+

∑
:∈N≥<

©­­«
1 −

∑
f∈) ≤:

4 (f%" ,0,5)

Prob(f)
ª®®¬

The series on the left is �nite. The series on the right consists of the probabilities of the non-terminal
execution states under g4 .
Let 5 ′ be the scheduler that satis�es 5 ′ (D) = 5 (F4D) for all histories D ∈ (Σ= ∪ Σ?)

∗. Let the
execution tree from g under 5 ′ be) ′ and the subtree of the execution tree from f%" ,0 under 5 rooted
at g4 be) . Then, as far as the program states are concerned,) and) ′ are identical. This yields a
natural mapping 6 from nodes in) to nodes in) ′ with the property that Prob(f) = ? × Prob(6(f))
for every f ∈) . This means that the second series is just the expected runtime from g under 5 ′

scaled down by ?:

∑
:∈N≥<

©­«
1 −

∑
f∈) ≤:

4 (f%,0,5)

Prob(f)
ª®¬
= ? × ExpRuntime(g, 5 ′)

Because 5 ′ never leaves the inner loop at Line 3, ExpRuntime(g, 5 ′) is �nite; we omit the details
for brevity. Thus, the expected runtime of %" under badly behaved schedulers is �nite.

A well-behaved scheduler is one that is not badly behaved. Well-behaved schedulers always exit
numGen with non-zero probability. Each well-behaved 5 can be identi�ed by the outputs that 5
induces at executions of numGen, and therefore every well-behaved scheduler corresponds to an
in�nite branch in the complete l-tree. From this point on, every machine " is total and every
scheduler 5 is well-behaved.
Case 3: " fails to characterize a tree. This means that the subgraph of the complete l-tree

characterized by " is disconnected. This indicates the existence of at least one broken branch,
where" returns 1 until depth<1, then returns 0 until depth<1 +<2, and then returns 1 again at
depth<1 +<2 + 1, for some positive naturals<1 and<2.
Let 5 be the scheduler corresponding to this broken branch. Under 5 , %" will merrily execute

onward until depth<1 + 1, at which point execute(M, node) at Line 17 will return 0. This triggers
the instructions under the if condition at Line 18, allowing %" to pick an arbitrary descendant of
node.
Take the scheduler 5 ′ that agrees with 5 until depth<1 + 1, returns<2 at the numGen call at

Line 19, and then picks the node in the broken branch at depth<1 +<2 + 1 included in the subgraph
characterized by" through the loop at Lines 20 to 22. Under 5 ′," will return 1 at the execute(M,
node) call at Line 23, after which %" loops in�nitely without ever altering its (positive) probability
value. It’s easy now to see that the expected runtime of %" under 5 ′ is +∞; we leave the details to
the diligent reader.
Case 4: " characterizes a well-founded l-tree. This means that every branch in the l-tree

characterized by" is �nite. Every well-behaved 5 thus begets a �nite execution tree. Fix a well

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

Positive Almost-Sure Termination: Complexity and Proof Rules 37:15

behaved 5 and let< be the depth of this �nite tree. This means that) ≤<
4 (f%" ,0, 5) is the set all

leaves in the tree. Thus,

∑
f∈) ≤<

4 (f%" ,0,5)

Prob(f) = 1 =⇒
©­«
1 −

∑
f∈) ≤<

4 (f%" ,0,5)

Prob(f)
ª®¬
= 0

Since< is the depth of the tree, for all<′ ≥ <,) ≤<′

4 (f%,0, 5) =) ≤<
4 (f%,0, 5). These facts yield

ExpRuntime(f%" ,0, 5) =
∑
:∈N

©­­«
1 −

∑
f∈) ≤:

4 (f%" ,0,5)

Prob(f)
ª®®¬
=

∑
:≤<

©­­«
1 −

∑
f∈) ≤:

4 (f%" ,0,5)

Prob(f)
ª®®¬

This is a �nite sum, meaning that the expected runtime is �nite.
Case 5: Thel-tree characterized by" has an in�nite branch. Let 5 be the scheduler corresponding

to this in�nite branch. Observe that the execution tree of %" under 5 must contain an in�nite
branch which calls numGen in�nitely often. Consequently, this branch enters the loop at Line 11
in�nitely often.

Isolate one execution of this loop. Suppose the execution enters the loop with probability ? in its
<Cℎ step. Then, the length of the loop is s = 1/? and the execution exits the loop in its (< + s)Cℎ

step. Furthermore, the probability of non-termination at each step from< to (< + s) is ? . This
means that

<+s∑
:=<

©­«
1 −

∑
f∈) ≤:

4 (f%,0,5)

Prob(f)
ª®¬
= ? × s = ? × (1/?) = 1

Hence, the contribution to the expected runtime for : ∈ {<,< + 1, . . .< + s} is 1. This result holds
for all executions of the loop. Every execution of the loop thus corresponds to a constant increase
to the expected runtime by 1. Since the loop is executed in�nitely often under 5 , the expected
runtime under 5 is +∞.
These �ve cases show that

" ∈ ΩA42 ⇐⇒ %" ∈ PAST

Hence, PAST is Π1
1 hard.

5 A PROOF RULE FOR PAST

The reduction proving the Π1
1-hardness of PAST (detailed in Section 4) uses the probabilistic choice

operator ⊕ in a very particular manner. In e�ect, ⊕ is only used to reduce the probability of continued
execution. This is realized by supplying ⊕ with two options: one immediately terminating program
execution and the other continuing it. We use the term Knievel to refer to these programs, re�ecting
the risky choices with terminal consequences made e�ortlessly by Evel Knievel.

De�nition 5.1 (Knievel form for pGCL programs). A pGCL program % is in Knievel form if every
instance of the probabilistic choice operator in % is of the form

skip ⊕? exit

for any rational probability value ? and some �xed �nite step implementation of the statements
skip and exit.

We now propose:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

37:16 Rupak Majumdar and V. R. Sathiyanarayana

Fig. 4. An execution tree of a Knievel form program. The doubled lines represent the potential for multiple

intermediate nodes. The mainline artery is depicted as the horizontal branch. Leaving this artery are single

terminal nodes.

Proposition 5.2. There is an e�ective transformation from any pGCL program % into a program

% in Knievel form such that

% ∈ PAST ⇐⇒ % ∈ PAST

We now provide a brief sketch of the proof for Proposition 5.2. At a high level, the e�ective
Knievel form transformation involves two computable functions. The �rst is induced by the Π1

1-
membership of PAST and the Π1

1-completeness of ΩA42 . By de�nition of Π1
1-hardness, there is a

computable function, which we call 5 , that takes pGCL programs % as input and outputs Turing
machines 5 (%) such that % ∈ %�() i� 5 (%) characterizes a well-founded l-tree. The second is the
program schema we provided in Section 4 (more precisely, in Program 3b) to prove the Π1

1-hardness
of PAST. More formally, it is a computable function 6 that takes in Turing machines" as input and
produces pGCL programs 6(") such that" characterizes a well-founded l-tree i� 6(") ∈ PAST.
Importantly, 6 only outputs programs in Knievel form. The e�ective transformation is the composed
function 6 ◦ 5 , which satis�es the following properties: it is computable, its output is a Knievel
program, and for any pGCL program % , we have % ∈ PAST ⇐⇒ 6(5 (%)) ∈ PAST.
Note that we can derive direct constructions for 6 ◦ 5 from the reductions. We include such a

construction in our full version [Majumdar and Sathiyanarayana 2023]; we leave them out here for
reasons of space.
Therefore, the Knievel form can be considered to be a kind of normal form for PAST programs.

Execution trees of these programs have a main arterial branch along which the skip option is
taken at every probabilistic operation. Branching away from this artery are leaves representing
terminal states. See Fig. 4 for an illustration.

In this section, we present a proof rule for proving PAST. We show that this proof rule is sound
for programs in Knievel form, and is complete for all PAST programs. Together with the e�ective
transformation to Knievel form, our rule yields a semantically complete proof technique for PAST.
We begin with a few prerequisites.

De�nition 5.3 (Reachable States and Expected Time to Reach). Let f = (%, [) be some program
state, and f4 = (%, [, 1, Y) be its initial execution state. The set of states reachable from f is

ΣA [f] ≜
{
(% ′, [′) ∈ Σ

��� ∃∃ 5 ∈ F ∃?′ ∈ Q+ ∃F ′ ∈ (Σ? ∪ Σ=)
∗ · f4 ⊢

∗
5 (% ′, [′, ?′,F ′)

}
Let � ⊆ ΣA [f] be some subset of states reachable from f . Call �:

5 ,f
the subset of execution states

belonging to � �rst reached in : steps under the scheduler 5 . Formally,

�:5 ,f ≜



(% ′, [′, ?′,F ′) ∈ P

������
∃?′ ∈ Q+ ∃F ′ ∈ (Σ= ∪ Σ?)

∗ · (% ′, [′) ∈ � ∧ f4 ⊢
:
5 (% ′, [′, ?′,F ′)

∧
(
∀= < : ∀g ∈ �=5 ,f · ¬(g ⊢:−=5 (% ′, [′, ?′,F ′))

) 


The second line ensures that there are no states belonging to � along the path to the execution
states in �:

5 ,f
.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

Positive Almost-Sure Termination: Complexity and Proof Rules 37:17

Then, the expected time to reach � from f under a scheduler 5 is given by the series

ExpReachRuntime(f,�, 5) ≜
∑
:∈N

Pr(not reaching � in : steps) ≜
∑
:∈N

©­­«
1 −

:∑
8=1

∑
g∈�8

5 ,f

Prob(g)
ª®®
¬

In our proof rule, we use the notion of the Ranking Supermartingale Maps (RSM-maps). RSM-maps
have been proven to be a sound and complete proof technique for BAST by Fu and Chatterjee
[2019]. We mildly generalize their notions below.

De�nition 5.4 (RSM-maps). Let ℎ : Σ → R be a function from the set of program states to the
non-negative reals and n > 0 be an arbitrary real number. The pair (ℎ, n) is a Ranking Supermartingle

Map (RSM-map) i� ℎ maps terminal states to 0 and satis�es the following properties for every
state f = (%, [) with ℎ(f) > 0:

(1) For deterministic states f with their successors f ′
= (% ′, [′) satisfying the property that

∀∀ 5 ∈ F · (%, [, 1, Y) ⊢5 (% ′, [′, 1, Y)

the function ℎ satis�es the following inequality:

ℎ(f ′) + n ≤ ℎ(f)

(2) For nondeterministic states f with successors f; = (%; , [;) and fA = (%A , [A) such that

∀∀ 5 ∈ F · (%, [, 1, Y) ⊢5 (%; , [; , 1, !=) ∨ (%, [, 1, Y) ⊢5 (%A , [A , 1, '=)

we have

max(ℎ(f;), ℎ(fA)) + n ≤ ℎ(f)

(3) For probabilistic states f with the probability value ? and successors f; = (%; , [;) and
fA = (%A , [A) such that

∀∀ 5 ∈ F · (%, [, 1, Y) ⊢5 (%; , [; , ?, !?) ∧ (%, [, 1, Y) ⊢5 (%A , [A , 1 − ?, '?)

we have

? × ℎ(f;) + (1 − ?) × ℎ(fA) + n ≤ ℎ(f)

Note that every program state f is either deterministic, nondeterministic, probabilistic, or terminal.

Unlike Fu and Chatterjee [2019], we do not require RSM-maps to only map terminal states to
zero. Our goal is to use them to reason about the expected runtime to reach a collection of states.
Towards this, we use the following two lemmas, showing soundness and completeness for BAST,
from Fu and Chatterjee [2019]. These are minor modi�cations of Lemmas 1 (Section 4.1) and 2
(Section 4.2) of Fu and Chatterjee [2019].

Lemma 5.5 (Soundness of RSM-maps). Let (ℎ, n) be an RSM-map. Denote by ΣC6C the set of states

assigned 0 by ℎ, i.e.,

ΣC6C = {f ∈ Σ | ℎ(f) = 0}

Then, for all schedulers 5 ∈ F and states f ∈ Σ, the expected runtime to reach ΣC6C is bounded above:

∀∀ 5 ∈ F ∀f ∈ Σ · ExpReachRuntime(f, ΣC6C , 5) ≤
ℎ(f)

n

Lemma 5.6 (Completeness of RSM-maps). Let f ∈ Σ be a program state, ΣA [f] be the set of states
reachable from f , and �C6C ⊆ ΣA [f] be a target collection of states. Suppose that for all schedulers

5 ∈ F, the expected runtime to reach �C6C from f bounded above by some : ∈ R:

∃: ∈ R ∀∀ 5 ∈ F · ExpReachRuntime(f,�C6C , 5) ≤ :

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

37:18 Rupak Majumdar and V. R. Sathiyanarayana

f
f ′

=

Fig. 5. Case 2 in the proof of Theorem 5.8. As earlier, the doubled lines indicate the potential for multiple

intermediary nodes. The node f′ is marked in blue, and occurs a�er = steps.

Then, there must exist an RSM-map (ℎf , 1) such that ℎf only assigns 0 to states unreachable from f

and to states in �C6C , i.e.,

ℎf (g) = 0 ⇐⇒ g ∈ �C6C ∪ (Σ \ ΣA [f])

Additionally, ℎf (f) upper bounds the expected runtime to reach �C6C under any scheduler.

We now present our proof rule.

De�nition 5.7 (Proof rule for PAST programs in Knievel form). Let f0 = (%, [0) be an initial program
state for the program % ∈ Prog, o be some ordinal, and ΣA [f0] be the set of states reachable from
f%,0. Let 6 : ΣA [f0] → o and : : ΣA [f0] → ((Σ → R) × R) be functions that satisfy the following
properties

(1) For every f ∈ ΣA [f0],

6(f) = 0 ⇐⇒ f = (⊥, _)

In other words, f is terminal i� 6(f) = 0.
(2) For a �xed non-terminal state f ∈ ΣA [f0], de�ne the set Lowerf as

Lowerf ≜ {f ′ ∈ ΣA [f] | 6(f
′) < 6(f)}

The function : returns an RSM-map : (f) = (ℎf , nf) that assigns 0 only to states not reachable
from f and to states in Lowerf , i.e.,

g ∈ (Lowerf ∪ (Σ \ ΣA [f])) ⇐⇒ ℎf (g) = 0

We refer to 6 and : as the rank and certi�cation functions respectively.

Notice that Lowerf is simply the set of states reachable from f that are assigned a lower value
by the rank 6. Applying Lemma 5.5, we see that the RSM-Map (ℎf , nf) certi�es the fact that the
expected time to reach Lowerf from f under every scheduler 5 is bounded above by a �nite value.

5.1 Partial Soundness

We now show the soundness of this rule over Knievel form programs.

Theorem 5.8. Let % be a pGCL program in Knievel form, f0 = (%, [) be some initial program state,

and o be some ordinal. Then, if two functions 6 : ΣA [f0] → o and : : ΣA [f0] → ((Σ → R) × R) exist
that satisfy the properties of the proof rule detailed in De�nition 5.7, then % ∈ PAST.

Proof. We show that from all states f ∈ ΣA [f0] and all schedulers 5 ∈ F, the expected runtime
is �nite.
Let (⊆ ΣA [f0] be the set of states from which the expected runtime is not �nite. Assume the

contrary and suppose (≠ ∅. Order states in (by the values assigned to them by the rank 6. Since 6
assigns ordinals under o, the well-ordering principle implies that (has a least element. Denote this
least element by f .
Case 1: 6(f) = 0. This means f is a terminal state, immediately forming a contradiction.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

Positive Almost-Sure Termination: Complexity and Proof Rules 37:19

Case 2: 6(f) = G for some 0 < G < o. Since G > 0, the soundness property of the RSM-map : (f)
implies that Lowerf ≠ ∅. Furthermore, the de�nitions of (and f together imply that Lowerf∩(= ∅.
Therefore, for every scheduler 5 ∈ F, the expected runtime from every f ′ ∈ Lowerf is �nite.

Take an arbitrary scheduler 5 . Denote the RSM-map : (f) by (ℎf , nf). Combining the properties
of (ℎf , nf) detailed in De�nition 5.7 and the results in Lemma 5.5 gives us

ExpReachRuntime(f, Lowerf , 5) ≤
ℎf (f)

nf

Take the execution tree corresponding to the scheduler 5 . There are two possibilities.
Subcase 1: The tree never reaches any f ′ ∈ Lowerf in its main arterial branch. In this case,

ExpReachRuntime(f, Lowerf , 5) = ExpRuntime(f, 5)

This is because the only states from Lowerf in this tree are the terminal states leaving the arterial
branch. The �niteness of the expected runtime follows immediately, forming a contradiction.
Subcase 2: The tree reaches some f ′ ∈ Lowerf its main arterial branch for the �rst time after =

steps. See Fig. 5 for an illustration of this case. Call the probability value at the execution state
corresponding to f ′ along the tree ? .
We now repeat an argument from Section 4. The expected runtime series from f under 5 can

be partitioned at the =Cℎ step, i.e., the point at which f ′ appears in the tree. The actions of the
scheduler 5 in the subtree rooted at f ′ must correspond to some scheduler 5 ′ in an execution
initialized at f ′. Furthermore, the membership of f ′ ∈ Lowerf implies that ExpRuntime(f ′, 5 ′) is
�nite. The expected runtime series from f can now be written as

ExpRuntime(f, 5) =
∑
:∈N

Pr(not terminating in : steps)

=

∑
:≤=

Pr(not terminating in : steps) +
∑
:>=

Pr(not terminating in : steps)

≤
ℎf (f)

nf
+ ? × ExpRuntime(f ′, 5 ′)

This series is hence �nite, forming a contradiction and completing the proof. □

Remark 5.9 (Soundness for AST). For every pGCL program % , if there exists rank and certi�cation
functions 5 and 6 that satisfy the properties laid out in De�nition 5.7 from the initial state f%,0 of % ,
then % is AST. In other words, our proof rule is sound for AST over all pGCL programs, not just
those in Knievel form. We leave the proof for this to the reader; it’s a simple extension of the proof
of Theorem 5.8.

5.2 Total Completeness

We now discuss the completeness of the rule detailed in De�nition 5.7. Take an arbitrary (i.e., not
necessarily Knievel) pGCL program % and its initial state f%,0 = (%, [0).
We describe a non-constructive procedure that yields candidates for the rank and certi�cation

functions 6 and : . This procedure de�nes three unbounded sequences: one of partial ranks {6=},
one of partial certi�cations {:=}, and one of subsets of reachable states {Σ=}. Every partial rank 6=
maps a subset of values from ΣA [f%,0] to ordinals under the �rst non-recursive ordinal lCK

1 . Each
partial certi�cate := returns RSM-maps for a subset of ΣA [f%,0], and each Σ= is a subset of ΣA [f%,0].
Importantly, the lengths of these sequences can only be measured in ordinals. The domains over
which the functions take values grow the further they get from the start.

In parallel to our construction, we will prove the following lemma.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

37:20 Rupak Majumdar and V. R. Sathiyanarayana

Lemma 5.10. For every ordinal o < lCK
1 , let 6o be the rank function used in (Candidate functions)

at the end of the procedure speci�ed in Section 5.2. Then, for every state f ∈ Σ, if 6o (f) is de�ned, then
6o (f) ≤ o.

We begin by �rst de�ning 60. Let Σ0 ⊆ ΣA [f%,0] be the set of terminal states reachable from f%,0.
For all f ∈ Σ0, set 60 (f) to 0. Thus,

Σ0 =
{
(⊥, [) ∈ ΣA [f%,0]

}
and ∀f ∈ Σ0 · 60 (f) = 0

Since the proof rule only uses RSM-maps for non-terminal states, :0 assigns to each f ∈ Σ0 an
arbitrary RSM-map. Observe that Lemma 5.10 trivially holds for the base case of 60.
We now describe a technique to derive the successor rank 6o+1 and certi�cate :o+1 from 6o and

:o for every ordinal o. We begin by requiring 6o+1 and :o+1 to agree with 6o and :o at every state
they take values on:

∀f ∈ Σo · 6o+1 (f) = 6o (f) ∧ :o+1 (f) = :o (f)

We then de�ne the set Σo+1:

Σo+1 ≜ {f ∈ ΣA [f%,0] | ∃A ∈ R ∀∀ 5 ∈ F · ExpReachRuntime(f, Σo, 5) ≤ A }

Informally, Σo+1 is the set of states from which the expected time to reach Σo is bounded above by
a �nite value. For each f ∈ Σo+1, denote this bound by Af . Observe that, for �C6C = Σo, the bound
on the expected time to reach �C6C satis�es the conditions outlined in Lemma 5.6. Hence, there
must exist a RSM-map (ℎf , 1) with

ℎf (g) = 0 ⇐⇒ g ∈ Σo ∪ (Σ \ ΣA [f])

Simply set
:o+1 (f) = (ℎf , 1)

To determine the rank 6o+1 of a state f ∈ Σo+1, we must analyze the subset of Σo reachable by an
execution initialized at f . Observe that, by the induction hypothesis of Lemma 5.10,

∀f ∈ Σo · 6o (f) ≤ o

Hence, the largest measure of any state in Σo is ≤ o. We can hence safely set, for all f ∈ Σo+1,

6o+1 (f) = o + 1

This trivially satis�es the successor induction step in the formal proof of Lemma 5.10.
We now detail the rank 6o and certi�cate :o for any limit ordinal o. Be begin by de�ning

Σ∪ ≜

⋃
o′<o

Σo′

Σ∪ is thus the set of states that have been assigned a rank by some 6o′ . For every o′ < o, set

∀f ′ ∈ Σo′ · 6o (f
′) = 6o′ (f

′) ∧ :o (f
′) = :o′ (f

′)

This simply merges the domains of all functions de�ned for lower ordinals. Now, de�ne Σo as

Σo ≜ {f ∈ ΣA [f%,0] | ∃A ∈ R ∀∀ 5 ∈ F · ExpReachRuntime(f, Σ∪, 5) ≤ A }

It’s easy to see that Σo is the set of states from which the runtime for reaching the region of states
ranked under o is bounded. For each f ∈ Σo, denote this bound by Af . Set �C6C = Σ∪ and using Af ,
apply Lemma 5.6 to derive the RSM-map (ℎf , 1) for �C6C and set

:o (f) = (ℎf , 1)

Similar to the previous case, 6o′ (f
′) ≤ o′ for each state f ′ ∈ Σo′ . Thus, for all f ∈ Σo, we set

6o (f) = o

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

Positive Almost-Sure Termination: Complexity and Proof Rules 37:21

)=) ′′
=+1)=+1

f=

f1 f=

f=+1

f=+1

f1

) ′
=+1

Fig. 6. The construction of)=+1. In each of these trees, the blue nodes represent states belonging to Σ6>>3 .

All other nodes belong to Σ103 . The red nodes are bad leaf nodes selected for extension. The tree) ′′
=+1 is

produced by removing the subtree rooted at f=+1 in)
′
=+1 (also depicted) without diminishing the expected

time to reach Σ6>>3 too much. Observe that) ′′
=+1 is merely a�ached to f1 to produce)=+1.

Notice that this completes the proof of Lemma 5.10.
Finally, we de�ne the candidate rank 6 : ΣA [f%,0] → lCK

1 and certi�cate : : ΣA [f%,0] → R as

6 ≜
⋃

o<lCK
1

6o and : ≜
⋃

o<lCK
1

:o (Candidate functions)

It’s easy to see that, over the domains they’re de�ned, 6 and : satisfy the requirements detailed
in De�nition 5.7. We now prove that, for all PAST programs, 6 and : assign a value to the initial
state f%,0. In this proof, we mildly abuse our notation and ascribe expected runtimes to execution
trees; these are simply the expected runtimes to reach the leaves of the tree from the root of the
tree under the scheduler that produces the tree.

Lemma 5.11. Let % be a PAST program and let 6 : ΣA [f%,0] → lCK
1 and : : ΣA [f%,0] →

((Σ → R) × R) be the candidate rank and certi�cation functions de�ned in (Candidate functions).
Then, 6 and : are total.

Proof. We prove this lemma by contradiction. Suppose 6 and : weren’t total. It’s easy to see
that 6 and : are always de�ned over the same collection of states. De�ne

Σ6>>3 ≜ {f ∈ ΣA [f%,0] | ∃o < lCK
1 · 6(f) = o}

In other words, Σ6>>3 is the collection of states reachable from the initial state f%,0 that are assigned
a rank by 6. De�ne

Σ103 ≜ ΣA [f%,0] \ Σ6>>3

Our assumptions indicate that Σ103 ≠ ∅. They also indicate that all execution trees rooted at states
in Σ103 yield �nite expected runtimes. We claim that for these states, the expected time to reach
Σ6>>3 is not bounded by a �nite value.
Why is this true? Take the set �f1 ⊆ Σ6>>3 of all good states reachable from some f1 ∈ Σ103 . Let

o1 be the smallest ordinal larger than the ranks 6(f6) assigned to every good state f6 ∈ �f1 . It
isn’t di�cult to see that o1 is recursive, as 6(f6) is recursive for every good state f6 and there are

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

37:22 Rupak Majumdar and V. R. Sathiyanarayana

countably many f6 ∈ �f1 . Hence, 6o1 ⊆ 6 must be de�ned. If the expected time to reach �f1 was
bounded by some Af1 , the procedure forces

6o1 (f1) ≤ o1

This forms a contradiction, justifying the inner claim.
We now construct an in�nite sequence of �nite execution trees {)=} rooted at some f1 ∈ Σ103

such that each)= has at least one bad state from Σ103 among its leaves and)=+1 extends one of these
leaves in)= . Additionally, the expected runtime of each)= is bounded below by =. We then show
that there exists a scheduler 5 that produces the limit) of {)=}, and that the expected runtime
from f1 under 5 is +∞.
We begin with)1. Take some state f1 ∈ Σ103 . From our earlier arguments, we know that there

must be some execution tree rooted at f1 that yields an expected time to reach Σ6>>3 at A
′
1 steps

with A ′1 > 1. Let) ′
1 be this tree. The nature of the in�nite series de�ned in De�nition 5.3 indicates

that there must be a �nite subtree of) ′
1 that still yields a slightly lower expected reachability time

A1 with 1 ≤ A1 < A ′1. Call this �nite subtree)1. Observe that there must be at least one bad state
f2 ∈ Σ103 among the leaves of)1; this arises from the strict inequality A1 < A ′1. Furthermore, the
expected runtime of)1 is trivially above 1.
We now describe a procedure to build)=+1 from)= . Take one bad leaf f= ∈)=∩Σ103 reached with

probability ?= > 0. We know that there must be an execution tree rooted at f= with an expected
time to reach Σ6>>3 of A ′=+1 >

1
?=
. Call this tree) ′

=+1, and take the �nite subtree) ′′
=+1 of)

′
=+1 with an

expected time to reach Σ6>>3 of A=+1 with
1
?
≤ A=+1 < A ′=+1. As before, the strict inequality means

that there must be one bad leaf in) ′′
=+1. Simply attach) ′′

=+1 to the leaf f= ∈)= to produce)=+1. This
procedure is illustrated in Fig. 6.
Our construction guarantees that the expected runtime of)= is at least =. The construction of

)=+1 implies that the expected runtime series of)=+1 simply extends that of)= with the probabilities
of non-termination from) ′′

=+1. These new probabilities are weighted by ?= . Hence,

ExpRuntime()=+1) = ExpRuntime()=) + ?= × ExpRuntime() ′′
=+1) ≥ = + ?= ×

1

?=
= = + 1

Hence, the expected runtime of)=+1 is at least=+1, proving the primary property of the construction.
Denote the limit of the sequence {)=} by) . Observe that the limit scheduler 5 of the sequence of

schedulers inducing each)= produces) from f1. Furthermore, the expected runtime of) must be
in�nite, as its subtrees)< ⊂) ensure that it cannot bounded above by any< ∈ N. This indicates
that the program % is not PAST, forming a contradiction and completing the proof. □

We have thus shown

Theorem 5.12. For each program % ∈ PAST, there exist ranking and certi�cation functions 6 and :

that satisfy the requirements of the proof rule detailed in De�nition 5.7.

5.3 All the Way to lCK
1

We now show, for every recursive ordinal o < lCK
1 , a PAST program in Knievel form whose rank

has range o. Together with the upper bound in the completeness argument, we conclude that lCK
1

is the appropriate range for the rank function 6.
We begin with inc (see Program 4a), a program for which the smallest rank that can be assigned

to its initial state finc,0 is 2. The execution of inc involves a scheduler-directed selection of a power
of 2 for the variable x through the loop from Lines 2 to 5. After this selection is made, the program
busy waits for x many steps at Lines 6 and 7. The smallest rank that can be ascribed to states at

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

Positive Almost-Sure Termination: Complexity and Proof Rules 37:23

1 x, y ≔ 1, 0

2 while (y = 0):

3 x ≔ 2 * x

4 y ≔ 0 [] y ≔ 1

5 skip ⊕1/2 exit

6 while (x > 0):

7 x ≔ x - 1

(a) inc

8 node ≔ []

9 while (True):

10 x, y ≔ 0, 1

11 while (y = 0):

12 x ≔ x + 1

13 y ≔ 0 [] y ≔ 1

14 skip ⊕1/2 exit

15 node ≔ node.append(x)

16 M_st ≔ init_M(node)

17 while (not M_st.terminal ()):

18 M_st ≔ M_step(M_state)

19 skip ⊕1/2 exit

20 if (M_st.reject ()):

21 exit

22 execute(inc)

(b) The program %" using inc

Prg. 4. The full program %"

Line 6 is 1, and since Line 6 can be reached in �nitely many steps in expectation, the rank 2 can be
assigned to finc,0. Furthermore, because inc ∉ BAST, a rank of 1 cannot be ascribed to finc,0.

We now de�ne programs for any recursive ordinal. Lecture 40 of Kozen [2006] describes amapping
between well-founded recursive l-trees and recursive ordinals. This involves the following �ner
mapping from the nodes of the l-trees to recursive ordinals: all leaf nodes are assigned 0 and all
internal nodes are assigned the smallest ordinal larger than the values assigned to their immediate
children. Finally, the tree is assigned the value of its root. Formally, for every recursive well-founded
tree" ∈ ΩA42 , de�ne a function ord" : N∗ → lCK

1 as

ord" (F) =

{
0 " (F) = 0 ∨ ∀= ∈ N ·" (⟨F,=⟩) = 0

sup=∈N ord" (⟨F,=⟩) + 1 otherwise

The �rst line indicates that ord" only maps leaves and nodes not validated by" to 0. Thus, every
recursive ordinal o is associated with some" ∈ ΩA42 such that o = ord" (Y).

For every" ∈ ΩA42 , we de�ne a program %" (see Program 4b) that needs ordinals at least as large
as ord" (Y). As in Program 3b, %" nondeterministically traverses a branch in the tree identi�ed
by" . Each loop iteration begins with the choice of a candidate child x through the inner loop at
Line 11. The veri�cation of the candidate child begins at Line 16 and ends at Line 21. The functions
init_M and M_step abstract the initialization and single-step execution of the machine " . The
structure M_st abstracts the current state of the execution of" and provides options for checking
whether that state is accepting or rejecting. The insertion of Knievel’s risk (continue or terminate)
at Line 19 inside the execution of " (Lines 16 to 19) constrains the expected runtime across all
children against the running time of" . It isn’t di�cult to show that the expected runtime of each
loop iteration from Lines 9 to 20 until the execution of inc at Line 22 is bounded above by a small
constant value. Call this constant value A" .

The proof for the PASTmembership of %" is similar to the arguments contained in Section 4. We
do not repeat them here; instead, we discuss the executions of %" from program states beginning at
the main loop (at Line 9). These program states primarily di�er in their values of node, the ‘current’

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

37:24 Rupak Majumdar and V. R. Sathiyanarayana

f

g=

]<]<′

f= f=≥ o′

≥ o′

≥ o′ + 1

≥ o′ + 1

g=′

Fig. 7. The increment mechanism of %" . The branching in this execution tree is purely nondeterministic; the

program can potentially reach any of its children. The minimum rank ascribable to the states is shown in

blue. f reaches g= in A" steps in expectation. From there, for each< ∈ N, it reaches]< , which can each be

ascribed rank o′. This causes the minimum possible rank value to increase.

node in the tree recognized by" . They are consequently a natural link to the value of ord" (node).
We show:

Lemma 5.13. Let" ∈ ΩA42 be a well-founded recursive tree and %" be the program corresponding

to it in Program 4. Let (" be the set of program states at Line 9 of Program 4b reachable from the

initial state f%" ,0. Additionally, let node : (" → N∗ be a function that maps states in (" to the value

of node (i.e., the node) contained in them.

Every rank that satis�es the rules detailed in the proof rule (De�nition 5.7) must assign to each

f ∈ (" an ordinal at least as large as ord" (node(f)).

Proof. Observe that from every f ∈ (" , the execution begins with a scheduler-directed selection
of a candidate child x through the loop at Lines 11 - 14. The expected runtime of %" under a scheduler
that never picks a child, or picks a child not in the tree is trivially under A" , the upper bound over
the expected runtime of reaching Line 20 from Line 9. The expected runtime under a scheduler that
never exits the inc loop at Lines 2 - 5 is also similarly bounded. Hence, we only discuss schedulers
picking actual children and actual values at inc.
We prove this lemma by trans�nite induction on the value of ord" (node(f)).
Base: ord" (node(f)) = 0. This means node(f) is a leaf. Therefore, the execution always reaches

the terminal state at Line 21, indicating that the expected runtime from f is bounded by A" under
all schedulers. This justi�es a rank assignment of 1 to f .

Induction case 1: ord" (node(f)) = o + 1 for some ordinal o. This implies the existence of a child
of node(f) that was assigned the value o by ord" .

Consider the selection of some child = ∈ N of node(f) with ord" (⟨node(f), =⟩) = o′ and o′ ≤ o.
Call the program state in (" corresponding to this new node f= . By the induction hypothesis, the
minimum rank that can be ascribed to f= is o

′.
From f , the execution tree can select and validate the child = within A" steps in expectation.

After this, the execution enters inc and reaches Line 2 of inc; let g= be the program state at this
stage. From g= , the execution reaches Line 6 of inc after selecting some< ∈ N for the variable x.
Call this program state]< . From]< , the execution reaches f= in< steps.
We know, from the induction hypothesis, that f= must be assigned a rank ≥ o′. This lower bound

on the rank must also apply to]< , as all executions from]< deterministically reach f= in< steps.
However, from g= , the execution can reach]< for any< ∈ N. From each]< , the expected runtime

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

Positive Almost-Sure Termination: Complexity and Proof Rules 37:25

1 x, y ≔ 0, 0

2 while (y = 0):

3 x ≔ x + 1

4 y ≔ 0 ⊕1/2 y ≔ 1

5 if (y = 1): break

6 y ≔ pow(4, x)

7 while (y > 0): y ≔ y - 1

l

l

l

43

42

4

Fig. 8. The unsoundness example. (Le�) a program that is not PAST; (Right) An execution tree. Each node on

the le�most branch is labelled l , and each node leaving that branch is labeled by 4G . It’s easy to see that the

expected runtime for this tree is +∞.

for reaching a lower ordinal is bounded below by<, an ever increasing quantity. Hence, the rank
assigned to g= must at least be o′+1. Furthermore, because the execution can always expect to reach
g< within A" steps, the state f can be assigned the same rank as g< . See Fig. 7 for an illustration.

Now, since there must be some = ∈ N such that f= is ascribed o, the state f must be ascribed a
rank of at least o + 1, completing this case.
Induction case 2: ord" (node(f)) = o for some limit ordinal o. This is only possible if there are

countably many children under node(f) and for every ordinal o′ < o, there must be some child
= ∈ N of node(f) such that ord" (⟨node(f), =⟩) > o′. Let the program state in (" corresponding
to the node ⟨node(f), =⟩ be f= . Lifting the arguments from the previous case shows that the rank
of f must be at least o′ + 1 for all o′ < o. This forces the rank of f to be at least o, completing this
case, and therefore the proof. □

The initial program state of %" must thus be assigned a rank of at least ord" (Y), justifying the
need for ordinals up to lCK

1 .

5.4 Knievel Form is Necessary

While the rule de�ned in De�nition 5.7 is complete for PAST, it isn’t sound for all programs. Take
the program in Fig. 8. It is trivial to assign to all program states where the execution remains inside
the �rst loop (at Line 2) the rank l . We know that the expected runtime bound of 12 (the expected
runtime of the �rst loop) of exiting the loop yields some RSM-map for states inside the loop; simply
assign to them this RSM-map. For all states leaving the loop, simply assign to them the value of ~
and an RSM-map that sets 1 to them and 0 to everything else.
This program is trivially not PAST; however, the rank and certi�cation functions we de�ned

in the previous paragraph satisfy the properties of our proof rule. Thus, our rule must only be
applied onto programs in Knievel form to prove their membership in PAST. Nevertheless, our
total completeness argument indicates that if one could show that no valid rank and certi�cation
functions can exist for a particular pGCL program % , then % ∉ PAST.

6 RELATED WORK

Termination and Fair Termination. Termination is a classical problem in computer science, going
back to Turing’s paper [Turing 1937]. Ranking functions, also known as progress measures, are a
standard technique for proving program termination. Manna [1974] described the use of such
functions for demonstrating the termination of deterministic and nondeterministic programs. Their
applicability for programs with unbounded nondeterminism has been explored [Chandra 1978;
Francez 1986; Harel and Kozen 1984]. The Π

1
1-completeness of the problem of determining if a

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

37:26 Rupak Majumdar and V. R. Sathiyanarayana

program with these features halts is a result by Chandra [1978], and the requirement for ordinals
up to lCK

1 in these ranking functions was shown by Apt and Plotkin [1986]. Thus, there are
recursive procedures transforming positively terminating probabilistic programs with bounded
nondeterminism (i.e., PAST programs) to terminating non-probabilistic programs with unbounded
nondeterminism, thereby “compiling away” the probabilities in the former.
Harel [1986] showed a general recursive tree transformation that reduced fair termination to

termination in the setting of unbounded nondeterminism, thereby providing semantically sound
and complete proof rules for fair termination. His reduction also proved the Π1

1-completeness for
fair termination. We can study fairness in our context, and consider the natural Fair-AST, Fair-PAST,
and Fair-BAST sets. These quantify over the set of fair schedulers instead of the set of all schedulers.
For a general notion of strong fairness, we can show that Fair-AST, Fair-PAST, and Fair-BAST
are all Π1

1-hard and are in Π
1
2—the complexity gap is due to a second, existential second-order

quanti�er over branches in an in�nite tree needed to capture fairness in the probabilistic setting.
When we restrict ourselves to the setting of �nitary fairness [Alur and Henzinger 1998], which
replaces the general fairness language with the largest safety language contained within it, we
see that Fin-Fair-AST and Fin-Fair-BAST remain Π

0
2 and Σ

0
2-complete, and Fin-Fair-PAST remains

Π
1
1-complete. The appropriateness of �nitary fairness for probabilistic programs have been argued

before [Lengál et al. 2017]. We include proofs for these extensions in our full version [Majumdar
and Sathiyanarayana 2023] for completeness.

Probabilistic Termination. Termination for probabilistic programs is a well-studied area and trace
their provenance to results on in�nite-state Markov decision processes. Ranking supermartingales

are regarded as the probabilistic generalization of ranking functions [Takisaka et al. 2021]. Martin-
gale based techniques have found applications in proving qualitative termination [Avanzini et al.
2020; Bournez and Garnier 2005; Chakarov and Sankaranarayanan 2013; Fioriti and Hermanns 2015;
Fu and Chatterjee 2019; Huang et al. 2018]. More recently, they have also been used in proving
quantitative termination, where one asks for the probability of termination [Beutner and Ong 2021;
Chatterjee et al. 2022, 2017; Takisaka et al. 2021]. Regarding these properties, the use of martingales
in the determination of lower and upper bounds on the probability of termination has been shown
by Chatterjee et al. [2022, 2017]. Futhermore, Kura et al. [2019] have explored martingale-based
approaches toward tail bounds on the expected runtime.

Our work is concerned with the qualitative properties of almost-sure and positive almost-sure ter-
mination. Bournez and Garnier [2005] were the �rst to discuss the use of ranking supermartingales
in a sound and complete proof technique for positive almost-sure termination of programs without
nondeterminism. The extension of these rules for termination of programs with a global bound on
the expected runtime across all schedulers (i.e., BAST programs) have been discussed by Fioriti and
Hermanns [2015] and Fu and Chatterjee [2019] with the former only including semi-completeness
results and the latter proving completeness. Separately, sound and complete martingale-based proof
rules for BAST (called strong AST in their paper) have been explored by Avanzini et al. [2020].
Martingales have found applications in the study of almost-sure termination (i.e., AST) as well.

A sound proof rule for AST using martingales was described by Chakarov and Sankaranarayanan
[2013], and McIver et al. [2018] paired supermartingales with certain intermediary progress func-
tions in a widely applicable sound proof rule for almost-sure termination. Furthermore, algorithms
for the synthesis of martingales for interesting subclasses of programs have been explored [Chakarov
and Sankaranarayanan 2013; Chatterjee et al. 2016, 2018].
Proof rules for AST and PAST that operate over the syntax of the programs have been studied

[Kaminski et al. 2018; McIver et al. 2018; Olmedo et al. 2016]. The most relevant are the rules that
generate bounds on the expected runtime, presented by Kaminski et al. [2018]. Similar rules for

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

Positive Almost-Sure Termination: Complexity and Proof Rules 37:27

recursive programs without loops have been presented by Olmedo et al. [2016]. Additionally, a
relatively complete system with the ability to determine AST was introduced by Batz et al. [2021].
Importantly, none of these works include nondeterminism in their program models. Separately,
algorithmic analyses of proof rules for AST, PAST, and non-termination have been discussed
[Moosbrugger et al. 2021]. Interestingly, we do not know of a “natural” sound and complete proof
rule for AST.
Our focus on this paper is purely theoretical. A number of papers have focused on automating

the search for termination proofs by �xing a language for expressing ranking supermartingles (e.g.,
linear or polynomial functions) and then using constraint solving to �nd appropriate functions
[Chakarov and Sankaranarayanan 2013; Chatterjee et al. 2016; Colón et al. 2003]. We do not know
of many algorithmic heuristics when ranks involve ordinals, even for non-probabilistic programs.
Whether our proof rules can be automated in a sound way remains to be seen. One could consider
lexicographic ranking functions [Chatterjee et al. 2021; Cook et al. 2013] as a �rst step, using the
standard embedding of a tuple (00, . . . , 0=) to the ordinal sum 00l

= + . . . + 0= .

Complexity. Finally, the complexities of AST, PAST, and other related decision problems for proba-
bilistic programs with discrete distributions over their state spaces and without nondeterminism
have been discussed in detail by Kaminski et al. [2019]. Their results have been extended by Beutner
and Ong [2021] to account for continuous distributions. As far as we know, the complexity analysis
for nondeterministic extensions of these problems had not been studied before. For AST and BAST,
the extensions are not di�cult. Our contribution is to notice the signi�cantly higher complexity of
PAST.

7 CONCLUSIONS

We have characterized the complexity of PAST for pGCL programs with bounded nondeterministic
and probabilistic choice operations. We proved that this problem is Π1

1-complete. Using recursion-
theoretic insights, we have de�ned an e�ectively computable normal form for pGCL, and provided
a sound and complete proof rules for PAST for normal form programs. Our proof rule uses ordinals
up to lCK

1 and this is necessary. A speci�c implication of our results is that existing techniques
based on ranking supermartinagles cannot be complete for PAST.

ACKNOWLEDGMENTS

We thank the reviewers for their helpful comments. This research was sponsored in part by the
Deutsche Forschungsgemeinschaft project 389792660 TRR 248–CPEC (see https://perspicuous-
computing.science).

REFERENCES

Rajeev Alur and Thomas A. Henzinger. 1998. Finitary Fairness. ACM Trans. Program. Lang. Syst. 20, 6 (1998), 1171–1194.

https://doi.org/10.1145/295656.295659

Krzysztof R. Apt and Gordon D. Plotkin. 1986. Countable nondeterminism and random assignment. J. ACM 33, 4 (1986),

724–767. https://doi.org/10.1145/6490.6494

Martin Avanzini, Ugo Dal Lago, and Akihisa Yamada. 2020. On probabilistic term rewriting. Sci. Comput. Program. 185

(2020). https://doi.org/10.1016/j.scico.2019.102338

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2021. Relatively complete veri�cation

of probabilistic programs: an expressive language for expectation-based reasoning. Proc. ACM Program. Lang. 5, POPL

(2021), 1–30. https://doi.org/10.1145/3434320

Dmitri P. Bertsekas and Steven E. Shreve. 1978. Stochastic Optimal Control: The Discrete Time Case. Academic Press.

Raven Beutner and Luke Ong. 2021. On probabilistic termination of functional programs with continuous distributions. In

PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Virtual

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

https://perspicuous-computing.science
https://perspicuous-computing.science
https://doi.org/10.1145/295656.295659
https://doi.org/10.1145/6490.6494
https://doi.org/10.1016/j.scico.2019.102338
https://doi.org/10.1145/3434320

37:28 Rupak Majumdar and V. R. Sathiyanarayana

Event, Canada, June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 1312–1326. https://doi.org/10.1145/

3453483.3454111

Olivier Bournez and Florent Garnier. 2005. Proving Positive Almost-Sure Termination. In Term Rewriting and Applications,

16th International Conference, RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings (Lecture Notes in Computer Science,

Vol. 3467), Jürgen Giesl (Ed.). Springer, 323–337. https://doi.org/10.1007/978-3-540-32033-3_24

Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In Computer

Aided Veri�cation - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings

(Lecture Notes in Computer Science, Vol. 8044), Natasha Sharygina and Helmut Veith (Eds.). Springer, 511–526. https:

//doi.org/10.1007/978-3-642-39799-8_34

Ashok Chandra. 1978. Computable nondeterministic functions. In Foundations of Computer Science (FOCS). IEEE, 127–131.

Krishnendu Chatterjee and Hongfei Fu. 2017. Termination of Nondeterministic Recursive Probabilistic Programs.

arXiv:1701.02944 [cs.PL]

Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. 2016. Termination Analysis of Probabilistic Programs

Through Positivstellensatz’s. In Computer Aided Veri�cation - 28th International Conference, CAV 2016, Toronto, ON,

Canada, July 17-23, 2016, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9779), Swarat Chaudhuri and Azadeh

Farzan (Eds.). Springer, 3–22. https://doi.org/10.1007/978-3-319-41528-4_1

Krishnendu Chatterjee, Hongfei Fu, Petr Novotný, and Rouzbeh Hasheminezhad. 2018. Algorithmic Analysis of Qualitative

and Quantitative Termination Problems for A�ne Probabilistic Programs. ACM Trans. Program. Lang. Syst. 40, 2 (2018),

7:1–7:45. https://doi.org/10.1145/3174800

Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Dorde Zikelic. 2022. Sound and Complete

Certi�cates for Quantitative Termination Analysis of Probabilistic Programs. In Computer Aided Veri�cation - 34th

International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part I (Lecture Notes in Computer Science,

Vol. 13371), Sharon Shoham and Yakir Vizel (Eds.). Springer, 55–78. https://doi.org/10.1007/978-3-031-13185-1_4

Krishnendu Chatterjee, Ehsan Kafshdar Goharshady, Petr Novotný, Jiri Zárevúcky, and Dorde Zikelic. 2021. On Lexicographic

Proof Rules for Probabilistic Termination. In Formal Methods - 24th International Symposium, FM 2021, Virtual Event,

November 20-26, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 13047), Marieke Huisman, Corina S. Pasareanu,

and Naijun Zhan (Eds.). Springer, 619–639. https://doi.org/10.1007/978-3-030-90870-6_33

Krishnendu Chatterjee, Petr Novotný, and Dorde Zikelic. 2017. Stochastic invariants for probabilistic termination. In

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,

January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 145–160. https://doi.org/10.1145/3009837.

3009873

Michael Colón, Sriram Sankaranarayanan, and Henny Sipma. 2003. Linear Invariant Generation Using Non-linear Constraint

Solving. In Computer Aided Veri�cation, 15th International Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003,

Proceedings (Lecture Notes in Computer Science, Vol. 2725), Warren A. Hunt Jr. and Fabio Somenzi (Eds.). Springer, 420–432.

https://doi.org/10.1007/978-3-540-45069-6_39

Byron Cook, Abigail See, and Florian Zuleger. 2013. Ramsey vs. Lexicographic Termination Proving. In Tools and Algorithms

for the Construction and Analysis of Systems - 19th International Conference, TACAS 2013, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes in

Computer Science, Vol. 7795), Nir Piterman and Scott A. Smolka (Eds.). Springer, 47–61. https://doi.org/10.1007/978-3-

642-36742-7_4

Edsger Wybe Dijkstra. 1976. A discipline of programming. Vol. 613924118. prentice-hall Englewood Cli�s.

Luis María Ferrer Fioriti and Holger Hermanns. 2015. Probabilistic Termination: Soundness, Completeness, and Com-

positionality. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2015, Mumbai, India, January 15-17, 2015, Sriram K. Rajamani and David Walker (Eds.). ACM, 489–501.

https://doi.org/10.1145/2676726.2677001

Nissim Francez. 1986. Fairness. Springer. https://doi.org/10.1007/978-1-4612-4886-6

Hongfei Fu and Krishnendu Chatterjee. 2019. Termination of Nondeterministic Probabilistic Programs. In Veri�cation, Model

Checking, and Abstract Interpretation - 20th International Conference, VMCAI 2019, Cascais, Portugal, January 13-15, 2019,

Proceedings (Lecture Notes in Computer Science, Vol. 11388), Constantin Enea and Ruzica Piskac (Eds.). Springer, 468–490.

https://doi.org/10.1007/978-3-030-11245-5_22

David Harel. 1986. E�ective transformations on in�nite trees, with applications to high undecidability, dominoes, and

fairness. J. ACM 33, 1 (1986), 224–248. https://doi.org/10.1145/4904.4993

David Harel and Dexter Kozen. 1984. A programming language for the inductive sets and applications. Information and

Control 63 (1984), 118–139.

Mingzhang Huang, Hongfei Fu, and Krishnendu Chatterjee. 2018. New Approaches for Almost-Sure Termination of

Probabilistic Programs. In Programming Languages and Systems - 16th Asian Symposium, APLAS 2018, Wellington, New

Zealand, December 2-6, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 11275), Sukyoung Ryu (Ed.). Springer,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

https://doi.org/10.1145/3453483.3454111
https://doi.org/10.1145/3453483.3454111
https://doi.org/10.1007/978-3-540-32033-3_24
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-642-39799-8_34
https://arxiv.org/abs/1701.02944
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1145/3174800
https://doi.org/10.1007/978-3-031-13185-1_4
https://doi.org/10.1007/978-3-030-90870-6_33
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-642-36742-7_4
https://doi.org/10.1007/978-3-642-36742-7_4
https://doi.org/10.1145/2676726.2677001
https://doi.org/10.1007/978-1-4612-4886-6
https://doi.org/10.1007/978-3-030-11245-5_22
https://doi.org/10.1145/4904.4993

Positive Almost-Sure Termination: Complexity and Proof Rules 37:29

181–201. https://doi.org/10.1007/978-3-030-02768-1_11

Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2019. On the hardness of analyzing probabilistic

programs. Acta Informatica 56, 3 (2019), 255–285. https://doi.org/10.1007/s00236-018-0321-1

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2018. Weakest Precondition

Reasoning for Expected Runtimes of Randomized Algorithms. J. ACM 65, 5 (2018), 30:1–30:68. https://doi.org/10.1145/

3208102

Joost-Pieter Katoen, Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski, and Federico Olmedo. 2015. Understanding

Probabilistic Programs. In Correct System Design - Symposium in Honor of Ernst-Rüdiger Olderog on the Occasion of His

60th Birthday, Oldenburg, Germany, September 8-9, 2015. Proceedings (Lecture Notes in Computer Science, Vol. 9360), Roland

Meyer, André Platzer, and Heike Wehrheim (Eds.). Springer, 15–32. https://doi.org/10.1007/978-3-319-23506-6_4

Laurence Kirby and Je� B. Paris. 1982. Accessible Independence Results for Peano Arithmetic. Bulletin of The London

Mathematical Society 14 (1982), 285–293.

Dexter Kozen. 2006. Theory of Computation. Springer. https://doi.org/10.1007/1-84628-477-5

Satoshi Kura, Natsuki Urabe, and Ichiro Hasuo. 2019. Tail Probabilities for Randomized Program Runtimes via Martingales

for Higher Moments. In Tools and Algorithms for the Construction and Analysis of Systems - 25th International Conference,

TACAS 2019, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech

Republic, April 6-11, 2019, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11428), Tomás Vojnar and Lijun

Zhang (Eds.). Springer, 135–153. https://doi.org/10.1007/978-3-030-17465-1_8

Ondrej Lengál, Anthony Widjaja Lin, Rupak Majumdar, and Philipp Rümmer. 2017. Fair Termination for Parameterized

Probabilistic Concurrent Systems. In Tools and Algorithms for the Construction and Analysis of Systems - 23rd International

Conference, TACAS 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017,

Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10205), Axel Legay and

Tiziana Margaria (Eds.). 499–517. https://doi.org/10.1007/978-3-662-54577-5_29

Rupak Majumdar and V. R. Sathiyanarayana. 2023. Positive Almost-Sure Termination – Complexity and Proof Rules.

arXiv:2310.16145 [cs.PL]

Zohar Manna. 1974. Mathematical Theory of Computation. McGraw-Hill. https://books.google.de/books?id=

D7omAAAAMAAJ

Annabelle McIver and Carroll Morgan. 2005. Abstraction, Re�nement and Proof for Probabilistic Systems. Springer. https:

//doi.org/10.1007/b138392

Annabelle McIver, Carroll Morgan, Benjamin Lucien Kaminski, and Joost-Pieter Katoen. 2018. A new proof rule for

almost-sure termination. Proc. ACM Program. Lang. 2, POPL (2018), 33:1–33:28. https://doi.org/10.1145/3158121

Marcel Moosbrugger, Ezio Bartocci, Joost-Pieter Katoen, and Laura Kovács. 2021. Automated Termination Analysis of

Polynomial Probabilistic Programs. In Programming Languages and Systems - 30th European Symposium on Programming,

ESOP 2021, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg

City, Luxembourg, March 27 - April 1, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12648), Nobuko Yoshida

(Ed.). Springer, 491–518. https://doi.org/10.1007/978-3-030-72019-3_18

Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2016. Reasoning about Recursive

Probabilistic Programs. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS

’16, New York, NY, USA, July 5-8, 2016, Martin Grohe, Eric Koskinen, and Natarajan Shankar (Eds.). ACM, 672–681.

https://doi.org/10.1145/2933575.2935317

Amir Pnueli. 1983. On the Extremely Fair Treatment of Probabilistic Algorithms. In Proceedings of the 15th Annual ACM

Symposium on Theory of Computing, 25-27 April, 1983, Boston, Massachusetts, USA, David S. Johnson, Ronald Fagin,

Michael L. Fredman, David Harel, Richard M. Karp, Nancy A. Lynch, Christos H. Papadimitriou, Ronald L. Rivest, Walter L.

Ruzzo, and Joel I. Seiferas (Eds.). ACM, 278–290. https://doi.org/10.1145/800061.808757

George Pólya. 1921. Über eine aufgabe betre�end die irrfahrt im strassennetz. Math. Ann. 84 (1921), 149–160.

Hartley Rogers Jr. 1987. Theory of recursive functions and e�ective computability (Reprint from 1967). MIT Press. https:

//mitpress.mit.edu/9780262680523/theory-of-recursive-functions-and-e�ective-computability/

Toru Takisaka, Yuichiro Oyabu, Natsuki Urabe, and Ichiro Hasuo. 2021. Ranking and Repulsing Supermartingales for

Reachability in Randomized Programs. ACM Trans. Program. Lang. Syst. 43, 2 (2021), 5:1–5:46. https://doi.org/10.1145/

3450967

Alan M. Turing. 1937. On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc.

s2-42, 1 (1937), 230–265. https://doi.org/10.1112/plms/s2-42.1.230

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 37. Publication date: January 2024.

https://doi.org/10.1007/978-3-030-02768-1_11
https://doi.org/10.1007/s00236-018-0321-1
https://doi.org/10.1145/3208102
https://doi.org/10.1145/3208102
https://doi.org/10.1007/978-3-319-23506-6_4
https://doi.org/10.1007/1-84628-477-5
https://doi.org/10.1007/978-3-030-17465-1_8
https://doi.org/10.1007/978-3-662-54577-5_29
https://arxiv.org/abs/2310.16145
https://books.google.de/books?id=D7omAAAAMAAJ
https://books.google.de/books?id=D7omAAAAMAAJ
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1145/3158121
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1145/2933575.2935317
https://doi.org/10.1145/800061.808757
https://mitpress.mit.edu/9780262680523/theory-of-recursive-functions-and-effective-computability/
https://mitpress.mit.edu/9780262680523/theory-of-recursive-functions-and-effective-computability/
https://doi.org/10.1145/3450967
https://doi.org/10.1145/3450967
https://doi.org/10.1112/plms/s2-42.1.230

	Abstract
	1 Introduction
	2 A Hydra Game: PAST Requires Transfinite Ordinals
	3 Probabilistic Programs and their Termination
	3.1 Program Model
	3.2 Notions of Termination
	3.3 Recursion-Theoretic Preliminaries

	4 The Complexity of Probabilistic Termination
	5 A Proof Rule for PAST
	5.1 Partial Soundness
	5.2 Total Completeness
	5.3 All the Way to 1CK
	5.4 Knievel Form is Necessary

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

