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Abstract

Motivation: The minimizer concept is a data structure for sequence sketching. The standard canonical minimizer selects a
subset of k-mers from the given DNA sequence by comparing the forward and reverse k-mers in a window simultaneously
according to a predefined selection scheme. It is widely employed by sequence analysis such as read mapping and assembly.
k-mer density, k-mer repetitiveness (e.g. k-mer bias), and computational efficiency are three critical measurements for
minimizer selection schemes. Though there exist trade-offs between kinds of minimizer variants. Generic, effective and
efficient are always the requirements for high-performance minimizer algorithms.
Results: We propose a simple minimizer operator as a refinement of the standard canonical minimizer. It takes only a few
operations to compute. However, it can improve the k-mer repetitiveness, especially for the lexicographic order. It applies
to other selection schemes of total orders (e.g. random orders). Moreover, it is computationally efficient and the density is
close to that of the standard minimizer. The refined minimizer may benefit high-performance applications like binning and
read mapping.
Availability and implementation:The source code of the benchmark in this work is available at the github repository
https://github.com/xp3i4/mini_benchmark
Contact: chenxu.pan@fu-berlin.de knut.reinert@fu-berlin.de

1 Introduction
The minimizer concept is a data structure for sequence sketching. It is
firstly introduced to the sequence analysis by Roberts et al. (2004) to
reduce the storage requirements of biological sequence data. Then it
was applied by many other applications in the field, such as sequence
binning Deorowicz et al. (2015), sequence compaction Chikhi et al. (2016),
sequence classification Wood et al. (2014), and read mapping Li (2016);
Jain et al. (2020); Büchler et al. (2023).

Given the sequence, the minimizer is the minimum k-mer of a
predefined ordering scheme in a window of w (w > k) consecutive k-
mers. The minimizer performance relates to several key measurements.
Study Schleimer et al. (2003) defined the density of a k-mer selection
scheme as the fraction of selected k-mers. Formally, denote < the
ordering scheme and X the selected k-mers in the sequence S, whose

size |S| ≫ w + k. The density of the selection scheme is given by

ρ(X) =
|X|
|S|

(1)

where |X|, |S| are the size of X and S. Since it was first introduced to
measure the storage requirements, the selection schemes are supposed to
select a set of k-mers that is as sparse as possible such that the storage
requirements can be largely reduced. Novel selection schemes such as
Orenstein et al. (2016); Marçais et al. (2017), Jain et al. (2020), and
sequence-specific minimizer schemes, such as the polar set Zheng et al.
(2021) are proposed to improve the minimizer density.

The k-mer repetitiveness is another minimizer measurement. It is
measured by the k-mer frequency in practice. Formally, the frequency of
a k-mer X = x in S is defined as its average occurrences in the sequence,

v(X = x) =
n(x)

|S|
(2)

1
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2 C.Pan et al.

where n(x) is the occurrence of k-mer X = x. Let V denote the random
variable over possible k-mer frequencies. It relates to the performance of
applications such as

1. Read mapping: Consider the anchoring (seeding) problem, where we
need to find all matched pairs of minimizers in the reference and the
read.

2. Binning: Similar to the read mapping, we need to find matched
minimizers and cluster them into bins.

For the two problems, we prefer selection schemes that can generate
minimizers of lower repetitiveness Deorowicz et al. (2015), because highly
repetitive minimizers would significantly decrease the matching accuracy
and computational efficiency.

Like many other fundamental data structures, computational efficiency
is the third performance measurement. Although the time complexity of
computing minimizers is commonly linear, optimizations of density or
k-mer repetitiveness may significantly increase the runtime. For high-
performance applications, such as population-scale read mapping, drops
in computational efficiency may be non-negligible.

In general, there exist performance trade-offs between minimizer
variants. For instance, the random ordering scheme Chikhi et al. (2014)
generates more uniformly and sparsely distributed minimizers than the
lexicographic ordering scheme at the expense of increased runtime.
In contrast, lexicographical minimizers are less affected by nearby
mutations or sequencing errors than random minimizers, sometimes called
’conservation’ Edgar (2021). Thus, they are beneficial to some matching
applications. But the trade-off is the less random sampling.

Here we propose an operator as a refinement of the standard (canonical)
minimizer. It has the following features.

1. It improves k-mer repetitiveness of the standard minimizer. It is less
biased to small k-mers and distributes more uniformly.

2. It applies to any selection schemes of total orders Davey et al. (2002)
(e.g. lexicographic or random order).

3. Its density converges towards that of the standard minimizers.
4. It is commonly faster than the standard minimizer to compute and can

reach 2 times at most.

It is worth noting that the operator does not apply to non-canonical
minimizers of single-strand sequences, such as RNA minimizers.
However, canonical minimizers are essential to most sequence analysis
applications, such as read mapping and genome assembly.

In the following sections, we will first define the refined minimizer.
Next, we will prove three properties that are essential to the refined
minimizer performance. In the results, we will compare the algorithm
complexity of computing the standard and refined minimizers. Then, we
will evaluate the statistics (e.g. repetitiveness, density) of standard and
refined minimizers in real sequences. Finally, we will analyze the statistics
and discuss the potential limitations and improvements.

2 Materials and Methods

2.1 Definitions

Operations: For high-performance applications, a preferable minimizer
function should be simple and effective. Specifically,

1. Simple: It uses a few operations to compute, such as operations in
{+,−,≪,≫,&, |,⊕,CMP}, namely Add, Subtract, Bitwise Shift
left / right, And, Or, Exclusive Or (XOR) and Branch Conditions.

2. Effective: It generates less biased k-mers with reasonable density.
And it applies to all selection schemes.

Table 1 is a reference comparison of CPU cycles for operations we used
to compute minimizers. It is dominated by branch conditions o3, which
takes about 10 cycles on average.

Table 1. CPU cycles for operations used to compute minimizers. Operations
such as traversing an array will probably trigger L1 cache read.

No. Operations CPU cycles

o1 Add, Subtract, OR, AND, XOR, Shift < 1
o2 Level 1 (L1) cache read 3-4
o3 Right “if” branch 1-2

Wrong “if” branch (branch misprediction) 10-20

Standard minimizer: A minimizer scheme denoted by (w, k,<) selects the
minimum k-mer in w consecutive k-mers ∈ Σk , where Σ is the character
set and order < is commonly induced by a hash function h, which is an
injection from Σk to a totally ordered set. Namely, if x, y are two k-mers,
then x < y if and only if h(x) < h(y). Denote s the subsequence (or
window) whose length |s| = w+k−1. Denote s′ the reverse complement
of s. The standard minimizer hs is given by

hs(s) =
<

min
0⩽i<w

{si,i+k, s
′
i,i+k}

Refined minimizer: The core idea of the refined minimizer is to define
an appropriate decision function that makes the ordering scheme only
compute minimizers in the sequence of one strand such that the smallest k-
mers are less likely to be selected repetitively. Provided |s| ≡ 1 (mod 2),
we define an operator as

δ(s) = pT + pG − pC − pA (3)

where pA, pC , pG, pT are the occurrences of characters A,C,G, T in s.
|s| ≡ 1 (mod 2) is to guarantee δ(s) ̸= 0, which will be later discussed
in the properties. The refined minimizer h is then defined as

hr(s) =


h−
r (s) =

<
min

0⩽i<w
{s′i,i+k} if δ(s) < 0

h+
r (s) =

<
min

0⩽i<w
{si,i+k} if δ(s) > 0

(4)

Table 2 is an example comparing refined and standard minimizers. The
lexicographic order of a given k-mer can be computed by

∑k−1
i=0 4iai,

where ai is the order of the ith (right towards left) character of the k-mer
and ai equals 0, 1, 2, 3 for A,C,G, T .

2.2 Properties

Here, we discuss three refined minimizer properties that are essential to the
applications. They hold for all ordering schemes (w, k,<) defined above.
The first one guarantees the strand symmetry, such that the computation
of the refined minimizer is independent of the strand. The second one
guarantees that the refined minimizer is always not smaller than the
standard one. The third one guarantees that the refined minimizers have a
reasonable density that is close to that of the standard one.

1. Provided |s| ≡ 1 (mod 2), then hr(s′) = hr(s).
Proof: Clearly, pA + pC + pG + pT = |s|.

δs′ = p′T + p′G − p′C − p′A

= pA + pC − pT − pG

= −δs = |s| − 2(pG + pT ) ≡ 1 (mod 2)

̸= 0
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Refined minimizer 3

Table 2. Comparison of standard (Std) and refined (Rfd) minimizers in a DNA sequence s and reverse complement s′, where |s| = 11, k = 5. K is the minimizer.
h(K) is the lexicographic order of the minimizer. Q2(h) is the median of h(K). Values with bold text imply that h is less biased to small ones.

n s′ s δ(s′) δ(s)
K h(K) Q2(h) maxh−minh

Std Rfd Std Rfd Std Rfd Std Rfd

1 AGCTTACTTTG CAAAGTAAGCT 3 -3 AAAGT ACTTT 11 127 11 127 0 0
2 GCTTACTTTGG CCAAAGTAAGC 5 -5 AAAGT ACTTT 11 127 11 127 0 0
3 CTTACTTTGGT ACCAAAGTAAG 5 -5 AAAGT ACTTT 11 127 11 127 0 0
4 TTACTTTGGTG CACCAAAGTAA 7 -7 AAAGT ACTTT 11 127 11 127 0 0
5 TACTTTGGTGT ACACCAAAGTA 7 -7 AAAGT ACTTT 11 127 11 127 0 0
6 ACTTTGGTGTT AACACCAAAGT 7 -7 AAAGT ACTTT 11 127 11 127 0 0
7 CTTTGGTGTTT AAACACCAAAG 9 -9 AAACA CTTTG 4 510 11 127 7 383
8 TTTGGTGTTTG CAAACACCAAA 11 -11 AAACA GGTGT 4 699 11 127 7 572
9 TTGGTGTTTGG CCAAACACCAA 11 -11 AAACA GGTGT 4 699 11 127 7 572
10 TGGTGTTTGGT ACCAAACACCA 11 -11 AAACA GGTGT 4 699 11 127 7 572
11 GGTGTTTGGTA TACCAAACACC 9 -9 AAACA GGTGT 4 699 11 127 7 572
12 GTGTTTGGTAA TTACCAAACAC 7 -7 AAACA GGTAA 4 688 11 510 7 572
13 TGTTTGGTAAA TTTACCAAACA 5 -5 AAACA GGTAA 4 688 4 510 7 572
14 GTTTGGTAAAT ATTTACCAAAC 5 -5 ACCAA GGTAA 80 688 11 688 76 572
15 TTTGGTAAATG CATTTACCAAA 5 -5 AAATG AAATG 14 14 11 510 76 685

where p′A = pT , p′C = pG, p′G = pC , p′T = pA are the
occurrences of A, C, G, T in s′. Hence hr(s′) = hr(s) according
to the definition in expression 4.

2. For any total order < of Σk , hs(s) ⩽ hr(s). Proof:

hs(s) =
<

min
0⩽i<w

{si,i+k, s
′
i,i+k}

=
<

min{
<

min
0⩽i<w

{si,i+k},
<

min
0⩽i<w

{si,i+k}} ⩽ hr(s)

It implies that hr(s)would be less biased to small k-mers than hs(s).
3. Denote sn = a0a1, .., a|s|−1 and sn+1 = a1a2, .., a|s| thenth and

n+ 1th subsequences, where ai is the ith base. Denote δn = δ(sn)

the operator of sn defined in expression 3. Provided the sequence is
random, then the following expression of probabilities holds

lim
|s|→+∞

P (hr (sn) = hr (sn+1))

= lim
|s|→+∞

P (hs (sn) = hs (sn+1))

=1−
2

w + 1

(5)

Proof: For random sequences, Schleimer et al. (2003) have proved

P (hs (sn) = hs (sn+1)) = 1 −
2

w + 1
. Because there exist two

cases that hs (sn) ̸= hs (sn+1), namely the minimizer of sn is
its leftmost k-mer or the minimizer of sn+1 is its rightmost one,
otherwise sn and sn+1 share the same minimizer. The probability

of each case is
1

w + 1
. Therefore P (hs (sn) = hs (sn+1)) = 1−

2

w + 1
.

We then prove the limit of the refined minimizer in expression 5.
Since sn+1 can be iterated from sn by removing the first character of
sn, namely a0, and append the last character of sn+1, namely a|s|,
at the end, we have δn+1 = δn + dn, where

dn =


−2 if a0 ∈ {G,T} and a|s| ∈ {A,C}
0 if a0, a|s| ∈ {G,T} or a0, a|s| ∈ {A,C}
2 if a0 ∈ {A,C} and a|s| ∈ {G,T}

(6)

It is worth noting that δnδn+1 ̸= 0, since δ ̸= 0 has been proved in
the first property. Then we have the following two cases:

• If δnδn+1 > 0: Then according to the definition in expression 4

P (hr(sn) = hr(sn+1)|δn > 0, δn+1 > 0)

=P (h+
r (sn) = h+

r (sn+1)) = 1−
2

w + 1

The probability above equals 1−
2

1 + w
because there exist two

cases that P (h+
r (sn) ̸= h+

r (sn+1) as well. Analogously,

P (hr(sn) = hr(sn+1)|δn < 0, δn+1 < 0)

=P (h−
r (sn) = h−

r (sn+1)) = 1−
2

w + 1

Therefore

P (hr(sn) = hr(sn+1)|δnδn+1 > 0)

=P (h+
r (sn) = h+

r (sn+1))
P (δn > 0, δn+1 > 0)

P (δnδn+1 > 0)

+P (h−
r (sn) = h−

r (sn+1))
P (δn < 0, δn+1 < 0)

P (δnδn+1 > 0)

=1−
2

w + 1

• If δnδn+1 < 0: δnδn+1 = δn(δn + dn) < 0 if and only if
(iff) dn = ±2 and δnδn+1 = −1. According to expressions
3 and 6, we know that δn = −1, δn+1 = 1 iff a0 ∈ {A,C},
|s| − 1

2
characters ina1, a2, ..., a|s|−1 are∈ {A,C} anda|s| ∈

{G,T}. Therefore,

P (δn = −1, δn+1 = 1) =
( |s| − 1

|s| − 1

2

)
(p(1− p))

|s|+ 1

2

where p is the probability of an random character ∈ {A,C}.
Analogously,

P (δn = 1, δn+1 = −1) =
( |s| − 1

|s| − 1

2

)
(p(1− p))

|s|+ 1

2
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4 C.Pan et al.

The limits of the two probabilities above equal 0. Therefore
lim|s|→+∞ P (δnδn+1 < 0) = 0

Therefore the limit in expression 5 is

lim
|s|→+∞

P (hr (sn) = hr (sn+1))

= lim
|s|→+∞

P (δnδn+1 < 0)P (hr(sn) = hr(sn+1)|δnδn+1 < 0)

+ lim
|s|→+∞

P (δnδn+1 > 0)P (hr(sn) = hr(sn+1)|δnδn+1 > 0)

=1−
2

w + 1

Based on the discussion above, we have the expected k-mer density of
refined minimizers

ρr = P (δnδn+1 > 0)ρs + P (δnδn+1 < 0) (7)

where ρs is the expected density of standard minimizers. Therefore,
lim|s|→+∞ ρr = ρs.

2.3 Heuristics

Expression 7 suggests that we can improve the k-mer density without
significantly impacting the selected minimizers by simply skipping the
n+1th window if δnδn+1 < 0. The core idea of the heuristic is to skip the
"solo" windows, whose signs of δ are different from those of predecessor
and successor windows. Solo windows are minority especially for large |s|,
while they significantly increases P (δnδn+1 < 0) in expression 7. The
heuristic skips minimizers of solo windows while preserving minimizers
of "non-solo" ones. For instance, if δ1, δ2, δ3,= −1, 1,−1 then skipping
the solo window 2 will also drop its minimizer. However, if δ1, δ2, δ3,=
−1, 1, 1 then skipping window 2, which is non-solo, may not affect its
minimizer, since window 3 may preserve it.

3 Results

3.1 Runtime

Arbitrary windows: We compared the CPU cycles of computing the refined
and standard minimizer in algorithms 1 and 2. The loops in the pseudocodes
apply to arbitrary windows and ordering schemes induced by the random
hash function R, such as ntHash Mohamadi et al. (2016), which directly
computes random rolling hash values. CPU cycles for each step are listed
in the comments of algorithm 1 and 2. Algorithm 1 takes or = 10o1 +

2o2 + o3 +w(3o1 + oR + o3) operations in sum and algorithm 2 takes
os = 8o1+o2+2w(3o1+oR+o3) operations in sum, where o1,...,o3
are defined in Table 1, oR is CPU cycles for functionR. Assuming o1 = 1,
o2 = 3 and o3 takes 10 cycles on average, then{

os = 11 + 2w(13 + oR)

or = 26 + w(13 + oR)

The expected speedup of the refined minimizer is

Tr =
os

or
= 2−

41

26 + w(13 + oR)
(8)

Hence, Tr ∈ [0.949, 2), whereTr is minimized whenw = 1 and oR = 0

(lexicographic ordering). Tr is maximized when w ≫ 1 or oR ≫ 0.
Therefore the refined minimizer can be two times faster at most.

Applications may apply heuristics to further improve the minimizer
performance. For instance, a more practical way to break ties (when the
smallest k-mer appears multiple times) is to skip ties in adjacent windows.

This creates optimal spread in poly-X regions (e.g. repetitive AA..).
Such heuristics will introduce additional CPU cycles. However, heuristics
for standard minimizers commonly apply to refined minimizers and can
be integrated into function R. Hence the speedup upper bound can be
preserved in such cases.

Consecutive windows: Applications may use buffers to reduce the
times of computing k-mers when computing minimizers in consecutive
windows. The refined minimizer preserves the speedup upper bound in
such a case. They are discussed in Supplementary Notes. However, the
speedup in practice can be washed out to some extent by additional buffer
operations, such as reading, writing, traversing, etc. The exact trade-offs
depend on w, k, ordering schemes, CPU architectures etc. Optimizations
of buffers can substantially improve the practical runtime in such cases.

3.2 Distributions

As discussed above, we ideally prefer selection schemes that can generate
k-mers of lower frequency for the read mapping and binning problem.
Correspondingly, we prefer more uniformly distributed minimizers. We
evaluated key statistics shown in Table 3 as a sketch of the distribution
of selected minimizers X , which are computed in consecutive windows
by streaming GRCH38 (chr 1-22, X, Y). Runtime (i.e. T in the table) is
the corresponding time of computing minimizers in consecutive windows
with buffers rather than the runtime of algorithms 1 and 2. Results for
additional groups of |s| ⩽ 45 and k ⩽ 30 are presented in Supplementary
Tables 1-2. It is worth noting that the tables only show statistics for even ks
to simplify the results. The refined minimizer concept also applies to odd
ks and the corresponding results have no significant difference compared
to those of even ks. Supplementary Table 3 shows statistics of minimizers
of minimap2 Li (2018). We evaluated 25%-95% percentiles of minimizer
frequency V , as shown in the table. For instance, P0.25 = 9.97 per
megabases for standard lexicographical minimizer with |s| = 15, k = 4

means 25% minimizer frequencies are lower than this value.
The column DKL(X||U) is the Kullback–Leibler (KL) divergence of

the distribution of X and the uniform k-mer distribution U . It is given by

DKL(X||U) =

4k∑
i=1

v(xi) log
v(xi)

u(xi)

For instance, if k = 3 then u(xi) = 1/43 = 1/64 constantly, since
there exist 43 types of 3-mers and each type has the same chance of
being selected. A lower KL divergence implies that X is more uniformly
distributed, and thus the scheme is less biased to specific minimizers.
As expected, the results reveal that refined minimizers have lower KL
divergence. Therefore we would expect refined minimizers to generate
less biased k-mers.

The column E-hits is the expected number of hits introduced by
research Sahlin (2022). A lower E-hits may benefit applications such as
read mapping. It is computed as follows in the assessment.

E − hits(X) =
1

|X|

4k∑
i=1

n(xi)
2 =

1

ρ|S|

4k∑
i=1

n(xi)
2

=
|S|
ρ

4k∑
i=1

v(xi)
2

Therefore, it is a comprehensive metric of density ρ and frequency v(xi).
Since the refined minimizers improve the k-mer frequency V at the cost
of limited increased density ρ, we expect refined minimizers to improve
E-hits while the improvement is relatively lower than those of percentiles
andDKL. E-hits for minimizers in GRCH38 are in line with expectations,
as shown in Table 3 and Supplementary Tables 1-3.
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Refined minimizer 5

Algorithm 1: Compute the refined minimizer for the nth subsequence sn. mask = 22k − 1 is a constant to use bitwise operations to map k-mer
to its lexicographic ordering integer.

Input : Sequence s and reverse complement s′

Output: hr(sn): Refined minimizer of nth window of s
1 j ← n+ |sn| − 1 //Takes o1 operations: j points to the last base of sn. |sn| = w + k − 1 is constant
2 pj ← P [sj,j+1] //Takes o2 operations: Map jth base sj,j+1 ∈ {A,C,G, T} to occurrence array P = {1, 1,−1,−1}
3 δn ← δn−1 − pn−1 + pj //Takes 2o1 operations: Iterate δn of sn based on δn−1

4 lj ← L[sj ] //Takes o2 operations: Map nth base to lexicographic integer, where L = {0, 1, 2, 3}
5 l′j ← 3− lj //Takes o1 operations: Map nth base of the reverse complement to lexicographic integer

6 hn,j+1 ← ((hn−1,j ≪ 2)&mask + lj //Takes 3o1 operations: Map sn to its lexicographic integer hn,j+1 based on hn−1,j

7 h′
n,j+1 ← ((h′

n−1,j ≫ 2) + (l′j ≪ 2|sn|) //Takes 3o1 operations: Map s′n to its lexicographic integer h′
n,j+1 based on h′

n−1,j

8 if δn < 0 then
9 h← h′

n,j+1 //Takes o3 operations: Set h with hn,j+1 or h′
n,j+1 according to δn

10 else
11 h← hn,j−1

12 end
13 while 0 ⩽ i < w

14 do
15 hn+i,n+i+k ← (h≫ 2(w − i− 1))&mask //Takes 3o1 operations: Compute lexicographic integer for the ith k-mer
16 hn+i,n+i+k ← R(hn+i,n+i+k) //Takes oR operations: Apply the random function R if uses the random ordering scheme.
17 if hn+i,n+i+k < min then
18 min← hn+i,n+i+k //Takes o3 operations
19 end
20 return min

Algorithm 2: Compute the standard minimizer for the nth subsequence sn. mask = 22k − 1 is a constant to use bitwise operations to map
k-mer to its lexicographic ordering integer.

Input : Sequence s and reverse complement s′

Output: hs(sn): Standard minimizer of nth window of s
1 j ← n+ |sn| − 1 //Takes o1 operations: j points to the last base of sn. |sn| = w + k − 1 is constant
2 lj ← L[sj ] //Takes o2 operations: Map nth base to lexicographic integer, where L = {0, 1, 2, 3}
3 l′j ← 3− lj //Takes o1 operations: Map nth base of the reverse complement to lexicographic integer

4 hn,j+1 ← ((hn−1,j ≪ 2)&mask + lj //Takes 3o1 operations: Map sn to its lexicographic integer hn,j+1 based on hn−1,j

5 h′
n,j+1 ← ((h′

n−1,j ≫ 2) + (l′j ≪ 2|sn|) //Takes 3o1 operations: Map s′n to its lexicographic integer h′
n,j+1 based on h′

n−1,j

6 while 0 ⩽ i < w

7 do
8 hn+i,n+i+k ← (hn,j+1 ≫ 2(w − i− 1))&mask //Takes 3o1 operations: Compute lexicographic integer for the ith k-mer
9 h′

n+i,n+i+k ← (h′
n,j+1 ≫ 2(w − i− 1))&mask //Takes 3o1 operations: Compute lexicographic integer for the reverse complement

10 hn,n+i+k ← R(hn,n+i+k) //Takes oR operations: Apply the random function R if use the random ordering scheme.
11 h′

n,n+i+k ← R(h′
n,n+i+k) //Takes oR operations: Apply the random function R if use the random ordering scheme.

12 if hn+i,n+i+k < min then
13 min← hn+i,n+i+k //Takes o3 operations
14 if h′

n,i < min then
15 min← h′

n+i,n+i+k //Takes o3 operations

16 end
17 return min

Figure 1 illustrates the empirical distribution of minimizer frequency
V discussed above. It is log-scaled since the distribution is right-skewed,
namely a long tail on the right side. Supplementary Figure 1 shows the
histogram version of the same data as a complement. As discussed above,
we prefer small V for anchoring and binning problems, since large ones in
the long tails would be the performance bottleneck. The figure reveals that
for different |s|, k, standard minimizers have heavier tails, indicating larger
V than refined minimizers. Therefore refined minimizers generate more

uniformly distributed k-mers. Figures for additional settings of |s| ⩽ 45

and k ⩽ 30 are presented in Supplementary Figure 2.
Overall, statistics including the percentiles, DKL, E-hits and the

distribution figures suggest refined lexicographical minimizers are less
repetitive than standard lexicographical or random minimizers. Since the
refined minimizer is also computationally efficient, it is expected to be
more friendly to high-performance minimizer applications.
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Table 3. Statistics of standard (Std) and refined (Rfd) minimizer sampled consecutively in GRCH38: P0.25-P0.95 are percentiles of minimizer frequency per
megabases. DKL(X||U) is the Kullback–Leibler (KL) divergence of the distribution of X and the uniform k-mer distribution U . Large values such as E-hits are
expressed by scientific notation. T is the runtime. Better values are in bold text.

< |s|, k
P0.25(V ) P0.5(V ) P0.75(V ) P0.95(V ) ρ(X) DKL E-hits T [s]
Std Rfd Std Rfd Std Rfd Std Rfd Std Rfd Std Rfd Std Rfd Std Rfd

L
ex

ic
o 15,4 9.97 7.55 201.92 69.07 2.64E3 762.28 1.01E4 4.86E3 0.16 0.21 2.28 1.26 2.53E7 1.14E7 27.60 26.12

15,8 2.32 0.06 7.54 0.40 23.66 2.58 61.41 25.48 0.26 0.29 2.25 1.59 1.92E5 1.23E5 28.88 26.62
15,12 0.01 0.00 0.02 0.01 0.09 0.03 0.28 0.16 0.44 0.46 2.43 1.90 1.29E4 9.11E3 31.03 26.22

25,4 0.28 0.71 22.90 4.34 697.16 170.95 8.59E3 3.88E3 0.09 0.13 2.76 1.73 2.43E7 1.19E7 25.04 22.73
25,8 0.04 0.00 1.04 0.02 7.27 0.69 44.77 16.95 0.12 0.16 3.01 2.06 2.26E5 9.93E4 25.03 22.63

25,12 0.00 0.00 0.01 0.00 0.06 0.01 0.24 0.12 0.16 0.19 3.40 2.67 1.34E4 8.32E3 25.85 23.02

R
an

do
m 15,4 7.82 1.56 163.57 88.59 1.74E3 1.27E3 7.92E3 4.80E3 0.15 0.19 2.14 1.51 2.26E7 1.59E7 48.57 42.94

15,8 0.14 0.04 1.33 0.48 8.75 3.70 41.05 25.83 0.22 0.25 2.17 1.67 1.61E5 1.26E5 47.95 43.21
15,12 0.00 0.00 0.01 0.01 0.06 0.04 0.23 0.17 0.41 0.42 2.31 2.06 1.07E4 1.02E4 52.04 41.94

25,4 0.34 0.07 6.32 6.40 634.58 472.81 5.71E3 3.48E3 0.09 0.12 2.66 2.01 2.25E7 1.71E7 46.20 38.61
25,8 0.01 0.01 0.24 0.19 3.62 2.03 31.74 22.66 0.11 0.14 2.83 2.29 1.61E5 1.34E5 45.89 38.23

25,12 0.00 0.00 0.01 0.00 0.03 0.02 0.17 0.12 0.14 0.17 3.18 2.74 8.97E3 9.64E3 46.79 41.85

Fig. 1: Empirical distributions of V for k = 4, 8, 12 in rows and
|s| = 15, 25 in columns. Rfd and Std are refined and standard minimizer.
The vertical axis equals the frequency of V = v, namely the empirical
probabilityP (V = v). The horizontal and vertical axes are in log10 scale.

4 Discussion

4.1 Potential limitations

We can observe a drop in benefits for frequency-related statistics of refined
minimizers for larger k and |s| (i.e. P0.95, DKL, E-hits and distributions
in Supplementary Figure 2). However, it is worth noting that the benefits
depend on a latent factor, the sequence size. We use a coefficient, the
average minimizer occurrences in the sequence denoted by E(X, k) to
describe the latent performance impact.

E(X, k) =
|X|
4k

=
ρ|S|
4k
≈

2|S|
(1 + w)4k

=
2|S|

(|s| − k + 2)4k

where ρ ≈ 2/(1 + w) is the expected minimizer density. For instance,
if we assess 20-mers in GRCH38 references of approximately 3Gbps in
size then E(X, k) = ρ · 3Gbps/420 ≈ 0. It means that most types
of 20-mers never occur in the minimizer set of GRCH38. As a result,
the empirical distribution of minimizer frequency will not be close to the
expected one due to insufficient minimizers (i.e. law of large numbers).

Specifically, E(X, k) drops exponentially or linearly as k or |s| increases.
Therefore, given the sequence of fixed size (e.g. GRCH38), we expect
to observe significant or moderate drops in the statistics for large k or
|s|. For validation, we assessed the empirical distributions of minimizer
frequency V for |s| = 25, k = 10 in 6 sequences, whose sizes |S| are
1, 4, 16, 64, 256, 1024Mbps, as shown in Supplementary Figure 3. We
can observe that the difference between the standard and refined minimizer
distributions is insignificant in short sequences (e.g. 1Mbps, 4Mbps).
However, distributions become significantly different as the sequence size
|S| increases exponentially. Therefore, the empirical distributions depend
on the sequence size and the practical benefits will increase as the sequence
size grows.

4.2 Potential improvements

We have discussed the heuristic to improve the refined minimizer density
in section 2.3. There potentially exist other heuristics that can improve
the refined minimizers in practice. For instance, refined minimizers can
possibly be improved for specific sequences, such asA,T orC,G enriched
ones, where δ signs are likely to be frequently changed. A potential
improvement is to extend δ as follows,

δω(s) = ω1(pA − pT ) + ω2(pC − pG)

where weights ω1, ω2 ≡ 1 (mod 2). Additionally, we extend δ based
on the occurrences of 2-mers pAA, pAC , ..., pTT or q-mers (i.e. q

characters). Generally, δ based on the occurrences of q-mers can be defined
as

δω,q(s) =

4q/2∑
i=1

ωi(pqi − pq′i
)

where qi, q′i are the ith q-mer and its reverse complement. Weights ωi can
be optimized, provided distributions of q-mers in the sequences are known.
In practice, the distributions can be approximated by sampling q-mers in
the subsequences. Such heuristics may further improve the performance
of refined minimizers.

5 Conclusion
In this work, we proposed a refined DNA minimizer operator. We
discussed basic properties that are essential to applications. The refined
minimize is generic, computationally efficient and can improve the k-mer
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repetitiveness, especially for the lexicographic order at the cost of limited
increased density. However, simple heuristics, such as skipping "solo"
windows, can further improve the performance. Assessments based on the
GRCH38 are in line with expectations. We expect the performance can be
potentially improved with additional heuristics in practice.
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