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Abstract
The leafage of a chordal graph G is the minimum integer � such that G can be realized
as an intersection graph of subtrees of a tree with � leaves. We consider structural
parameterization by the leafage of classical domination and cut problems on chordal
graphs. Fomin, Golovach, and Raymond [ESA 2018, Algorithmica 2020] proved,
among other things, that Dominating Set on chordal graphs admits an algorithm
running in time 2O(�2) · nO(1). We present a conceptually much simpler algorithm
that runs in time 2O(�) · nO(1). We extend our approach to obtain similar results
for Connected Dominating Set and Steiner Tree. We then consider the two
classical cut problemsMultiCut with Undeletable Terminals andMultiway

Cut with Undeletable Terminals. We prove that the former isW[1]-hard when
parameterized by the leafage and complement this result by presenting a simple nO(�)-
time algorithm. To our surprise, we find that Multiway Cut with Undeletable

Terminals on chordal graphs can be solved, in contrast, in nO(1)-time.

Keywords Chordal graphs · Leafage · FPT algorithms · Dominating set · MultiCut
with undeletable terminals · Multiway cut with undeletable terminals

1 Introduction

The intersection graph of a family F of nonempty sets is the graph whose vertices are
the elements of F with two vertices being adjacent if and only if their corresponding
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sets intersect. The most natural and famous example of such intersection graphs are
interval graphswhereF is a collection of subpaths of a path. Due to their applicability
in scheduling, interval graphs have received a considerable attention in the realm of
algorithmic graph theory. One useful characterization of an interval graph is that its
maximal cliques can be linearly ordered such that for every vertex, themaximal cliques
containing that vertex occur consecutively [26]. This property proves very useful for
the design of polynomial-time dynamic programming based or greedy algorithms on
interval graphs.

Consider the generalization where F is a collection of subtrees of a tree instead
of subpaths of a path. In this case, the corresponding class of intersection graphs is
exactly that of chordal graphs [11, 25, 48]. Recall that a graph is chordal if every
cycle of length at least 4 has a chord. Often, the algorithms of the types mentioned
in the previous paragraph fail to generalize to this superclass as witnessed by the
following problems that admit polynomial-time algorithms on interval graphs but are
NP-complete on chordal graphs:Dominating Set [8, 13],Connected Dominating

Set [3, 49],Steiner Tree [3, 49],Multicut with Undeletable Terminals [29,
45], Subset Feedback Vertex Set (Subset FVS) [22, 46], Longest Cycle

[28, 35],1 Longest Path [33], Component Order Connectivity [20], s- Club
Contraction [27], Independent Set Reconfiguration [5], Bandwidth [37],
Cluster Vertex Deletion [36]. Also, Graph Isomorphism on chordal graphs
is polynomial-time equivalent to the problem on general graphs whereas it admits a
linear-time algorithm on interval graphs [41].

The problems above remain hard even on split graphs, anotherwell-studied subclass
of chordal graphs. A graph is a split graph if its vertex set can be partitioned into a
clique and an independent set. The collection of split graphs is a (proper) subset
of the class of intersection graphs where F is a collection of substars of a star. As
interval graphs are intersection graphs of subpaths of a path (a tree with two leaves)
and split graphs are intersection graphs of substars of a star (a tree with arbitrary
number of leaves), a natural question to consider is what happens to these problems
on subclasses of chordal graphs that are intersection graphs of subtrees of a tree with
a bounded number of leaves. Motivated by such questions, we consider the notion of
leafage introduced by Lin et al. [40]: the leafage of a chordal graph G is the minimum
integer � such that G can be realized as an intersection graph of a collection F of
subtrees of a tree that has � leaves. Note that the leafage of interval graphs is at most
2 while split graphs have unbounded leafage. Thus the leafage measures, in some
sense, how close a chordal graph is to an interval graph. Alternately, an FPT or XP
algorithm parameterized by the leafage can be seen as a generalization of the algorithm
on interval graphs.

Related Work Habib and Stacho [30] showed that we can compute the leafage of a
connected chordal graph in polynomial time. Their algorithm also constructs a corre-
sponding representation tree2 T with the minimum number of leaves. In recent years,
researchers have studied the structural parameterization of various graph problems
on chordal graphs parameterized by the leafage. Fomin et al. [21] and Arvind et al.

1 See Exercise 2 in Chapter 6 in [28].
2 We present formal definitions of the terms used in this section in Sect. 2.
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[2] proved, respectively, that the Dominating Set and Graph Isomorphism prob-
lems on chordal graphs are FPT parameterized by the leafage. Barnetson et al. [4]
and Papadopoulos and Tzimas [47] presented XP-algorithms running in time nO(�)

for Fire Break and Subset FVS on chordal graphs, respectively. Papadopoulos
and Tzimas [47] also proved that Subset FVS is W[1]-hard when parameterized by
the leafage. Hochstättler et al [32] showed that we can compute the neighborhood
polynomial of a chordal graph in nO(�)-time.

It is known that the size of an asteroidal set in a chordal graph is upper bounded by
its leafage [40]. See [1, 31] for the relationship between leafage and other structural
properties of chordal graphs. Kratsch and Stewart [38] proved that we can effectively
2�-approximate bandwidth of chordal graphs of leafage �. Chaplick and Stacho [14]
generalized the notion of leafage to vertex leafage and proved that, unlike leafage, it
is hard to determine the optimal vertex leafage of a given chordal graph. Figueiredo et
al. [18] proved that Dominating Set, Connected Dominating Set and Steiner

Tree are FPT on chordal graphs when parameterized by the size of the solution plus
the vertex leafage, provided that a tree representation with optimal vertex leafage is
given as part of the input.

Our ResultsWeconsider well-studied domination and cut problems on chordal graphs.
As our first result, we prove that Dominating Set on chordal graphs of leafage at
most � admits an algorithm running in time 2O(�) · nO(1). This improves upon the
existing algorithm by Fomin et al. [21, Theorem 9] which runs in time 2O(�2) · nO(1).
Despite being significantly simpler than the algorithm in [21], our algorithm in fact
solves the Red- Blue Dominating Set problem, a well-known generalization of
Dominating Set. In this generalized version, an input is a graph G with a partition
(R, B) of its vertex set and an integer k, and the objective is to find a subset D of R
that dominates every vertex in B, i.e., B ⊆ N (D). We further use this algorithm to
solve other related domination problems.

Theorem 1.1 Dominating Set,Connected Dominating Set, andSteiner Tree

can be solved in 2O(�) · nO(1) on chordal graphs of leafage at most �.

The reductions in [8] and [49] used to prove that these problems are NP-complete on
chordal graphs imply that these problems do not admit 2o(n), and hence 2o(�) · nO(1),
algorithms unless the ETH fails.

Arguably, the two most studied cut problems areMultiCut andMultiway Cut.
In theMultiCut problem, an input is a graph G, a set of terminal pairs P ⊆ V (G)×
V (G) and an integer k, and the objective is to find a subset S ⊆ V (G) of size at most k
such that nopair of vertices in P is connected inG−S. In theMultiway Cutproblem,
instead of terminal pairs, we are given a terminal set P and the objective is to find a
subset S ⊆ V (G)of size atmost k such that no twovertices in P are connected inG−S.
These problems and variations of them have received a considerable attention which
lead to the development of new techniques [9, 15, 16, 42, 43]. Misra et al. [44] studied
the parameterized complexity of these problems on chordal graphs. Guo et al. [29]
proved that MultiCut with Deletable Terminals is NP-complete on interval
graphs, thereby implying that this problem is paraNP-hard when parameterized by the
leafage. We consider theMultiCut with Undeletable Terminals problem and
prove the following result.
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Theorem 1.2 MultiCut with Undeletable Terminals on chordal graphs is
W[1]-hard when parameterized by the leafage � and assuming the ETH, does not admit
an algorithm running in time f (�) · no(�) for any computable function f . However, it
admits an XP-algorithm running in time nO(�).

Next, we focus on the Multiway Cut with Undeletable Terminals prob-
lem. We find it somewhat surprising that the classical complexity of this problem on
chordal graphs was not known. Bergougnoux et al. [7], using the result in [21], proved
that the problem admits an XP-algorithm when parameterized by the leafage.3 Our
next result significantly improves upon this and [44, Theorem 2] which states that the
problem admits a polynomial kernel when parameterized by the solution size.

Theorem 1.3 Multiway Cut with Undeletable Terminals can be solved in
nO(1)-time on chordal graphs.

A well-known trick to convert an instance of Multiway Cut with Deletable

Terminals into an instance of Multiway Cut with Undeletable Terminals is
to add a pendant vertex to each terminal, remove that vertex from the set of terminals,
and make the newly added vertex a terminal. As this reduction converts a chordal
graph into another chordal graph, Theorem 1.3 implies that Multiway Cut with

Deletable Terminals is also polynomial-time solvable on chordal graphs. Another
closely related problem is Subset FVSwhich is NP-complete on split graphs [46]. To
the best of our knowledge, this is the first graph class onwhich the classical complexity
of these two problems differ.

Next, we revisit the problems on chordal graphs with bounded leafage and examine
how far we can generalize this class. An asteroidal triple of a graph G is a set of
three vertices such that each pair is connected by some path that avoids the closed
neighborhood of the third vertex. Lekkerkerker and Boland [39] showed that a graph
is an interval graph if and only if it is chordal and does not contain an asteroidal triple.
They also listed all minimal chordal graphs that contain an asteroidal triple (see, for
instance, [12, Figure 1]). Among this list, we found the net graph to be the most
natural to generalize. For a positive integer � ≥ 3, we define H� as a split graph on 2�
vertices with split partition (C, I ) such that the only edges across C, I are a perfect
matching. Note that H3 is the net graph. As interval graphs are a proper subset of the
collection of chordal graphs that do not contain a net graph as an induced subgraph,
the collection of the chordal graph of leafage � is a proper subset of the collection of
chordal graphs that do not contain H�+1 as an induced subgraph (see Observation 6.1).
We show that, although the considered domination problems are polynomial-time
solvable for constant �, the fixed-parameter tractability results are unlikely to extend
to this larger class. Let us mention that the core reason these problems admit XP-
algorithms parameterized by � lies in the fact that H�-induced-subgraph-free chordal
graphs have mim-width at most � − 1 [34] (all three problems are indeed known to be
solvable in nO(m) on graphs of mim-width at mostm [6, 10]). Nonetheless, we present
alternative algorithms which we believe to be simpler and more insightful. In fact, we
give a nO(�) algorithm for the more general Red- Blue Dominating Set problem
and obtain the other results by simple reductions.

3 See the discussion after Corollary 2 on page 1388 in [7].
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Theorem 1.4 Dominating Set,Connected Dominating Set and Steiner Tree

on H�-induced-subgraph-free chordal graphs are W[1]-hard when parameterized by
� and assuming the ETH, do not admit an algorithm running in time f (�) · no(�) for
any computable function f . However, they all admit XP-algorithms running in time
nO(�).

We observe a similar trend with respect toMultiCut with Undeletable Ter-

minals as its parameterized complexity jumps from W[1]-hard on chordal graph of
leafage � to paraNP-hard on H�-induced-subgraph-free chordal graphs when param-
eterized by �.

Theorem 1.5 MultiCut with Undeletable Terminals is NP-hard even when
restricted to H3-induced-subgraph-free chordal graphs.

Table 1 summarizes our results.
OurMethodsWe briefly discuss the methods used in our twomain algorithms, namely
the algorithm for Dominating Set and the one for Multiway Cut.

Red-Blue Dominating Set in Chordal GraphsAsmentioned earlier, the linear ordering
of cliques in interval graphs is particularly useful for the design of polynomial-time
algorithms. Such an ordering is not possible even if G is a chordal graph whose
representation tree T is a star. Consider the case where the model of every red vertex
in G includes the center of the star T (and possibly some leaves) and the model of
every blue vertex is (only) a leaf. We can solve this instance by converting it to an
instance of Set Cover and solving it using the FPT algorithm parameterized by the
size of the universe. In this case, the size of the universe is at most the number of
leaves which is upper bounded by the leafage. In the other case where the properties
of red vertices and blue vertices are reversed, we obtain a similar result by creating an
equivalent instance of Hitting Set.

These ideas can be used in a more general setting as long as the following two prop-
erties are satisfied: (1) the model of each vertex is local, that is, it contains at most one
branching node, and (2) each branching node is contained only in models of either red
vertices or blue vertices. Based on this observation, we introduce a restricted version
of the problem in which the input graph is required to satisfy these two conditions.
We then show that the general case reduces to this restricted version: indeed, we prove
that there is a branching algorithm that constructs 2O(�) many instances (where � is
the leafage of the input graph) of the restricted version of the problem such that the
input instance is a Yes-instance if and only if one of these newly created instances
is a Yes-instance. These two properties ensure that the graph induced by the red and
blue vertices whose model intersect the subtree rooted at a farthest branching node
(from some fixed root) satisfies the premise of at least one of the cases mentioned
in the previous paragraph. We then present a greedy procedure, based on solving the
Set Cover and Hitting Set problems, that identifies some part of an optimum
solution. Apart from this greedy selection procedure, all other steps of the algorithm
run in polynomial time.

Multiway Cut in Chordal Graphs We give a polynomial-time algorithm for Multi-

way Cut on chordal graphs by solving several instances of the (s, t)- Cut problem

123



Algorithmica

Ta
bl
e
1

O
ve
rv
ie
w
of

th
e
kn

ow
n
re
su
lts

an
d
ou

r
co
nt
ri
bu
tio

ns

In
pu

tg
ra
ph

D
o
m

S
e
t
,C

o
n
n
D
o
m

S
e
t
,S

t
e
in
e
r

T
r
e
e

M
u
l
t
iC
u
t
w
it
h

U
n
D
e
l
T
e
r
m

M
u
l
t
iw

a
y
C
u
t

In
te
rv
al
G
ra
ph

s
Po

ly
-t
im

e
[3
,1

3]
Po

ly
-t
im

e
[2
9]

Po
ly
-t
im

e
[7
]

C
ho

rd
al
gr
ap
hs

of
le
af
ag
e

�
2O

(�
2
)
·n

O
(1

)
al
go

[2
1]

2O
(�

)
·n

O
(1

)
al
go

(T
hm

1.
1)

W
[1
]-
ha
rd

nO
(�

)
al
go

(T
hm

1.
2)

nO
(�

)
al
go

[7
]
Po

ly
-t
im

e
(T
hm

1.
3)

H
�
-i
nd

uc
ed

su
bg

ra
ph

-f
re
e
ch
or
da
l

W
[1
]-
ha
rd

(T
hm

1.
4)
;n

O
(�

)
al
go

(T
hm

1.
4,

[3
4]

+
[6
,1

0]
)

N
P
-h
ar
d
fo
r
�

≥
3
(T
hm

1.
5)

Po
ly
-t
im

e
(T
hm

1.
3)

C
ho

rd
al
gr
ap
hs

N
P
-c
om

pl
et
e
[8
]

N
P
-c
om

pl
et
e
[4
9]

Po
ly
-t
im

e
(T
hm

1.
3)

E
ve
ry

gr
ap
h
cl
as
s
m
en
tio

ne
d
in

th
e
fir
st
co
lu
m
n
is
a
pr
op
er

su
bs
et
of

th
e
gr
ap
h
cl
as
s
m
en
tio

ne
d
be
lo
w

123



Algorithmica

(not necessarily with unit capacities). Our strategy is based on a bottom-up dynamic
programming (DP) on a tree representation of a chordal graph. An interesting aspect
of our DP is that we need to look-up all DP table values that are already computed
to compute a new entry. This is in contrast to typical DP-based algorithms that do
computations only based on local entries.

We remark that we do not expect to design an algorithm for Multiway Cut on
chordal graphs using much simpler arguments (like a simple dynamic programming
procedure etc.) as the problemgeneralizes somewell-studied cut-flowbased problems.
As an example, recall the Vertex Cover problem on bipartite graphs where given a
bipartite graph G with bipartition (A, B), the goal is to find A′ ⊆ A and B ′ ⊆ B such
that |A′ ∪ B ′| is minimum and N (A\A′) ⊆ B ′. The set A′ ∪ B ′ is called a vertex cover
of G. The Vertex Cover problem on bipartite graphs reduces to the Multiway

Cut problem on chordal graphs: indeed, let G ′ be the graph obtained from G by
making B a clique, adding new pendant vertex ta to each vertex a ∈ A, and further
adding another new vertex t that is adjacent to all vertices of B. Then G ′ is a chordal
graph and letting T = t ∪{ta | a ∈ A}, it is easy to see that S ⊆ V (G) is a vertex cover
of G if and only if S is a T -multiway-cut in G ′. As mentioned earlier, our algorithm
solves several instances of the (s, t)- Cut problem, which also sits at the heart of some
algorithms forVertex Cover on bipartite graphs. The above reduction suggests that
an algorithm forMultiway Cut on chordal graphs using much simpler techniques,
would imply an algorithm for Vertex Cover on bipartite graphs that uses much
simpler techniques as well.

Note that a similar reduction would work from the weighted variant of the Vertex
Cover problem on bipartite graphs. This can be achieved by further replacing each
vertex of the graph G by a clique of size proportional to the weight of this vertex
and making each vertex of the clique adjacent to all the neighbors of this vertex. This
reduction still preserves the chordality of the resulting graph.

Organization of the Paper In Sect. 2, we define the notations and terminology used
throughout the paper. In Sect. 3, we present the FPT algorithm for the generalized
Red- Blue Dominating Set problem parameterized by the leafage. In Sect. 4, we
consider the Multicut problem and provide the proof of Theorem 1.2. We present
the polynomial-time algorithm for Multiway Cut on chordal graphs in Sect. 5. In
Sect. 6, we revisit the aforementioned problems by restricting the input to H�-induced-
subgraph-free chordal graphs and prove Theorem 1.4 forDominating Set as well as
Theorem 1.5. Finally in Sect. 7, we consider the Connected Dominating Set and
the Steiner Tree problems and complete the proofs of Theorem 1.1 and Theorem
1.4.

2 Preliminaries

For a positive integer q, we denote the set {1, 2, . . . , q} by [q] and for any 0 ≤ p ≤ q,
we denote the set {p, . . . , q} by [p, q]. We use N to denote the set of all non-negative
integers. Given a function f : X → Z and Y ⊆ X , f |Y denotes the function f
restricted to Y .
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Graph Theory For a graph G, we denote by V (G) and E(G) the set of vertices
and edges of G, respectively. Unless specified otherwise, we use n to denote the
number of vertices in G. We denote the edge with endpoints u, v by uv. For any
v ∈ V (G), NG(v) = {u | uv ∈ E(G)} denotes the (open) neighbourhood of v, and
NG [v] = NG(v) ∪ {v} denotes the closed neighbourhood of v. When the graph G is
clear from the context, we omit the subscriptG. For any S ⊆ V (G),G− S denotes the
graph obtained fromG by deleting vertices in S. We denote the subgraph ofG induced
by S, i.e., the graph G− (V (G)\ S), by G[S]. We say graph G contains graph H as in
induced subgraph if H can be obtained from G by series of vertex-deletions. Recall
that for a directed graph H , we denote by N+

H (v) the out-neighbors of v ∈ V (H) and
by N−

H (v) the in-neighbors of v ∈ V (H). If H is clear from the context, we omit the
subscript H . Given a (directed) path P in a graph G and two vertices u, v ∈ V (P), we
denote by P[u, v] the subpath of P from u to v. For any further notation from basic
graph theory, we refer the reader to [19].

Trees A tree T is a connected acyclic graph. Consider a tree T rooted at r. We define
function parent(t, T ) : V (T ) \ {r} 	→ V (T ) to specify unique parent of the nodes
in rooted tree T . For any node t ∈ T , we denote by Tt the subtree rooted at t . A
subdivided star is a tree with at most one vertex of degree at least 3 (in other words, it
is a tree obtained by repeatedly subdividing the edges of a star graph). The sets V≥3(T )

and V=1(T ) denote the set of vertices of degree at least 3, and of degree equal to 1,
respectively. The set V≥3(T ) is also called the set of branching vertices of T and the
set V=1(T ) is called the set of leaves of T . Note that |V≥3(T )| ≤ |V=1(T )| − 1. Any
node of T which is not a leaf is called internal.

Chordal Graphs and Tree Representations A graph is called a chordal graph if it
contains no induced cycle of length at least four. It is well-known that chordal graphs
can be represented as intersection graphs of subtrees in a tree, that is, for every chordal
graph G, there exists a tree T and a collection M of subtrees of T in one-to-one
correspondence with V (G) such that two vertices in G are adjacent if and only if their
corresponding subtrees intersect. The pair (T ,M) is called a tree representation of
G. For every v ∈ V (G), we denote byM(v) the subtree corresponding to v and refer
to M(v) as the model of v in T . Throughout this article, we use nodes to refer to the
vertices of the tree T to avoid confusion with the vertices of the graphG. Furthermore,
we use the greek alphabet to denote nodes of T and the latin alphabet to denote vertices
ofG. For notational convenience, for any node α ∈ V (T ) and edge e ∈ E(T ), we may
abuse notation and write α ∈ M(v) in place of α ∈ V (M(v)) as well as e ∈ M(v)

in place of e ∈ E(M(v)).
For every node α ∈ V (T ), we let ver(α) = {v ∈ V (G) | α ∈ M(v)}, that is,

ver(α) is the set of vertices in G that contain the node α is their model. A vertex
v ∈ V (G) whose model contains α may also be referred to as an α-vertex. Similarly,
for every edge e ∈ E(T ), we let ver(e) = {v ∈ V (G) | e ⊆ M(v)}, that is, ver(e)
is the set of vertices of G that contain the edge e in their model. Given a subtree T ′
of T , we denote by G|T ′ the subgraph of G induced by those vertices x ∈ V (G) such
that V (M(x)) ⊆ V (T ′). If T is rooted, then for each vertex v ∈ V (G), we call the
node inM(v) that is closest to the root of T , the topmost node ofM(v) and denoted
it by topM(v).
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The leafage of chordal graphG, denoted bylf(G), is defined as theminimumnum-
ber of leaves in the tree of a tree representation of G. A tree representation (T ,M) for
G such that the number of leaves in T is lf(G), can be computed in time O(|V (G)|3)
[30]. Furthermore, the number of nodes in T is at most O(|V (G)|).
Parameterized Complexity The input of a parameterized problem comprises an
instance I , which is an input of the classical instance of the problem, and an integer k,
which is called the parameter. A parameterized problem� is said to be fixed-parameter
tractable (FPT for short) if given an instance (I , k) of�, we can decide whether (I , k)
is a Yes-instance of � in time f (k) · |I |O(1) for some computable function f depend-
ing only on k. We say that an instance (I , k) of a parameterized problem � and an
instance (I ′, k′) of a parameterized problem �′ (possibly � = �′) are equivalent if
(I , k) ∈ � if and only if (I ′, k′) ∈ �′. A reduction rule, for a parameterized problem
�, is a polynomial-time algorithm that takes as input an instance (I , k) of � and out-
puts an instance (I ′, k′) of �. If (I , k) and (I ′, k′) are equivalent then we say that the
reduction rule is safe. For more details on parameterized algorithms, and in particular
parameterized branching algorithms, we refer the reader to the book by Cygan et al.
[17].

3 Dominating Set

For a graph G, a set X ⊆ V (G) is a dominating set if every vertex in V (G) \ X has
at least one neighbor in X , that is, V (G) = N [X ]. In the Dominating Set problem
(DomSet for short), the input is a graph G and an integer k, and the objective is to
decide whether G has a dominating set of size at most k. We assume that the leafage
of the input graph is given as part of the input. If not, recall that it can be computed in
polynomial time [30]. We consider a generalized version of this problem as defined
below.

Red- Blue Dominating Set (Red- Blue- DomSet)

Input: A graph G, a partition (R, B) of V (G), and an integer k.
Question: Does there exist a set X ⊆ R of size at most k such that B ⊆ N (X)?

We first prove that to solve DomSet, it is sufficient to solve Red- Blue- DomSet
even when the input is restricted to chordal graphs of leafage �. There is indeed a
simple reduction from the former problem to the latter that preserves the properties in
which we are interested.

Lemma 3.1 There is a polynomial-time algorithm that given an instance (G, k) of
DomSet constructs an equivalent instance (G ′, (R′, B ′), k) of Red- Blue- DomSet
such that if G has leafage at most �, then so does G ′.

Proof We construct G ′ from G as follows. For every vertex v ∈ V (G), add two copies
vR and vB to V (G ′) and add an edge vRvB to E(G ′). For every edge uv ∈ E(G),
add edges vRuR , vRuB , vBuR , and vBuB to E(G ′). This completes the construction
of G ′. Let R′ = {vR | v ∈ V (G)} and B ′ = {vB | v ∈ V (G)}.

Suppose that the DomSet instance has a solution S ⊆ V (G). Then the set SR =
{vR | v ∈ S}, i.e., SR contains the red version of each vertex in S, is a solution for
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the Red- Blue- DomSet instance: indeed, the blue vertices vB such that v /∈ S are
dominated since S is a solution, and if v ∈ S, then vB is dominated because of the
newly added edges. Conversely, if SR ⊆ R′ is a solution for the Red- Blue- DomSet
instance, then it is easy to see that S = {v | vR ∈ SR} is a solution for the DomSet
instance.

Finally note that a tree representation for G ′ can be obtained from a tree represen-
tation for G by duplicating the model of each vertex, and making the original model
a model for the blue version of the vertex, and the copy a model for its red version. In
particular, the leafage of G ′ is at most that of G. 
�

In the remainder of this section, we present an FPT algorithm for Red- Blue-
DomSet when parameterized by the leafage � of the input graph. The algorithm
consists of two parts. In the first part, the algorithm constructs 2O(�) many instances
of a “restricted version” of the problem such that the input instance is aYes-instance if
and only if one of these newly created instances is aYes-instance.Moreover, the graphs
in the newly created instances satisfy certain properties that allow us to design a fast
algorithm. SeeLemma3.2 for the formal statement. In the second part (cf. Lemma3.3),
the algorithm solves the restricted version of Red- Blue- DomSet which is defined
as follows.

Restricted- Red- Blue Dominating Set (Rest- Red- Blue- DomSet)

Input: A chordal graph G, a partition (R, B) of V (G), an integer k and tree
representation (T ,M) of G such that

• for every vertex in G, its model contains at most one branching node of T , and
• for all branching nodes γ ∈ V (T ), there are either only red γ -vertices or only
blue γ -vertices.

Question: Does there exist a set D ⊆ R of size at most k such that B ⊆ N (D)?

3.1 ConstructingREST-RED-BLUE-DOMSET Instances

In this section, we prove the following result.

Lemma 3.2 Let I = (G, (R, B), k) be an instance of Red- Blue- DomSet where
G is a chordal graph of leafage at most �. We can construct, in time 2O(�) · nO(1),
a collection {Ii = (Gi , (Ri , Bi ), k) | i ∈ [2O(�)]} of Rest- Red- Blue- DomSet

instances such that

• For every i ∈ [2O(�)], Gi is a chordal graph of leafage at most 2�, and
• I is a Yes-instance of Red- Blue- DomSet if and only if at least one of the
instances in the collection is a Yes-instance of Rest- Red- Blue- DomSet.

Proof Let G be a chordal graph and let (T ,M) be a tree representation of G. We
define the following functions.

• Let fT (G) denote the number of branching nodes γ ∈ V (T ) such that there exist
both a red vertex and a blue vertex whose models contain γ .
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• Let fr (G) denote the number of pairs of consecutive branching nodes α, β in T
(that is, no node on the unique path in T from α to β is a branching node) such
that there is red vertex whose model contains both α and β.

• Similarly, let fb(G) denote the number of pairs of consecutive branching nodes
α, β in T such that there is blue vertex whose model contains both α and β.

We further define μ(G) := lf(G) + 2 · ( fT (G) + fr (G) + fb(G)). Note that, by
definition, μ(G) ≥ lf(G). We design a polynomial-time branching algorithm whose
measure μ decreases in each branch. We first show that if μ(G) = lf(G) then
(G, (R, B), k) is in fact an instance of Rest- Red- Blue- DomSet and then show
how the branching algorithm proceeds.

Assume therefore that μ(G) = lf(G). Then fT (G) = fr (G) = fb(G) = 0 by
definition. However, when fT (G) = 0, then, by definition, for every branching node
γ ∈ V (T ), all the vertices containing γ in their model are either red or blue; and
when fr (G) = fb(G) = 0 then, considering the fact that every model is a subtree
in T , for every vertex in G, its model contains at most one branching node in T .
Therefore if μ(G) = lf(G), then (G, (R, B), k) is also an instance of Rest- Red-
Blue- DomSet.

Now assume thatμ(G) > lf(G). Then fT (G)+ fr (G)+ fb(G) > 0.We consider
the following three exhaustive cases.

Case I fT (G) > 0. Let γ be a branching node in T such that there is both a red-
vertex and a blue-vertex whose models contain γ . Suppose that I is a Yes-instance
of Red- Blue- DomSet and let D be a solution. Consider first the case where D
includes a red vertex whose model contains γ . In this case, we return the instance
I1 = (G1, (R1, B1), k) which is obtained as follows.

• Initialize V (G1) = V (G), R1 = R, B1 = B.
• Let T1 be the tree obtained from T by adding a node δ and making it adjacent to

γ only. Note that V (T1) \ {δ} ⊆ V (T ).
• For every red vertex v ∈ V (G1) such that γ ∈ M(v), add δ to its model, i.e.,
M1(v) = M(v) ∪ {δ}.

• For every blue vertex v ∈ V (G1) such that γ ∈ M(v), delete v from V (G1).
• Add a new blue vertex x to V (G1) and to B1 withM1(x) = {δ}.
• For every (red or blue) vertex v ∈ V (G) such that γ /∈ M(v), define M1(v1) =
M(v).

It is easy to verify that (T1,M1) is a tree representation of G1 and that T1 has exactly
one more leaf than T , i.e., lf(G1) ≤ lf(G) + 1. However, since we have deleted
all the blue vertices whose models contained γ , fT (G1) = fT (G) − 1. As the other
parts of the measure do not change, μ(G1) < μ(G).

In the second case where no vertex in D contains γ in its model, we return the
instanceI2 = (G2, (R2, B), k)whereG2, R2 are obtained fromG, R, respectively, by
deleting red vertices whose model contains γ . It is easy to verify that μ(G2) < μ(G).

If I is a Yes-instance, then at least one of I1 or I2 is a Yes-instance as these
two branches are exhaustive. If I1 is a Yes-instance, then any optimum solution must
include a red γ -vertex because of the newly added vertex x . As R2 ⊆ R, if I2 is a
Yes-instance, then I is a Yes-instance. Hence, this branching step is correct.
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Case II fT (G) = 0 and fr (G) > 0. Let α, β be two consecutive branching nodes in
T such that there is a red vertex whose model contains both α and β. Suppose that I
is a Yes-instance of Red- Blue- DomSet and let D be a solution. Consider the case
where D includes a red vertex whose model contains both α and β. In this case, we
return the instance I1 = (G1, (R1, B1), k) which is obtained as follows.

• Initialize V (G1) = R1 = B1 = ∅.
• Let T1 be the tree obtained from T by contracting the unique path Pαβ from α to

β in T and let γαβ be the node resulting from this contraction. Add a node δ to T1
and make it adjacent to γαβ only. Note that V (T1) \ {γαβ, δ} ⊆ V (T ).

• For every red vertex v ∈ V (G) such that M(v) ∩ V (Pαβ) �= ∅, add a red vertex
v1 to V (G1) (and to R1) withM1(v1) = (M(v) \ V (Pαβ)) ∪ {γαβ, δ}.

• Add a new blue vertex x to V (G1) withM1(x) = {δ}.
• For every (red or blue) vertex v ∈ V (G) such that M(v) ∩ V (Pαβ) = ∅, add v1
to G1 (and to, respectively, either R1 or B1) withM1(v1) = M(v).

Note that for every blue vertex v ∈ V (G) such that M(G) ∩ V (Pαβ) �= ∅, there
is no corresponding blue vertex in G1. It is easy to verify that (T1,M1) is a tree
representation of G1 and that T1 has one more leaf than T which implies lf(G1) ≤
lf(G) + 1. Since we have contracted the path Pαβ to obtain the node γαβ , fr (G1) <

fr (G). As the other parts of the measure do not change, μ(G1) < μ(G).
In the second case where no vertex in D contains both α and β in its model,

we return an instance I2 = (G2, (R2, B), k) where G2, R2 are obtained from G, R,
respectively, by deleting red vertices whose model contains both α and β. It is easy
to verify that μ(G2) < μ(G). We argue as in the previous case for the correctness of
this branching steps.

Case III fT (G) = 0 and fb(G) > 0. Let α, β be two consecutive branching nodes in
T such that there is a blue vertex whose model contains both α and β. Note that since
fT (G) = 0, for every red vertex v ∈ V (G) such that M(v) ∩ V (Pαβ) �= ∅, in fact
M(v) ⊆ V (Pαβ)\{α, β}. Suppose that I is a Yes-instance of Red- Blue- DomSet
and let D be a solution. Consider first the case where D includes a red vertex whose
model is in V (Pαβ)\{α, β}. In this case, we return the instance I1 = (G1, (R, B1), k)
where G1, B1 are obtained from G and B as follows.

• Delete all the blue vertices whose model contains both α and β.
• Add a blue vertex x to V (G1) (and to B1) withM(x) = V (Pαβ)\{α, β}.

It is easy to verify that (T ,M) is a tree representation of G1 and fb(G1) < fb(G).
As the other parts of the measure do not change, μ(G1) < μ(G).

In the second case where there is no vertex in D whose model is in V (Pαβ) \
{α, β}, we consider the following two subcases. If there is a blue vertex v such that
M(v) ⊆ V (Pαβ), then we return a trivial No-instance. Otherwise, we return the
instance I2 = (G2, (R2, B2), k) which is constructed as follows.

• Initialize V (G2) = R2 = B2 = ∅.
• Let T2 be the tree obtained from T by contracting the path Pαβ from α to β in T and
letγαβ be the node resulting from this contraction.Note thatV (T2)\{γαβ} ⊆ V (T ).

• For every (red or blue) vertex v ∈ G such thatM(v) ∩ V (Pαβ) = ∅, add a vertex
v2 to G2 (and to, respectively, either R2 or B2) withM2(v2) = M(v).
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• For every blue vertex v ∈ V (G) such thatM(v)∩ V (Pαβ) �= ∅, add a blue vertex
v2 to V (G2) (and to B2) withM2(v2) = (M(v2) \ V (Pαβ)) ∪ {γαβ}.

Note that for any red vertex v ∈ V (G) such thatM(v) ⊆ V (Pαβ)\{α, β}, there is no
corresponding red vertex inG2. It is easy to verify that (T2,M2) is a tree representation
ofG2. Furthermore, the number of leaves of T2 is the same as T and fb(G2) < fb(G).
As the other parts in the measure do not change, μ(G2) < μ(G).

The correctness of this branching step follows from the same arguments as in the
previous cases and the fact that in the second case, since there is no red vertex whose
model intersects V (Pαβ), it is safe to contract that path.

Finishing the Proof The correctness of the overall algorithm follows from the correct-
ness of branching steps in the above three cases. To bound its running time and the
number of instances it outputs, note that fT (G)+ fr (G)+ fb(G) ≤ 3 ·lf(G) as these
functions either count the number of branching nodes or the unique paths containing
exactly two (consecutive) branching nodes. 
�

3.2 Solving an Instance ofREST-RED-BLUE-DOMSET

In this section, we present an algorithm to solve Rest- Red- Blue- DomSet. For-
mally, we prove the following lemma.

Lemma 3.3 Rest- Red- Blue- DomSet admits an algorithm running in time 2O(�) ·
nO(1).

We first state some easy reduction rules before we handle two cases based on
whether the farthest branching node4 is contained only in the models of red vertices
or blue vertices. We present Greedy Select 3.9 and Greedy Select 3.12 to handle these
cases. The proof of the lemma follows from Lemma 3.10, Lemma 3.13 and the fact
that each application of the greedy selection procedure deletes some vertices in the
graph.

We first introduce some notations. Recall that an instance of Rest- Red- Blue-
DomSet contains a chordal graph G, a partition (R, B) of V (G), an integer k and
tree representation (T ,M) of G such that for every vertex in G, its model contains at
most one branching node of T , and for all branching nodes γ ∈ V (T ), there are either
only red γ -vertices or only blue γ -vertices. We assume, without loss of generality,
that the tree T is rooted at node r. Unless mentioned otherwise, α denotes the farthest
branching node in T from the root, that is, each proper subtree of Tα is a path. If there
are more than one branching node that satisfy the property, we arbitrarily select one
of them. Let β be the closest branching ancestor of α, that is, no internal node in the
unique path from α to β is a branching node in T .5 Recall that for a vertex v ∈ V (G),
we define topM(v) as the node η ∈ M(v) that is closest to the root. Likewise if a
leaf λ is fixed, we define botλ

M(v) as the node η ∈ M(v) that is closest to λ. For
ease of notation, we omit λ as it is always clear from the context.

4 We assume that the tree in the tree representation is rooted and thus, by farthest branching node, we mean
farthest from the root.
5 If α is the root of the tree, then we can add an artificial new root β which is not contained in the model
of any vertex.
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Definition 3.4 Let γ be a node of the tree T . We define the following sets of vertices
in G.

• B∩
γ , R∩

γ , V ∩
γ are the sets of, respectively, blue, red, all vertices v ∈ V (G) whose

models intersect the tree rooted at γ , i.e.,M(v) ∩ V (Tγ ) �= ∅.
• B⊆

γ , R⊆
γ , V⊆

γ are the sets of, respectively, blue, red, all vertices v ∈ V (G) whose
models are completely contained inside the tree rooted at γ , i.e.,M(v) ⊆ V (Tγ ).

• B⊆†
γ , R⊆†

γ , V⊆†
γ are the sets of blue, red, all vertices v ∈ V (G) where the model

is completely contained inside the tree rooted at γ but does not contain γ , respec-
tively, i.e. M(v) ⊆ V (T †

γ ) = V (Tγ ) \ {γ }.
• B∈

γ , R∈
γ , V ∈

γ are the sets of, respectively, blue, red, all vertices v ∈ V (G) whose
models contains γ , i.e., γ ∈ M(v).

Simplifications We first apply the following easy reduction rules whose correctness
readily follows from the definition of the problem. It is also easy to see that the
reduction rules can be applied in polynomial time and the reduced instance is also a
valid instance of Rest- Red- Blue- DomSet.

Reduction Rule 3.5 If there is a blue vertex, which is not adjacent to a red vertex, or
if k < 0, then return a trivial No-instance.

Reduction Rule 3.6

• If there are two blue vertices u, v such that M(u) ⊆ M(v), then delete v.
• If there are two red vertices u, v such that M(u) ⊆ M(v), then delete u.

Consider a blue vertex v in G whose model is contained in the subtree rooted at α.
Moreover, let v be such a vertex for which topM(v) is farthest from the root and v is
not adjacent to a red vertex whose model contains α. Hence, there is a natural ordering
amongst the red neighbors of v. Note that such an ordering is not possible if some of
its neighbors contain α in their models. As any solution contains a red neighbor of v,
it is safe to include its neighbor vr for which topM(vr ) is closest to α.

Reduction Rule 3.7 Suppose that there is a blue vertex v ∈ B⊆†
α such that topM(v)

is farthest from the root and v is not adjacent to any red α-vertices. Moreover, amongst
all the red neighbors of v, let vr be the node such that topM(vr ) is closest to α. Then,
remove vr and all of its blue neighbors and decrease k by 1.

Weremark that the above reduction rule is applicable irrespective of the factwhether
either all α-vertices are red or all α-vertices are blue.

Case 1: All the vertices that contain α in their models are red vertices Let β be the
closest branching ancestor of α. Consider the blue vertices whose model intersect
the path from α to β. Note that there may not be any such blue vertex; however, we
find it convenient to present an uniform argument. With a slight abuse of notation, let
b1, . . . , bd be these blue vertices ordered according to their endpoint in the direction
of α, that is, for i < j we have either botM(bi ) = botM(b j ) or botM(bi ) is
closer to α than botM(b j ). For each i ∈ [d], we compute an optimal solution for
dominating the vertices whose model is in the tree rooted at α (i.e., the vertices of
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B⊆†
α ) and the vertex bi while only using red α-vertices. Formally, we want to compute

an optimal solution for the following instance: Ii := G[R∩
α ∪ B⊆

α ∪ {bi }]. We also
define instance I0 := G[R∩

α ∪ B⊆
α ] to handle the cases when there are no blue vertices

whose model intersects the path from α to β or when b1 (and hence, the other blue
verticesmentioned above) are not dominated by redα-vertices in an optimum solution.
To simplify notation we set OPTi := OPT(Ii ) in the following. If Ii is not defined,
then we set OPTi = ∞. Note that the solution OPTi also dominates the blue vertices
b1, . . . , bi−1 due to the ordering of the bi s. Hence, for any i, j ∈ [0, d] such that
i < j , we have |OPTi | ≤ |OPT j |. We use this monotonicity to prove the following
structural lemma.

Lemma 3.8 Let q ∈ [0, d] be the largest value such that |OPTq | = |OPT0|. If there is
a solution, then there is an optimum solution containing OPTq .

Proof Let OPT be an optimum solution of (G, (R, B), k). Let S denote the collection
of vertices in OPT whose model contains nodes in the subtree rooted at α, i.e., S :=
OPT∩ R∩

α . We claim that we can replace S by a super-set S′ of OPTq of equal size to
obtain another solution.

Let j ∈ [0, d] be the largest integer such that b j is dominated by some vertex in
S. If j ≤ q, then by our choice of q, |S| = |OPTq |. By the definition of the Ii s,
we get that OPTq is also a solution for Ii . Hence, we can replace S by OPTq to get
another optimal solution. Suppose therefore that j > q. By our choice of q, we have
|S| > |OPTq |. Let r j be the red α-vertex with topM(r j ) closest to β such that b j is a
neighbor of r j . Such a vertex exists, as by assumption, S contains one of these vertices
which dominates b j . Then we replace S by S′ = OPTq ∪ {r j }. As |S| > |OPTq |, we
have |S′| ≤ |S|. Moreover, observe that S′ ∪ OPT \ S is still a solution as all vertices
in B⊆†

α and the vertices b1, . . . , bq are dominated by some vertex in OPTq , vertex r j
dominates the vertices bq+1, . . . , b j and, by the choice of j , the vertices b j+1, . . . , bd
are dominated by some vertex not contained in S. 
�

We devise a greedy selection step based on the above lemma.

Greedy Select 3.9 Let q ∈ [0, d] be the largest value such that |OPTq | = |OPT0|.
Include the vertices of OPTq in the solution, i.e., delete the red vertices in OPTq , the
blue vertices that are adjacent to vertices in OPTq , and decrease k by |OPTq |.
Lemma 3.10 GreedySelect3.9 step is correct and canbe completed it time2O(�)·nO(1).

Proof The correctness of the step follows directly from Lemma 3.8. In the remaining
proof, we show how to compute, for every i ∈ [0, d], OPTi in time O(� · |R| · 2� · n)

by constructing an instance of Set Cover. Before constructing such an instance, we
justify that only one blue vertex (which is farthest from α) is critical while constructing
this Set Cover instance.

Let α′ be a child of α. As α is a farthest branching node of T from the root, the
tree rooted at α′ is a path. Let λ be the another endpoint of this path. Consider a blue
vertex vα′ whose model is contained in Tα′ , i.e., vα′ ∈ B⊆

α′ . Moreover, suppose that vα′
is the vertex for which topM(vr ) is farthest from α′. As Reduction Rule 3.7 is not
applicable, there exists at least one red neighbor of vα′ which is an α-vertex. Hence, an
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optimum solution can always include a red neighbor of vα′ which is also an α-vertex.
This red α-vertex also dominates all the blue vertices in B⊆

α′ .
We nowexplain how to construct an instance (U ,F) of Set Cover. For every child

α′ ofα, if the vertex vα′ mentioned in the previous paragraph exists, then add an element
uα′ corresponding to it to U . When i �= 0, add another element ui corresponding to
bi to U . For every red α-vertex v, we define set Sv ⊆ U as the collection of elements
corresponding to the blue vertices in Ii that are adjacent to v. This completes the
construction of the instance.

It is easy to see the one-to-one correspondence between the optimum solutions
of these two instances. The running time of the algorithm follows from the known
algorithms for Set Cover (see, for instance, [23]) and the fact that α has at most �

many children. 
�
Case 2: All the vertices that contain α in their models are blue vertices Let β be the
closest branching ancestor of α. We consider two cases depending on whether there is
a red vertex whose model intersects the path from α to β. If there is no such red vertex,
then we consider the graph induced by all the red vertices whose model is (properly)
contained in the subtree rooted at α and the blue vertices whose model intersects the
subtree rooted at α. Formally, we define I0 = G[R⊆

α ∪ B∩
α ].

Consider the other case and suppose that there are d ≥ 1 many red vertices whose
model intersects the path fromα toβ. Let r1, . . . , rd be these vertices ordered according
to their endpoints in the direction of α, that is, for i < j , we have either botM(ri ) =
botM(r j ) or botM(ri ) is closer to α than botM(r j ). For each such red vertex
vi , we compute the optimal solution to dominate the vertices in B∩

α by vertices in
R⊆

α assuming that vi is already selected. Note that we only have to focus on the
blue vertices in B∩

α which are not adjacent to vi . Formally we define Ii = G[R⊆
α ∪

(B∩
α \N [vi ])]. It is possible that the optimum solution does not include any of the

vertices in {r1, r2, . . . , rd}. To handle this case, we define Id+1 = G[R⊆
α ∪ B∩

α ].
To simplify notation, we set OPTi := OPT(Ii ) in the following. Note that for the
instance defined above, Ri is same for every instance whereas Bi ⊆ Bi+1 because of
the ordering. Hence, for any i, j ∈ [d+1] such that i < j , we have |OPTi | ≤ |OPT j |.
We use this monotonicity to prove the following structural lemma.

Lemma 3.11 If there is a red vertex whose model intersects the path from α to β,
let q ∈ [d + 1] be the largest value such that |OPTq | = |OPT1|. Otherwise, define
OPTq = OPT0. If there is a solution for the instance, then there is an optimum solution
OPT such that OPT ∩ R⊆

α = OPTq .

Proof If there is no red vertices whose model intersects the path from α to β, then all
the red vertices in G that are adjacent to blue vertices in I0 are the red vertices in I0.
Hence, the statement of the lemma follows.

We now consider the case where there are red vertices whose model intersects the
path from α to β. Let OPT be an optimum solution of (G, (R, B), k). Let S denote
the collection of vertices in OPT whose model is (properly) contained in the subtree
rooted at α, i.e., S := OPT ∩ R⊆†

α . We claim that we can replace S by a super-set S′
of OPTq of equal size to obtain another optimum solution.

Let j ∈ [d] be the smallest index such that v j is contained in OPT. Note that, by
definition, j �= d + 1 as there are only d red vertices with the said property. If j ≤ q,
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then by our choice of q, |S| ≥ |OPT j |. By the definition of I j and the fact blue vertices
in I j are subset of blue vertices in Iq , OPTq is also a solution for I j . Hence, we can
replace S by OPTq to get another optimal solution. Suppose therefore that j > q. By
our choice of q, we have |OPT j | > |OPTq |. As OPT is a solution, all vertices in B∩

α

must be covered by OPT. Hence, we can replace S by S′ = OPTq ∪ {rq} and get a
solution of not larger size which still dominates all vertices in B∩

α . Indeed, the vertices
which are not dominated by OPTq are dominated by rq . 
�

We devise a greedy selection step based on the above lemma.

Greedy Select 3.12 If there is a red vertex whose model intersects the path from α to
β, let q ∈ [d + 1] be the largest value such that |OPTq | = |OPT1|. Otherwise, define
OPTq = OPT0. Include OPTq in the solution, i.e., delete the red vertices in OPTq ,
the blue vertices that are adjacent to vertices in OPTq , and decrease k by |OPT�|.

Lemma 3.13 Greedy Select 3.12 step is correct and can be completed in time 2O(�) ·
nO(1).

Proof The correctness of the step follows directly from Lemma 3.11. In the remaining
proof, we show how to compute OPTi for every i ∈ [0, d + 1], by constructing an
instance of Hitting Set. As in Lemma 3.10, we first argue that only one red vertex
(which is closest to α) is critical while constructing a Hitting Set instance.

Recall that, by assumption, none of the previous reduction rules are applicable. As
in the previous case, let α′ be a child of α. We first argue that there are no blue vertices
whose path is completely contained in the path rooted at α′. Assume, for the sake
of contradiction, that there exists such a blue vertex v. As Reduction Rule 3.5 is not
applicable, v is adjacent to at least one red vertices. However, since all α-vertices are
blue, by the property of the instance, there are no red α-vertices. In particular, v is not
adjacent to any red α-vertex. This contradicts the fact that there exists such a blue 3.7
is not applicable. Hence, there is no blue vertex whose model is contained in the path
rooted at α′. Since this is true for any child of α, there are no blue vertices in B⊆†

α ,
i.e., B⊆†

α = ∅ and B∩
α = B∈

α . Now, for a child α′ of α, let vα′ ∈ R⊆
α′ be a red vertex

such that topM(vr ) is closest to α. Since all blue vertices contain α in their model,
the only critical red vertex in this leg is vα′ .

We now explain how to construct an instance (U ,F) of Hitting Set. For every
child α′ of α, let vα′ be the vertex as mentioned above. Add an element uα′ corre-
sponding to vα′ inU . For every blue α-vertex v, we define Sv ⊆ U as the collection of
elements corresponding to the red vertices in Ii that are adjacent to v. This completes
the construction of the instance.

It is easy to see the one-to-one correspondence between the optimum solutions
of these two instances. The running time of the algorithm follows from the simple
brute-force algorithm for Hitting Set parameterized by the size of the universe and
the fact that α has at most � many children. 
�
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Fig. 1 The auxiliary graph B. Rectangles represent cliques and thick edges indicate that the corresponding
vertex is complete to the corresponding cliques

4 Multicut with Undeletable Terminals

This section considers the MultiCut with Undeletable Terminals problem
formally defined as follows.

MultiCut with Undeletable Terminals (MultiCut with UnDel Term)
Input: An undirected graph G, a set P ⊆ V (G) × V (G), and an integer k.
Question: Is there a set S ⊆ V (G)\V (P) such that |S| ≤ k and for all (p, p′) ∈ P ,
there is no path between p and p′ in G − S?

In the following, a set S ⊆ V (G) \ V (P) such that for all (p, p′) ∈ P , there is
no path between p and p′ in G − S is called a P-multicut in G. We first prove that
when the input is restricted to chordal graphs, the problem is unlikely to admit an
FPT algorithm when parameterized by the leafage. We then complement this result
with an XP-algorithm parameterized by the leafage. We restate the theorem with the
precise statement for the reader’s convenience.

Theorem 1.2 MultiCut with Undeletable Terminals on chordal graphs is
W[1]-hardwhen parameterized by the leafage � and assuming the ETH, does not admit
an algorithm running in time f (�) · no(�) for any computable function f . However, it
admits an XP-algorithm running in time nO(�).

To prove that the problem isW[1]-hard, we present a parameter preserving reduction
fromMulticolored Clique. An instance of this problem consists of a simple graph
G, an integer q, and a partition (V1, V2, . . . , Vq) of V (G). The objective is to determine
whether there is a clique in G that contains exactly one vertex from each part Vi . Such
a clique is called a multicolored clique. We assume, without loss of generality, that
each Vi is an independent set and that |V1| = . . . = |Vq | = n. 6 This implies, in
particular, that |E(G)| < n2 · q2. For every i ∈ [q], we denote by vi1, . . . , v

i
n the

vertex set of Vi and for every i �= j ∈ [q], we denote by Ei, j ⊆ E(G) the set of edges
between Vi and Vj . We define M := (n + 1)2 · q2.
Reduction The reduction takes as input an instance (G, q, (V1, . . . , Vq)) of Multi-

colored Clique and outputs an instance (H , P, k) of MultiCut with UnDel

Term which is constructed as follows.

• The reduction starts by constructing an auxiliary graph B. The vertex set of B
consists of n + 1 vertices p1, . . . , pn+1 and n vertex-disjoint cliques K1, . . . , Kn

such that |Ka | = a ·M for every a ∈ [n]. Then, it adds edges so that p1 is complete

6 Unlike in the rest of the article, we do not use n to denote the total number of vertices in G to keep
notation simple while presenting the reduction.
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to K1, pn+1 complete to Kn , and pa complete to Ka−1∪Ka for every a ∈ [n]\{1}.
This completes the construction of B (see Fig. 1).

• For each i ∈ [q], the reduction introduces two vertex-disjoint copies Bi,α and Bi,β

of B. For every i ∈ [q], let pi,α1 , . . . , pi,αn+1 denote the copies of p1, . . . , pn+1 in

Bi,α and Ki,α
1 , . . . , Ki,α

n denote the copies of K1, . . . , Kn in Bi,α . Moreover, for
every 1 ≤ a1 ≤ a2 ≤ n + 1, we define, for notational convenience,

pi,α[a1, a2] := {pi,αa | a1 ≤ a ≤ a2}

and

Ki,α[a1, a2] :=
⋃

a1≤a≤a2

Ki,α
a .

We define pi,βa , Ki,β
a , pi,β [a1, a2], and Ki,β [a1, a2] in a similar way.

• For i ∈ [q] and a ∈ [n], the reduction uses pi,αa , pi,βn+1−a , K
i,α
a , and Ki,β

n+1−a to
encode vertex via .

• For every edge e = viai v
j
a j ∈ E(G), the reduction introduces an edge-vertex ve

and adds edges so that ve is complete to the following sets.

– pi,α[ai + 1, n + 1] and Ki,α[ai , n + 1] in V (Bi,α).
– p j,α[a j + 1, n + 1] and Ki,α[a j , n + 1] in V (B j,α).
– pi,β [n + 1 − ai + 1, n + 1] and Ki,β [n + 1 − ai + 1, n + 1] in V (Bi,β).
– p j,β [n + 1 − a j + 1, n + 1] and Ki,β [n + 1 − a j + 1, n + 1] in V (B j,β).

Note that ve is adjacent to vertices in Ki,α[ai ] ∪ K j,α[a j ] but not to any vertex in
Ki,β [n + 1 − ai ] ∪ K j,β [n + 1 − a j ].

• The reduction introduces a central clique K of size 2M2 and makes it complete
to {pi,αn+1, p

i,β
n+1 | i ∈ [q]} and VE where VE = {ve | e ∈ E(G)} is the set of

edge-vertices. This completes the construction of H .
• The reduction further defines

P := {(pi,αa , pi,βn+2−a) | a ∈ [n] and i ∈ [q]}, and

k := q(n + 1)M + |E(G)| − q(q − 1)/2.

The reduction returns (H , P, k) as the instance of MultiCut with UnDel Term.
This completes the reduction. It is easy to see that H is chordal and has leafage at
most 2q. See Fig. 2 for a tree representation of H .

IntuitionWe first provide the intuition behind the reduction. Recall that the reduction
uses pi,αa , pi,βn+1−a , K

i,α
a , and Ki,β

n+1−a to encode vertex via where i ∈ [q] and a ∈ [n].
Hence, for a, b ∈ [n], if a + b = n + 1, then pi,αa and pi,βb correspond to the same
vertex. Note that the pairs in P do not correspond to the vertices associated with via .

Rather, pi,αa+1 is paired with pi,βn+1−a . Conversely, for a, b ∈ [n], if a+ b = n+ 2, then
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Fig. 2 A tree representation of the graph H restricted to the gadgets representing V1, V2 and E1,2 where
n = 4 and E1,2 = {e = v13v21 , e′ = v14v22}

(pi,αa , pi,βb ) ∈ P . By the construction of H and P , for a P-multicut S of H , if there

is a path from pi,αa to pi,βb in H − S, then a + b ≥ n + 3.

Now, consider the terminal pairs (pi,α1 , pi,βn+1) in P for some i ∈ [q]. Because of
the size constraints, S cannot contain all the vertices of the central clique K . Since S
cannot contain a terminal, it needs to include one clique from Bi,α . Let ai ∈ [n] be
the largest index such that Ki,α

ai ⊆ S. Using similar arguments, there must also exist

bi ∈ [n] such that Ki,β
bi

⊆ S and bi is largest such index. By definition of ai , bi and

construction of H , there is a path from pi,αai+1 to pi,βbi+1 in H − S. The discussion in
the previous paragraph implies that ai + 1 + bi + 1 ≥ n + 3, i.e., ai + bi ≥ n + 1.
However, by definition of the solution size k and the size of the cliques, we have
ai + bi ≤ n + 1. Hence, the structure of the auxiliary graphs and the terminal pairs
ensure that the selected cliques in S ∩ V (Bi,α) and S ∩ V (Bi,β) encode selecting a
vertex in Vi in G.

Suppose that {v1a1, v2a2 , . . . , vqaq } are the vertices in G that are selected by S. Recall
that VE is the collection of edge-vertices in H . Considering the remaining budget, a
solution S can include at most |E(G)|−q(q−1)/2many vertices in VE .We argue that
q(q−1)/2 edges in G corresponding to vertices in VE \ S should have their endpoints
in {v1a1, v2a2 , . . . , vqaq } as otherwise some terminal pair is connected in H − S. Hence,
a P-multicut S of H corresponds to a multicolored clique in G. We formalize this
intuition in the following two lemmas.

Lemma 4.1 If (G, q, (V1, V2, . . . , Vq)) is aYes-instance ofMulticolored Clique,
then (H , P, k) is a Yes-instance of MultiCut with UnDel Term.

Proof Assume that (G, q, (V1, V2, . . . , Vq)) is a Yes-instance of Multicolored

Clique and let {v1a1, v2a2 , . . . , vqaq } be a clique in G such that viai ∈ Vi for every
i ∈ [q]. We construct a P-multicut S of H as follows. First, we add VE \ {ve | e ∈
{viai v j

a j | i, j ∈ [q]}} to S. For every i ∈ [q], we further add Ki,α
ai and Ki,β

n+1−ai
to S.

It is easy to verify that |S| = q(n + 1)M + |E(G)| − q(q − 1)/2 = k.
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Let us show that S is indeed a P-multicut. Fix indices i ∈ [q] and a ∈ [n],
and consider the terminal pair (pi,αa , pi,βn+2−a) in P . Suppose first that a ≤ ai . By

construction of H , any path from pi,αa to pi,βn+2−a in H contains a vertex of Ki,α
ai or of

N (pi,αai )∩VE . Recall that if edge e ∈ E(G) is incident on viai , then the edge-vertex ve

in H is adjacent only to vertices in pi,α[ai +1, · · · , n+1] and Ki,α[ai , · · · , n+1] in
V (Bi,α); in particular, it is not adjacent to pi,αai . As S only excludes edge-vertices in
VE that encode edges incident on viai , it contains every vertex in N (pi,αai ) ∩ VE . Since

S also contains every vertex in Ki,α
ai , we conclude that there is no path from pi,αa to

pi,βn+2−a in H − S.
Now, consider the case where ai < a, i.e., n+2−a < n+2−ai . In this case, it is

convenient to consider a path from pi,βn+2−a to pi,αa . Once again, by construction of H ,

any path from pi,βn+2−a to pi,αa in H contains a vertex of Ki,β
n+2−(ai+1) = Ki,β

n+1−ai
or of

N (pi,βn+2−(ai+1)) ∩ VE = N (pi,βn+1−ai
) ∩ VE . Recall that if edge e ∈ E(G) is incident

on viai , then the corresponding edge-vertex ve in H is adjacent only to vertices in
pi,β [n−ai +2, · · · n+1] and Ki,β [n−ai +2, · · · , n+1] in V (Bi,β); in particular, it
is not adjacent to pi,βn+1−ai

. As S only excludes edge-vertices in VE that encode edges

incident on viai , it contains every vertex in N (pi,βn+1−ai
) ∩ VE . Since S also contains

every vertex in Ki,β
n+1−ai

, we conclude that there is no path from pi,βn+2−a to pi,αa . This
implies that no terminal pair in P is connected in H − S which concludes the proof.


�

Lemma 4.2 If (H , P, k) is a Yes-instance of MultiCut with UnDel Term, then
(G, q, (V1, V2, . . . , Vq)) is a Yes-instance of Multicolored Clique.

Proof Assume that (H , P, k) is a Yes-instance of MultiCut with UnDel Term

and let S be a P-multicut of H of size at most k. Recall that, by definition of the
problem, S∩V (P) = ∅. Also, recall that the reduction adds the clique K of size 2M2

and makes it complete to {pi,αn+1, p
i,β
n+1 | i ∈ [q]} and VE . Note that K \ S �= ∅ as

k < 2M2.
Consider an index i ∈ [q]. It is easy to see that there exists a ∈ [n] such that

K i,α
a ⊆ S as otherwise, there is a path from pi,α1 to pi,βn+1 in H − S. Let ai ∈ [n] be

the largest index such that Ki,α
ai ⊆ S. Similarly, there must exist b ∈ [n] such that

Ki,β
b ⊆ S: let bi ∈ [n] be the largest index such that Ki,β

bi
⊆ S. Note that by definition

of ai , bi and the fact that K \ S �= ∅, there is path from pi,αai+1 to pi,βbi+1 in H − S. Now
suppose for a contradiction that ai +1+bi +1 ≤ n+2. Then there exists a′

i ∈ [n] such
that a′

i ≥ ai and a′
i +1+bi +1 = n+2 and so, by definition of P , (pi,αa′

i+1, p
i,β
bi+1) ∈ P .

Moreover, by construction of H , the existence of a path from pi,αai+1 to pi,βbi+1 in H − S

implies that there is path from pi,αa′
i+1 to pi,βbi+1 in H − S; this however, contradicts the

fact that S is a P-multicut of H . Therefore ai +1+bi +1 ≥ n+3, i.e., ai +bi ≥ n+1.
Since this holds for any i ∈ [q], we have that
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∣∣∣∣∣∣
S ∩

⎛

⎝
⋃

i∈[q]
V (Bi,α) ∪ V (Bi,β)

⎞

⎠

∣∣∣∣∣∣
≥

∑

i∈[q]
(ai M + bi M) ≥ q(n + 1)M .

Since |E(G)| − q(q − 1)/2 < M and S has size at most k = q(n + 1)M + |E(G)| −
q(q − 1)/2, it follows that, in fact, ai + bi = n + 1 for all i ∈ [q]. Hence, S ∩
(
⋃

i∈[q] V (Bi,α)∪V (Bi,β)) corresponds to a collection of vertices {v1a1, v2a2 , . . . , vqaq }
in G such that viai ∈ Vi for every i ∈ [q].

In the remaining proof, we argue that there are at least q(q − 1)/2 edges with
endpoints in {v1a1, v2a2 , . . . , vqaq }. Since |E(G)| − q(q − 1)/2 < M , and every clique

in Bi,α is of size at least M , for any a ∈ [n] such that a < ai , we have Ki,α
a \ S �= ∅.

In other words, there is at least one vertex in H − S from each clique Ki,α
a where

a < ai . Since ai is the largest index such that Ki,α
ai ⊆ S, this also holds for every

a > ai . As S intersects every path from pi,α1 to pi,βn+1, it contains every vertex in

N (pi,αai )∩VE . Using similar arguments, we conclude that S also contains every vertex

in N (pi,βbi
) ∩ VE = N (pi,βn+1−ai

) ∩ VE . Now recall that if edge e ∈ E(G) is incident

on viai , then the corresponding edge-vertex ve in H is adjacent to

• Terminals in V (Bi,α) which are in pi,α[ai + 1, n + 1], and
• Terminals in V (Bi,β) which are in pi,β [n − ai + 2, n + 1].

In particular, ve is not adjacent to pi,αai and pi,βn+1−ai
. This implies that only edges-

vertices that correspond to edges incident on viai can be excluded from S. As this holds
for any i ∈ [q], every vertex in VE \ S has its endpoints in {v1a1, v2a2 , . . . , vqaq }. As |S∩
(
⋃

i∈[q] V (Bi,α)∪V (Bi,β))| = q(n+1)M and k = q(n+1)M+|E(G)|−q(q−1)/2,
we have |S ∩ VE | ≤ |E(G)| − q(q − 1)/2 which implies that |VE \ S| ≥ q(q − 1)/2.
Since G is a simple graph, it follows that {v1a1, v2a2 , . . . , vqaq } is a multicolored clique
in G. This concludes the proof of the lemma. 
�

Finally, it is known that, assuming the ETH, there is no algorithm that can solve
Multicolored Clique on instance (G, q, (V1, V2, . . . Vq)) in time f (q)·|V (G)|o(q)

for any computable function f (see, e.g., [17, Corollary 14.23]). Thus, together with
the fact that the reduction takes polynomial time in the size of the input, Lemma
4.1 and 4.2, and arguments that are standard for parameter preserving reductions, we
conclude that the following holds.

Lemma 4.3 MultiCut with Undeletable Terminals on chordal graphs is W[1]-
hard when parameterized by leafage � and assuming the ETH, does not admit an
algorithm running in time f (�) · no(�) for any computable function f .

The remainder of this section is devoted to the proof of the following lemma, which
together with Lemma 4.3 proves Theorem 1.2.

Lemma 4.4 MultiCut with Undeletable Terminals on chordal graph of
leafage at most � admits an XP-algorithm running in time nO(�).
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Proof Let (G, P) be an instance of MultiCut with UnDel Term where G is a
chordal graph of leafage at most �. Let (T ,M) be a tree representation ofG of leafage
at most �.We say that a path in T is amaximal degree-2 path if it contains no branching
nodes, except for possibly the first and last node of the path, and it cannot be extended
without violating this property (that is, it is maximal). A P-multicut S of G is said to
destroy an edge e ∈ E(T ) if ver(e) ⊆ S.

Let us root T at an arbitrary node r ∈ V (T ). Since the number of leaves of T is at
most �, T has at most 2� − 2 maximal degree-2 paths, one starting at each each leaf
or branching node (except the root) and ending at the first ancestor in T which is a
branching node.

Now for eachmaximal degree-2 path Q from α to β in T , guess the first (i.e., closest
to α) and last (i.e., closest to β) edge of Q, say eQ1 and eQ2 , respectively, such that S

destroys eQ1 and eQ2 . Note that, it might be the case that an optimal solution does not

destroy an edge of Q or only destroys one edge of Q (i.e., eQ1 = eQ2 ). Since the length
of any maximal degree-2 path is O(n), this creates at most (n + 1)2� branches.

In each such branch, let D ⊆ E(T ) be the set of guessed edges of T . Pick VD =
{ver(e) | e ∈ D} in the solution and delete VD from G: let (G ′, P ′) be the resulting
instances and further let T ′ be obtained from T by deleting the edges in D and set
M′ = M|V (G ′). Observe that the tree representation of each connected component of
G ′ is given by some tree of the forest T ′ together withM′ restricted to the vertices of
the corresponding connected component. Note that it is enough to solve the problem
independently on each connected component of G ′.

Thus, without loss of generality, assume that G ′ is connected and let (T ′,M′) be
a tree representation of G ′ as defined above. Suppose that G ′ has at least one terminal
pair in P ′, say (s, t) ∈ P ′ ⊆ P . If T ′ is a path, i.e., G ′ is an interval graph, then the
problem can be solved in polynomial time [29, Theorem 5]. Otherwise, we ignore this
branch.

The algorithm outputs a solution if there is at least one branch where a solution was
computed. Otherwise, there is no solution.

It is not difficult to see that the above algorithm indeed solves the problem, as it
considers all the possible ways a solution could intersect everymaximal degree-2 path.


�

5 MULTIWAY CUT WITH UNDELETABLE TERMINALS on Chordal
Graphs

In this section, we consider the Multiway Cut with Undeletable Terminals

problem formally defined below. Given a graph G and a set P ⊆ V (G), a set S ⊆
V (G) \ P is a called a P-multiway-cut in G if G − S has no (p, p′)-path for any two
distinct p, p′ ∈ P .

Multiway Cut with Undeletable Terminals (MWC)
Input: An undirected graph G and a set P ⊆ V (G) of terminals.
Question: Find the size of a minimum P-multiway-cut in G.
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The aim of this section is to prove Theorem 1.3 which states that Multiway Cut

with Undeletable Terminals can be solved in nO(1)-time on chordal graphs.
Before turning to the proof, we first start with a few definitions. Let (T ,M) a tree
representation of a chordal graph G where T is rooted at an arbitrary node r ∈ V (T ).
Given a subtree T ′ of T and a set Q ⊆ V (G), we let Q|T ′ ⊆ Q be the set of vertices
x ∈ Q such that M(x) ⊆ V (T ′). Now let Q ⊆ V (G) be an independent set of G
such that for every leaf η of T , ver(η) ∩ Q �= ∅. Then the truncated tree w.r.t. Q is
the tree T trunc

Q obtained from T as follows. Let {η1, . . . , ηq} be the set of leaves of T .
For each i ∈ [q], let Qi ⊆ Q \ ver(r) be the set of vertices p ∈ Q \ ver(r) such
that topM(p) is on the (ηi , r)-path in T , and let pi ∈ Qi be the vertex of Qi such
that topM(pi ) is closest to r. Then T trunc

Q is obtained from T by deleting the subtrees
rooted at the children of the nodes in {topM(pi ) | i ∈ [q]}. Note that, by construction,
the set of leaves of T trunc

Q is {topM(pi ) | i ∈ [q]} and that, apart from the vertices in
{pi | i ∈ [q]}, there is at most one other vertex in Q whose model intersects V (T trunc

Q ),
namely the potential vertex in Q ∩ ver(r) (note that if such a vertex exists, its model
is in fact fully contained in T trunc

Q ). Finally, given a set P ⊆ V (G), a P-multiway-cut
X in G is said to destroy an edge e ∈ E(T ) if ver(e) ⊆ X .

We now turn to the proof of Theorem 1.3. Throughout the remaining of this section,
we let (G, P) be an instance of MWC, where G is a n-vertex chordal graph, and
further let (T ,M) be a tree representation of G. First, we may assume that P is an
independent set: indeed, if there exist p, p′ ∈ P such that pp′ ∈ E(G), then (G, P) is
a No-instance. Furthermore, if a vertex v ∈ V (G) does not belong to any (p, p′)-path
in G, where p, p′ ∈ P , then it can be safely deleted as no minimal P-multiway-cut
in G may contain v. Hence, we assume that every vertex in G participates in some
(p, p′)-path where p, p′ ∈ P; in particular, we may assume that for every leaf η of
T , ver(η) ∩ P �= ∅. Note that, consequently, for every internal node α ∈ V (T ), the
truncation of Tα w.r.t. P|Tα exists.

Now let T0 be the tree obtained by adding a new node r0 and connecting it to an
arbitrary node r ∈ V (T ). Observe that (T0,M) is also a tree representation of G. In
the following, we root T0 at r0. To prove Theorem 1.3, we design a dynamic program
that computes, in a bottom-up traversal of T0, the entries of a table A whose content
is defined as follows. The table A is indexed over the edges of E(T0). For each node
α ∈ V (T ), A[αparentT0(α)] stores the size of a minimum P|Tα -multiway-cut in
G|Tα . The size of a minimum P-multiway-cut in G may then be found in A[rr0]. We
describe below how to compute the entries of A.

Update Procedure For every leaf η of T , we set A[ηparentT0(η)] = 0. Consider
now an internal node α of T . We show how to compute A[αparentT0(α)] assuming
that for every edge e ∈ E(Tα), the entry A[e] is correctly filled.

Let T̃ be the truncation of Tα w.r.t. P|Tα and let G̃ = G|T̃ . Denote by η1, . . . , ηq

the leaves of T̃ . Recall that, by construction, for every i ∈ [q], there exists pi ∈ P|Tα

such that ηi = topM(pi ): we let P̃ = {pi | i ∈ [q]}. Furthermore, it may be
that P|Tα ∩ ver(r) is nonempty: we let P̃r = P|Tα ∩ ver(r). Note that |P̃r| ≤ 1:
if P̃r �= ∅ then we refer to the terminal in P̃r as the root terminal. Observe that
V (G̃)∩ P|Tα = V (G̃)∩ P = P̃ ∪ P̃r by construction. To compute A[αparentT0(α)],
we distinguish two cases:
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(1) if P̃r �= ∅ then we construct a unique instance (H0,s,t,wt0) of (s, t)- Cut;
(2) Otherwise, for every i ∈ [0, q], we construct an instance (Hi ,s,t,wti ) of (s, t)-

Cut.

We describe below how such instances are constructed. First, recall that an instance
of the (s, t)- Cut problem consists of a digraph D, vertices s, t ∈ V (D), a weight
function wt : E(D) → N ∪ {∞}, and the goal is to find a set X ⊆ E(D) such
that D − X has no (s, t)-path and wt(X) is minimum with this property, where
wt(X) = ∑

u∈X wt(u).

Construction of the (s, t)- Cut Instances For every i ∈ [q], let us denote by P̃i =
P̃ \{pi } and let P̃0 = P̃ . Consider i ∈ [0, q]. Before turning to the formal construction
of the instance (Hi ,s,t,wti ), let us first give an intuitive idea of the construction.
The digraph Hi is obtained from T̃ by orienting all edges of T̃ towards its root r̃ = α

and further adding vertices and weighted arcs to encode the graph G|Tα . The arcs
in Hi corresponding to the edges of T̃ are called the tree arcs and the nodes in Hi

corresponding to the nodes of T̃ are called the tree nodes. The idea is that we separate,
for each terminal p ∈ P̃i , the node topM(p) from the root r̃. To achieve this, we add a
source node s and source arcs from s to topM(p) (of infinite weight) and look for an
(s, r̃)-cut in Hi . Since the edges of T can presumably not be independently destroyed
in a P-multiway-cut, we need some additional vertices to encode these dependencies.
For each vertex v ∈ V (G̃) \ P̃i , we introduce a node γ (v) in Hi which is reachable
via connection arcs (with infinite weight) from all the tree nodes that are contained
in the model of v. This node γ (v) is further connected via a sink arc (of weight one)
to topM(v) which ensures that if we want to cut a tree arc, we also have to cut all
the sink arcs associated to vertices containing the corresponding edge in their model.
The index i is then used to specify which root-to-leaf path of T̃ is uncut: if i = 0 then
every such path is cut, otherwise the (ηi , r̃)-path is uncut. To encode the rest of the
solution, we associate with each tree arc (β, δ) a weight wti ((β, δ)) corresponding to
the size of a minimum P|β -multiway-cut in G|β .

We proceed with the formal construction of Hi . The vertex set of Hi is V (Hi ) =
V (T̃ )�{s}�{
}where
 = {γ (v) | v ∈ V (G̃)\ P̃}, that is,
 contains a node of every
non-terminal vertex in G̃. For every z ∈ 
, we denote by γ −1(z) the corresponding
vertex in V (G̃) \ P̃ . The arc set of Hi is partitioned into four sets:

• The set ET̃ of tree arcs containing all the edges of T̃ oriented towards the root r̃,
• The set Ei

source = {(s,topM(p)) | p ∈ P̃i } of source arcs,
• The set Econn = {(α, γ (v)) | γ (v) ∈ 
, α ∈ M(v) ∩ V (T̃ )} of connection arcs
and

• The set Esink = {(γ (v),topM(v)) | v ∈ V (G̃) \ P̃} of sink arcs.
Furthermore, if P̃r �= ∅, then we let Erterm ⊆ ET̃ be the set of tree arcs (β, δ) ∈ ET̃
such that the edge βδ is contained in the model of the root terminal; otherwise, we let
Erterm = ∅. The weight function wti : E(Hi ) → N∪{∞} is defined as follows. For
every j ∈ [q], let ρ j be the path in T̃ from η j to r̃ and let −→ρ j be the corresponding
directed path in Hi (that is,

−→ρ j is the path in Hi from η j to r̃ consisting only of tree
arcs). Then for every arc e of Hi ,
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Fig. 3 An illustration of the construction of the (s, t)- Cut instances

wti (e) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A[e] if i = 0 and e ∈ ET̃ \ Erterm

A[e] if i �= 0, e ∈ ET̃ and e does not belong to the path −→ρi
1 if e ∈ Esink

∞ otherwise.

Note, in particular, that every arc in Erterm (if any) has infinite weight. Similarly, if
i �= 0, then every arc of the path−→ρi has infiniteweight. This completes the construction
of the instance (Hi ,s,t = r̃,wti ) (see Fig. 3). It is easy to see that such an instance
can be constructed in O(n2)-time.

Now let X0 be an (s, r̃)-cut in H0 such that wt0(X0) is minimum; and if P̃r = ∅,
then for every i ∈ [q], further let Xi be an (s, r̃)-cut in Hi such that wti (Xi ) is
minimum. For each i ∈ [q], let us denote by costi = A[ηiparentT0(ηi )] and let
cost0 = 0. Then we set

A[αparentT0(α)] =
{

|X0| if P̃r �= ∅
mini∈[0,q]{|Xi | + costi } otherwise

In the following, for convenience, we let I = [0, q] if P̃r = ∅, and I = {0} otherwise.
We next show that the entry A[αparentT0(α)] is updated correctly. To this end, we
show that G|Tα has a P|Tα -multiway-cut of size at most k if and only if there exists
i ∈ I such that Hi has an (s, r̃)-cut of weight at most k − costi w.r.t. wti .

Lemma 5.1 For any i ∈ I , if Hi has an (s, r̃)-cut Y such that wti (Y ) ≤ k − costi ,
then G|Tα has a P|Tα -multiway-cut of size at most k.

Proof Assume that there exists i ∈ I such that Hi has an (s, r̃)-cut Y where wti (Y ) ≤
k − costi . For every j ∈ [q] \ {i}, let A j be the set of tree arcs on the path −→ρ j

belonging to Y (recall that −→ρ j is the path in Hi from η j to r̃ consisting only of tree
arcs). Note that since Y is an (s, r̃)-cut, A j �= ∅ for every j ∈ [q] \ {i}.
Claim 5.2 For every terminal j ∈ [q] \ {i}, there exists an arc (x, y) ∈ A j such that
for every z ∈ N+

Hi
(x) \ (N−

Hi
(x) ∪ {y}), the sink arc with tail z belongs to Y .
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Proof Suppose for a contradiction that this does not hold for some index j ∈ [q] \ {i},
that is, for every arc (x, y) ∈ A j , there exists z ∈ N+

Hi
(x) \ (N−

Hi
(x) ∪ {y}) such that

the sink arc with tail z does not belong to Y . Let (x1, y1), . . . , (xa, ya) be the arcs of
A j ordered according to their order of appearance when traversing the path −→ρ j . We
show that, in this case, there is a path from s to r̃ in H − Y . For every b ∈ [a], denote
by Zb ⊆ N+

Hi
(xb) \ (N−

Hi
(xb) ∪ {yb}) the set of vertices z such that the sink arc with

tail z does not belong to Y . Let b1, . . . , bw ∈ [a] be the longest sequence defined as
follows:

• b1 ∈ [a] is the largest index such that Z1 ∩ Zb1 �= ∅ and
• For every l > 1, bl ∈ [a] is the largest index such that Zbl−1+1 ∩ Zbl �= ∅.

For every l ∈ [w], consider a vertex zbl ∈ Z jl and let hbl ∈ N+
Hi

(zbl ) be the head of the

sink arc with tail zbl . Then for every l ∈ [w − 1], hbl lies on the path −→ρ j [ybl , xbl+1]:
indeed, since zbl /∈ Zbl+1 by the choice of bl , either zbl /∈ N+

Hi
(xbl+1) or zbl ∈

N+
Hi

(xbl+1) ∩ N−
H (xbl+1); but zbl ∈ N+

Hi
(xbl ) \ N−

Hi
(xbl ) by construction, and so, hbl

necessarily lies on −→ρ j [ybl , xbl+1].
Now observe that, by maximality of the sequence, bw = a: indeed, if bw < a then

the sequence could be extended as Zbw+1 �= ∅ by assumption. Since zbw /∈ N−
Hi

(xbw),

this implies, in particular, that hbw lies on the path −→ρ j [ybw , r̃]. It follows that

s−→ρ j [η j , x1]zb1−→ρ j [hb1, xb1+1]zb2 . . . zbl
−→ρ j [hbl , xbl+1]zbl+1 . . . −→ρ j

[hbw−1 , xbw−1+1]zbw L[hbw , r̃]

is a path from s to r̃ in H − Y , a contradiction which proves our claim.

For every j ∈ [q] \ {i}, let e j = (x j , y j ) ∈ A j be the arc closest to r̃ such that for
every z ∈ N+

Hi
(x j ) \ (N−

Hi
(x j ) ∪ {y j }), the sink arc with tail z belongs to Y (note that

we may have e j = e j ′ for two distinct j, j ′ ∈ [q] \ {i}). Denote by E = {e j | j ∈
[q]\{i}} ∪ {e∗} where e∗ = (ηi ,parent(ηi )). For every e = (x, y) ∈ E , let P̃e ⊆ P̃i
be the set of terminals in P̃i which are also terminals in the instance restricted to Tx .
Note that {Pe | e ∈ E \{e∗}} is a partition of P̃i : indeed, by construction, every p ∈ P̃i
belongs to at least one such set and if there exist e, e′ ∈ E\{e∗} such that P̃e∩ P̃e′ �= ∅,
then for any j ∈ [q]\{i} such that p j ∈ Pe ∩ Pe′ , e, e′ ∈ A j ; in particular, both e and
e′ lie on the path −→ρ j , a contradiction to the choice of the arc in A j .

Now for every e = (x, y) ∈ E , let Se be a minimum P|Tx -multiway-cut in G|Tx
and denote by Ne = N+

Hi
(x) \ (N−

Hi
(x) ∪ {y}). We define

S = Se∗ ∪
⋃

e∈E\{e∗}
Se ∪ {γ −1(z) | z ∈ Ne}.

Claim 5.3 S is a P|Tα -multiway-cut in G|Tα .

Proof Since for every e = (x, y) ∈ E , Se is a P|Tx -multiway-cut in G|Tx , it is in fact
enough to show that for every e, e′ ∈ E , p ∈ P̃e and p′ ∈ P̃e′ , there is no path from
p to p′ in G|Tα − S.
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Consider therefore j, j ′ ∈ [q] \ {i} such that p j ∈ P̃e and p j ′ ∈ P̃e′ for two distinct
e, e′ ∈ E . Since, as shown above, {P̃ f | f ∈ E \ {e∗}} is a partition of P̃i , p j ′ /∈ P̃e
and p j /∈ P̃e′ ; in particular, e′ does not lie on the path −→ρ j and e does not lie on the
path −→ρ j ′ . It follows that any path in G|Tα from p j to p j ′ contains at least one vertex x
whose model contains the edge corresponding to e; but then, γ (x) ∈ Ne and so, x ∈ S
by construction. Thus, there is no path from p j to p j ′ in G|Tα − S.

Finally, note that, by construction,

|S| = |Se∗ | +
∑

e∈E\{e∗}
|Se| + | ∗ |

⋃

e∈E\{e∗}
{γ −1(z) | z ∈ Ne}

= |Se∗ | +
∑

e∈E\{e∗}
wti (e) +

∑

z∈⋃
e∈E\{e∗} Ne

wti ((z,topM(γ −1(z))))

≤ costi + wti (Y ) ≤ k

which concludes the proof. 
�
Lemma 5.4 If G|Tα has a P|Tα -multiway-cut X of size at most k, then there exists i ∈ I
such that Hi has an (s, r̃)-cut Y where wti (Y ) ≤ k − costi .

Proof Recall that for every j ∈ [q], ρ j is the unique (η j , r̃)-path in T̃ . To prove the
lemma, we first show the following.

Claim 5.5 If there exists i ∈ [q] such that G|Tα has a P|Tα -multiway-cut X of size at
most k where

(1) X does not destroy any edge of ρi and
(2) For every j ∈ [q]\{i}, X destroys an edge of ρ j ,

then Hi has an (s, r̃)-cut Y such that wti (Y ) ≤ k − costi .

Proof Assume that such an index i ∈ [q] exists and let X be a P|Tα -multiway-cut X of
size at most k satisfying item (1) and (2). Note that since X does not destroy any edge
of ρi , P̃r = ∅ for, otherwise, pi and the root terminal would be in the same connected
component of G|Tα − X thereby contradicting the fact that X is a P|Tα -multiway-cut.
For every j ∈ [q] \ {i}, let e j ∈ E(T̃ ) be the closest edge to η j on ρ j such that
ver(e j ) ⊆ X (note that the edges e1, . . . , eq are not necessarily pairwise distinct).
Denote by E = {e j | j ∈ [q] \ {i}}. We construct an (s, r̃)-cut Y in Hi as follows: Y
contains the tree arcs of Hi corresponding to the edges in E and for each v ∈ X such
thatM(v) contains at least one edge of E (that is, v ∈ ver(e) for some edge e ∈ E),
we include in Y the sink arc (γ (v),topM(v)) of E(Hi ). Let us show that Y is indeed
an (s, r̃)-cut in Hi .

For every j ∈ [q] \ {i}, let V j
− ⊆ V (T̃ ) (V j

+ ⊆ V (T̃ ), respectively) be the set of
nodes of the subpath of ρ j from η j to the tail of e j (the head of e j to r̃, respectively).

We contend that for every j ∈ [q] \ {i}, there is no (V j
−, V j

+)-path in Hi − Y . Note
that if true, this would prove that Y is indeed an (s, r̃)-cut in Hi . For the sake of
contradiction, suppose that, for some j ∈ [q] \ {i}, there is a path L in Hi − Y from
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a vertex x ∈ V j
− to a vertex y ∈ V j

+. Since the tree arc in Hi corresponding e j
belongs to Y , there must exist a vertex z ∈ V (L) such that N−

Hi
(z) ∩ V j

− ∩ V (L) �= ∅
and N+

Hi
(z) ∩ V j

+ ∩ V (L) �= ∅; in particular, the sink arc e with tail z must belong

to L . By construction of Hi , it must then be that M(γ −1(z)) contains the edge e j ,
that is, γ −1(z) ∈ ver(e j ); but then, γ −1(z) ∈ X and so, e ∈ Y by construction, a
contradiction which proves our claim.

Let us finally show that wti (Y ) ≤ k − costi . To this end, for every e ∈ E , let
Xe ⊆ X be the restriction of X to Tte where te is the endpoint of e the furthest from
r̃ (note that for any two distinct e, e′ ∈ E , Xe ∩ Xe′ = ∅). Then, for every e ∈ E ,
Xe is a P|Tte -multiway-cut in G|Tte and so, wti (e) ≤ |Xe|. Similarly, the restriction
Xi of X to Tηi is a P|Tηi

-multiway-cut in G|Tηi
and so, |Xi | ≥ costi (note that, by

construction, Xi ∩ Xe = ∅ for every e ∈ E). Letting X ′ = ⋃
e∈E ver(e), it then

follows from the definition of Y that

wti (Y ) = |X ′| +
∑

e∈E
wti (e) ≤ |X ′| +

∑

e∈E
|Xe| ≤ |X | − |Xi | ≤ k − costi

as X ′ ∩ Xi = ∅ and for every e ∈ E , X ′ ∩ Xe = ∅.

Using similar arguments, we can also prove the following.

Claim 5.6 If G|Tα has a P|Tα -multiway-cut X of size at most k such that for every
i ∈ [q], X destroys an edge of ρi , then H0 has an (s, r̃)-cut Y such that wti (Y ) ≤ k.

To conclude the proof of Lemma 5.4, let us show that for any P|Tα -multiway-cut S
inG|Tα , S destroys an edge of every root-to-leaf path of T̃ , except for at most one when
P̃r = ∅. Note that if the claim is true, the lemma would then follow from Claims 5.5
and 5.6.

Let S be a P|Tα -multiway-cut in G|Tα . Observe first that if P̃r �= ∅ then for every
i ∈ [q], S must destroy an edge of ρi for, otherwise, pi and the root terminal are
in the same connected component of G|Tα − S, thereby contradicting the fact that S
is a P|Tα -multiway-cut. Assume therefore that P̃r = ∅ and suppose, for the sake of
contradiction, that there exist two distinct indices i, j ∈ [q] such that S destroys no
edge of ρi and no edge of ρ j . Then for every edge e of ρi ∪ ρ j , ver(e) \ S �= ∅: for
each such edge e, let αe ∈ ver(e) \ S. It is now not difficult to see that there is a path
in G|Tα − S from pi to p j using only vertices from {αe | e is an edge of ρi ∪ ρ j }, a
contradiction to the fact that S be a P|Tα -multiway-cut in G|Tα . 
�

We now conclude by Lemmas 5.1 and 5.4, that A[αparentT0(α)] indeed stores
the size of a minimum P|Tα -multiway-cut in G|Tα . Since the construction of each Hi

takes polynomial-time, an (s,t)-cut in Hi can be computed in polynomial time (see,
for instance, [24]) and the number of Hi s is at most n, it takes plynomial-time to
update A[αparentT0(α)]. Finally, since the number of edges of T is linear in n, the
overall running time is polynomial in n, which proves Theorem 1.3. We remark that
a more careful analysis of the running time of the algorithm leads to an upper bound
of O(n4).
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6 Restricting to H�-Induced-Subgraph-Free Chordal Graphs

In this section, we consider problems restricted to H�-induced-subgraph-free chordal
graphs. Recall that H� is the split graph on 2� vertices such that if V (H�) = C � I is
a split partition then (i) |C | = |I | = �, (i i) every vertex in C is adjacent to exactly
one vertex in I , and (i i i) every vertex in I is adjacent to exactly one vertex in C . As
mentioned in the Introduction, the class of H�-induced-subgraph-free chordal graphs
is a natural generalization of the class of chordal graphs of leafage at most �. In fact,
denoting by C� the collection of all chordal graphs that have leafage at most � and by
Cis� the collection of all chordal graphs that do not contain H� as a induced subgraph
(that is, the collection of H�-induced-subgraph-free chordal graphs), the following
holds.

Observation 6.1 C� � Cis�+1.

Let us briefly explain why Observation 6.1 holds true. Walter generalized the con-
cept of asteroidal triple in order to characterize other subclasses of chordal graphs [48]
as follows. A subset of nonadjacent vertices of G is an asteroidal set if the removal of
the closed neighborhood of any one of its elements does not disconnect the remain-
ing ones. Formally, a set of vertices A of a graph G is asteroidal if for each a ∈ A,
the vertices in A\{a} belong to a common connected component of G − N [a]. The
asteroidal number of G, denoted by at(G), is then the size of a largest asteroidal
set of G. Note that in the graph H�+1, I is an asteroidal set of size � + 1 and thus,
at(H�+1) ≥ � + 1. By definition, if H is a subgraph of G and H is connected, then
at(H) ≤ at(G). Lin et al. [40, Therorem 1] proved that for a connected chordal
graph G, at(G) ≤ lf(G). Hence, if lf(G) ≤ �, then it cannot contain H�+1 as
an induced subgraph. This implies that C� ⊆ Cis�+1. To see that C� is proper subset of
Cis�+1, consider a graph obtained from a star by subdividing every edge once. Then it
is easy to see that this graph does not contain H3 as induced subgraph but can have
unbounded leafage.

The remainder of this section is organized as follows. In Sect. 6.1, we argue that the
FPT algorithms for domination problems cannot be generalized to this larger graph
class. We complement this with an XP-algorithm, which is optimal under the ETH.
In Sect. 6.2, we present a simple algorithm to prove that MultiCut with UnDel

Term is paraNP-hard on this graph class. This implies that the XP-algorithm presented
in Sect. 4 cannot be generalized for this larger class.

6.1 Dominating Set and Related Problems

In this subsection, we prove Theorem 1.4. We first show the hardness results of the
theorem and provide afterwards the XP-algorithms for the problems.

Lemma 6.2 Dominating Set, Connected Dominating Set and Steiner Tree

on H�-induced-subgraph-free chordal graphs are W[1]-hard when parameterized by
� and assuming the ETH, do not admit an algorithm running in time f (�) · no(�) for
any computable function f .
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Proof We present a parameter preserving reduction from Multicolored Indepen-

dent Set. An instance of this problem consists of a graph G, an integer q, and a
partition (V1, . . . , Vq) of V (G). The objective is to determine whether G has an inde-
pendent set which contains exactly one vertex from every part Vi . We assume, without
loss of generality, that each Vi is an independent set. We present a slight modification
of a known reduction (see [17, Theorem 13.9]).
Reduction The reduction takes as input an instance (G, q, (V1, . . . , Vq)) of Multi-

colored Independent Set and constructs a graph G ′ as follows.

• For every vertex v ∈ V (G), the reduction introduces a vertex v into G ′: we denote
by C the set of all these vertices in G ′. Note that the sets Vi carry over directly to
G ′.

• The reduction turns the set C into a clique in G ′ by adding edges between any two
distinct vertices of C .

• For every i ∈ [q], the reduction introduces two new vertices xi , yi into G ′ and
makes them adjacent to every vertex of Vi .

• For every edge e = uv ∈ E(G) with endpoints u ∈ Vi and v ∈ Vj , the reduction
introduces a vertex we into G ′ and makes it adjacent to every vertex of (Vi ∪Vj ) \
{u, v}.

For DomSet and connDomSet the reduction returns the instance (G ′, q). For
Steiner Tree, it sets all the vertices in V (G ′) \ C as terminals and returns the
instance (G ′, V (G ′) \ C, q).

Correctness In the following claim, we prove that the reduction produces equivalent
instances. We only prove the claim for DomSet; the correctness for the other two
problems follows immediately from the design of the graph G ′.

Claim 6.3 (G, q, (V1, . . . , Vq)) is a Yes-instance for Multicolored Independent

Set if and only if (G ′, q) is a Yes-instance for DomSet.

Proof Assume that (G, q, (V1, . . . , Vq)) is aYes-instance forMulticolored Inde-

pendent Set and let I be an independent set I of G containing one vertex from each
Vi . We claim that I is a dominating set in G ′. Since for every i ∈ [q], I ∩ Vi �= ∅,
the set I dominates every vertex in Vi ∪ {xi , yi }. For an edge e = uv ∈ E(G) where
u ∈ Vi and v ∈ Vj , consider the vertex we. As u and v are adjacent, at least one of
them is not in I , say u /∈ I without loss of generality. Since I ∩ Vi �= ∅, there must
then exist w ∈ Vi\{u} such that w ∈ I ; but we is adjacent to w by construction and
thus, I dominates we.

Conversely, assume that (G ′, q) is a Yes-instance for DomSet and let D be a
dominating set of size q in G ′. We claim that D is also an independent set in G. Since
for every i ∈ [q], D dominates the vertices xi and yi , D has to contain at least one
vertex from Vi ∪ {xi , yi }; and since xi and yi are not adjacent, in fact D must contain
a vertex from Vi . As these sets are disjoint for different values of i and |D| ≤ q, it
follows that D contains exactly one vertex from each Vi : let v1 ∈ V1, . . . , vq ∈ Vq be
the vertices of D. Now suppose for a contradiction that vi and v j are the endpoints of
an edge e. By construction, vertex we in G ′ is adjacent only to (Vi ∪Vj ) \ {vi , v j } and
hence, D does not dominate we, a contradiction.
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The following claim holds for all three problems as it only depends on the structure
of the graph G ′.

Claim 6.4 G ′ does not contain H2q+2 as an induced subgraph.

Proof We first partition the vertex set of V (G ′). For this, let I = V (G ′) \C . It is easy
to see that I is an independent set and since C is a clique in G ′, G ′ is in fact a split
graph with split partition (C, I ). For each integer i ∈ [q], the vertices in I can be
partitioned into the following three sets depending on their adjacency in Vi .

1. Vertices that are adjacent to all vertices in Vi : these are the vertices xi , yi .
2. Vertices that are adjacent to all but one vertex in Vi : these are the vertices of type

we for edges e with one endpoint in Vi .
3. Vertices that are adjacent to no vertex in Vi : these are the vertices of type we for

edges e with both endpoints are outside Vi , and the vertices xi ′ , yi ′ where i �= i ′.
Recall that by assumption, Vi is an independent set in G and thus, there is no edge
with both endpoints in Vi .

Now suppose, for the sake of contradiction, that G ′ contains H2q+2 as an induced
subgraph. Consider the (unique) split partition (HC , HI ) of H2q+2. Let HC =
{v1, v2, . . . , v2q+2} and HI = {u1, u2, . . . , u2q+2}. Moreover, for every i ∈ [2q + 2],
edge vi ui is in E(H2q+2). Consider the clique HC in G ′. As I is an independent set,
|HC ∩ I | ≤ 1. Hence, HC contains at least 2q + 1 vertices of C . By the Pigeon-Hole
principle, theremust then exist an integer i ∈ [q] such that |HC ∩Vi | ≥ 3: let v1, v2, v3
be three vertices of HC ∩ Vi .

Since by construction, u1 is not adjacent to v2 and v3, and v2, v3 are inC , it must be
that u1 ∈ I . But then, u1 is adjacent to one vertex in Vi , namely v1, and nonadjacent
to two vertices in Vi , namely v2 and v3, a contradiction to the fact that vertices in I
can be partitioned into the three sets described above. Therefore, G does not contain
H2q+2 as an induced subgraph.

It is known that, assuming the ETH, there is no algorithm that can solveMulticol-

ored Independent Seton instance (G, q, (V1, V2, . . . Vq)) in time f (q)·|V (G)|o(q)

for any computable function f (see, e.g., [17, Corollary 14.23]). Note finally, that
|V (G ′)| ∈ O(|V (G)|2) and G ′ is an H2q+2 induced-subgraph-free split graph. These
facts, together with arguments that are standard for parameter preserving reductions,
concludes the proof of the lemma. 
�

In the following, we give the XP-algorithms for the three problems. Instead of
giving the algorithm for DomSet, we give an algorithm for the more general Red-
Blue- DomSet. Recall that, from Lemma 3.1, there is a reduction from the former to
the latter problem. There remains to argue that this reduction preserves the property
of being H�-induced-subgraph-free.

Lemma 6.5 There is a polynomial-time algorithm that given an instance (G, k) of
DomSet constructs an equivalent instance (G ′, (R′, B ′), k) of Red- Blue- DomSet
such that if G is a H�-induced-subgraph-free graph, then so is G ′.

Proof As in Lemma 3.1, we construct G ′ from G as follows. For every vertex v ∈
V (G), add two copies vR and vB to V (G ′) and add an edge vRvB to E(G ′). For
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every edge uv ∈ E(G), add edges vRuR , vRuB , vBuR , and vBuB to E(G ′). This
completes the construction of G ′. By the proof of Lemma 3.1, it is known that these
two instances are equivalent. In the following, we let R′ = {vR | v ∈ V (G)} and
B ′ = {vB | v ∈ V (G)}.

Now assume that G is H�-induced-subgraph-free and suppose, for the sake of
contradiction, that G ′ contains H� as an induced subgraph. Let I be the vertices
forming the independent set and C the vertices forming the clique of H�. We claim
that for no vertex v ∈ V (G), we have that vB, vR ∈ C ∪ I . Note that if the claim
holds, then using the original version of each vertex would give an induced H� in G
and thus contradict our assumption.

There remains to prove the claim. To this end, consider v ∈ V (G). Since I is an
independent set, vB and vR cannot both be contained in I . Moreover, it can also not be
the case that vB ∈ I and vR ∈ C (or vice-versa) as then vB would also be adjacent to
all vertices in C . Hence, assume that vB, vR ∈ C . Assume, without loss of generality,
that uB ∈ I is the unique vertex adjacent to vB in C (the case where uR ∈ I is the
unique adjacent vertex is symmetric). Since there is an edge from vB to uB , we know
that u and v are adjacent in G. Hence, by construction, there must also be an edge
from vR to uB which contradicts the fact that we have an H� graph. 
�

We are now ready to show that Red- Blue- DomSet on chordal graphs admits an
XP-algorithm if the input graph does not contain H� as induced subgraph.

Lemma 6.6 Red- Blue Dominating Set restricted to H�-induced-subgraph-free
chordal graphs admits an algorithm running in time nO(�).

Proof Let (G, (R, B), k) be an instance of Red- Blue- DomSet where G is an H�-
induced-subgraph-free chordal graph, and let (T ,M) be a tree representation of G.
First, we add a node r to T by connecting it to an arbitrary node of T and root T at r
(note that, by construction, no model inM contains r). We use dynamic programming
to compute the entries of two tables T1 and T2 in a bottom-up traversal of T . The
contents of T1 and T2 are defined as follows. For every node α ∈ V (T ) and every
nonempty set X ⊆ R∈

α of size at most �,

T1[α, X ] := min{|S| | S ⊆ R∩
α , S ∩ R∈

α = X , N [S] ⊇ B∩
α }

Intuitively, this stores the (size of the) smallest set of red vertices containing X such
that all blue vertices in Tα are dominated.

For every node α ∈ V (T ) and every set Y ⊆ R⊆†
α of size at most �,

T2[α,Y ] := min{|S| | S ⊆ R⊆†
α , N [S] ⊇ B⊆†

α ∪ (N (Y ) ∩ B∈
α )}

Intuitively, this stores the (size of the) smallest set of red vertices intersecting with Tα

but not α which dominate all blue vertices below α and the α-blues that are neighbors
of the red vertices in Y .

Initially, every entry of T1 and T2 is set to +∞. The output is Yes if and only if
T2[r,∅] ≤ k. We next show how to update the entries of T1 and T2.
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Updating the Leaves Let α ∈ V (T ) be a leaf of T . Then set

T2[α,∅] = 0

and for every nonempty set X ⊆ R∈
α of size at most �, set

T1[α, X ] = |X |.

Updating Internal Nodes Let α ∈ V (T ) be an internal node of T and let β1, . . . , βp be
the children of α. To update the entries of T1[α, ·], we proceed as follows. Let X ⊆ R∈

α

be a nonempty set of size at most �. Denote by I ⊆ [p] the set of indices i ∈ [p] such
that X ∩ R∈

βi
�= ∅ and set I = [p] \ I . For every i ∈ I , further let Xi = X ∩ R∈

βi
. We

update T1[α, X ] according to the following procedure.

1. For every i ∈ I , set

mi = min
Z⊆R∈

βi
\R∈

α

s.t. |Z |+|Xi |≤�

T1[βi , Z ∪ Xi ].

2. For every i ∈ I , let

Yi = {Z ⊆ R⊆†
βi

| |Z | ≤ � and B∈
βi

\ B∈
α ⊆ N (Z)}

and set

m1
i = min

Z⊆R∈
βi

\R∈
α

s.t. 1≤|Z |≤�

T1[βi , Z ] and m2
i = min

Z∈Yi

T2[βi , Z ].

3. Set

T1[α, X ] = |X | +
∑

i∈I
mi − |Xi | +

∑

i∈I
min{m1

i ,m
2
i }.

To update the entries of T2[α, ·], we proceed as follows. Let Y ⊆ R⊆†
α be a set of

size at most �. Denote by I ⊆ [p] the set of indices i ∈ [p] such that Y ∩ R∩
βi

�= ∅
and set I = [p] \ I . We update T2[α,Y ] according to the following procedure.

1. Initialise OPT I = 0 and OPT I = +∞.
2. For every i ∈ I do:

2.a. Let

Yi = {Z ⊆ R⊆†
βi

| |Z | ≤ � and B∈
βi

\ B∈
α ⊆ N (Z)}
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and set

m1
i = min

Z⊆R∈
βi

\R∈
α

s.t. 1≤|Z |≤�

T1[βi , Z ] and m2
i = min

Z∈Yi

T2[βi , Z ].

2.b. Set OPT I = OPT I + min{m1
i ,m

2
i }.

3. For every partition N = {Ni | i ∈ I } of N (Y ) ∩ B∈
α where for every i ∈ I ,

Ni ⊆ N (Yi ) ∩ B∈
α do:

3.a. Initialise IntN = 0.
3.b. For every i ∈ I do:

3.b.i. Let

YN
i = {Z ⊆ R⊆†

βi
| |Z | ≤ � and Ni ∪ (B∈

βi
\ B∈

α ) ⊆ N (Z)}

and set

m1
i = min

Z⊆R∈
βi

\R∈
α

s.t. 1≤|Z |≤�

T1[βi , Z ] and m2
i = min

Z∈YN
i

T2[βi , Z ].

3.b.ii. Set IntN = IntN + min{m1
i ,m

2
i }.

3.c. Set OPT I = min{OPT I , IntN }.
4. Set T2[α,Y ] = OPT I + OPT I .

We next show that the entries of T1[α, ·] and T2[α, ·] are updated correctly. To this
end,we first introduce some useful notation. Given a set X ⊆ B, a set S ⊆ R minimally
dominates X if X ⊆ N (S) and for every x ∈ S, X � N (S \ {x}). Additionally, we
prove the following.

Claim 6.7 For every node α ∈ V (T ), the following hold.

(i) For every minimum red-blue dominating set S of G, |S ∩ R∈
α | ≤ �.

(ii) For every set X ⊆ B∈
α and every set Y ⊆ R\R∈

α minimally dominating X, |Y | ≤ �.

Proof To prove item (i), let S be a minimum red-blue dominating set of G. Since
S is minimum, for every x ∈ S ∩ R∈

α , there exists px ∈ N (x) ∩ B such that px /∈⋃
y∈S\{x} N (y), i.e., the blue vertex px is only dominated by x . Then {px | x ∈ S∩R∈

α }
is an independent set: indeed, if there exist x, y ∈ S ∩ R∈

α such that px py ∈ E(G)

then x, px , py, y induces a C4, a contradiction as G is chordal. It follows that (S ∩
R∈

α ) ∪ {px | x ∈ S ∩ R∈
α } induces an H|S∩R∈

α | and so, |S ∩ R∈
α | < �.

To prove item (ii), let X ⊆ B∈
α and let Y ⊆ R \ R∈

α be a set minimally dominating
X . Since Y is minimal, for every x ∈ Y , there exists px ∈ N (x) ∩ X such that
px /∈ ⋃

y∈Y\{x} N (y), i.e., the blue vertex px is only dominated by x . This implies
that Y is an independent set: indeed, if there exist x, y ∈ Y such that xy ∈ E(G) then
x, px , py, y induces aC4, a contradiction as G is chordal. It follows that Y ∪{px | x ∈
Y } induces an H|Y | and so, |Y | < �.
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We now move towards proving the correctness of the update procedure. We start
with the first table.

Claim 6.8 For every internal node α ∈ V (T ), the entries of T1[α, ·] are updated
correctly. Furthermore, T1[α, ·] can be updated in nO(�)-time.

Proof Let α ∈ V (T ) be an internal node of T with children β1, . . . , βp and assume
that for every i ∈ [p], T1[βi , ·] and T2[βi , ·] have been correctly filled. Let us first
show that for every nonempty set X ⊆ R∈

α of size at most �, there exists a set S ⊆ R∩
α

of size T1[α, X ] such that S ∩ R∈
α = X and S dominates every vertex in B∈

α .
Consider a nonempty set X ⊆ R∈

α of size at most �. Let I ⊆ [p] be the set of
indices i ∈ [p] such that X ∩ R∈

βi
�= ∅ and set I = [p] \ I . For every i ∈ I , further let

Xi = X ∩ R∈
βi
. For every i ∈ I , let mi be as defined in Step 6.1 and let Zi ⊆ R∈

βi
\ R∈

α

be a set such that |Zi | + |Xi | ≤ � and mi = T1[βi , Zi ∪ Xi ].
Then, since for every i ∈ I , T1[βi , ·] has been correctly filled, there exists a set

Si ⊆ R∩
βi

of size T1[βi , Zi ∪ Xi ] such that Si ∩ R∈
βi

= Zi ∪ Xi and Si dominates

every vertex in B∩
βi
. Similarly, for every i ∈ I , letm1

i andm
2
i be as defined in Step 6.1.

Further let I 1 ⊆ I be the set of indices i ∈ I such that min{m1
i ,m

2
i } = m1

i and set
I 2 = I \ I 1. For every i ∈ I 1, let Zi ⊆ R∈

βi
\ R∈

α be a set such that 1 ≤ |Zi | ≤ � and

m1
i = T1[βi , Zi ]; and for every i ∈ I 2, let Zi ⊆ R⊆†

βi
be a set of size at most � such

that B∈
βi

\B∈
α ⊆ N (Zi ) and m2

i = T2[βi , Zi ].
Then, since for every i ∈ I 1, T1[βi , ·] has been correctly filled, there exists a set

Si ⊆ R∩
βi

of size T1[βi , Zi ] such that Si ∩ R∈
βi

= Zi ∪ Xi and Si dominates every

vertex in B∩
βi
; similarly, since for every i ∈ I 2, T2[βi , ·] has been correctly filled, there

exists a set Si ⊆ R∩
βi

\ R∈
βi

of size T2[βi , Zi ] such that Si dominates every vertex in

B⊆†
βi

∪ (N (Zi ) ∩ B∈
βi

).
We contend that the set M = X ∪ ⋃

i∈[p] Si is the desired S. Indeed, observe first
that, by the update step, T1[α, X ] = |X | + ∑

i∈I |Si | − |Xi | + ∑
i∈I |Si | = |M |. Let

us next show that M ∩ R∈
α = X . Since for every i ∈ I , T1[βi , ·] is correctly filled,

Si ∩ R∈
βi

= Xi ∪ Zi where Zi ⊆ R∈
βi

\R∈
α by construction; similarly, for every i ∈ I 1,

Si ∩R∈
βi

= Zi where Zi ∩R∈
α = ∅ since Zi ⊆ R⊆†

βi
by definition. Now by construction,

for every i ∈ I 2, Si ∩ R∈
α = ∅ since Si ⊆ R⊆†

βi
; thus, M ∩ R∈

α = ⋃
i∈I Xi = X as

claimed.
Let us finally show that M dominates every vertex in B∩

α . First observe that since
X �= ∅, every vertex in B∈

α is dominated by M . Consider therefore a vertex x ∈ B⊆†
α .

Then there exists i ∈ [p] such that x ∈ B∩
βi
. If i ∈ I then x is dominated by Si by

definition; similarly, if i ∈ I 1 then x is dominated by Si by definition. Thus, suppose
that i ∈ I 2. Then either x ∈ B⊆†

βi
in which case x is dominated by Si by definition; or

x ∈ B∈
βi

and since x /∈ B∈
α by assumption, x ∈ N (Zi ) by construction and thus, x is

dominated by Si by definition. Therefore, M dominates every vertex in B∩
α and so, M

is indeed the desired S.
Consider now a minimum red-blue dominating set S of G such that S ∩ R∈

α �= ∅.
Then by Claim 6.7(i), |S ∩ R∈

α | ≤ �. Let us show that |S ∩ R∩
α | ≥ T1[α, S ∩ R∈

α ].
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Denote by X = S ∩ R∈
α and for every i ∈ [p], let Si = S ∩ R∩

βi
. Further let I ⊆ [p]

be the set of indices i ∈ [p] such that Si ∩ R∈
βi

�= ∅ and set I = [p]\I . By Claim
6.7(i), for every i ∈ I , |Si ∩ R∈

βi
| ≤ � and since T1[βi , ·] has been correctly filled,

|Si | ≥ T1[βi , Si ∩ R∈
βi

]. Now consider i ∈ I . Since S is dominating and Si ∩ R∈
βi

= ∅,
every vertex in B∈

βi
\B∈

α must be dominated by somevertex in S∩R⊆†
βi

: let S∗
i ⊆ S∩R⊆†

βi

be a set minimally dominating B∈
βi

\ B∈
α . Then by Claim 6.7(ii), |S∗

i | ≤ � and since
T2[βi , ·] has been correctly filled, |Si | ≥ T2[βi , S∗

i ]. Thus, we conclude by the update
step and the above that

T1[α, X ] ≤ |X | +
∑

i∈I
T1[βi , Si ∩ R∈

βi
] − |Si ∩ X | +

∑

i∈I
T2[βi , S∗

i ]

≤ |X | +
∑

i∈I
|Si | − |Si ∩ X | +

∑

i∈I
|Si | = |S ∩ R∩

α |

as claimed. Now by observing that S ∩ R∩
α is a minimum-sized set dominating every

vertex in B∩
α andwhose intersectionwith R∈

α is X (Swouldotherwise not beminimum),
we conclude by the above that T1[α, ·] is updated correctly.

Finally, it is not difficult to see that it takes nO(�)-time to update one entry of T1[α, ·]
and since there are nO(�) entries, the claim follows.

We next show the correctness of the update procedure for the second table.

Claim 6.9 For every internal node α ∈ V (T ), the entries of T2[α, ·] are updated
correctly. Furthermore, T2[α, ·] can be updated in nO(�)-time.

Proof Let α ∈ V (T ) be an internal node of T with children β1, . . . , βp and assume
that for every i ∈ [p], T1[βi , ·] and T2[βi , ·] have been correctly filled. Let us first
show that for every set Y ⊆ R⊆†

α of size at most �, there exists a set S of size T2[α,Y ]
such that S dominated every vertex in B⊆†

α ∪ (N (Y ) ∩ B∈
α ).

Consider a set Y ⊆ R⊆†
α of size at most �. Let I ⊆ [p] be the set of indices i ∈ [p]

such that Y ∩ R∩
βi

�= ∅ and set I = [p] \ I . For every i ∈ I , let Yi , m1
i and m2

i

be as defined in Step 6.1. Further let I 1 ⊆ I be the set of indices i ∈ I such that
min{m1

i ,m
2
i } = m1

i and set I 2 = I \ I 1. Let N = {Ni | i ∈ I } be a partition of
N (Y ) ∩ B∈

α as considered in Step 6.1 such that the final value of IntN is minimum
among all such final values taken over every partition of N (Y ) ∩ B∈

α as considered in
Step 6.1. For every i ∈ I , let YN

i , m1
i and m

2
i be as defined in Step 6.1. Let I1 ⊆ I be

the set of indices i ∈ I such that min{m1
i ,m

2
i } = m1

i and set I2 = I \ I1.
For every i ∈ I1 ∪ I 1, let Zi ⊆ R∈

βi
\ R∈

α be a nonempty set of size at most � such

that m1
i = T1[βi , Zi ]. Then, since for every i ∈ I1 ∪ I 1, T1[βi , ·] has been correctly

updated, there exists a set Si ⊆ R∩
βi
of size T1[βi , Zi ] such that Si ∩ R∈

βi
= Zi and Si

dominates every vertex in B∩
βi
.

Now for every i ∈ I2, let Zi ∈ Yi be a set of size at most � such that m2
i =

T2[βi , Zi ]; similarly, for every i ∈ YN
i , let Zi ∈ YN

i be a set of size at most � such that
m2

i = T2[βi , Zi ]. Then, since for every i ∈ I2 ∪ I 2, T2[βi , ·] has been correctly filled,
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there exists a set Si ⊆ R⊆†
βi

of size T2[βi , Zi ] such that Si dominates every vertex in

B⊆†
βi

∪ (N (Zi ) ∩ B∈
βi

).
We contend that the set M = ⋃

i∈I Si is the desired S. Indeed, observe first that,
by the update step, T2[α,Y ] = ∑

i∈I |Si | + ∑
i∈I |Si | = |M |. Now consider a vertex

x ∈ B⊆†
α ∪ (N (Y ) ∩ B∈

α ) and let us show that x is dominated by M .
Suppose first that x /∈ B∈

α . Then there exists i ∈ I such that x ∈ B∩
βi
. If i ∈ I1 ∪ I 1

then x is dominated by Si by definition. Suppose therefore that i ∈ I2∪ I 2. If x ∈ B⊆†
βi

then x is dominated by Si by definition; otherwise, x ∈ B∈
βi

and since x /∈ B∈
α by

assumption, x ∈ N (Zi ) by construction and so, x is dominated by Si by definition.
Suppose second that x ∈ N (Y ) ∩ B∈

α . Then there exists i ∈ I such that x ∈ Ni .
If i ∈ I1 then x is dominated by Si by definition. Suppose therefore that i ∈ I2.
If x ∈ B⊆†

βi
then x is dominated by Si by definition; otherwise, x ∈ B∈

βi
and since

x ∈ Ni ⊆ N (Zi ) by construction, x is dominated by Si by definition. Therefore, M
dominates every vertex B⊆†

α ∪ (N (Y ) ∩ B∈
α ) and so, M is indeed the desired S.

Consider now a minimum red-blue dominating set S of G such that S ∩ R∈
α = ∅

and let Y ⊆ S ∩ R⊆†
α be a set minimally dominating N (S ∩ R⊆†

α ) ∩ B∈
α . Then by

Claim 6.7(ii), |Y | ≤ �. Let us show that |S ∩ R⊆†
α | ≥ T2[α,Y ]. For every i ∈ [p], let

Si = S ∩ R∩
βi
. Further let I ⊆ [p] be the set of indices i ∈ [p] such that Y ∩ R∩

βi
�= ∅

and set I = [p] \ I . By construction, for every x ∈ N (Y ) ∩ B∈
α , there exists i ∈ I

such that x ∈ N (Y ∩ R∩
βi

): let N = {Ni | i ∈ I } be a partition of N (Y ) ∩ B∈
α where

for every i ∈ I , Ni ⊆ N (Y ∩ R∩
βi

).
Let I1 ⊆ I be the set of indices i ∈ I such that Si ∩R∈

βi
�= ∅ and set I2 = I\I1. Then

for every i ∈ I1, |Si ∩ R∈
βi

| ≤ � by Claim 6.7(i) and since T1[βi , ·] has been correctly
filled, |Si | ≥ T1[βi , Si ∩ R∈

βi
]. Now for every i ∈ I2, let Zi ⊆ R⊆†

βi
be a set minimally

dominating Ni ∪ (B∈
βi

\B∈
α ). Then for every i ∈ I2, |Zi | ≤ � by Claim 6.7(ii) (note

indeed that Ni ⊆ B∈
βi
) and since T2[βi , ·] has been correctly filled, |Si | ≥ T2[βi , Zi ].

Similarly, let I 1 ⊆ I be the set of indices i ∈ I such that Si ∩ R∈
βi

�= ∅ and set

I 2 = I\I 2. Then for every i ∈ I 1, |Si∩R∈
βi

| ≤ � byClaim 6.7(i) and since T1[βi , ·] has
been correctly filled, |Si | ≥ T1[βi , Si ∩ R∈

βi
]. Now for every i ∈ I 2, let Zi ⊆ R⊆†

βi
be

a set minimally dominating B∈
βi

\B∈
α . Then for every i ∈ I 2, |Zi | ≤ � by Claim 6.7(ii)

and since T2[βi , ·] has been correctly filled, |Si | ≥ T2[βi , Zi ]. Thus, we conclude by
the update step and the above that

T2[α, Y ] ≤
∑

i∈I1∪I 1

T1[βi , Si ∩ R∈
βi

] +
∑

i∈I2∪I 2

T2[βi , Zi ]

≤
∑

i∈I
|Si | = |S ∩ R⊆†

α |

as claimed. Now by observing that S ∩ R⊆†
α is a minimum-sized set dominating every

vertex in B⊆†
α ∪(N (S∩R⊆†

α )∩B∈
α ) (Swould otherwise not beminimum), we conclude

by the above that T2[α, ·] is updated correctly.
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Finally, it is not difficult to see that Step 6.1 can be done in nO(�)-time and that,
similarly, for a fixed partition, Steps 6.1–6.1 can be done in nO(�)-time. Now observe
that |I | ≤ � since |Y | ≤ � and thus, there are at most nO(�) partitions to consider in
Step 6.1.

The lemma now follows from Claims 6.8 and 6.9. 
�

6.2 MultiCut with Undeletable Terminals

We present a simple reduction from Vertex Cover to Multicut with UnDel

Term to prove Theorem 1.5. Consider an instance (G, q) of Vertex Cover where
G has n vertices. Let G ′ be a graph obtained from a star with center r and n+1 leaves
by subdividing each of its edge once. Fix an injective mapping f : V (G) 	→ V (G ′)
such that f (v) is a leaf for every v ∈ V (G). Let w be the unique leaf which is
not in the range of f . Then, the set of terminal pairs P is defined as follows: P =
{( f (u), f (v) | uv ∈ E(G)} ∪ {(r , w)}. It is easy to see that (G, q) is a yes-instance
of Vertex Cover if and only if (G ′,P, q) has a multicut of size at most q. As G ′ is
acyclic, it is H3-induced free.

7 Other Domination-Related Problems

The aimof this section is to complete the proofs ofTheorem1.1 andTheorem1.4.More
precisely, we show that Connected Red- Blue- DomSet and Steiner Tree are
FPT parameterized by leafage and admit a nO(�)-algorithm on H�-induced-subgraph-
free chordal graphs. The two problems are considered in two separate subsections.

7.1 Connected Red-Blue Dominating Set

In this subsection, we aim to prove thatConnected Dominating Set isFPT param-
eterized by the leafage and admits a nO(�)-algorithm on H�-induced-subgraph-free
chordal graphs. Formally, we prove the following.

Lemma 7.1 Connected Red- Blue Dominating Set isFPT parameterized by the
leafage and admits nO(�)-algorithm on H�-induced-subgraph-free chordal graphs.

To obtain these results, we reduce in both cases to Red- Blue- DomSet and use
the algorithms from Sect. 3 and Theorem 1.4, respectively. We describe below the
reduction and show thereafter that both parameters are preserved. We first start with
some useful terminology.

A tree representation (T ,M) of a graphG isminimal if for every edge αβ ∈ E(T ),
the sets {x ∈ V (G) |α ∈ M(x)} and {x ∈ V (G) | β ∈ M(x)} are inclusion-wise
incomparable. A tree representation can easily be made minimal by contracting each
edge αβ ∈ E(T ) for which the sets {x ∈ V (G) |α ∈ M(x)} and {x ∈ V (G) | β ∈
M(x)} are inclusion-wise comparable. Note that this operation does not increase the
number of leaves of the tree representation.
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Reduction Let (G, (RG , BG), k) be an instance of Connected Red- Blue- DomSet

and let (T ,M) be aminimal tree representation ofG withlf(G) leaves.We construct
an instance (H , (RH , BH ), k) of Red- Blue- DomSet as follows.More precisely, we
construct a tree representation (TH ,MH ) for H by modifying (T ,M).

A node α ∈ V (T ) is called a red node if α /∈ ⋃
x∈B M(x), that is, α is contained

only in models of red vertices.
Let TB be the forest obtained by removing every red node in T and let T B be the

smallest connected subtree of T containing TB . We further reduce T B according to
the following procedure.

• For each leaf α of T B do:

– Let β ∈ V (T B) be the neighbor of α.
– If {x ∈ BG | α ∈ M(x)} ⊆ {x ∈ BG | β ∈ M(x)}, then set T B = T B/αβ.

Once the above procedure has been applied to T B , we subdivide each edge of T B and
let TH be the resulting tree. We now define the vertices and edges of H as follows.

• For each node α ∈ V (TH ), we add a blue vertex x to BH with model MH (x) =
{α}.

• For each red vertex x ∈ RG such thatM(x)∩V (T B) �= ∅, we add a red vertex rx to
RH whosemodelMH (rx ) in TH corresponds to the subdivision ofM(x)∩V (T B).

We next show that these two instances are equivalent.

Lemma 7.2 If (G, (RG , RB), k) is a Yes-instance for Connected Red- Blue-

DomSet then (H , (RH , BH ), k) is a Yes-instance for Red- Blue- DomSet.

Proof Let DG ⊆ RG be a connected red-blue dominating set of G of size at most k
and let DH = {rx ∈ RH | x ∈ DG and M(x) ∩ V (T B) �= ∅}. We contend that DH

is a red-blue dominating set of H .
Indeed, consider a blue vertex x ∈ BH . By construction, there exists a node α ∈

V (TH ) such thatMH (x) = {α}. If α corresponds to a node or an edge of T B −V (TB)

then, since DG is connected, there exists y ∈ DG such thatM(y) contains the node or
edge corresponding toα; but then, ry ∈ DH by construction and so, x is dominated.We
conclude similarly if α corresponds to an edge between V (T B) \ V (TB) and V (TB).

Assume therefore that α corresponds to a node or an edge of TB . Suppose first
that α is a leaf of T B and let β be the neighbor of α in T B . Then by construction,
{x ∈ BG | α ∈ M(x)}\{x ∈ BG | β ∈ M(x)} �= ∅ and so, there exists y ∈ DG such
that α ∈ M(y) since DG is dominating; but then, ry ∈ DH by construction and so, x
is dominated. Suppose finally that α corresponds to an edge or an internal node of TB .
Since DG is dominating and connected, there then exists y ∈ DG such that α ∈ M(y);
but then, ry ∈ DH by construction and so, x is dominated. Therefore, DH is a red-blue
dominating set of H and since |DH | ≤ k, we conclude that (H , (RH , BH ), k) is a
Yes-instance for Red- Blue- DomSet. 
�
Lemma 7.3 If (H , (RH , BH ), k) is a Yes-instance for Red- Blue- DomSet, then
(G, (RG , RB), k) is a Yes-instance Connected Red- Blue- DomSet.
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Proof Let DH ⊆ RH be a red-blue dominating set of H of size at most k and let
DG = {x ∈ RG | rx ∈ DH }. We contend that DG is a connected red-blue dominating
set of G. Indeed, consider a blue vertex x ∈ BG . Then by construction, there exists a
node α ∈ V (T B) such that α ∈ M(x). Since DH is dominating, there then exists a
vertex ry ∈ DH such that the node in TH corresponding to α is contained inMH (ry);
but then, x is dominated since y ∈ DG and α ∈ M(y) by construction. Now to see
that DG is connected, observe that if it weren’t the case, there would exist an edge
αβ ∈ E(T B) such that no model in {M(y) | y ∈ DG} contains the edge αβ; but
then, the vertex in TH corresponding to the edge αβ wouldn’t be dominated by DH , a
contradiction. Therefore, DG is a connected red-blue dominating set of G as claimed
and |DG | ≤ k. 
�

Finally, let us show that both parameters are preserved in the above reduction. First,
it is not difficult to see that the leafage of H is at most that of G since the number
of leaves of TH is at most the number of leaves of T . Assume second that G is H�-
induced-subgraph-free for some � ≥ 3, and suppose for a contradiction that H contains
an induced H�. Let v1, u1, . . . , v�, u� ∈ V (H) be 2� such that H [{vi ui | i ∈ [�]}] is
isomorphic to H� where {vi | i ∈ [�]} is a clique and for every i ∈ [�], uivi ∈ E(H).
Note that since BH is an independent set of H and every vertex in BH is simplicial in
H , {vi | i ∈ [�]} ∩ BH = ∅; in particular, {vi | i ∈ [�]} ⊆ RH ⊆ RG . Now for every
i ∈ [�], let αi be a node of TH defined as follows:

• If there is a node inMH (ui )∩MH (vi ) which correspond to a node in T , then let
αi be any such node.

• Otherwise, MH (ui ) ∩ MH (vi ) contains only one node (namely, a node corre-
sponding to an edge of T ), in which case we let αi ∈ MH (vi ) be the neighbor in
MH (vi ) of the node inMH (ui ) ∩ MH (vi ).

Note that, by construction, for every i ∈ [�], αi corresponds to a node of T which
is, furthermore, contained in M(vi ). We contend that for every i ∈ [�], there exists
xi ∈ V (G)\{v j | j ∈ [�]} such that xivi ∈ E(G) and xi is nonadjacent to {v j | j ∈
[�]\{i}} inG, that is, {vi , xi | i ∈ [�]} induces an H� inG. If true, this would contradict
the fact that G is H�-induced-subgraph-free and thus conclude the proof. Let i ∈ [�]
and consider a node α ∈ ⋂

j∈[�] M(v j ) (note that since subtrees in a tree satisfy the
Helly property, this intersection is nonempty). Further let β ∈ V (T ) be the neighbor
of αi on the path in T from αi to α. Then since T is minimal, I = {x ∈ V (G) | αi ∈
M(x)}\{x ∈ V (G) | β ∈ M(x)} �= ∅; and since αi , β ∈ M(vi ), vi /∈ I . Thus, we
may set xi = x where x ∈ I .

7.2 Steiner Tree

The aim of this section is to prove that Steiner Tree is FPT parameterized by the
leafage and admits an nO(�)-algorithm on H�-induced-subgraph-free chordal graphs.
To obtain these results, we give two parameter preserving reductions to Red- Blue-

DomSet. We first present a general reduction rule for Steiner Tree instances.

Reduction Rule 7.4 Let (G, T , k) be an instance of Steiner Tree. If G[T ] has a
connected component C of size greater than 1, then return the instance (G/V (C), (T \
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V (C)) ∪ {vC }, k − |V (C)| + 1) where vC is the vertex resulting from the contraction
of C in G.

Lemma 7.5 Reduction Rule 7.4 is safe. Furthermore, the leafage of G/V (C) is at most
that of G.

Proof Suppose that such a connected componentC exists. Assume first that (G, T , k)
is a Yes-instance for Steiner Tree and let S be a solution for (G, T , k) such that
the number of connected component in S[V (C)] is minimum amongst all solutions
for (G, T , k). We claim that S[V (C)] has only one connected component. Indeed,
suppose to the contrary that S[V (C)] has at least two connected components. Since
C is connected, there exist two connected components C1 and C2 of S[V (C)] such
that C1 and C2 are adjacent, that is, there is an edge xy ∈ E(G) where x ∈ V (C1)

and y ∈ V (C2). Let L = z1 . . . z p be a shortest path in S from C1 to C2. Then the
tree S′ = S − {z1z2} + {xy} is a solution for (G, T , k) such that S′[V (C)] contains
fewer connected component than S[V (C)], a contradiction to the choice of S. Thus,
S[V (C)] has only one connected component and it is easy to see that S/V (C) is a
solution for (G/V (C), (T \ V (C)) ∪ {vC }, k − |V (C)| + 1).

Conversely, assume that (G/V (C), (T \V (C)) ∪ {vC }, k − |V (C)| + 1) is a Yes-
instance for Steiner Tree and let S be a solution. By construction, for every neighbor
y of vC in S, there exists x ∈ V (C) such that y ∈ N (x): for every y ∈ N (vC ) ∩ S, let
xy ∈ V (C) be an arbitrary vertex such that y ∈ N (xy). Set V = {xy | y ∈ N (vC )∩ S}
and for every x ∈ V , denote by Nx = {y ∈ N (vC ) ∩ S | xy = x}. Now let x1, . . . , xp
be an arbitrary ordering of V and let y1, . . . , yq be an arbitrary ordering of V (C) \ V .
Then the tree obtained from S by removing the vertex vC to replace it with the path
x1 . . . xp y1 . . . yq and adding the edges {xi z | i ∈ [p] and z ∈ Nxi } is readily seen to
be a solution for (G, T , k).

Finally, let us remark that a tree representation for G/V (C) can be obtained from
a tree representation (T ,M) of G by merging the models in {M(x) | x ∈ V (C)} into
a single model representing vC ; in particular, the leafage of G/V (C) is at most that
of G. 
�
Lemma 7.6 Let (G, T , k) be an instance of Steiner Tree and let (GR, TR, k) be the
instance resulting from an exhaustive application of Reduction Rule 7.4 to (G, T , k).
If G is H�-induced-subgraph-free then GR is H�+1-induced-subgraph-free.

Proof Assume that G[T ] contains at least one connected component of size greater
than 1 (the lemma is trivial otherwise) and letC1, . . . ,Cp be all such connected compo-
nents ofG[T ]. For every i ∈ [p], denote by vCi ∈ V (GR) the vertex resulting from the
contraction of Ci . Now assume that G is H�-induced-subgraph-free and suppose for a
contradiction thatGR contains an induced H�+1. Let v1, u1, . . . , v�+1, u�+1 ∈ V (GR)

be 2(�+ 1) vertices inducing an H�+1 in GR where {vi | i ∈ [�+ 1]} is the clique and
for every i ∈ [�+1], vi ui ∈ E(GR). Since {vCi | i ∈ [p]} is an independent set inGR ,
|{vi | i ∈ [� + 1]} ∩ {vCi | i ∈ [p]}| ≤ 1: let us assume without loss of generality that
{vi | i ∈ [�]} ∩ {vCi | i ∈ [p]} = ∅. On the other hand, if vCi = u ji for some i ∈ [p]
and ji ∈ [�], then, by construction, there exists xi ∈ V (Ci ) such that xiv ji ∈ E(G): let
I ⊆ [p] be the set of such indices. Then X = {xi | i ∈ I }∪{ui | i ∈ [�] \ I } is an inde-
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pendent set inG where each vertex in X has exactly one neighbor in K = {vi | i ∈ [�]},
that is, K ∪ X induces an H� in G, a contradiction. 
�
Lemma 7.7 Steiner Tree parameterized by the leafage is FPT.

Proof As mentioned above, we reduce to Connected Red- Blue- DomSet: given
an instance (G, T , k) of Steiner Tree, we construct an instance (H , (R, B), kH ) of
Connected Red- Blue- DomSet as follows. First, we assume that Reduction Rule
7.4 has been exhaustively applied to (G, T , k). This implies, in particular, that T is
an independent set of G. Let us further assume that |T | > 1 (the problem is trivial
otherwise). Now let G∗ be the supergraph of G obtained by making each terminal
simplicial, that is, for every t ∈ T , the neighborhood NG(t) (= NG∗(t)) of t induces
a clique in G∗. Observe that the leafage of G∗ is at most that of G: indeed, a tree
representation for G∗ can be obtained from a tree representation (T ,M) of G as
follows. For every terminal t ∈ T , let αt ∈ V (T ) be a node of T contained the model
M(t) of t . If there exists a neighbor x ∈ NG∗(t) such thatM(x) does not contain αt ,
then we extendM(x) by adding to it the path in T from αt to αx where αx ∈ M(x) is
the closest node to αt in T . By iterating this process and leaving all the other models
intact, we obtain a tree representation (T ∗,M∗) forG∗ where T ∗ has the same number
of leaves as T .

ReductionWemay now construct the graph (H , (R, B)): the set R = {rx | x ∈ V (G)}
of red vertices contains a copy of each vertex in V (G) and the set B = {bt | t ∈ T } of
blue vertices contains a copy of each terminal. The graph H [R] is then isomorphic to
G∗ and for every t ∈ T , bt is a true twin to rt . Finally, we set kH = k − |T |. We next
show that the instances (G, T , k) and (H , (R, B), kH ) are equivalent.

Claim 7.8 If (G, T , k) is a Yes-instance for Steiner Tree, then (H , (R, B), kH ) is
a Yes-instance for Connected Red- Blue- DomSet.

Proof Assume that (G, T , k) is a Yes-instance for Steiner Tree and let S be a
solution. Note that since |T | > 1 by assumption, necessarily V (S) \ T �= ∅. We
contend that the set D = {rx | x ∈ V (S) \ T } is a solution for (H , (R, B), kH ).
Indeed, it is clear that for every t ∈ T , bt has a neighbor in D. To see that D is
connected, observe that if a terminal t ∈ T is not a leaf of S, then t has at least two
neighbors in S; but the neighborhood of rt (and bt ) in R is clique in H and so, D is
connected. Since |D| ≤ k − |T | = kH , we conclude that D is indeed a solution for
(H , (R, B), kH ).

Claim 7.9 If (H , (R, B), kH ) is a Yes-instance for Connected Red- Blue-

DomSet, then (G, T , k) is a Yes-instance for Steiner Tree.

Proof Assume that (H , (R, B), kH ) is a Yes-instance for Connected Red- Blue-

DomSet and let D be aminimal solution.We contend that the set S = {x | rx ∈ D}∪T
contains a solution for (G, T , k), that is, for every t, t ′ ∈ T , there is a path from t to
t ′ in G[S]. Observe first that for every t ∈ T , rt /∈ D: indeed, if there exists t ∈ T
such that rt ∈ D, then surely rt has at least one neighbor in D since |B| = |T | > 1
and B is an independent set in H ; but N [bt ] = N [rt ] and N [rt ] is a clique and
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so, D \ {rt } is still a solution for (H , (R, B), kH ), a contradiction to the minimality
of D. This implies, in particular, that |S| = |D| + |T | ≤ kH + |T | = k. Now
since D is dominating and connected, for every terminal t, t ′ ∈ T , there exists a
path Pt,t ′ in H [D ∪ {bt , bt ′ }] from bt to bt ′ ; but then, it is easy to see that the set
{x ∈ V (G) | rx ∈ Pt,t ′ } ∪ {t ′′ ∈ T | V (Pt,t ′) ∩ N (rt ′′) �= ∅} ⊆ S contains a path from
t to t ′. Therefore, S is a solution for (G, T , k).

Observe finally that a tree representation for (H , (R, B)) can be obtained from the
tree representation (T ∗,M∗) of G∗ by adding a copy of M∗(t) for each terminal
t ∈ T ; in particular, the leafage of H is at most that of G∗ which concludes the proof.


�
Lemma 7.10 For every � ≥ 3, Steiner Tree admits a nO(�)-algorithm on H�-
induced-subgraph-free chordal graphs.

Proof As mentioned above, we reduce to Connected Red- Blue- DomSet: given
an instance (G, T , k) of Steiner Tree where G is an H�-induced-subgraph-free
chordal graph,we construct an instance (H , (R, B), kH ) of Connected Red- Blue-

DomSet as follows. First, we assume that Reduction Rule 7.4 has been exhaustively
applied to (G, T , k). This implies, in particular, that T is an independent set of G.
Furthermore, by Lemma 7.6, G is H�+1-induced-subgraph-free. Now the set R =
{rx | x ∈ V (G)} of red vertices contains a copy of each vertex in V (G) and the set
B = {bt | t ∈ T } of blue vertices contains a copy of each terminal. The graph H [R] is
then isomorphic toG and for every t ∈ T , bt is adjacent to only rt . Furthermore, we set
kH = k. Now it is not difficult to see that these two instances are indeed equivalent: if
S is a Steiner tree for T in G then {rx | x ∈ V (S)} is a connected red-blue dominating
set of H ; and conversely, if D is a connected red-blue dominating set then for every
t ∈ T , rt ∈ D and so, {x | rx ∈ D} contains a Steiner tree for T . Finally, it is easily seen
that H is H�+2-induced-subgraph-free since {rt | t ∈ T } is also an independent set in
H and for every t ∈ T , NH (bt ) = {rt } (recall that G is H�+1-induced-subgraph-free
after the exhaustive application of Reduction Rule 7.4), which concludes the proof. 
�

8 Conclusion

In this article, we presented improved and new results regarding domination and cut
problems on chordal graphs with bounded leafage. We presented an FPT algorithm
running in time 2O(�) · nO(1)-time for the Dominating Set problem on chordal
graphs, and used it to obtain similar results for the Connected Dominating Set

and Steiner Tree problems. Regarding cut problems, we proved that MultiCut

with Undeletable Terminals on chordal graphs is W[1]-hard when parameter-
ized by the leafage. We also presented a polynomial-time algorithm for Multiway

Cut with Undeletable Terminals on chordal graphs. We find it surprising that
the complexity of this problem was not known before. Finally, we examined these
problems on H�-induced-subgraph-free chordal graphs to check the extent of our
approach.

In the case of chordal graphs, we believe the leafage to be a more natural parameter
than other popular parameters such as vertex cover, feedback vertex set or treewidth. It
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would be interesting to examine the structural parameterized complexity of problems
such as Longest Cycle, Longest Path, Component Order Connectivity,
s- Club Contraction, Independent Set Reconfiguration, Bandwidth, or
Cluster Vertex Deletion. These problems are known to be NP-complete on split
graphs and admit polynomial-time algorithms on interval graphs. Hence it is plausible
that they admit an FPT or XP algorithm on chordal graphs parameterized by the
leafage. We believe it is a representative list, though not exhaustive, of problems that
exhibit this behavior. In fact, it would be fascinating to find a natural problem that
does not exhibit this behavior, i.e., a problem that is NP-complete on interval graphs
but admits a polynomial-time algorithm on split graphs.
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