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Abstract

In this thesis we investigate several phenomena in quantum gravity with a specific empha-

sis on scale-invariant models of quadratic gravity whose actions contain all three independent

squares of the Riemann tensor. After discussing the different ways in which scale invariance can

manifest and reviewing how spontaneous symmetry breaking may occur as a result of quantum

effects, we marry these concepts by constructing a model of gravity and matter that dynamically

generates the Planck and electroweak scales through the spontaneous breaking of scale symme-

try, thus describing an origin for the very concept of mass. We also demonstrate that this same

scale-invariant model describes a period of cosmic inflation that is consistent with modern ob-

servations. A simpler realization of this model with the same important features is then defined

by including quantum effects that result from the traditionally neglected spin-2 ghost degrees of

freedom that are inherently present in this type of theory. The second part of this work is devoted

to studying the role of these spin-2 ghosts, which generically appear as negative norm states that

threaten unitarity at the quantum level. We derive rigorous and novel covariant operator quanti-

zations of both globally scale-invariant quadratic gravity in the phase of broken symmetry and of

locally invariant conformal gravity in the unbroken phase. This leads us to establish the notion

of “conditional unitary” wherein the broken phase theory is shown to be unitary up to very high

energies, and grants a new perspective on the ghost problem in quantum gravity as a whole.

Zusammenfassung

In dieser Arbeit untersuchen wir verschiedene Phänomene der Quantengravitation mit beson-

derem Schwerpunkt auf skaleninvarianten Modellen der quadratischen Gravitation, deren Wir-

kungen alle drei unabhängigen Quadrate des Riemanntensors enthalten. Nach der Erörterung

der verschiedenen Arten, wie sich Skaleninvarianz manifestieren kann, und der Überprüfung,

wie spontane Symmetriebrechungen aufgrund von Quanteneffekten auftreten können, verbinden

wir diese beiden Konzepte indem wir ein Modell der Gravitation und der Materie konstruieren,

das dynamisch die Planck- und elektroschwache Skala durch die spontane Brechung der Ska-

lensymmetrie erzeugt und somit auch den Ursprung für das grundlegende Konzept von Masse

beschreibt. Wir zeigen auch, dass dieses skaleninvariante Modell eine Periode der kosmischen

Inflation ermöglicht, die mit modernen Beobachtungen übereinstimmt. Eine einfachere Realisie-

rung dieses Modells mit denselben wichtigen Eigenschaften wird dann durch die Einbeziehung

von Quanteneffekten ermöglicht, die aus den üblicherweise vernachlässigten Freiheitsgraden eines

Spin-2-Geistfeldes folgen, die in dieser Art von Theorien inhärent sind. Der zweite Teil dieser

Arbeit ist der Untersuchung der Rolle dieser Spin-2-Geister gewidmet, die im Allgemeinen als

negative Normzustände auftreten und somit die Unitarität der Quantentheorie bedrohen. Wir

leiten rigoros neuartige kovariante Operatorquantisierungen sowohl der global skaleninvarianten

quadratischen Gravitation in der Phase der gebrochenen Symmetrie als auch der lokal invarian-

ten konformen Gravitation in der ungebrochenen Phase her. Dies führt uns dazu, den Begriff der

“konditionalen Unitarität” einzuführen, worin sich die Theorie in der gebrochenen Phase bis zu

sehr hohen Energien als unitär erweist, und gewährt somit eine neue gesamtheitliche Perspektive

auf das Geistproblem in der Quantengravitation.
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Chapter 1

Introduction

Despite the overwhelming experimental success of the Standard Model (SM), it is
well-known among theorists that the SM alone is far from providing a complete descrip-
tion of Nature. Several of the most important shortcomings of the SM stem from the
very quantum field theoretical backbone that it is built on, namely, the hierarchy prob-
lem and the fact that the SM contains no description of the quantum nature of gravity.
However, both of these issues (as well as many others) may be at least addressed, if not
completely resolved, by the postulate that our universe is fundamentally scale-invariant.

The hierarchy problem refers to the incredible level of fine-tuning that is required to
reconcile the large difference between the electroweak (EW) and Planck scales. There
is actually no fine-tuning in the SM as it stands since the measured value of the Higgs
mass, mH ≈ 125 GeV [5, 6], indicates that the SM is perturbative (specifically, it contains
no Landau poles) up to the Planck scale [7–10]. However, issues may arise due to the
fact that the Higgs, being the only fundamental scalar in the theory, receives radiative
corrections to its mass δm2

H ∝ Λ2
BSM from loop diagrams involving heavy particles at

the scale of new physics beyond the Standard Model (BSM), ΛBSM [11]. Since the SM
is certainly not a complete theory of everything, we can anticipate that some scale of
new physics exists beyond what we are currently able to probe with experiment. This
means that the only way to justify the measured mass of the Higgs boson in the SM
framework is with a very unnatural (in the sense of [12]) fine-tuning of couplings that
enforces precise cancellation of the troublesome radiative corrections and reproduces the
values measured at low energies. Popular proposed resolutions to the hierarchy problem
include: invoking large extra dimensions whose existence implies that the measured
4D Planck mass is actually an effective “scaled-up” version of the true, more natural
extra-dimensional Planck mass [13–15], and supersymmetric extensions of the SM that
posit the existence of fermionic (bosonic) superpartners for each boson (fermion) whose
contributions to the total radiative corrections received by the Higgs precisely cancel as
a result of the symmetry [16, 17] (though it should be noted that the most minimal of
these models can come with a “little hierarchy problem” of their own [18, 19]).

In this work we will take a different approach to the hierarchy problem and assume

1



2 1. Introduction

it may instead be resolved through scale symmetry. When scale symmetry is linearly
realized in a theory i.e. it is not spontaneously broken, the theory necessarily contains
dimensionless constants only and is devoid of all fundamental scales. This implies that
scale-invariant theories which attempt to describe the world as we know it must generate
all the scales in physics including the electroweak scale, Planck scale, etc., as dynamical
quantities that appear as a result of spontaneous symmetry breaking (SSB). In a scenario
where all scales are dynamically generated quantities, quadratic divergences become mere
artifacts of the regularization procedure that may be canceled with appropriate counter
terms, meaning that the Higgs mass runs only logarithmically and is inherently stable
under radiative corrections, thus suggesting a resolution to the hierarchy problem [20].

Studies of the SM renormalization group equations already seem to hint at scale
invariance (SI) if the Higgs potential tends towards flatness at energies approaching the
Planck mass [7, 21], and though the SM is not scale-invariant as it stands, the only
term in its action that actually violates this symmetry is the massive parameter in the
Higgs potential. This means that one may construct models that are able to dynamically
generate this single parameter with only minimal extra field content, and many authors
have written promising extensions to the SM in this spirit [22–27]. It is also natural to
consider more complicated BSM models that account for neutrino masses with a scale-
invariant realization of the neutrino option [28, 29] and suggest potential dark matter
candidates that acquire their mass through the spontaneous breaking of scale symmetry
[29–31]. SI as a fundamental principle is also well-motivated by cosmology, as it has the
potential to shed light on the nature of dark energy and the cosmological constant (CC)
[32–35], and to describe a period of inflation in the early universe that meshes nicely
with experimental signatures [36–41]. Indeed, the most precise measurements performed
by the Planck and BICEP/Keck collaborations [42–44] suggest a value of ns ≈ .96 for
the scalar spectral index of cosmic microwave background (CMB) fluctuations, which is
just barely removed from the scale-invariant value of ns = 1.

Given that scale-invariant models are in principle valid up to arbitrary energies, it
is also important to consider how they may be embedded into a theory of gravity as
we approach the Planck scale, since this is where one expects gravitational interactions
to start becoming relevant for particle physics. Theories that attempt to unify particle
physics and gravity under the umbrella of SI have appeared in the literature for more than
50 years [45–50] and continue to be an active area of research [51–55]. The popularity of
these kind of models stems in no small part from the fact that scale-invariant extensions
of gravity tend to be renormalizable, in contrast to General Relativity (GR) which,
despite its unprecedented success as a classical description of gravity, is power-counting
non-renormalizable and thus cannot represent a complete description of quantum gravity.
When GR is treated as an effective field theory, one encounters quantum corrections that
depend on the three independent squares of the Riemann tensor [56] and it is thus natural
to consider actions that contain these kind of terms already at tree-level. These theories
are generally referred to as quadratic gravity (QG) and their full renormalizability was
indeed demonstrated by Stelle in the seminal works [57, 58]. The important connection
then follows from the fact that, as a result of its power-counting renormalizability, QG
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is easily interpreted as the most general scale-invariant description of gravity after the
generation of an Einstein-Hilbert term through SSB.

When gravity is added to the picture, it also becomes important to distinguish be-
tween the cases of global SI and local SI i.e. conformal invariance. Except for a few niche
examples, global SI in theories of particle physics also implies a local symmetry under
the full conformal group, though this is not the case for theories of gravity. Demanding
conformal invariance requires one to restrict the general action of scale-invariant QG to
an action composed of only the squared Weyl tensor. This theory of conformal grav-
ity (CG) was originally considered by Weyl and Bach more than 100 years ago [59, 60]
and has remained interesting to theorists to this day thanks to its renormalizability and
clear, aesthetically appealing interpretation as a gauge theory of the conformal group
[61] which is reminiscent of the SM’s formulation as a Yang-Mills gauge theory [62].
Even aside from these promising features, the CG action has a knack for appearing in
theories even when it is not introduced from the start, perhaps most interestingly with
respect to asymptotic safety [63–67] and ’t Hooft’s work on naturalness and the black
hole information paradox [56, 68–70]. It should however be noted that the validity of
CG-based theories is debated due to the ubiquitous conformal (trace) anomaly that is
known to appear in scale-invariant theories [71, 72]. The conformal anomaly’s role in
quantum gravity was originally identified through a violation of the the conformal Ward
identity by Duff and Capper while calculating corrections to the graviton propagator
[73–75] and though such anomalies generally imply that the associated gauge theory is
inconsistent [76], promising methods of reconciling the conformal anomaly have been
proposed throughout the years [77–82] and its presence has not dissuaded authors from
considering unified theories of CG and matter [83–97].

Despite the potential for scale-invariant QG to represent a consistent theory of quan-
tum gravity thanks to its renormalizability and ability to resolve the hierarchy problem,
theoretical problems arise due to the fact that its action contains four derivatives (two
per Riemann tensor) acting on the metric. It has been known since the mid 1800’s that
classical theories with this derivative structure generically exhibit what is known as the
Ostrogradsky instability [98], a feature that, after application of standard quantization
procedures, leads to a Hilbert space containing quantum states with negative norm. This
in turn leads to what is colloquially known as the ghost problem - a breakdown of unitar-
ity and the usual interpretation of probability in quantum theory. After decades of study
it has become clear that the ghost problem stems from the mathematical foundations of
quantum field theory (QFT) itself and may not be easily overcome, however, there is good
reason to believe that it may be resolved through a modification of the usual quantum
prescription. Serious works with this goal in mind have appeared as early as 50 years ago
the with the models of Lee and Wick [99, 100] and the work of Boulware, Horowitz, and
Strominger [101], while a few promising resolutions have also been proposed in recent
years; notable examples include the demonstration of ghost instability by Donoghue and
Menezes [55, 102–104], Anselmi’s fakeon prescription [105–108], as well as Bender and
Mannheim’s PT symmetric QFT [97, 109–119] (see also the similar ideas of Salvio and
Strumia in [120, 121]). There are also ideas worth taking seriously that are based on the
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notion that general (non-scale-invariant) QG may be viewed as a truncated effective field
theory that is part of a complete ghost-free theory containing an infinite tower of higher
derivative terms [122]. In any case, the general consensus among experts in the field
appears to be that the ghost problem may be resolved through a better understanding
of quantum physics, which if true, would render scale-invariant QG a renormalizable,
unitary, and thus quite satisfactory description of the quantum nature of gravity.

We will begin our investigations into all the ideas discussed above in Chapter 2 by
precisely defining the various realizations of scale symmetry in physics, reviewing how
SSB may be brought on by quantum effects through the Coleman-Weinberg (CW) mech-
anism, and presenting the concrete scale-invariant model established in [1] which dynam-
ically generates the Planck and electroweak scales through the spontaneous breaking of
scale symmetry. This same model was also shown to generate a viable period of cosmic
inflation and this will be the focus of Chapter 3, where we will also present the work con-
ducted in [2] that demonstrates some positive effects with respect to SSB and inflation
that appear when spin-2 ghosts are present in a theory. Chapter 4 is devoted entirely
to an understanding of the ghost problem in quantum gravity. After establishing a firm
understanding of where the problem actually lies, we will review some of its promising res-
olutions mentioned above, and will conclude with the work performed in [3] and [4] where
novel covariant operator quantizations were conducted for both globally scale-invariant
QG in the broken phase of symmetry and conformal gravity in the unbroken phase, re-
spectively. We will see that, with the full quantum versions of each theory in hand, we
are able to establish a notion of “conditional unitarity” where the ghost problem is shown
to occur only at energies near the Planck scale and generally gain a new understanding
of the ghost problem in QG that we hope will pave the way for a fully satisfactory reso-
lution in the future. We will conclude with a discussion of all our results in Chapter 5.
Some mathematical details relevant to quantization may also be found in Appendix A,
while Appendix B contains a derivation of the Lehmann–Symanzik–Zimmerman (LSZ)
reduction formula in CG.

Throughout this work we will employ natural units where c = ℏ = 1 and when ref-
erencing the Planck mass, we will always use the reduced value MPl = 1/

√
8πGN =

2.435 × 1018 GeV where GN is Newton’s constant. We will also use standard bracket
notation for the (anti)symmetrization of indices, X(αYβ) = 1/2(XαYβ + XβYα) and
X[αYβ] = 1/2(XαYβ − XβYα), and unless otherwise stated, we follow the conventions
of Weinberg [123, 124] which include the metric signature (−,+,+,+), □ = ∂α∂

α, and
the Riemann tensor sign R δ

αβγ = −∂αΓδ
βγ + · · · . We also note that many of the cal-

culations performed in this work were greatly facilitated by the xAct [125, 126], xTras
[127], and FieldsX [128] packages for Wolfram Mathematica.



Chapter 2

Scale Invariance

2.1 Scale, conformal, and Weyl symmetry

Before we begin with the analysis of a specific theory, it is important to establish
some terminology regarding the symmetries that form the backbone of the models we
will consider. Broadly speaking, the terms “scale invariance”, “conformal invariance”,
and “Weyl invariance” are often used interchangeably in the literature to refer to the
symmetry of a theory under a rescaling of spacetime coordinates or fields at either the
global or local level. Though this usually does not cause too much unnecessary confusion
in practice, it is important to be precise when considering multiple versions of what may
be broadly referred to as scale invariance, as we will in what follows.

To begin laying the groundwork, we may define a scale transformation at the coor-
dinate level as

xα → x′α = λxα , (2.1)

where λ is an arbitrary parameter of the transformation that is constant in the case of
global symmetry and spacetime-dependent (λ = λ(x)) when the transformation is local.
When one considers the latter of these options in combination with the usual group of
local Poincaré spacetime symmetries, it turns out that in all but a few niche cases (ex.
the theory of elasticity in two dimensions [129]), one also finds an invariance under the
full conformal group. As we already touched on in the Introduction, conformal symmetry
as a basis for constructing theories in physics is interesting for a number of reasons, most
notably because it may in some sense be considered the “maximal” amount of spacetime
symmetry that a realistic physical theory can possess, due to the fact that it is the
largest group of spacetime symmetries under which both the lightcone ds2 = 0 and the
Yang-Mills EOMs are invariant [130].

Conformal transformations are at their core a particular type of diffeomorphism and
are thus best understood in terms of infinitesimal coordinate transformations xα →
xα + ϵ ξα where ϵ is an arbitrary infinitesimal parameter and ξα is a solution of the

5



6 2. Scale Invariance

conformal Killing equations

∂(αξβ) − ηαβ∂γξγ = 0 . (2.2)

The conformal algebra is generated by the fifteen unique solutions to these equations;
the first ten being ξα = {aα, bαβxβ} which correspond to translations and Lorentz trans-
formations, and generate the complete Poincaré algebra. The remaining five solutions of
(2.2) are given by ξα = {cxα, dβ(ηαβx2 − 2xαxβ)} and correspond to dilatations (scale
transformations) and “special conformal transformations”. The latter of these may be
understood as a kind of inversion and represent the difference between the full conformal
group and the group containing just Poincaré and local scale symmetries. All together,
we may thus write a general conformal transformation as

xα → x′α = xα + ϵ
(
aα + bαβx

β + cxα + dβ
(
ηαβx2 − 2xαxβ

))
. (2.3)

Under this operation, x′α will always point in the same direction as xα though it may have
an arbitrarily different length, in contrast to a Poincaré transformation which conserves
both length and direction.

The last piece of scale-invariant terminology that needs to be established is the notion
of Weyl symmetry. Similarly to the familiar internal gauge symmetries of the SM, Weyl
symmetry acts not on the spacetime coordinates, but directly on the fields as

Φ(x) → Φ′(x) = ΩnΦ(x) . (2.4)

Here, Φ represents a general field in the theory, Ω is a dimensionless parameter of the
transformation that may be constant or coordinate dependent (corresponding to global
and local Weyl transformations respectively), and n varies depending on the field in
question: n = −1 for scalars, n = −3/2 for fermions, n = 0 for vector bosons, and in
d = 4 dimensions, n = 2 and n = 8 for the metric and its determinant respectively.

Despite the fact that conformal and Weyl transformations are distinctly different
concepts (one group is not a subgroup of the other, as is sometimes confused), there is
a crucial connection between the two operations. To see their relationship explicitly, we
recall that conformal transformations are diffeomorphisms which act on the metric as

gαβ(x) → g′αβ(x′) =
∂xα

∂x′α
∂xβ

∂x′β
gαβ(x) = Ω2(x′)gαβ(x′) (2.5)

for some function of the transformed coordinates Ω(x′). Put simply, conformal trans-
formations are a type of diffeomorphism that may be undone by an appropriate Weyl
transformation and hence, Weyl invariance implies conformal invariance. The same type
of relationship holds in the local and global cases and in practice it is often easier to
employ Weyl invariance when performing analyses in quantum field theory where the
natural objects to work with are the fields themselves. One should keep all of the discus-
sion above in mind, though for the remainder of this work, we will generally use Weyl
transformations in our calculations and will use “scale symmetry” to refer to the global
case and “conformal” or “Weyl symmetry” for the local case, to keep the terminology
separate.
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2.2 The Coleman-Weinberg mechanism

There is one more crucial piece of theoretical background that must be established be-
fore getting into concrete calculations, which is related to the obvious fact that we do not
observe a scale-invariant universe. This means that the only way to reconcile the scale-
invariant picture with observation is to assume that scale invariance is spontaneously
broken. In this section we will give a brief general overview of the “Coleman-Weinberg
mechanism” that will eventually lead us to the spontaneous breakdown of scale symme-
try and the resulting generation of physical scales. We will mostly follows the treatments
in [76, 131], though the same type of discussion may be found in many nice reviews and
in most good textbooks on QFT; see for example [132–135].

2.2.1 The quantum effective potential

The mathematical construction containing all of the physics that will be of interest
to us in what follows is the quantum effective action, or more specifically, the one-
loop quantum effective potential that is obtained from it via an expansion under the
background field method [136–138]. The quantum effective action that we are after is
a functional that, at the risk of oversimplifying, replaces the classical action in such a
way that tree-level computations performed with it are able to account for loop-order
interactions in the quantum theory.

One of the most important objects for practical applications in QFT is the correlation
function, so we begin our derivations by considering a general theory described by a
classical action S[ϕ] of some field(s) ϕ and the functional

Z[Jϕ] = ⟨0; out|0; in⟩J =

∫
Dϕ exp

(
i(S[ϕ] + ϕ · Jϕ)

)
, (2.6)

which generates n-point correlation functions (vacuum-vacuum amplitudes) via succes-
sive functional derivatives with respect to some classical source (current) Jϕ:

−iG(x1, · · · , xn) = ⟨0; out|Tϕ(x1) · · ·ϕ(xn)|0; in⟩Jϕ=0

=
1

Z[0]

n∏(
δ

δJϕ(xn)

)
Z[Jϕ]

∣∣∣∣
Jϕ=0

. (2.7)

The functional Z[Jϕ] is non-perturbative and thus represents a sum of all connected
and disconnected diagrams that contribute to the total amplitude, however, it does not
distinguish between diagrams that differ by a permutation of vertices which contribute
N ! times for each diagram with N connected components. This implies that the sum of
all connected diagrams W [Jϕ] is related to Z[Jϕ] by the relation

Z[Jϕ] =
∞∑

N=0

(
iW [Jϕ]

)N
N !

= exp
(
iW [Jϕ]

)
(2.8)

and may thus be derived from the complete generating functional with a simple logarithm.
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Comparing the two descriptions of Z[Jϕ] above, it is straightforward to see that
W [Jϕ] already resembles something like the quantum effective action that we are after,
however, it is still unable to distinguish between connected diagrams that are related
by vertex permutations and moreover, it is a functional of the arbitrary source Jϕ. For
practical purposes, it is much more convenient to describe a quantum theory in terms of
a functional of the fields that represents a sum of all the one-particle-irreducible (1PI)
diagrams. To this end, we consider a stationary point of the “effective action” W [Jϕ],

ϕJ(x) =
δW [Jϕ]

δJϕ(x)
=
⟨0; out|ϕ(x)|0; in⟩J
⟨0; out|0; in⟩J

, (2.9)

so that ϕJ represents the vacuum expectation value (VEV) of the quantum operator
corresponding to the classical ϕ in the presence of the source Jϕ. Assuming that this
expression is invertible, we may define J̄ϕ as the particular current that satisfies ϕJ = ϕ
and perform a Legendre transform of W [J̄ϕ] to further define a quantum effective action
with the desired properties,

Γ[ϕ] = W [J̄ϕ]− ϕ · J̄ϕ . (2.10)

Indeed, it is straightforward to show that

δΓ[ϕ]

δϕ(x)
= −J̄ϕ(x) (2.11)

and confirm that ϕ represents a stationary point of Γ[ϕ] in the absences of sources
(Jϕ = 0). In short, ϕ solves the equations of motion derived from the action Γ[ϕ] which
explicitly takes into account all of the quantum effects (includes contributions from all
the 1PI diagrams) that result from the original classical action.

So far, everything above has been defined in a non-perturbative manner, however,
in practice it is almost always necessary to expand the effective action in loops to reach
any kind of tractable calculation. We will thus follow the original work of Coleman
and Weinberg [11] and expand (2.10) using the background field method to arrive at an
effective one-loop potential that is useful for practical application. This expansion may
be derived after first separating the classical and quantum contributions to the effective
potential by writing

Γ[ϕ] = S[ϕ] + ℏK[ϕ] , (2.12)

where we have reinstated ℏ to more easily denote the loop contributions contained in
K[ϕ] which will be defined perturbatively below. In this form it is also easy to see that
we recover the classical action exactly in the ℏ→ 0 limit as one should expect. We may
now perform the actual perturbative expansion by replacing the original quantum field
ϕ with

ϕ → ϕ+ φ , (2.13)
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where φ(x) represents small quantum fluctuations around ϕ which should now be under-
stood as a classical, approximately constant, background field. Combining (2.6), (2.8),
(2.10), and (2.11) under the expansion above, we can arrive at

exp

(
i

ℏ
Γ[ϕ]

)
=

∫
Dφ exp

[
i

ℏ

(
S[ϕ+ φ]− δΓ[ϕ]

δϕ
· φ
)]

, (2.14)

which allows us to express the effective potential in terms of an integral over the fluctu-
ations φ,

Γ[ϕ] = S[ϕ]− iℏ ln

[∫
Dφ exp

(
−iδK[ϕ]

δϕ
· φ+

i

2ℏ
φ · Ω[ϕ] · φ+O(φ3)

)]
= S[ϕ] + ℏK[ϕ] , (2.15)

where Ω[ϕ] = δ2S[ϕ]/δϕ2 is the Hessian of the classical action and we have used (2.12)
to eliminate Γ[ϕ] on the right side of the expression.

Since K[ϕ] now appears on both sides, we may precisely define the quantum contri-
butions to the effective action order by order in loops as

K[ϕ] = K(tree)[ϕ] +K(1-loop)[ϕ] +K(2-loop)[ϕ] + · · · , (2.16)

where K(tree)[ϕ] = 0 and the higher orders may be solved for iteratively, though in
practice is often sufficient to consider only the first order contribution given by

K(1-loop)[ϕ] = −i ln

∫
Dφ exp

(
i

2ℏ
φ · Ω[ϕ] · φ

)
. (2.17)

Finally, with this we may compute the integral and define the Coleman-Weinberg one-
loop effective potential UCW(ϕ) in terms of

Γ[ϕ] = S[ϕ]− V
(
UCW(ϕ) + · · ·

)
(2.18)

where V =
∫

d4x is the 4D spacetime volume and UCW is not a functional but an
ordinary function of ϕ that may be combined with the tree level mass and interactions
terms in S[ϕ] to complete the entire effective potential Ueff(ϕ).

It is remarkable that all of the formal considerations above have led us to a Gaussian
integral describing one-loop quantum effects that may actually be solved analytically.
One may find more details on the specifics of solving such integrals, and on all of the
other details glossed over in this section, in any QFT textbook (see for example [123]),
so for the sake of brevity we will simply quote the result:

UCW(ϕ) = − i
2

ln
[

Det
(
Ω(x, y)

)]
= − i

2
Tr
[

ln
(
Ω(x, y)

)]
. (2.19)

The determinant and trace here are understood to act in the functional sense on the
kinetic Hessian operator Ω(x, y), which is usually the Klein-Gordon operator

Ω(x, y) =
(
□ +m2 − iϵ

)
δ4(x− y) (2.20)
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or something similar, and may in principle be a matrix of kinetic operators when more
than one field ϕ is present in the action. The trace is then most easily evaluated after
Fourier transforming to momentum space yielding

UCW(ϕ) = − i
2

∫
d4p

(2π)4
ln
(
p2 +m2 − iϵ

)
(2.21)

when Ω(x, y) takes the form (2.20). Though this integral is obviously UV divergent, it is
straightforward to remove the divergences via some regularization procedure, for example
dimensional regularization [139]. We will see specific examples of effective potentials that
result from this procedure in Sections 2.3.2 and 3.4.2.

2.2.2 Spontaneous symmetry breaking

The crux of the Coleman-Weinberg mechanism lies in a particular phenomenon that
results from the one-loop effective potential derived above, namely, the spontaneous
breaking of symmetry that may occur after including these quantum effects in the ac-
tion. As opposed to explicit breaking which simply occurs when a term in a given action
(or more precisely, the EOMs) does not respect the symmetry of the other terms, spon-
taneous breaking occurs when the ground state of a quantum system is degenerate and
not individually invariant under the symmetries of the underlying theory. This behav-
ior was first noted with respect to superconductors and later generalized in the QFT
framework through Goldstone’s theorem [136, 140, 141], which now plays a crucial role
in our understanding of how gauge bosons acquire masses in the Standard Model via the
Higgs mechanism [142–145]. It is often stated that spontaneous symmetry “breaking”
is perhaps not the best nomenclature since the symmetries of a theory are not actually
(explicitly) broken when SSB occurs, rather, they become non-linearly realized through
so-called Nambu-Goldstone (NG) bosons when one expands around the potential mini-
mum (ground state) thus obscuring the presence of the overall symmetry from a naive
viewpoint.

There exists many formal descriptions of SSB, but it is perhaps best understood
through a concrete example which we will now consider. For the sake of brevity we
will only look at the case of spontaneously broken local symmetry here since it will have
bearing on later chapters and will still demonstrate the most important aspects of general
SSB that we will encounter for the global case later in the current chapter. Though this
section is meant to serve as a brief review of its most important aspects, one should keep
in mind that SSB is a very general phenomena that may occur with respect to global or
local symmetries and that the Coleman-Weinberg process as a whole has been shown to
respect gauge invariance in renormalizable theories when it is present [146, 147].

We follow [76, 148] and consider a classical action describing massless Abelian scalar
electrodynamics,

S =

∫
d4x

(
− 1

4
FαβF

αβ − 1

2

(
DαΦ

)†(
DαΦ)− U0(Φ)

)
, (2.22)



2.2. The Coleman-Weinberg mechanism 11

where Fαβ = ∂αAβ − ∂βAα, Aα(x) is a U(1) Abelian gauge field, Φ(x) is a complex
scalar with a quartic self interaction potential U0(Φ) = λ/4(Φ†Φ)2 parameterized by the
dimensionless coupling constant λ, and Dα = ∂α − ieAα is the U(1) covariant derivative
with the coupling constant e. Naturally, this action is invariant under a local U(1)
symmetry which acts on the fields as

Φ′ = eieθΦ A′
α = Aα − ∂αθ , (2.23)

where θ(x) is a local parameter of the transformation.

For the sake of argument let us now assume that, perhaps through some interactions
with other unspecified fields, we calculate the one-loop effective potential for Φ and find
that it takes the form UCW(Φ) = −(1/2)µ2(Φ)Φ†Φ where µ(Φ) is some massive field
dependent parameter. Per our discussion in the last section, the classical potential in
(2.22) may then be replaced with the effective potential

Ueff(Φ) = U0(Φ) + UCW(Φ) =
λ

4

(
Φ†Φ

)2 − µ2

2
Φ†Φ , (2.24)

to account for quantum effects that contribute at one-loop order. Though this potential
is invariant under (2.23) for general Φ, it exhibits a crucial feature that is not present in
the tree-level potential; it has a non-zero minimum when µ2 > 0:

∂Ueff(Φ)

∂Φ

∣∣∣∣
Φ=vΦ

= 0 ⇒ vΦ =
µ√
λ
. (2.25)

There are very important physical ramifications of this non-zero minimum. To see
them, we reparameterize the two independent degrees of freedom (DOFs) in the complex
Φ in terms of two real scalars by writing

Φ =
(
h+ vΦ

)
e

iχ
vΦ , (2.26)

where χ(x) corresponds to the phase of the original scalar and h(x) represents fluctuations
of its magnitude around the minimum of the potential. Plugging this into the action
(2.22) with U0 replaced by Ueff, we find

Seff =

∫
d4x

(
− 1

4
FαβF

αβ −
m2

A

2
AαA

α − 1

2
∂αh∂

αh−
m2

h

2
h2

− 1

2
∂αχ∂

αχ+ evΦA
α∂αχ

)
, (2.27)

where we have identified the canonical masses

mA =
eµ√
λ

mh =
√

2µ . (2.28)
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From a naive perspective, one would say that the action (2.27) is obviously not invariant
under U(1) transformations due to the mass terms for Aα and h, however, it is straight-
forward to confirm that this symmetry does in fact hold if h is invariant and χ transforms
non-linearly as

h′ = h χ′ = χ+ evΦθ . (2.29)

This behavior is precisely what characterizes SSB and the role played by χ singles it out
as an NG boson of the spontaneously broken U(1) symmetry.

Going one step farther, it is instructive to fix the gauge symmetry in our theory to
get a more precise picture of the field content. In particular, we may select the “unitary”
gauge by writing

Aα → Aα +
1

evΦ
∂αχ , (2.30)

which leaves us with the action

SU =

∫
d4x

(
− 1

4
FαβF

αβ −
m2

A

2
AαA

α − 1

2
∂αh∂

αh−
m2

h

2
h2
)

(2.31)

and has the effect of completely removing χ from the spectrum, thus indicating that this
field is unphysical (pure gauge). We note that χ differs in this way from the analogous NG
boson that results from the breaking of a global rather than a local symmetry, which does
indeed appear as a physical particle. A classic example of such a phenomena is the pion,
which may be identified as the (pseudo) NG boson after the breaking of (approximate)
global SU(2) chiral symmetry in the SM. Some would thus not classify χ as a true NG
boson in our setup since it is not physical and effectively just serves to give mass to
the other particles, however, since it still serves to non-linearly preserve our underlying
symmetry we will refer to it as such. We refer the reader to [76] for more formal details
on SSB and the differences between the local and global cases.

Moving forward, we are now in a position to see the crucial feature that SSB in the
present context does not add or subtract any DOFs from the original action, but simply
reshuffles them; we started with a massless gauge boson and a massless complex scalar,
(2 + 2) = 4 DOFs, and ended with a massive gauge boson and one massive real scalar,
(3 + 1) = 4 DOFs. It should however be noted that, though the physical field content is
more transparent in this gauge, it is a poor choice for many practical applications due
to the fact that the photon propagator exhibits bad UV behavior and leads to divergent
cross sections that cannot be cured with conventional renormalization techniques. In this
respect it preferable to select either the Feynman or Landau gauge for example, where χ
reenters the spectrum and improves the UV behavior. We will in fact see that this same
type of phenomenon appear in conformal gravity in Section 4.7.

In summary, we have seen how to include quantum contributions into the analysis of
a classical action by deriving its one-loop effective potential, and how these contributions
may lead to a spontaneous breakdown of the symmetry present in that classical action,
which in turn leads to the generation of mass terms for what were originally massless



2.3. Dynamical generation of scales 13

DOFs. Though this has occurred with respect to local U(1) symmetry in the short
example above, we will now see how the same type of behavior may be exhibited by a
more realistic globally scale-invariant theory of gravity and matter.

2.3 Dynamical generation of scales

2.3.1 Embedding the SM with gravity

We begin with the SM action which, as mentioned in the Introduction, is already
nearly invariant under both global and local scale symmetry, with the only violating
term coming from the Higgs potential. The pure Higgs part of the SM action is given by

SSM ⊃ SH =

∫
d4x
√
−g
[
− 1

2

(
DαH

)†(
DαH

)
+
µ2H
2
H†H − λH

4

(
H†H

)2]
, (2.32)

where H(x) is the SM Higgs doublet, µH is a massive constant that serves to define the
EW scale and the mass of the radial component of the Higgs after SSB, and λH is the
(dimensionless) Higgs quartic self-coupling constant [76]. It is straightforward to confirm
that this expression is indeed only scale-invariant for µH = 0.

In order to simultaneously realize the spontaneous breakdown of scale symmetry,
generate masses for the SM neutrinos via a type-I seesaw, and realize an appropriate
value for the EW scale using the neutrino option, we will also consider the BSM action

SBSM =

∫
d4x
√
−g
[
− 1

2

(
DαϕD

αϕ+DασD
ασ + iN̄ /DN

)
− 1

4

(
λϕϕ

4 + λσσ
4 + λϕσϕ

2σ2 +
(
λHϕϕ

2 + λHσσ
2
)
H†H

)
− 1

2

((
yϕϕ+ yσσ)NTCN +

(
yHL̄H̃(1 + γ5)N + h.c.

))]
. (2.33)

Here, ϕ(x) and σ(x) are real scalar fields that have quartic interactions with each other
and the Higgs parameterized by the coupling constants λi. The fermionic portion of
the action above describes the interactions of a family of right-handed sterile Majorana
neutrinos N(x) with the SM leptons L(x), the Higgs (H̃ = iσ2H

∗), and the BSM scalars
ϕ and σ. Though, naturally, there are minimal fermion-gravitational couplings built
into the operator /D = γαDα that may only be properly accounted for in the vierbein
formalism [149], these will not play a role in the present analysis. We also note that
flavor indices are suppressed in this action, however, the Yukawa couplings yH , yϕ, and
yσ should, strictly speaking, be considered matrices in generation space even though they
may simply be treated as real numbers for our purposes.

The last important piece of the present model is the gravitational part of the total ac-
tion which, unlike the SM and BSM actions above, looks quite different if it is constructed
on the basis of local or just global scale symmetry. We will focus on the global case for
what follows and employ the following action which, assuming a metric-compatible and
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torsion-free connection, is given by a sum of the three independent contractions of squares
of the Riemann tensor Rαβγδ and non-minimal couplings between the Ricci scalar R and
the three non-gravitational scalars:

SQG =

∫
d4x
√
−g
[
− κCαβγδC

αβγδ − γR2 +
1

2

(
βHH

†H + βϕϕ
2 + βσσ

2
)
R

]
, (2.34)

where κ, γ, and the βi are dimensionless coupling constants. We arrive at this spe-
cific parameterization of the action for quadratic gravity by rewriting the full Riemann
square in terms of the Weyl tensor Cαβγδ using the identity RαβγδR

αβγδ = CαβγδC
αβγδ +

2RαβR
αβ − 1/3R2 and dropping a multiple of the Gauß-Bonnet invariant

G = −1

4
εαβµνεγδρσRαβγδRµνρσ = RαβγδR

αβγδ − 4RαβR
αβ +R2 , (2.35)

which is a total derivative, in order to eliminate the square Ricci tensor term [150].
Crucially, we do not include an Einstein-Hilbert term (M2

PlR/2) in the action (2.34) as
its presence would violate scale symmetry. Though we have included the Weyl tensor
term in the action for completeness, for the purposes of the present chapter we will
always assume that the Weyl coupling constant κ is negligibly small so that its effects
have no important bearing on our analyses of scale-invariant theories in the present
context. However, in the next chapter we will relax this assumption and account for
the gravitational DOFs that originate from the Weyl-squared term with general κ for
comparison.

With all the considerations above, we may finally assemble the full action describing
our model by summing (2.32–2.34):

SSI = SH
∣∣
µH=0

+ SBSM + SQG . (2.36)

This action represents the most general functional that is invariant under the SM’s
SU(3)C×SU(2)L×U(1)Y gauge transformations, diffeomorphisms, and most importantly
for the present discussion, global scale transformations (2.1). In what follows we will
demonstrate explicitly how this symmetry of the classical action is spontaneously broken
by loop effects à la Coleman(Gildener)-Weinberg [11, 151] and how these quantum effects
are able to generate not only the Einstein-Hilbert and Higgs potential terms in the
resulting effective action, but also light masses for the SM neutrinos.

2.3.2 The Planck mass

The presence of two extra scalars in the BSM action (2.33) turns out to be necessary
to achieve our desired spontaneous breakdown of scale symmetry, however, this feature
complicates matters with respect to the derivation of the one-loop effective potential
following the original Coleman-Weinberg method which considers only a single scalar
field. There is however a simple extension of this method that accounts for contributions
from an arbitrary number of scalars known as the Gildener-Weinberg mechanism [151].
Though in principle, it is quite possible that both ϕ and σ might acquire a non-zero
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VEV due to quantum effects, we will follow the previously mentioned work and assume
for the sake of simplicity that the multi-field scalar potential has an approximately flat
direction. We choose the flat σ direction i.e. ϕ ̸= 0 and σ ≈ 0, which may be realized if
the quartic couplings satisfy

λϕ ≪ λϕσ λϕ ≪ λσ . (2.37)

It is also necessary to assume that the Higgs couplings λHϕ, λHσ, and βH are extremely
suppressed in order to achieve a realistic neutrino option down the road, which requires
mN ≈ 107 GeV, and to safely neglect contributions to the dynamically generated Planck
mass from the Higgs VEV.

Under these assumptions, it becomes clear from the form of (2.34) that an Einstein-
Hilbert term may indeed be generated if ϕ acquires a non-zero VEV vϕ, and that this same
VEV may also generate the bare Higgs mass term µ2H = −λHϕv

2
ϕ/2 which will be required

to spontaneously break EW symmetry and realize the Higgs mechanism. Furthermore,
we can see from the Yukawa interactions in (2.33) that the Majorana neutrino acquires
the mass mN = yϕvϕ which in turn allows us to put an approximate value on the Yukawa
coupling constant, yϕ ∼

√
βϕ(mN/MPl) ≈ 10−10 for βϕ ≈ 103. Though there is some

degree of fine-tuning involved when assuming small values for λHϕ, λHσ, and yϕ since
there is no enhancement of symmetry associated with their vanishing, it should be noted
that they are still in some sense natural since if one sets them strictly to zero, they
will remain zero at all orders in perturbation theory (see also the discussion regarding
enhanced Poincaré symmetry in scale-invariant theories in [152]).

With all the above considerations in mind, we may proceed with a derivation of
the effective one-loop scalar potential as outlined in Section 2.2.1 by expanding each of
the scalars in terms of quantum fluctuations around the classical backgrounds ϕ ̸= 0
and σ = 0, integrating out the fluctuations around these backgrounds, and employing
dimensional regularization in the MS scheme [139, 153] to calculate UCW. Then, after
including the quartic tree-level contributions in (2.33), we find the effective potential

Ueff(R,ϕ, σ) =
λϕ
4
ϕ4 +

λσ
4
σ4 +

λϕσ
4
ϕ2σ2

+
1

64π2

[
m4

ϕ ln

(
m2

ϕ

µ2

)
+m4

σ ln

(
m2

σ

µ2

)]
+ UΛ , (2.38)

where UΛ is an arbitrary constant whose role will addressed shortly, µ is the renormal-
ization scale (that has absorbed a constant −3/2), and the effective scalar masses are
defined as

m2
ϕ = 3λϕϕ

2 + βϕR m2
σ =

λϕσ
2
ϕ2 + βσR . (2.39)

Naturally, the integration that yields this potential also produces divergent terms that
may be absorbed into λϕ, βϕ, and γ as part of the renormalization process. We also note
that these results are in full agreement with calculations of the same type of effective
potential in [154–156], though for completeness, it should be pointed out that we have
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made the simplifications βϕ ≈ βϕ − 1/6 and βσ ≈ βσ − 1/6 since we will eventually
find that βϕ ≳ 102 and since βσ turns out to play only a negligible role in our analyses.
In fact, due to its vanishing VEV, the scalar σ ends up playing no further role for our
purposes and we will thus suppress it in all further calculations.

Moving forward, we recast (2.38) in a more convenient form by making the safe
assumptions that βϕR < 3λϕϕ

2 and βσR < (1/2)λϕσϕ
2 so that the effective potential

may be expanded in powers of R as

Ueff(R,ϕ) = U(0)(ϕ) + U(1)(ϕ)R+ U(2)(ϕ)R2 +O(R3) , (2.40)

where the ϕ-dependent terms are given by

U(0)(ϕ) =
λϕ
4
ϕ4 +

ϕ4

64π2

[
9λ2ϕ ln

(
3λϕϕ

2

µ2

)
+
λ2ϕσ
4

ln

(
λϕσϕ

2

2µ2

)]
+ UΛ (2.41)

U(1)(ϕ) =
ϕ2

64π2

[
6βϕλϕ

(
ln

(
3λϕϕ

2

µ2

)
+

1

2

)
+ βσλϕσ

(
ln

(
λϕσϕ

2

2µ2

)
+

1

2

)]
(2.42)

U(2)(ϕ) =
1

64π2

[
β2ϕ

(
ln

(
3λϕϕ

2

µ2

)
+

3

2

)
+ β2σ

(
ln

(
λϕσϕ

2

2µ2

)
+

3

2

)]
. (2.43)

Following the discussion in Section 2.2.2, we may now solve for the VEV vϕ under the
simplifying assumption that R is negligibly small, though non-zero, compared to ϕ:

∂Ueff(0, ϕ)

∂ϕ

∣∣∣∣
ϕ=vϕ

= 0 ⇒ vϕ = µe−fϕ , (2.44)

where we have defined the dimensionless functions of the couplings1

fϕ =
1

gϕ

[
9λ2ϕ

256π2

(
ln
(
3λϕ

)
− ln

(
λϕσ
2

))
+
λϕ
16

]
+

1

2
ln

(
λϕσ
2

)
+

1

4
(2.45)

gϕ =
36λ2ϕ + λ2ϕσ

512π2
. (2.46)

With the VEV in hand, we are able to determine an explicit value for UΛ, which is now
included in (2.41), by allowing it to assume the role of a zero-point energy density that
is fixed in order to avoid an explicit breaking of scale symmetry by the R-independent
leading-order contribution U(0)(ϕ),

Ueff(0, vϕ) = 0 ⇒ UΛ = −gϕv4ϕ . (2.47)

Finally, the VEV also fixes a value for the dynamically generated Planck mass which
follows from (2.42) and a simple identification with the last term in (2.34):

M2
Pl = βϕv

2
ϕ + 2U(1)(vϕ) . (2.48)

1The function gϕ in fact corresponds to the β-function for the coupling λϕ in the absence of yϕ.
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It important to reinforce the fact that in the present scheme where vϕ depends on the
renormalization scale µ, the measured value of MPl does also.

Before we continue with more analysis of the model at hand, the role of the negative
zero-point energy density UΛ deserves further discussion. Its presence is required as a
direct consequence of the spontaneous breakdown of scale symmetry, despite the fact that
it is in essence nothing more than a constant that results in an explicit, though super-soft,
breaking of scale invariance at tree level. Even though our choice to include UΛ allows us
to remedy the cosmological constant problem in this way, it is important to acknowledge
that it is not possible to determine the exact value of the zero-point energy within
the framework of QFT in flat spacetime. To comprehensively address the cosmological
constant problem, one must also consider gravitational quantum fluctuations and include
contributions from the Weyl tensor term in the action (2.34). As previously mentioned,
the role of gravitational DOFs will be investigated in detail in the coming chapters
where we will address this issue again, though a complete resolution to the CC problem
is beyond the scope of this work. For now, we will proceed with our analyses of the
scale-invariant theory at hand.

2.3.3 Neutrino masses and the EW scale

The principle reason that we have included right-handed Majorana neutrinos in the
BSM action (2.33) is to demonstrate how scale-invariant models are able to generate not
only the Planck and EW scales, but also light masses for the SM neutrinos through a
type-I seesaw. This mechanism, originally laid out by Minkowski, Gell-Mann, and others
[48, 157, 158], describes a simple way to naturally introduce small SM neutrino masses,
which are forbidden by gauge symmetry in the bare SM, in the presence of additional
heavy sterile Majorana neutrinos. The basic premise is based on introducing a Majorana
neutrino such as ours where mN ≫ mL so that the full neutrino mass matrix has the
eigenvalues

m± =
1

2

(
mN ±

√
m2

N +m2
L

)
where m+ ≈ mN m− ≈ −

m2
L

mN
, (2.49)

and the determinant m+m− = −m2
L, where mL = yHvH is the off-diagonal mass term

that is generated from the last term in (2.33) i.e. by Higgs-neutrino Yukawa couplings
after the spontaneous breaking of EW symmetry, and thus sits at approximately the EW
scale for natural values of yH . When this situation is realized, the physical masses of
the sterile and SM neutrinos, m+ and m− respectively, form a “seesaw” where the fixed
value of the determinant means that a larger value for m+ forces a smaller value for m−.
This mechanism applies to the present model in a similar way to the original formulation
with the important caveat being that instead of introducing the heavy Majorana mass by
hand (which would violate scale symmetry), it has been generated by dynamical effects
and is related to the VEV of ϕ.

In order to generate a satisfactory Higgs potential, via a mechanism that will be
addressed shortly, we assume that the Majorana mass takes the relatively natural and
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Figure 2.1: Neutrino contributions to the Higgs mass (left) and portal coupling (right).

phenomenologically viable value of mN ≈ 107 GeV and parameterize it in terms of MPl

as

mN = yϕvϕ = yϕMPl

(
βϕ +

2U(1)(vϕ)

v2ϕ

)−1/2

, (2.50)

where U(1) is given in (2.42). We have written mN in this way because, in the parameter
space that we consider where vϕ sits just below the Planck scale and βϕ ≳ 102 ≫
2U(1)(vϕ)/v2ϕ, it allows us to put an approximate bound on yϕ:

yϕ ≈
mNβ

1/2
ϕ

MPl
≈ 10−12β

1/2
ϕ . (2.51)

It should be noted that this small value of yϕ does not constitute a fine-tuning and is
natural in the sense of ’t Hooft [12] since a U(1)B−L symmetry is acquired as yϕ goes
to zero. Furthermore, for vH = 246 GeV and yH ≈ 10−4, we find that the type-I seesaw
functions as advertised and leads to a physical SM neutrino mass of m− ∼ y2Hv2H/mN ≈
0.1 eV.

The inclusion of heavy right-handed neutrinos has an important bearing on not only
the SM neutrinos, but also on the Higgs sector via Brivio’s “neutrino option” [159–
161] (see also [162]). This mechanism takes into account loop corrections to the Higgs
mass term, −µ2HH†H, that arise from the diagram Fig. 2.1 (left) and asserts that these
corrections actually form the dominant contribution to the total value in the parameter
space described above. This means that in the neutrino option paradigm, one can write
µ2H ∼ ∆µ2H ≈ 2(125 GeV)2 where

∆µ2H ∼
y2Hm

2
N

4π2
(2.52)

is the finite (renormalization-scale-dependent) part of the contribution [163–166].
Just as in the basic type-I seesaw, the original formulation of the neutrino option

introduces mN at tree level and thus violates classical scale invariance, however, it is also
possible to embed the neutrino option into a scale-invariant theory such as the one at
hand where mN is generated dynamically, as demonstrated in [28, 167]. In this extension,
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one necessarily has a strictly vanishing contribution ∆µ2H = 0 before the spontaneous
breaking of scale symmetry and finds the VEV-dependent value ∆µ2H ∼ y2Hy2ϕv2ϕ/4π2 after
SSB, in line with our previous assertions. It is also important to account for radiative
corrections to the dimensionless coupling λHϕ that originate from the second diagram in
Fig. 2.1 (right) in this scenario,

∆λHϕ ∼
y2Hy

2
ϕ

16π2
, (2.53)

which, similarly to the Higgs mass parameter, must constitute the dominant portion of
λHϕ for the neutrino option to work as intended.

With all of the previous discussions in mind, we can finally see the first appealing
feature of scale-invariant theories, namely, that dynamical breaking of SI can lead to the
unified emergence of all the important energy scales in physics through a cascading effect
that begins with the non-zero VEV of ϕ. This is not the end of the story however, because
as we will see in the next chapter, the same effective potential that spontaneously breaks
scale symmetry can also constitute an inflationary potential that leads to predictions
well within modern experimental bounds.
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Chapter 3

Inflation

Prior to the introduction of inflationary theory, simple big bang models struggled
to resolve several well-known problems in cosmology. Most notable are the horizon and
flatness problems which describe a lack of explanation for the facts that the universe
appears to be in nearly perfect isotropy at large scales and that it must have began with
a very particular curvature radius to remain as flat as we currently observe it. In an
attempt to resolve yet another problem regarding the lack of magnetic monopoles in the
context of Grand Unified Theories, Alan Guth proposed that the very early universe may
have gone through a period of rapid spatial expansion [168] which, as is often the case
with the best theories in physics, ended up being able to resolve the previously mentioned
problems while also providing an explanation for yet another puzzle, the origin of large-
scale structure in our universe. However, it was soon realized that Guth’s “old inflation”
had its own problems related to the reemergence of inhomogeneities and an inability
to generate the necessary amount of reheating after inflation. In order to avoid these
issues, Linde, Albrecht, and Steinhardt introduced the concept of “new inflation” [169–
171], or “slow-roll” inflation as it is more commonly referred to today, which represents
a key component in our modern understanding of early universe cosmology. We will
explicitly demonstrate how inflation may be incorporated into the scale-generating model
established in the last chapter, but before we do, it is important that we nail down the
basics of slow-roll inflationary theory.

3.1 Slow-roll inflation

There are countless excellent reviews on inflation, though for the present discussion
we will follow [124, 172] and begin by considering the basic inflationary action

Sinf =

∫
d4x
√
−g
(
M2

Pl

2
R− 1

2
∂αϕ∂

αϕ− Uinf(ϕ)

)
, (3.1)

which couples the Einstein-Hilbert action to a real scalar ϕ(x) known as the “infla-
ton”, with the potential Uinf(ϕ). Naturally, the dynamics of this cosmological theory are

21
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Figure 3.1: A graphical representation of the slow-roll scenario. As the inflaton evolves in time, it
slowly rolls down its approximately flat (constant) potential before finally oscillating around its true
minimum. The inflationary period is identified with the flat part of the evolution that begins at some
unknown time, proceeds through the time of CMB horizon exit corresponding to ϕ∗ = ϕ(t∗), and con-
cludes at ϕend = ϕ(tend). A period of reheating occurs during the oscillation where the energy that was
stored in the inflaton potential is transferred to SM fields, dark matter, etc.

governed by the Einstein equations where the metric is assumed to be the flat Friedmann-
Lemâıtre-Robertson-Walker (FLRW) metric [173–177],

gαβdxαdxβ = −dt2 + a(t)2
(
dx2 + dy2 + dz2

)
, (3.2)

where a(t) is the scale function that describes the expansion of space over time. Under the
assumption of approximate spatial isotropy where ϕ(x) = ϕ(t), we may focus on the time
evolution controlled by the (00) component of the Einstein equations (G00 = M−2

Pl T00)
which, paired with the inflaton EOM, yields the two dynamical equations

H2 − 1

3M2
Pl

(
1

2
ϕ̇+ Uinf(ϕ)

)
= 0 ϕ̈+ 3Hϕ̇+ U ′

inf(ϕ) = 0 , (3.3)

where H(t) = ȧ(t)/a(t) is the Hubble function.
For inflation to successfully resolve all of the previously mentioned issues, it is neces-

sary for space to expand at an exponential rate for a brief period of time before entering
a period of slower expansion that follows a power law. This type of behavior is well
described by the standard model of cosmology in terms of a cosmological constant dom-
inated era followed the matter and radiation dominated eras of the early universe whose
appearance signal the end of inflation. The main idea behind slow-roll inflation is that
the inflaton potential takes an approximately flat (constant) value that mimics a cos-
mological constant for just enough time to generate the desired exponential expansion
before eventually acquiring its true minimum and dumping all of the energy that was
stored in the inflaton into a reheating of the universe (see Figure 3.1).

We may quantify this behavior using the EOMs derived above by combing them and
taking a time derivative to find the relation

Ḣ = − 1

2M2
Pl

ϕ̇2 , (3.4)
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while noting that the desired exponential expansion (a(t) ∼ eHt) may only occur for an
approximately constant Hubble rate where |Ḣ| ≪ H2. Under this approximation, (3.3)
and (3.4) imply the slow-roll conditions

ϕ̇2 ≪
∣∣Uinf(ϕ)

∣∣ ∣∣ϕ̈∣∣≪ H
∣∣ϕ̇∣∣ . (3.5)

The first of these conditions is just the statement that the scalar’s potential must domi-
nate over its kinetic energy in order to properly mimic a cosmological constant, while the
second simply expresses the assumption that the rolling is indeed “slow” i.e. it ensures
that the kinetic energy ϕ̇ changes only negligibly during an expansion time 1/H. It is
useful to re-express these conditions in terms of the dimensionless slow-roll parameters

ϵ(ϕ) =
M2

Pl

2

(
U ′
inf(ϕ)

Uinf(ϕ)

)2

η(ϕ) = M2
Pl

U ′′
inf(ϕ)

Uinf(ϕ)
, (3.6)

that take values ϵ≪ 1 and |η| ≪ 1 during inflation and signify its end as they approach
unity, as may be easily derived from inserting the conditions (3.5) into the EOMs (3.3).
These same relations also imply that the approximately constant Hubble parameter
during inflation is given by H2 ≈ Uinf/(3M

2
Pl). The final piece of the slow-roll paradigm

is a quantification of the amount of time that inflation is actually taking place. This is
usually expressed in terms of the number of e-folds Ne, which is defined as the log of the
change in scale factor during inflation,

Ne = ln

(
a(tend)

a(t∗)

)
=

∫ tend

t∗
dtH ≈ − 1

M2
Pl

∫ ϕend

ϕ∗
dϕ
Uinf(ϕ)

U ′
inf(ϕ)

, (3.7)

where t∗ marks the time of CMB horizon exit and tend marks the end of inflation.

There is a wide range of diverse theories in the literature (see [178] for a nearly
comprehensive list) that all lead, at least in some approximation, to a period of slow-roll
inflation as described above. Indeed, as we will see in the coming sections this is even
true of theories based on quadratic gravity as opposed to GR and in theories with more
than one scalar field. At the end of the day, what actually distinguishes between different
theories of slow-roll inflation is the form of their inflationary potentials. Once a potential
is established, one may determine the parameters (3.6) and (3.7), which in turn enter
directly into predictions for a few key observables that are constrained by experiment.

Inflationary observables are related to primordial quantum fluctuations of the infla-
ton that get stretched to macroscopic scales during inflation and “frozen in” after leaving
the horizon. These fluctuations form the seeds for structure formation during the matter
and radiation dominated eras, and lead to tiny anisotropies in the CMB. Measurements
of these anisotropies by the Planck and BICEP/Keck collaborations are what then al-
low us to put strong bounds on several observables related to the power spectrum of
gravitational perturbations produced during inflation [43, 44]. Gauge invariant scalar
perturbations of the comoving curvature, denoted as R, are of particular interest since
their power spectrum (spectral function) Ps(k) is fully determined by the form of the
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inflationary potential [179]. This spectrum is defined in terms of the ensemble average
of the scalar perturbations,〈

R(t,k)R(t,k′)
〉

= (2π)3δ(k + k′)Ps(k) , (3.8)

where k is the 3D comoving wavevector and k = |k| is the associated wavenumber. Pro-
vided that the scalar perturbations follow Gaussian statistics, Ps contains all the relevant
physical information describing them1. Straightforward derivations of the relation above
may be found in the works cited at the beginning of this section [124, 172].

Considering the fact that Ps scales with volume, it is convenient to define the dimen-
sionless power spectrum ∆s(k) = k3/(2π2)Ps(k) which may be expressed as

∆s(k) = As

(
k

aH

)ns−1

, (3.9)

where As is the spectral amplitude and ns is the spectral index, each of which are directly
related to the inflationary potential through the slow-roll parameters (3.6) as follows,

As =
Uinf

24π2ϵM4
Pl

ns = 1− 6ϵ+ 2η . (3.10)

Both of these objects effectively appear as observables in the measured spectrum ∆s

when one considers its dependence on k since the amplitude may be expressed in terms
of the value of the potential during inflation, leaving the spectral index to quantify the
k-dependence. This has important implications since for ns = 1, the power spectrum
becomes completely k-independent and thus, scale-invariant.

It is also straightforward to derive an expression for the power spectrum related
to tensor fluctuations produced during inflation (primordial gravitational waves), ∆t,
following the same type of procedure summarized above. However, partly due to the
fact that their amplitude is generally much smaller than the scalar spectral amplitude
(and the fact that a tensor spectral index has not even been observed up to this point),
it is usually more instructive to report their contribution in terms of the scalar-to-tensor
ratio

r =
2∆2

t

∆2
s

= 16ϵ , (3.11)

where the factor of two in the numerator accounts for the two independent polarizations
of massless gravitational waves.

With this establishment of the basics of slow-roll inflationary theory and a general
understanding of the observables that it predicts, we may now proceed with a more
detailed analysis of how they fit into the scale-invariant picture we are considering.

1We do not consider the possibility of non-Gaussianities in this work since they are highly suppressed
in single-field inflationary models and no evidence for their existence has yet been reported [180, 181].
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3.2 The inflationary action

In the last chapter we demonstrated how SSB in the scale-invariant theory that we
presented can lead to the unified emergence of all the important energy scales in the SM
and we hinted that the scalar ϕ may serve an additional role, beyond contributing to SSB,
as an inflaton. To begin pursuing this topic we begin with some necessary assumptions
regarding the model. It has already been noted that the Higgs couplings λHϕ, λHσ,
and βH must be very suppressed in order for the neutrino option to function correctly
and so that the Higgs VEV does not contribute in any significant way to the generated
Planck mass. When adding inflation into the picture, it is necessary to specify these
requirements more precisely and further assume that βHR≪ λHϕϕ

2 during inflation, so
that the Higgs plays no relevant role in our inflationary setup. We also stated previously
that βϕR < 3λϕϕ

2 and βσR < (1/2)λϕσϕ
2 must be satisfied in order to safely expand

the effective potential (2.38) in powers of R. These requirements are naturally also
important for inflationary calculations and it is straightforward to confirm they hold by
approximating the Ricci scalar during inflation as R = 12H2 where H is the Hubble
parameter.

In light of all the considerations above, we find that the part of the effective (Jordan
frame) action obtained in Sections 2.3.1 and 2.3 that is relevant for inflation is given by

SJ
eff =

∫
d4x
√
−gJ

(
M2

Pl

2
A(ϕ)RJ −B(ϕ)R2

J −
1

2
∂αϕ∂

αϕ− U(0)(ϕ)

)
, (3.12)

where MPl takes the dynamically generated value in (2.48) and “J” denotes quantities
evaluated using the original Jordan frame metric. Here we have also defined the functions

A(ϕ) =
1

M2
Pl

(
βϕϕ

2 + 2U(1)(ϕ)
)

B(ϕ) = γ − U(2)(ϕ) (3.13)

which depend on the effective potential contributions U(1) and U(2) given in (2.42) and
(2.43). It should be noted that similar actions with a priori arbitrary functions A, B,
and Ueff have been investigated for purely phenomenological purposes in the past [182–
186], however, in our case these functions are restricted to their forms above through the
effective potential.

So far, the R2 term in the action has not played a significant role in our analyses,
however, it has very important effects related to inflation that must be accounted for.
These effects stem from an additional scalar degree of freedom that comes hidden inside
this term, which may be exposed by transforming our action to the Einstein frame. This
transformation is achieved by first introducing an auxiliary field χ with mass dimension
two and making the replacement

R2
J → 2RJχ− χ2 (3.14)

in the action (3.12). It is important to note that the physical content of the theory
is unaltered by this replacement since the original action may be recovered by simply
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integrating χ out with its EOM. With this, we need only change field variables and
rewrite the action in terms of the Weyl rescaled metric gEµν = Ω2gJµν where

Ω2(ϕ, χ) = A(ϕ)− 4

M2
Pl

B(ϕ)χ , (3.15)

to arrive at the Einstein frame action

SE
eff =

∫
d4x
√
−gE

(
M2

Pl

2

(
RE − 6Ω−2∂αΩ∂αΩ

)
− 1

2
Ω−2∂αϕ∂

αϕ− UE(ϕ, χ)

)
. (3.16)

Here, UE simply denotes the scalar potential in the Einstein frame that is found by
collecting all the non-kinetic terms left over after the transformation,

UE(ϕ, χ) =
M4

Pl

(
U(0)(ϕ) +B(ϕ)χ2

)(
M2

PlA(ϕ)− 4B(ϕ)χ
)2 . (3.17)

It is easy to see that, due to the Weyl rescaling and the resulting second term in
(3.16), χ is in fact a propagating scalar field in the Einstein frame. This scalar DOF is
referred to as the “scalaron” [187, 188], whose canonically normalized form is given by

S =

√
3

2
MPl ln

∣∣Ω2
∣∣ . (3.18)

With this definition, the Einstein frame action describing the coupled ϕ-scalaron system
becomes

SE
eff =

∫
d4x
√
−gE

(
M2

Pl

2
RE −

1

2

(
∂αS∂

αS + e−Σ(S)∂αϕ∂
αϕ
)
− UE(ϕ, S)

)
, (3.19)

where Σ(S) =
√

2S/(
√

3MPl), and the potential UE , which is now a function of ϕ and
S, is given by

UE(ϕ, S) = e−2Σ(S)

(
U(0)(ϕ) +

M4
Pl

16B(ϕ)

(
A(ϕ)− eΣ(S)

)2)
. (3.20)

3.3 Inflationary predictions

3.3.1 The valley approximation

The fact that the scalar potential (3.20) depends on two independent scalars makes a
naive investigation of the resulting CMB observables complicated, and though multifield
inflationary techniques exist [189], there is a simpler approach that we will employ here.
Similarly to the simplification of the CW potential that is based on the assumptions
(2.37), it is possible to approximate (3.20) in terms of a single scalar field if the potential
exhibits a clear valley structure i.e if it possesses a flat direction in field space that mimics
the form of a standard single field slow-roll potential. As demonstrated on the similar
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Figure 3.2: 1D inflaton potentials (left) resulting from the contours defined in (3.21) and (3.30) which
are displayed on top of the plot of the full 2D potential (3.20) (right), all corresponding to the benchmark
point #3 in Table 3.1.

model studied in [37], classical trajectories with a wide range of initial conditions do
indeed converge to just such a valley contour provided that there is a large hierarchy
between the eigenvalues of the scalar mass matrix. In other words, provided that one
scalar is much heavier than the other, the heavier scalar will stabilize the potential and
allow it to be approximated in terms of only the lighter scalar, which will in turn exhibit
slow-roll evolution along the contour. Moving forward we will assume that this kind of
mass hierarchy is realized in our scalar sector and investigate two possible realizations
of the valley structure based on varying regions of parameter space2.

The first possibility for our single field contour, which we will call C, is defined by
eliminating the scalaron S in favor of ϕ,

C = {ϕ, S̃(ϕ)} , (3.21)

where S̃ is the local extremum in the scalaron direction when ϕ > vϕ:

∂UE(ϕ, S)

∂S

∣∣∣∣
S=S̃(ϕ)

= 0 ⇒ S̃(ϕ) =

√
3

2
MPl ln

(
A(ϕ) +

16B(ϕ)U(0)(ϕ)

M4
PlA(ϕ)

)
. (3.22)

2Here we will present only the key results pertaining to the valley approximation used in this study.
More details on the numerical analysis and scanning of parameter space may be found in the appendix
of [1].
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The valley structure displayed in Figure 3.2 indicates that the approximation S = S̃(ϕ)
is good one provided that

m2
S

H2
inf

≫ 1 , (3.23)

where Hinf is the Hubble scale during inflation. In other words, motion in the scalaron
direction (away from C) can be neglected in this regime during the slow-roll phase.

The inflationary potential along C is obtained from inserting (3.22) into the multifield
potential (3.20),

Uinf(ϕ) = UE(ϕ, S̃(ϕ)) =
M4

PlU(0)(ϕ)

M4
PlA(ϕ)2 + 16B(ϕ)U(0)(ϕ)

. (3.24)

Naturally, we must replace the scalaron in the rest of the action (3.19) as well, which
leads to a modification of the scalar kinetic terms,

∂αS̃∂
αS̃ + e−Σ(S̃)∂αϕ∂

αϕ = F 2(ϕ)∂αϕ∂
αϕ , (3.25)

where we have defined the shorthands

F 2(ϕ) =
1(

1 + 4G(ϕ)
)
A(ϕ)

[
1 +

3M2
Pl

((
1 + 4B(ϕ)

)
A′(ϕ) + 4G′(ϕ)A(ϕ)

)2
2
(
1 + 4G(ϕ)

)
A(ϕ)

]
(3.26)

G(ϕ) =
4B(ϕ)U(0)(ϕ)

M2
PlA

2(ϕ)
. (3.27)

Finally, with all the considerations above, we may write the complete effective action for
inflation along C,

SE
inf =

∫
d4x
√
−gE

(
M2

Pl

2
RE −

1

2
F 2(ϕ)∂αϕ∂

αϕ− Uinf(ϕ)

)
, (3.28)

where one may obtain a canonically normalized inflaton ϕ̂ by computing

ϕ̂(ϕ) =

∫ ϕ

vϕ

dxF (x) . (3.29)

The second contour possibility, C′, is obtained in an analogous way to the first except
with the roles of ϕ and S swapped,

C′ = {ϕ̃(S), S} , (3.30)

and should be employed in the case that the condition (3.23) is violated. The local
minima ϕ̃(S) and the resulting single field inflationary potential may then be solved for
in the same way as for contour C,
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∂UE(ϕ, S)

∂ϕ

∣∣∣∣
ϕ=ϕ̃(S)

= 0 U ′
inf(S) = UE(ϕ̃(S), S) . (3.31)

Naturally, the field normalization that replaces (3.26) in this case takes an analogous
form as well.

F 2(S) = 1 + e−Σ(S)

(
∂ϕ̃(S)

∂S

)2

. (3.32)

3.3.2 CMB observables

Concrete predictions for the CMB observables introduced in Section 3.1 depend on all
of the free parameters in the present model and a thorough scan over all the reasonable
values for them has been carried out for each contour C and C′ (see [1] for more details
on this scan). Interestingly, though perhaps not surprisingly, it turns out the choice of
contour has little bearing on the numerical predictions for CMB observables; in other
words, the model is effectively insensitive to which scalar (ϕ or S) plays the role of inflaton
(see Table 3.1 for a confirmation of this fact). We will thus move forward assuming that
the condition (3.23) holds and that ϕ(S̃) acts as the inflaton following the contour C.
Additionally, we note that though ϕ may be normalized using (3.29), it is perhaps simpler
to derive expressions for inflationary parameters using the original ϕ to avoid yet another
rewriting of the inflationary action.

With the considerations above, one finds that the slow-roll parameters are given by
the analytic expressions

ϵ(ϕ) =
M2

Pl

2F 2(ϕ)

(
U ′
inf(ϕ)

Uinf(ϕ)

)2

η(ϕ) =
M2

Pl

F 2(ϕ)

(
U ′′
inf(ϕ)

Uinf(ϕ)
− F ′(ϕ)

F (ϕ)

U ′
inf(ϕ)

Uinf(ϕ)

)
, (3.33)

and that the number of e-folds may be expressed as

Ne =

∫ ϕend

ϕ∗

F 2(ϕ)

M2
Pl

Uinf(ϕ)

U ′
inf(ϕ)

, (3.34)

where ϕ∗ is the value of ϕ at the time of CMB horizon exit and ϕend is the value of
ϕ at the end of the inflationary period i.e. when max{ϵ(ϕ = ϕend), |η(ϕ = ϕend)|} = 1.
Finally, the observable scalar power spectrum amplitude As, scalar spectral index ns,
and tensor-to-scalar ratio r are determined by the parameters (3.33) up to first order in
the usual way as

As =
U∗
inf

24π2ϵ∗M4
Pl

ns = 1 + 2η∗ − 6ϵ∗ r = 16ϵ∗ , (3.35)

where the quantities with an asterisk are evaluated at ϕ = ϕ∗.
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Contour C Contour C′

# βϕ γ ϕ∗/µ ϕend/µ ns r As S∗/µ Send/µ ns r As

1 1.01× 102 5.24× 108 0.11 0.09 0.967 0.004 3.032 4.75 0.83 0.965 0.004 3.088

2 5.69× 102 1.68× 108 0.45 0.11 0.972 0.010 3.041 13.46 2.02 0.972 0.010 3.075

3 8.67× 102 2.80× 107 2.56 0.13 0.973 0.034 3.038 23.46 2.74 0.973 0.034 3.040

Table 3.1: Representative benchmark points for both choices of contour C and C′ where λϕσ = 0.77,
λϕ = 0.005, βσ = 1, and Ne = 55 are fixed for all points.

Figure 3.3: Predictions for the scalar spectral index ns vs. the tensor-to-scalar ratio r that satisfy the
constraint (3.36) with varying e-folds Ne (top) and varying λϕσ (bottom), where βσ = 1 and λϕ = 0.005
for all points. Planck TT,TE,EE+lowE+lensing+BK15 68% and 95% CL regions taken from [43, 44] are
indicated by the blue regions in the top panel.

The observables above are constrained by the latest Planck mission data [42, 43] and
are determined by the values of the couplings λϕ, λϕσ, βϕ, βσ, γ, as well as the renor-
malization scale µ whose value is fixed through the experimentally determined value of
MPl and its definition in (2.48). Additionally, as a result of choosing the flat direction
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towards σ when calculating the effective potential in Section 2.3 (see (2.37)), λϕ and βσ
turn out to be essentially irrelevant for inflation, so we set them to the realistic values
λϕ = 0.005 and βσ = 1. We also assume the well-established value of Ne ≈ 50 − 60
e-folds from CMB horizon exit until the end of inflation, allowing us to further constrain
the parameter space spanned by λϕσ, βϕ, and γ so that

ln
(
1010As

)
= 3.044± 0.014 (3.36)

is satisfied in line with the Planck data [42, 43]. This rather stringent constraint may be
used to effectively remove one free parameter from the model, so we thus eliminate βϕ in
favor of γ and take γmax ≈ 109. All of the parameter dependence in this model may then
be nicely expressed in the ns–r plane as displayed in Figure 3.3. Interestingly, it turns
out that the lower end (larger γ) of the predictions displayed there end up corresponding
to those of R2 Starobinsky inflation [190–192], while the upper end (smaller γ) enters the
regime of linear chaotic inflation [193–195], implying that the present model somehow
interpolates between the two theories.

With our results in hand, it is worthwhile to take a moment and compare them
to other works on inflation in scale-invariant models. Some studies such as [29, 39, 96,
196–200] do not explicitly obtain their inflationary potential from the Coleman-Weinberg
mechanism as we do, though others employ similar strategies [37, 40, 201–206]. The most
similar of these are [203, 204] but there are still key differences between the derivations
of their potentials and ours. Whereas we demonstrate the spontaneous breakdown of
SI in the original Jordan frame action, then go to the Einstein frame to derive our
potential, both of the above mentioned works implicitly assume that scale invariance
is broken in order to perform a Weyl rescaling to the Einstein frame where they then
employ the Gildener-Weinberg approach and encounter symmetry breaking. Though in
practice one often finds physical equivalence between the Jordan and Einstein frames,
it is important to remember that this is not always strictly the case, particularly when
the metric enters as quantum mechanical DOF [207, 208]. In the present case based on
the action (2.36) (where we have assumed a vanishingly small Weyl curvature coupling
κ), gravity is indeed treated classically and the possible inequivalence is of no concern,
however, it is important to avoid making assumptions about SSB when gravitational
DOFs enter the discussion, as they will in the next section.

3.4 Inflation with spin-2 ghosts

In the previous sections we have assumed that κ ≈ 0 so that contributions from the
Weyl tensor may be neglected, as is very commonly done for semi-classical treatments of
quadratic gravity. The principle reason that the Weyl tensor term is so often swept under
the rug is that, due to the fourth-order derivatives of the metric inside, it propagates
massive spin-2 DOFs in addition to the standard massless graviton. The trouble with
these extra massive DOFs is that they are “ghosts” which enter with a relative minus
sign on their kinetic term in the action and represent a serious threat to unitarity when
gravity enters into the quantum picture. However, as we will see shortly, they may also
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present positive phenomenological features. The next chapter in this work will be devoted
to an in-depth look at the role of these extra gravitational DOFs and how unitarity may
be established in their presence, so for the time being we will set this issue aside and
look at how the scale-invariant picture changes when they are allowed to propagate.

3.4.1 The “minimal” action

To begin, we recall that in the κ ≈ 0 version of our scale-invariant model, it was
necessary to introduce two BSM scalars in order to successfully achieve dynamical gen-
eration of the Planck mass. As we saw, the first of these scalars, ϕ, ends up playing
the additional role of inflaton while the massless σ does not play much of a role beyond
helping to generate the required one-loop effective potential. One may then naturally
wonder if including σ in the picture is necessary since other scalars also exist in the
theory, however, it turns out that neither the scalaron S nor the Higgs can generate the
required scale symmetry breaking potential, even though they may lead to satisfactory
inflationary potentials independently of the present scale-invariant setup [190–192, 209].

As we have already alluded to, there are additional DOFs coming from the gravi-
tational part of the action that may in fact fill the role of σ when the Weyl coupling
κ is allowed to take a natural value. To see this explicitly, we consider the following
“minimal” version of the action (2.36) where scale-invariant quadratic gravity is coupled
only to ϕ,

SSImin =

∫
d4x
√
−g
(
− 1

2
∂αϕ∂

αϕ− λ

4
ϕ4 − κCαβγδC

αβγδ − γR2 +
β

2
ϕ2R

)
. (3.37)

As before, this action is invariant under infinitesimal local diffeomorphisms in addition
to the global scale transformations

gαβ → Ω2gαβ ϕ → Ω−1ϕ , (3.38)

where Ω is a constant. Naturally, one may also include Higgs interactions and BSM
fields such as heavy right-handed neutrinos in this picture to recreate the same kind
of results displayed in Section 2.3, but in this section we will focus on just the gravity-
dilaton(inflaton) action above that is “minimal” in the sense that it contains no additional
scalar σ and not in the sense that this extra physics is not being discussed.

To derive the effective one-loop potential for this theory, we proceed as we did previ-
ously by expanding the dynamical fields in our theory as quantum perturbations around
classical backgrounds. For the scalar this means writing

ϕ → ϕ+ φ , (3.39)

where ϕ ≈ const. for the purposes of deriving the effective potential. As our goal now
is to put gravity on the same footing as the other fields in our theory, we perform an
analogous expansion of the metric,

gαβ → ηαβ + hαβ , (3.40)
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where ηαβ is the Minkowski metric and hαβ(x) is a small quantum perturbation. Under
these expansions, the part of the action (3.37) that is quadratic in the fluctuations hαβ
and φ is given by

S
(0)
SImin =

∫
d4x

[
1

2
φ
(
□− 3λϕ2

)
φ− κ

6
hαβ

(
3□2hαβ − 6□∂β∂

γhαγ + 2∂α∂β∂γ∂δh
γδ

− ηαβ□
(
□hβ

β − 2∂β∂γh
βγ
))
− γhαβ

(
∂α∂β∂γ∂δh

γδ

+ ηαβ□
(
□hβ

β − 2∂β∂γh
βγ
))

+
β

8
hαβ

(
8ϕ
(
∂α∂β −□ηαβ

)
φ

+ ϕ2
(
□hαβ − 2∂β∂

γhαγ − ηαβ
(
□hβ

β − 2∂β∂γh
βγ
)))]

, (3.41)

where we have integrated by parts and omitted terms related to the tree-level cosmolog-
ical constant generated by ϕ.

As mentioned at the beginning of this section, the graviton hαβ in the action above
actually contains additional DOFs beyond the standard massless spin-2 graviton due to
the four-derivative nature of quadratic gravity. We may expose these DOFs by perform-
ing a York decomposition of the full gravitational perturbation as

hαβ = h̄αβ + ∂αVβ + ∂βVα +

(
∂α∂β −

1

4
ηαβ□

)
a+

1

4
ηαβhγ

γ , (3.42)

where h̄αβ(x) is a transverse-traceless tensor mode (∂βh̄α
β = h̄α

α = 0), V (x) is a trans-
verse vector mode (∂αV

α = 0), and hα
α(x) and a(x) are independent scalar modes [210].

After rewriting these scalars in terms of the gauge-invariant quantity

S = hα
α −□a , (3.43)

which corresponds to the quantum fluctuations of the scalaron (3.18) defined in the last
section, we see from the decomposed action

S
(0)
SImin =

∫
d4x

(
1

2
φ
(
□−m2

ϕ

)
φ− κ

2
h̄αβ□

(
□−m2

h

)
h̄αβ

− 9γ

16
S□
(
□−m2

S

)
S − 3βϕ

4
φ□S

)
, (3.44)

that the decomposition (3.42) actually amounts to a gauge fixing in the gravitational
sector, as all of the quadratic terms containing Vα, hα

α, and a cancel out identically.
In the action (3.44) above, we have identified the ϕ-dependent masses

m2
ϕ = 3λϕ2 m2

S =
β

12γ
ϕ2 m2

h =
β

4κ
ϕ2 , (3.45)

and we restate that for the purposes of deriving the effective potential, ϕ should be
considered an approximately constant (classical) background field. Though ϕ’s value is
as of yet unspecified, its VEV vϕ that will be derived in what follows will fix these masses
up to the renormalization scale.



34 3. Inflation

3.4.2 The effective potential

The effective potential containing contributions from the scalar and tensor sectors
may now be derived using standard Coleman-Weinberg techniques [11]. As before, this
involves integrating out the fluctuations ΦA = {φ, S, h̄αβ} and since the part of the func-
tional integral that is quadratic in ΦA is Gaussian, we find that the one-loop contributions
amount to

UCW(ϕ, ηαβ) = − i
2

ln

[
Det

(
δ2Squad
δΦAδΦB

)]
= − i

2
ln
[
DetM

]
− i

2
ln
[
Det

(
δαβγδ□

(
−□ +m2

h

))]
, (3.46)

where we have used the shorthand δαβγδ = 1
2(ηαγηβδ + ηαδηβγ). Though the dependence

on ηαβ in the potential above is similar to the background dependence on ϕ, it should
be obviously understood and we will suppress it moving forward.

The first term in (3.46) describes the off-diagonal scalar sector with the Hessian
matrix

M =

(
−9γ

8 □
(
□−m2

S

)
−3

4βϕ□
−3

4βϕ□ □−m2
ϕ

)
, (3.47)

where the log can be rewritten using the standard “ln Det = Tr ln” trick as

ln(DetM) = Tr
[
ln
(
□−m2

+

)]
+ Tr

[
ln
(
□−m2

−
)]

+ · · · (3.48)

with the “· · · ” representing irrelevant constant terms that are independent of ϕ. Here
we have identified the mass eigenvalues of the matrix M ,

m2
± =

1

2

(
m2

ϕ + (1 + 6β)m2
S

)
± 1

2

√(
m2

ϕ + (1 + 6β)m2
S

)2
− 4m2

ϕm
2
S , (3.49)

which agree with the values of the Einstein frame mass eigenstates calculated in [51].
With this we may next rewrite the trace in (3.48) as a sum of the momentum space
eigenvalues of the operators ln

(
□−m2

±
)

and evaluate the resulting expression using
dimensional regularization under MS [139, 153] to yield

Uscal(ϕ) = − i
2

∑
j=±

∫
d4p

(2π)4
ln
(
p2 +m2

j

)
=
∑
j=±

1

64π2
m4

j

[
ln

(
m2

j

µ2

)
− 3

2

]
. (3.50)

This sum over mass eigenstates then represents the one-loop contribution to the effective
potential from the scalar sector, where µ is the renormalization scale and divergent terms
have been absorbed into the renormalized constant λ.

Contributions from the tensor sector may be calculated in a similar fashion, starting
by rewriting the last term in (3.46) as

ln
[
Det

(
δαβγδ□

(
−□ +m2

h

))]
= Tr

[
ln
(
δαβγδ

(
□−m2

h

))]
+ · · · , (3.51)
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where the Tr ln(−□) term has been relegated to the “· · · ” since it is independent of ϕ,
leaving only the massive (ghostly) term to contribute in this sector. It is important to
note that there is no troublesome minus sign related to the ghost in this context since it
has been associated with the massless inverse propagator. This in turn implies that the
ghost contributes to the effective potential just as a normal particle would, a fact which
is consistent with the calculation of the quartic beta function βλ [51]. With this we may
transition to momentum space which, due to the tensorial nature of the inverse spin-2
propagator, requires that we write

h̄αβδαβγδh̄
γδ = h̄αβP

(2)
αβγδh̄

γδ , (3.52)

where we have used the transverse-traceless nature of h̄αβ to write its contribution in
terms of the purely spin-2 projection operator defined by

P
(2)
αβγδ =

1

2

(
θαγθβδ + θαδθβγ

)
− 1

d− 1
θαβθγδ θαβ = ηαβ −

pαpβ
p2

, (3.53)

as outlined in [211]. This rewriting allows us to correctly count the five DOFs expected
from a massive spin-2 field in four dimensions, which is confirmed by noting

Tr
(
P

(2)
αβγδ

)
= δαβγδP

(2)
αβγδ =

1

2
(d+ 1)(d− 2) . (3.54)

With all of the above considerations, dimensional regularization may be carried out under
MS just as in the scalar sector and we find that the massive spin-2 contribution to the
effective potential is given by

Uh(ϕ) = − i
2

lim
d→4

[
µ4−d

∫
ddp

(2π)d
1

2
(d+ 1)(d− 2) ln

(
p2 +m2

h

p2

)]
=

5

64π2
m4

h

[
ln

(
m2

h

µ2

)
− 1

10

]
. (3.55)

Our final step is assemble the entire effective potential,

Ueff(ϕ) =
λ

4
ϕ4 + Uscal(ϕ) + Uh(ϕ) + UΛ , (3.56)

which includes the tree-level quartic term, one-loop contributions from the scalar and
tensor sectors, and the arbitrary constant background UΛ which, just as in the previous
study, is a free parameter that we will tune to ensure that the classical zero-point energy
vanishes when scale invariance is broken spontaneously.

To see this breaking in the present model, we first write (3.56) in the form

Ueff(ϕ) = gϕ

(
2 ln

(
ϕ2

µ2

)
+ fϕ − 1

)
ϕ4 + UΛ , (3.57)
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where similarly to (2.45, 2.46), fϕ and gϕ are combinations of the dimensionless coupling
constants λ, κ, γ, and β given by

fϕ =
β2

gϕ

[
1

36864π2γ2κ2

(
45γ2

(
ln

(
12κ

β

)
+ ln

(
λ
)
− 7

5

)
+ κ2

(
ln

(
36γ

β

)
+ ln

(
λ
)))

+
λ

16β2

]
+

1

2
ln
(
3λ
)
− 1

2
(3.58)

gϕ =
1

18432π2

[
β2
(

1

γ2
+

45

κ2

)
+ 1296λ2

]
. (3.59)

With this, the VEV of ϕ may be identified as the minimum of this potential in the usual
way:

∂Ueff(ϕ)

∂ϕ

∣∣∣∣
ϕ=vϕ

= 0 ⇒ vϕ = µe−fϕ . (3.60)

Thus, due to the non-zero value of vϕ, we find that scale invariance has indeed been
broken spontaneously in this setup where no contribution from an additional σ-like scalar
is present. In the previous chapter we saw how σ is required to successfully realize SSB
when gravity is treated classically, however, the massive spin-2 ghost now very naturally
fills the same role when gravity is included in the quantum picture. Though this is a
novel consideration, it should be noted that in retrospect, this type of phenomena may
have been anticipated from analysis of the renormalization group equations in this type
of model where it is also possible to account for a dynamical solution to the cosmological
constant problem [51, 212].

With the above value of vϕ in hand, we may also address the cosmological constant
problem in our more simplistic method where UΛ is fixed according to

Ueff(vϕ) = 0 ⇒ UΛ = −gϕv4ϕ . (3.61)

To reiterate the discussion at the end of the Section 3.3.2; deriving the effective potential
and establishing SSB in the Jordan frame as we have done here ensures that when the
cosmological constant is canceled by UΛ in this way, it will remain zero after we go to
the Einstein frame.

Finally, the dynamically generated value of the Planck mass in this setup may be
identified in terms of what will become the canonical Einstein term as

M2
Pl = βv2ϕ . (3.62)

This expression may be contrasted with (2.48) which contains extra contributions pro-
portional to U(1)(vϕ) that originate from our expansion in powers of the classical Ricci
scalar. This kind of expansion is unnecessary in the present theory where gravitational
contributions have been accounted for in the effective potential, thus implying that the
extra term in (2.48) is implicitly included in the present value of vϕ. It should however be
noted that, even though an expansion in terms of R is no longer necessary when gravity
is treated quantum mechanically, there is still the additional expansion of the metric in
terms of the graviton that essentially takes its place.
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3.4.3 Inflationary predictions

We saw in Sections 3.2 and 3.3 that the same potential which spontaneously breaks
scale symmetry may also represent a satisfactory inflationary potential and the situation
is no different here. Many of the considerations that were employed previously naturally
apply here as well, so we will gloss over many of the details of deriving inflationary predic-
tions that have already been stated, however, we may still proceed from our derivation of
the effective potential by using it to assemble the one-loop effective action in the Jordan
frame,

SJ
eff =

∫
d4x
√
−g
(
− 1

2
∂αϕ∂

αϕ− κCαβγδC
αβγδ − γR2 +

β

2
ϕ2R− Ueff(ϕ)

)
. (3.63)

With this, we may transform to the Einstein frame by introducing and auxiliary field
that exposes the classical scalaron buried in R2 and performing a Weyl rescaling to yield

SE
inf =

∫
d4x
√
−g
(
− 1

2
F 2(ϕ)∂αϕ∂

αϕ− κCαβγδC
αβγδ +

M2
Pl

2
R− Uinf(ϕ)

)
, (3.64)

where F (ϕ) is a function that quantifies the modification to the kinetic term for ϕ brought
on by the Weyl rescaling,

F 2(ϕ) =
1(

1 + 4A(ϕ)
)
B(ϕ)

[
1 +

3M2
Pl

((
1 + 4A(ϕ)

)
B′(ϕ) + 4A′(ϕ)B(ϕ)

)2
2
(
1 + 4A(ϕ)

)
B(ϕ)

]
, (3.65)

and A and B are additional functions of the scalar field,

A(ϕ) =
4γUinf(ϕ)

B2(ϕ)M4
Pl

B(ϕ) =
βϕ2

M2
Pl

. (3.66)

One may note that the scalaron is not present in the action (3.64), which is simply due
to the fact that the effective potential in the Einstein frame exhibits a valley structure
just as was discuss in detail in Section 3.3.1, thus allowing us to eliminate it from the
action in favor of ϕ provided that the scalaron is heavy enough to stabilize the associated
contour during slow roll. For the easy comparison of results, we assume that the mass
hierarchy works out in this fashion for the scalars in this model as well, thus leading us
to the inflationary potential

Uinf(ϕ) =
M4

PlUeff(ϕ)

β2ϕ4 + 16γUeff(ϕ)
. (3.67)

This potential allows us to compute predictions for the scalar power spectrum ampli-
tude As, the scalar spectral index ns, and the tensor-to-scalar ratio r defined in (3.35), in
terms of the slow-roll parameters (3.35, 3.34). These predictions are displayed in Figure
3.4 where we have also accounted for additional small corrections to the tensor-to-scalar
ratio with the replacement

r → r

(
1 +

2H2

m2
h

)−1

≈ r
(

1 +
2Uinf(ϕ

∗)

3M2
Plm

2
h

)−1

, (3.68)
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Figure 3.4: Predictions for the scalar spectral index ns vs. the tensor-to-scalar ratio r that satisfy
the constraint (3.36) for a range of e-folds Ne, with varying coupling constants in the ranges (3.69).
Planck TT,TE,EE+lowE+lensing+BK15 68% and 95% CL regions taken from [43, 44] are indicated by
the blue regions in each panel. Representative predictions from the Starobinsky model [190–192] (green)
and linear inflation [193–195] (red) are also included for easy comparison.
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as suggested in [212]. These corrections arise from classical non-CW effects that are
known to appear when considering the Weyl tensor term in a de Sitter background [213–
215].

Just as in the previous analysis, the parameter space has been constrained so as to
produce results which fit within the latest experimental data from the Planck satellite
mission [43, 44], which includes an assumption that inflation lasts for Ne ≈ 50 − 60 e-
folds and that the scalar power spectrum amplitude satisfies ln

(
1010As

)
= 3.044±0.014.

These requirements result in a viable parameter space spanned by the ranges

λ = 0.005 β ∈ [103, 104] γ ∈ [103, 109] κ ∈ [102, 103.25] , (3.69)

which guarantee that the logarithms such as ln(ϕ∗/vϕ) which appear in the inflationary
potential do not grow to non-perturbative values during inflation. In other words, the
choice of ranges above ensure the one-loop potential represents a good approximation
during inflation, which further implies that any additional unaccounted for RG-running
effects are negligible. To get a better feeling for the best case situation at hand, we have
also singled out a representative benchmark point corresponding to the values

B1 : λ = 0.005 β = 5.62× 102 γ = 1.22× 108 κ = 837 , (3.70)

which is labeled as “B1” in both plots of Figure 3.4.
Special focus has been put on the higher derivative coupling constants κ and γ in

Figure 3.4 by indicating their ranges with color gradients in order to better illustrate
the effects of including general C2 and R2 terms in the action. In this form it is clear
that there is a large subset of the parameter space (3.69) that rests within even the most
stringent Planck and BICEP/Keck constraints over the full range of possible e-folds.
Interestingly, just as was pointed out in the last inflationary analysis, the present theory
seems to interpolate very nicely between the analogous results of Starobinsky [190–192]
and linear chaotic inflation [193–195], as we have pointed out explicitly in this set of
plots.

It is also instructive to get an order of magnitude estimate for the masses of the
gravitational fields in our theory. This is easily done by setting ϕ = vϕ in the relations
(3.45) which, after also taking the benchmark values (3.70) for the coupling constants,
yields the numerical values

mS ≈ 1014 GeV mh ≈ 1017 GeV , (3.71)

which we note do not change by more than about an order of magnitude for any of the
parameter combinations in (3.69). As is made clear in Figure 3.4, higher values of γ
correspond to lower values of mS which in turn correspond to lower values of r. Smaller
r is not only preferable from a phenomenological point of view, but it also means that
the ghost mass will be relatively larger since m2

h ∝ 1/κ. This all amounts to a novel
consideration in scale-invariant models, namely, that a very heavy ghost is simultaneously
able to aid in generating all the important scales in physics through SSB and is able to
generate a low value for the tensor-to-scalar ratio in line with modern observations.
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There is even more to the story however, as it turns out that a very heavy spin-2
ghost is not only phenomenologically preferred, but is strictly theoretically necessary
for the present kind of model to be considered viable. In the following chapters we
will demonstrate this fact explicitly by deriving a limit on the energy of interactions in
quadratic gravity that may be considered perturbatively unitarity, which corresponds
precisely to the mass of the ghost. For now we may simply state that, luckily for the
current analysis, all the energy scales associated with inflation (which usually have a
maximum of approximately 1015 GeV [178]) sit well below the mass of the ghost.



Chapter 4

The Ghost Problem

So far we have seen the most intriguing features of scale-invariant theories on dis-
play, but have glossed over what is perhaps the biggest theoretical roadblock standing
in the way of their widespread adoption – the issue of establishing unitarity in their
gravitational sectors. We will begin to tackle this topic here after first introducing the
Ostrogradsky instability and ghost problem with a concrete mechanical example, being
careful to distinguish between the classical and quantum levels. Though they are of
course related, it is important to distinguish between the theoretical issues that present
themselves in each regime as, naturally, there are relevant quantum mechanical phenom-
ena which have no classical counterpart. We will also introduce the notion of conditional
unitarity that was established in [3] and review some of the most promising resolutions
to the ghost problem that have appeared in recent literature.

Once we have a good idea of the problem that we are facing, we will see exactly how it
presents itself in theories of scale-invariant quadratic gravity. This involves establishing
a novel quantization of the theory in the covariant operator formalism that will follow
after an introduction to the general process. We will perform such a quantization on
both globally scale-invariant QG after SSB (where a massive ghost will appear) and on
locally invariant conformal gravity (which presents a massless ghost) in order to compare
and contrast how the ghost problem appears in both theories.

4.1 The Ostrogradsky instability

To begin, let us consider the following action describing the motion of a time-
dependent 3D “coordinate” z(t),

SOI =

∫
dt

(
− 1

2ω2
z̈2 +

1

2
ż2 − V

(
z
))

. (4.1)

This action exhibits an Ostrogradsky instability due to the fact that it is fourth-order
in derivatives, and may thus serve as a toy model of classical quadratic gravity for our

41
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purposes. Actions like (4.1) have been well-studied in the past and are known as Pais-
Uhlenbeck (PU) oscillators [216].

Though it is possible to investigate the Ostrogradsky instability directly from (4.1) in
its fourth-order form, it is more convenient to first transform the action into an equivalent
second-order form so that the instability may be analyzed in a more familiar language.
This is achieved via the introduction of an auxiliary “coordinate” y(t) and the action

SOIaux =

∫
dt

(
−
√
mz̈ · y +

mω2

2
y2 +

1

2
ż2 − V (z)

)
. (4.2)

We may integrate y out of this action using its equation of motion, y = 1/(
√
mω2)z̈, and

find that (4.2) is physically equivalent to (4.1). It is also instructive to further redefine
z as

z =
√
m
(
x− y

)
(4.3)

in order to obtain the equivalent diagonalized action

SOIdiag =

∫
dt

(
m

2

(
ẋ2 − ẏ2 + ω2y2

)
− V

(
x− y

))
, (4.4)

where we have neglected total derivatives.
In this form we see a crucial feature of higher derivative theories made manifest –

they generally propagate more degrees of freedom than one might naively assume from
looking at only the bare fourth-order action. The appearance of these additional inde-
pendent DOFs may be understood in terms of a Cauchy problem wherein the additional
derivatives (as compared to the standard two) imply that more independent initial con-
ditions are required to solve the equations of motion. Moreover, the separated DOFs
appear with opposite sign kinetic terms. We refer to the coordinate with a canonically
negative kinetic term (here y) as a ghost. It is also important to note that the mass
term for the ghost in (4.4) is also negative as compared to that of a healthy particle,
thus distinguishing this scenario from a tachyonic instability. As we will see in later
sections, the scenario presented above serves as a direct analogy to quadratic gravity
after SSB where the four derivatives that act on the metric may be rewritten to describe
a “healthy” massless spin-2 field (the graviton) and massive spin-2 ghost.

With the second-order version of our toy theory established, the precise nature of the
classical Ostrogradsky instability becomes clear. From (4.4), we may derive the equations
of motion

m
d2x

dt2
= −∇xV m

d2y

dt2
= ∇yV −mω2y , (4.5)

and note that, due to the sign of the y kinetic term, the force ∇yV has the opposite sign
as the force −∇xV . This feature is the root of the instability, which may be seen even
more explicitly by writing V (z) = V (|x− y|) per the definition (4.3). This leads to the
relation

∇xV = −∇yV =
x− y

|x− y|
V ′ , (4.6)
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where V ′ = dV/d|x − y|, which indicates that if the force −∇xV is a restoring force,
then ∇yV is necessarily an anti-restoring force leading to a run-away instability in y. Of
course we must also consider the restoring force originating from the mass term since if
mω2|y| > |∇yV | for some finite range of values of |y|, then the runaway of y may be
avoided. We also note that this behavior exists for large class of different potentials and
that it has been shown that it is possible to avoid the run-away instability with several
different specific potentials [217–219].

It is instructive to further analyze the behavior of this system in the Hamiltonian
formalism as it will serve as a nice link to the quantum version of the problem. The
classical Hamiltonian for the Pais-Uhlenbeck system described above is given by

H =
1

2m

(
p2 − q2

)
− mω2

2
y2 + V

(
|x− y|

)
, (4.7)

where the canonical momentum for each coordinate is defined in the conventional manner
as p = mẋ and q = −mẏ. Naturally, the total energy of this system is conserved,
however, some rather atypical phenomena can occur due to the fact that the ghost’s
contribution to the total energy is negative.

As an example, consider a scenario where the ghost sits at rest at the origin and the
healthy coordinate runs toward the ghost with some impact parameter x = {−a, b, 0},
ẋ = {v, 0, 0}. Assuming the 1/r gravity-style potential V (|x − y|) = G/|x − y|, the
coordinates’ trajectories are uniquely determined and if a is large enough that this grav-
itational potential energy may be neglected, the initial energy Ein ≃ (1/2)mv2 of the
healthy particle corresponds to the approximate total energy. After some finite t > 0,
the healthy coordinate scatters off the ghost as a free particle, while the ghost begins
simple harmonic motion. This would be a very standard situation if not for the relative
minus sign between the healthy and ghost parts of the Hamiltonian. A pathology can
appear due to this relative minus when the outgoing energy of the healthy coordinate,
Eout, exceeds the (conserved) total energy due to the ghost’s negative contribution. Even
in the case where stable motion is achieved (Eout is fixed at a finite value) and the ghost
does not run away, an outside observer witnesses x scatter off a stationary y with a
greater velocity than it approached with. It is precisely this classical pathology that we
refer to as the Ostrogradsky instability.

4.2 Quantum states with negative norm

4.2.1 Classical correspondence and the vacuum

The classical pathology we have just seen appear in fourth-order systems becomes
more subtle and complicated when viewed through the lens of quantum mechanics. The
quantum system corresponding to (4.7) may be described by the Schrödinger equation

i
∂Ψ(x,y, t)

∂t
= HΨ(x,y, t) , (4.8)
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where Ψ(x,y, t) is a wave function that satisfies | ⟨Ψ|Ψ⟩ |2 > 0 and

H = − 1

2m

(
∇2

x −∇2
y

)
− mω2

2
y2 + V

(
|x− y|

)
(4.9)

is the Hamiltonian operator corresponding to the classical expression (4.7). We may
safely assume that this quantum system approaches the Pais-Uhlenbeck model in the
classical limit, though it is important to stress that there exists a non-zero probability
that the energy of the outgoing healthy particle may now take an arbitrarily large value
even if no run-away instability is present. This Schrödinger picture quantization thus
fails to define a non-pathological quantum system, reflecting the pathology of its classical
counterpart. This quantum version of the pathology that we established in the last
section is not the end of the story however.

In the Heisenberg picture of quantum mechanics, where one constructs time-independent
state operators and relegates all time-dependence into operators that act on those states,
we may define a quantum system that reinterprets the ghostly phenomena in a manner
that has no classical correspondence. For the sake of the simplifying the present argu-
ment, let us consider the free theory case with V = 0 and focus on the ghost with the
harmonic oscillator EOM ÿ + ω2y = 0 and asymptotic solution

yasj (t) =
1√

2mω

(
âje

−iωt + â†je
iωt
)
, (4.10)

where âj and â†j are creation and annihilation operators for the ghost state and j = 1, 2, 3
stands for the three spatial components of y. Using the definition of the momentum qj =
−mẏj along with the canonical equal-time commutation relations [yj(t), qk(t′)]|t=t′ =
iδjk, we may derive the ghost commutator[

âj , â
†
k

]
= −δjk (4.11)

and find that it appears with a relative minus when compared to the analogous relation
for the healthy particle. The free Hamiltonian operator for the ghost part of the system
is determined from the Heisenberg equation

ẏasj = i [H0, y
as] (4.12)

and given by

H0 = −ω
2

∑
j

(
âj â

†
j + â†j âj

)
= −ω

∑
j

(
âj â

†
j +

1

2

)
. (4.13)

Other than the uncharacteristic minus sign that appears in the commutation relation
(4.11), all of the above is standard procedure for quantization in the Heisenberg picture,
however, there is an often overlooked ambiguity that plays a crucial role when quantizing
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a ghostly particle. There are in fact two possibilities for how one might define the ground
state (vacuum) of the quantum theory,

âj |0⟩+ = 0 or â†j |0⟩− = 0 . (4.14)

When quantizing a healthy particle in the Heisenberg picture, the first of these options is
selected based on the requirement that all energy eigenstates must be positive, however,
for a ghost, the choice is not so clear due to the classically negative kinetic energy of
the particle. It is important to look at each possibility with care, to which end we note
that selection of an annihilation operator also fixes the creation operator and defines the
excited n-particle states as

|n⟩+ =
1√
n!

(
â†j
)n |0⟩+ or |n⟩− =

1√
n!

(
âj
)n |0⟩− . (4.15)

Using the relation (4.11), we can calculate the inner product of these states,〈
n′
∣∣n〉

+ +
= (−1)nδnn′ or

〈
n′
∣∣n〉− − = δnn′ , (4.16)

and derive the energy eigenstates associated with each vacuum

H0 |n⟩+ = (n+ 1/2)ω |n⟩+ or H0 |n⟩− = −(n+ 1/2)ω |n⟩− . (4.17)

We thus find that it is in fact the second choice of vacuum, |0⟩−, that maintains classical
correspondence and an equivalency to the Schrödinger picture (positive norm and nega-
tive energy eigenvalues), however, we argue that this feature should not take precedence
over maintaining positive energy eigenvalues.

We can see that choosing the standard Heisenberg vacuum definition does not directly
resolve the ghost problem but rather moves the troublesome ghostly minus sign from the
energy eigenvalues to the inner product metric (4.16). It is thus still natural to wonder
whether anything is gained by selecting |0⟩+ since it removes the classical correspondence
and association with the Schrödinger picture, however, there is an important corollary
related to the iϵ prescription in QFT that indicates this is the only logical choice for
quantization in the presence of a ghost. To see this explicitly we may consider the
propagator

⟨0|Tyasj (t)yask (t′)|n⟩± ± = θ(t− t′) ⟨0|yasj (t)yask (t′)|n⟩± ± + (t↔ t′) , (4.18)

and employ the identity

θ(t) =
i

2π

∫
dE

e−iEt

E + iϵ
(4.19)

to rewrite it as

⟨0|Tyasj (t)yask (t′)|n⟩± ± = −δjk
i

2πm

∫
dE

e−iE(t−t′)

E2 − ω2 ± iϵ
. (4.20)
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If we repeat the process above for the healthy particle, we will arrive at almost the same
expression for that propagator with the only differences being the leading minus sign
and, crucially, the fact that the two particles only share the same pole structure when
the ghost is quantized using |0⟩+. With the choice |0⟩+ (|0⟩−), the pole is located on the
lower (upper) half complex plane for positive energy E = ω and is located on the upper
(lower) half complex plane for negative energy. It should also be mentioned that this in
turn implies that the negative energy state propagates forward in time and corresponds
to a violation of causality for the |0⟩− vacuum.

When considering a theory that contains both ghosts and healthy particles it is thus
necessary to assign creation and annihilation operators so that the vacuum corresponds
to positive energies (whether the norm is negative or not) as this is the only way to
guarantee the iϵ prescription remains consistent for renormalized Feynman diagrams
that contain both species of particle (as suggested by Stelle [57] and Salvio [150]). This
prescription is crucial for proving absolute convergence of integrals over the internal
momenta and it also plays a key role in showing the existence of the ϵ→ 0+ limit [220]
(see also [221, 222]). In short, we must give precedence to the |0⟩+ choice of vacuum
since it is the one that yields healthy propagators.

4.2.2 Probability interpretation

There is an important corollary to the discussion above regarding the interpretation
of probability in the presence of negative norm states that should also be addressed.
The notion of probability in QFT is inherently related to the pseudo-unitarity of the
S-matrix, which is expressed through the relation

S†S = SS† = 1 , (4.21)

and comes by virtue of the assumption that the asymptotic “in” and “out” states in a
theory form orthonormal bases on the Hilbert space [223]. We also note that, since the
S-matrix is simply given by S = 1 in the absence of interactions, it is often convenient
to parameterize it in terms of the transfer matrix T as

S = 1 + iT , (4.22)

so that all non-trivial interactions are described by T . By plugging this expansion into
the identity (4.21), we arrive at an expression of the optical theorem,

T †T = i
(
T † − T

)
, (4.23)

which implies a fundamental relationship between tree-level interactions and loop-order
diagrams.

An understanding of how these considerations define the notion of probability in QFT
is best achieved by example. Consider a theory containing an unstable particle Φ that
may decay into some other particle ϕ through the interaction term Lint ⊃ gΦϕϕ where
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g is a real coupling constant. The decay process Φ → ϕϕ governed by this interaction
term may be described in the S-matrix language by writing

S |Φ⟩ = |Φ⟩+ i
(
g C1 |ϕϕ⟩+ g2C2 |Φ⟩

)
, (4.24)

where |Φ⟩ is state vector associated with the particle Φ and |ϕϕ⟩ corresponds to the
two particle end state after decay, while C1 and C2 are non-zero complex constants that
quantify the tree-level decay and one-loop correction to the inverse Φ propagator (one-
loop forward amplitude), respectively. With this we apply the standard Born rule (see
the later discussion around (4.45)) to interpret the quantities

Pdecay = |g C1|2 Plive = |1 + ig2C2|2 = 1− 2g2 Im(C2) +O(g3) (4.25)

as the probabilities that Φ will decay or continue to propagate.
If both possible end states have positive norms (⟨Φ|Φ⟩ = ⟨ϕϕ|ϕϕ⟩ = 1), then by

pseudo-unitarity of the S-matrix (4.21) we may write

1 = ⟨Φ|Φ⟩ = ⟨Φ|S†S|Φ⟩ = Pdecay + Plive . (4.26)

We thus find a logical interpretation of probability where 0 < Pdecay < 1 and 0 < Plive <
1. Moreover, the norm of the original Φ has decreased after the interaction as a result
of the particle’s possible decay,∣∣〈Φ̃∣∣Φ̃〉∣∣2 < 1 where

∣∣Φ̃〉 = (1 + ig2C2)
∣∣Φ〉 , (4.27)

as one should expect. It may also be noted that (4.26) grants a realization of the optical
theorem (4.23) through the relation

|C1|2 = 2 Im(C2) , (4.28)

which further indicates that Im(C2) > 0.
This clear interpretation becomes obscured when Φ is a ghost with negative norm

(⟨Φ|Φ⟩ = −1)). The analogous calculation in this case looks like

−1 = ⟨Φ|Φ⟩ = ⟨Φ|S†S|Φ⟩ = −1 + g2|C1|2 + 2g2 Im(C2) = Pdecay − Plive . (4.29)

Since Pdecay > 0 by the definition (4.25), this implies that Plive > 1 and that the norm
of Φ increases after the interaction, ∣∣〈Φ̃∣∣Φ̃〉∣∣2 > 1 . (4.30)

Needless to say, this behavior makes it impossible to interpret quantum probability in the
standard fashion since, taking the above literally, one encounters a process where there is
more than a 100% chance to find Φ after its own “decay”. The situation is complicated
even further by noting that the optical theorem now takes the form |C1|2 = −2 Im(C2),
so that one must require Im(C2) < 0. Though there may be some small room for
interpretation since the above process is still valid in the sense that C1 and C2 may
actually be calculated in terms of Feynman diagrams, it is still tricky to reconcile the
complete picture including the probability interpretation when ghosts are present in a
quantum theory.
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4.3 Conditional unitarity

As we have just seen in detail, the quantum version of the Ostrogradsky instability
that we refer to as the ghost problem is much more complicated than the pathology
related to negative kinetic energy that is present in classical fourth-order systems. When
quantization is carried out in the Heisenberg picture, we are actually free to define the
vacuum in such a way that the energy eigenvalues come out positive, but this comes at
the cost of dealing with an indefinite metric on the ghostly inner product space (4.16).
Though this allows us to consistently compute Feynman diagrams, the presence of the
indefinite metric means that the standard way of defining probability via pseudo-unitarity
of the S-matrix is not well-defined and in this sense leads to a violation of unitarity
in scattering events. However, this fact does not mean that it is impossible to make
statements about quantum probability when ghosts are present in a theory.

Turning back to the classical system described in Section 4.1 for a moment, we recall
that in the region of phase space where the restoring force on the ghost that originates
from its mass term −mω2y is stronger than the anti-restoring force from the potential
V (|x − y|), it is possible to maintain stable motion with no run-away behavior despite
the apparent violation of energy conservation with respect to the healthy particle. This
is especially true in the physically realistic case where V (r) approaches zero as r → ∞
i.e. the asymptotic limit of a scattering event. In this stable region of phase space, we
might also make the observation that if ω is large enough, the healthy particle is only
able to excite the ghost very slightly after scattering so that the interaction becomes
approximately elastic.

This feature of apparent elasticity has important ramifications for the quantum ver-
sion of the theory, as originally introduced in [3]. When the |0⟩+ vacuum is employed, the
energy eigenvalues of the ghost states are not only positive but, since they are quantized,
separated by an energy gap ω. This means that it is not possible to excite the ghost
at all whenever the energy of the incoming healthy particle is less than ω, a fact that
promotes the approximate classical elasticity to an exact statement in the quantum the-
ory. In the language of operator-based QFT this statement goes (informally) as follows:
given a theory where the Fock space is spanned by a basis of both healthy and ghost
states that exhibit an indefinite inner product metric, and where the associated positive
energy eigenvalues are separated by a gap (ω), we may choose a basis spanned by the
total four-momentum eigenstates |pT ⟩ and find that the subspace spanned by the states
that satisfy

−p2T < ω2 , (4.31)

is positive-definite and that the S-matrix is fully unitary on this subspace. Put simply,
when interaction energies are below the threshold of the ghost’s energy gap, the ghosts
remain in their ground state and it becomes possible to define a consistent notion of
quantum probability, thus achieving “conditional unitarity”. Naturally, the ghost may
still be virtually excited and run in loops even when the condition (4.31) is satisfied, but
this has no bearing on unitarity since it is only the scalar products between excited on-
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shell states that are relevant for proving unitarity, provided of course that the S-matrix
is represented by a pseudo unitarity operator (S†S = 1) on the full space.

In the coming chapters we will elaborate on how the points introduced in our toy
models, in particular the notion of conditional unitarity, are relevant for fourth-order
scale-invariant quadratic gravity. However, before getting into these specific models, it
will be instructive to first review some of the more interesting works that have attempted
to address the ghost problem in recent years.

4.4 Promising resolutions

4.4.1 Lee-Wick-based models

The first well-established attempt to make sense of fourth-order quantum field the-
ories was put forward by Lee and Wick in the late 60’s in an attempt to resolve the
hierarchy problem [99, 100] (see also [224]), and is based on the simple notion that the
regulator in the Pauli-Villars (PV) regularization scheme might actually correspond to
the mass of a physical degree of freedom. In standard PV regularization [225], one
considers modified propagators that follow from replacements like

1

p2 − iϵ
→ 1

p2 − iϵ
− 1

p2 + Λ2 − iϵ
, (4.32)

where Λ is a (large) fictitious mass scale. Modifying the propagator in this fashion
allows one to modulate UV divergences at large momenta while maintaining the ability
to recover the original propagator in the Λ→∞ limit.

The idea that a PV-style propagator might arise naturally without being introduced
as a calculational tool is obviously theoretically appealing, however, the relative minus
sign in (4.32) indicates the presence of a ghost state with mass Λ. This naturally leads
to all of the issues described in the last section that cannot be removed by taking the
Λ → ∞ limit when Λ is a physical and not a fictitious scale. Though Lee and Wick
included proofs for unitarity and renormalizability in their original papers, the validity
of their theory as a QFT has been debated since its inception, with criticisms1 that
include the potential violation of Lorentz invariance [226–228], as well as difficulties
constructing the non-perturbative formulation of the theory [229].

Perhaps most importantly however, are the theory’s issues related to its modification
of the iϵ prescription [230, 231]. Computing sensible loop integrals in the presence of
ghostly propagators is actually a very non-trivial process. This is because the negative
sign in the ghost propagator leads to another relative minus in the sign of the residue
of the associated pole, thus shifting the pole off the real axis in such a manner that
the standard iϵ prescription leads to a propagator that describes modes which grow
exponentially in time. Lee and Wick, with some input from Cutkosky [224], were able
to get around this unacceptable feature by proposing a modified contour that instead

1It should be noted that Lee-Wick theory is also tricky to implement in non-Abelian gauge theories
for the same reasons that PV regularization loses its validity in that context [123].
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allows one to derive a propagator with the required exponentially damped modes, but at
the cost of introducing violations of microcausality at the order ∆t ∼ 1/M . While this
might seem rather unappealing, it should be stressed that maintaining microcausality
need not be considered a requirement for a physical theory in the same way that unitarity
is, provided of course that causality is eventually recovered on macroscopic scales. The
real issue with the Lee-Wick approach is that, broadly speaking, the iϵ prescription is not
truly a “free parameter” to be altered at will, provided that one desires to stay within
the bounds of established QFT2.

Moreover, the Lee-Wick solution rests on a demonstration that the ghost mass, and
thus also necessarily the ghost itself, becomes complex after including radiative correc-
tions. This complexification lead Lee and Wick to conclude that their ghost is stable
since it takes complex energy values and may thus not decay into standard particles
with purely real energies. The important corollary to this demonstration is that, thanks
to simple energy conservation, the complex ghost may also not be created through the
collisions of ordinary particles, thus preserving unitary in scattering events. Lee and
Wick demonstrated this feature by computing the ghost’s one-loop amplitude which was
found to have a vanishing imaginary part. As a result of the optical theorem (4.23), this
implies that the associated cross section must also vanish. We will address this concept
in more detail shortly, but it should first be noted that evidence has recently come to
light that it may in fact be possible to create Lee-Wick ghosts through the collisions of
standard particles if complex energy conservation is properly accounted for [232], thus
indicating yet another reason why the Lee-Wick solution should be taken with a grain of
salt. Despite all its potential issues, Lee-Wick theory is still an active area of research in
the context of BSM physics (see for example [233–235]) though it is of particular interest
to us simply due to the interesting potential solutions to the ghost problem that it has
inspired.

Unstable ghosts

There is another potential route to establishing unitarity in the presence of ghosts
that rests not on the assertion that they cannot be created as in Lee-Wick theory, but
rather on the idea that they may decay into standard particles. In this case, proofs
established by Veltman in [236] may imply that ghosts do not belong to the asymptotic
spectrum of physical states, thus allowing unitarity to be established using standard
methods.

This concept forms a basis for the work of Donoghue and Menezes [55, 102–104],
which is the first contemporary potential solution to the ghost problem that we will
review here. The authors consider a fourth order action of the form

SDM =

∫
d4x

(
− 1

2
∂αϕ∂

αϕ− 1

2M2
□ϕ□ϕ+

κ

2
□ϕ
(
ϕ2 + χ2

))
, (4.33)

2The origin of the standard iϵ prescription may be traced back to the definition of the θ-function given
in (4.19) [223]. We thank Jisuke Kubo for illuminating discussions on this topic and Lee-Wick theory in
general.
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where ϕ(x) is a real scalar whose interactions with another real scalar χ(x) are parame-
terized by the massive coupling constant κ. This action serves as a handy toy model of
quadratic gravity as it possesses the same kind of derivative interactions and propagates
both a standard massless mode and a massive ghost mode, a feature that is made evident
by the propagator

D(p) =
i

p2 − iϵ
− i

p2 +M2 − iϵ
, (4.34)

which includes factors of iϵ per the standard prescription and may be compared with the
PV-regulated propagator (4.32).

It is interesting to point out that after transforming to coordinate space and sepa-
rating the propagator in terms of modes that propagate forward and backward in time
with the appropriate θ-functions, one encounters the required exponential decay associ-
ated with the massive ghostly modes as well as the feature that these modes imply a
flow of positive energy backwards in time. Naturally, this is related to the usual overall
minus sign attached to the ghost propagator and implies the same type of microcausality
violations encountered in Lee-Wick theories. We will not get into the details of micro-
causality violation here (these are nicely explained [103]), since for our current purposes,
we are most interested in the demonstration of unitarity to all orders that follows from
Veltman’s prescription of only including contributions from stable particles in the pertur-
bative unitarity sum. The authors use these ideas to assert that one should only consider
diagrams that do not include ghosts in the external states, while still allowing them to
appear as virtual particles that run in loops. With this notion, the proof of unitarity in
the present theory then relies on Cutkosky’s cutting rules [237] to evaluate discontinuous
bubble diagrams.

A basic understanding of the cutting rules employed in this context may come from
the optical theorem (4.23), which as we have seen, is itself an expression of the pseudo-
unitarity of the S-matrix. If we consider a matrix element constructed from the optical
theorem between arbitrary states ⟨b| and |a⟩, we arrive at an expression of the cutting
equation, ∑

c

⟨b|T †|c⟩ ⟨c|T |a⟩ = i
(
⟨b|T †|a⟩ − ⟨b|T |a⟩

)
, (4.35)

which when interpreted in terms of diagrams, states that the sum over all possible cuts
that split the original diagram into tree-level diagrams involving stable external states
is equivalent to the imaginary part of a loop diagram amplitude [223]. The simplest
example of such a relationship involving a self-energy loop diagram may be expressed
schematically as∣∣∣∣ ∣∣∣∣2 = = 2Im

(
(−i)

)
, (4.36)

which relates directly to the toy model realization of the optical theorem found in (4.28).
This kind of relation between loop-order diagrams and the tree-level graphs used to
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construct them allows for much simpler calculations and is implemented through the
cutting rules which state that one may replace internal propagators to the left of a cut
in a Feynman integral according to

− i

p2 +m2 − iϵ
→ 2πδ(p2 +m2) , (4.37)

while propagators to the right are replaced using the complex conjugate of the above.
One may understand the validity of making such a replacement by roughly equating it
to the “1” that appears on the left side of (4.35) i.e.

∑
c |c⟩ ⟨c| = 1↔ δ(p2 +m2).

In [103], Donoghue and Menezes use these cutting rules to demonstrate that the toy
model for QG described by (4.33) is unitarity (satisfies (4.35)) to all orders in perturba-
tion theory if one does not include cuts through internal ghost lines in the sum. Unlike
the unitarity proof in Lee-Wick QED, all of these calculations are completed using the
standard iϵ prescription, though the authors note that the Lee-Wick contour may be
used to recover the same answers in the narrow-width approximation where the ghost is
treated as stable. Though their work is based around a scalar toy model and does not
address the role of gauge symmetry, it is probably safe to assume that their proof may
be extended so as to preserve the relevant Ward identities in QG, given that the same
kind of calculation has been performed in Lee-Wick QED.

There are however two crucial assumptions related to their unitarity proof that may
be called into question. The first is the fact that the instability of ghostly modes has
not been explicitly demonstrated in QG for general matter couplings. In the toy model
described above, the instability is obvious due to the ϕχ interactions (which are both
real fields), however, in the original Lee-Wick papers it is specifically pointed that the
ghosts acquire an effective complex mass term due to the radiative corrections introduced
by fermion loops, meaning that the ghosts must actually be complex [100]. There is
still however reason to expect that complex spin-2 ghosts would still decay to standard
particles in line with [232]. The second and perhaps more questionable assumption in
[103] is that Veltman’s prescription of excluding unstable states from the unitarity sum
still applies in the presence of ghosts. As demonstrated in Section 4.2.2, ghost decay leads
to issues with defining quantum probability in the standard fashion and calculations of
diagrams based on the optical theorem alone are not enough to see the pathological
norm-increasing behavior that may result from ghost decay. Donoghue and Menezes
also specifically note that it is tricky to reinterpret their work in the canonical operator
formalism where these issues are made the most apparent. To summarize, this kind of
demonstration of unitarity through ghost decay should certainly be considered a strong
step forward towards a general solution to the ghost problem in QG, though more work
still needs to be done in terms of reconciling Veltman’s ideas with the decay of ghosts
before it might be considered a complete solution.



4.4. Promising resolutions 53

The fakeon prescription

There is another Lee-Wick-based3 potential solution to the ghost problem in QG
that is worth taking the time to review. Anselmi’s “fakeon” prescription [105–108] is
at its core a completely new quantization procedure that stands as an alternative to
the usual Feynman prescription. This new prescription does not completely replace
standard methods, but rather adds an additional option that allows for some particles
to be quantized differently than others. The basic procedure for each case proceeds
according to

Feynman: iD(p) = ± 1

p2 +m2
→ ± 1

p2 +m2 − iϵ
≃ ±δ(p2 +m2) (4.38)

fakeon: iD(p) = ± 1

p2 +m2
→ ± p2 +m2

(p2 +m2)2 + ϵ4
≃ 0 . (4.39)

Here, the “≃” indicates how each type of propagator behaves on shell i.e. how it appears
as an external state and how it may be replaced via the cutting rules when it represents
an internal line in a diagram.

The general idea behind the fakeon solution to the ghost problem is thus clear; if
ghost modes are quantized as fakeons, they do not appear as asymptotic states and do
not contribute to (spoil) the unitarity sum whether the ghost is stable or not. It is
important to stress that one does not due away with the standard prescription entirely
after adopting the fakeon prescription since there must of course still exist some kind
of asymptotic states. Rather, when writing down a quantum theory based on some
classical action, one has the choice to quantize each DOF as either a standard particle
or a fakeon. It is also fully consistent to quantize a normal particle as a fakeon (this is
not reserved strictly for ghosts), which expands the options for model-building in this
hybrid quantization framework.

Anselmi and his co-authors explicitly demonstrate both unitarity and renormaliz-
ability in quadratic gravity under the fakeon prescription, however, there are important
theoretical side-effects that come from including fakeons in a quantum theory. Besides the
expected Lee-Wick-style violation of microcausality that goes roughly like ∆t = O(1/mΦ)
where mΦ is the fakeon (Φ) mass, there is an unavoidable non-analyticity introduced into
the calculation of loop integrals that contain fakeon propagators. In standard QFT, the
iϵ prescription employed in the propagator (4.38) infinitesimally shifts the poles to the
complex plane so that they lie at p0 = E − iϵ and p0 = −E + iϵ, which allows one to
express the real integral over p0 as a complex contour integral that may be Wick rotated
(analytically continued) to the imaginary axis where the resulting Euclidean integral is
easier to solve. Crucially, this analytic continuation is only possible when the rotated
contour does not cross over a pole. In fakeon QFT, one runs into problems implementing
this procedure since the propagator (4.39) effectively doubles the poles so that they lie
at p0 = E ∓ iϵ and p0 = −E ± iϵ. The usual method of Wick rotation is thus no longer

3In a talk given by Anselmi in 2019 [238], he states that this theory was in fact born in an attempt
to show an inconsistency in Lee and Wick’s model.
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Figure 4.1: Comparison of the standard Feynman (left) and Lee-Wick (right) pole structures with
the associated forward contours that enter into the fakeon prescription, labeled by the resulting matrix
elements Mi.

valid since it becomes impossible to go to Euclidean space without crossing over a pole.
The author establishes a complicated non-analytic continuation that may be employed
to consistently get around this issue (see [106] for details), however, they also point out
a very simple method that achieves the same result. This is known as “average continu-
ation” and involves simply taking the average of the results obtained from the Feynman
and Lee-Wick contours as

Mfakeon =
1

2

(
MF +MLW

)
, (4.40)

whereMi represents the matrix element that is calculated after following each prescrip-
tion. The situation is summarized graphically in Figure 4.1.

Quantization under the fakeon prescription also differs from standard quantization
with regard to its path integral formulation. Due to the fact that fakeon propagators
vanish on-shell, the prescription dictates that one must project them out of the quantum
effective action. This is achieved by setting their sources to zero at the level of the
generating functional (2.6),

Z[Jϕ, JΦ] → Z[Jϕ, 0]

∫
Dϕ exp

(
i(S[ϕ,Φ] + ϕ · Jϕ)

)
, (4.41)

which allows one to define the projected quantum effective action Γ̃[ϕ] = Γ[ϕ, ⟨Φ⟩] where
⟨Φ⟩ is a stationary point of the original quantum effective action defined by

δΓ[ϕ,Φ]

δΦ

∣∣∣∣
Φ=⟨Φ⟩

= 0 . (4.42)

Working with these projected functionals is required for consistency, but has the inter-
esting implication that the classical limit of the quantum action is not given by S[ϕ,Φ],
but rather by S[ϕ, ⟨Φ⟩]. For practical calculations, especially with respect to QG when it
is written in terms of a perturbed metric, the projections must be defined perturbatively
and remain perturbative as long as mΦ ≲MPl. This all leads to the conclusion that even
the equations of classical mechanics contain small corrections when fakeons are present
in a theory. For example, if one considers the basic Newtonian definition of force, the
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strictly correct description is not F = ma, but rather ⟨F ⟩ = ma or F = ma +O(α) for
some small perturbation parameter α.

Whether or not one is willing to accept the introduction of all of the extra machinery
and the resulting physical consequences of adopting the fakeon prescription, the theory
at least has two of the most important characteristics of any physical theory – it is
predictive and falsifiable. There are experimental signatures resulting from the violation
of causality and projection operations that may be used to test the fakeon hypothesis,
and though most of these signatures are currently out of reach (especially with regard
to quantum gravity), cosmological implications of adopting the fakeon hypothesis [108]
and predictions related to treating the Higgs boson as a fakeon [239] have already been
derived. In the end only time will tell if the idea that some particles exist only as internal
states may accurately describe Nature.

4.4.2 Generalizing the inner product

Aside from the Lee-Wick based theories that we have just reviewed, there exists
another approach toward the ghost problem that broadly involves a generalization of
how probability is defined in quantum mechanics through relations like (4.26). This kind
of approach centers around the definition of inner product itself which is often taken
for granted in the standard framework. Traditionally, the inner product between two
normalized states a and a′ is expressed through the relation〈

a′
∣∣a〉 = ⟨0|a′a†|0⟩ = gaa′ , (4.43)

where gaa′ is the inner product metric that is defined solely in terms of the commutation
relations between the state operators, gaa′ =

[
a′, a†

]
. There is however room to generalize

this definition provided that the modified inner product satisfies the requirements of
linearity and some notion of symmetry under conjugation. To see how this relates to the
ghost problem, we need only recall some very basic definitions in quantum mechanics.

At the most fundamental level, the notion of quantum probability is defined by the
Born rule. Any general state |ψ⟩ may be decomposed in terms of a basis of (normalized)
eigenstates |a⟩ of some observable, for example the Hamiltonian, as

|ψ⟩ =
∑
a

Ca |a⟩ , (4.44)

and the Born rule states that the probability for finding the state |ψ⟩ in the particular
configuration |a⟩ is given by

Pa =
|Ca|2∑
b |Cb|2

=

∣∣ ⟨a|ψ⟩V ∣∣2
⟨ψ|ψ⟩V

. (4.45)

The second equality here expresses the Born rule in terms of a general inner product
on the Hilbert space of |ψ⟩ that may be defined in terms of some adjoint-defining norm
operator V as

⟨ψ2|ψ1⟩V = ⟨ψ2|V |ψ1⟩ . (4.46)
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This relation is actually perhaps best interpreted in terms of non-selfadjoint operators
where the adjoint of |ψ⟩ is not the usual ⟨ψ|, but rather ⟨ψ|V . The standard inner
product is related to this definition via V = 1, though as we saw explicitly in Section
4.2.1, this may yield a negative value when the product is taken between ghost states,
which in turn leads to negative probabilities through the definition (4.45).

The preferable situation is thus given in terms of some non-trivial norm operator that
satisfies

⟨n|m⟩V = ⟨n|V |m⟩ = δmn 1 =
∑
n

|n⟩ ⟨n|V (4.47)

for all multiparticle states |m⟩ and |n⟩, even when they contain ghost states with negative
commutation relations. If such a norm operator may be consistently defined, all proba-
bilities come out positive and perturbative unitary may, in principle, be established. This
kind of sentiment is expressed in [120, 121], and though it resolves the issue of negative
probabilities at the basic level shown above, one must formally define the generalized
norm in a physically consistent manner and thoroughly investigate all of the theoretical
ramifications that it implies.

PT -symmetric QFT

The most promising theory that follows this norm-redefining line of reasoning is based
on PT -symmetric quantum theory as introduced by Bender [109–114]. The basic premise
behind this idea is that the standard requirement of Hermiticity for a quantum Hamilto-
nian may be extended to a symmetry under discrete parity-time (PT ) transformations.
In this paradigm, a wide range of non-Hermitian Hamiltonians that would traditionally
be considered non-viable are shown to determine a spectrum of positive real eigenstates
and govern unitary time evolution, and thus become candidates to describe real physical
theories. PT symmetry as a guiding principle also benefits from the clear physical in-
terpretation as a symmetry under spacetime reflections, in contrast to the more abstract
mathematical concept of Hermiticity.

The crucial link between PT -symmetric quantum theory and the ghost problem in
QG was found by Bender and Mannheim through their demonstration that the Pais-
Uhlenbeck oscillator, the same toy quantum mechanical model of QG that we discussed
in detail in Section 4.1, represents a unitary theory with positive real norms and Hamil-
tonian eigenstates when reinterpreted as a PT -symmetric theory [240, 241]. The proof
of this fact and its implications for quantum gravity have also since been expanded on
by the authors as well as others [97, 115–119].

The basic idea behind the unitarity of the PU oscillator in this context stems from
the assertion that the Hamiltonian need not be its own Hermitian conjugate, but rather
that this usual relationship should be replaced with a more general anti-linear symmetry
that is expressed through a similarity transformation given in terms of the norm operator
V ,

H† = H → H† = VHV −1 . (4.48)
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One may in fact show that establishing such a symmetry is all that is necessary to guar-
antee that the Hamiltonian possesses strictly positive eigenvalues4 [109]. As previously
alluded to, this implies that while the eigenvalue equation takes the standard form with
respect to ket vectors, H |a⟩ = Ea |a⟩, the bra eigenvector is not the standard Hermitian
conjugate since one finds ⟨a|VH = Ea ⟨a|V . Unitary time evolution is ensured in this
way as, using the general inner product (4.46), it is straightforward to show that

⟨ψ2(t)|ψ1(t)⟩V = ⟨ψ2(0)|eiHte−iHt|ψ1(0)⟩V = ⟨ψ2(0)|ψ1(0)⟩V . (4.49)

The underlying assumption here, that the left vacuum need not necessarily be the Her-
mitian conjugate of the right vacuum, is what leads to the important unitarity-restoring
features in perturbative PT -QFT. Namely, one may derive a unit operator and prop-
agators that do not carry the troublesome minus signs that are indicative of the ghost
problem in standard QFT.

To see how all of this general background on PT quantum theory applies to the
PU oscillator specifically, we follow the discussion in [242] and begin with a convenient
parameterization of the classical PU Hamiltonian that is related to the Hamiltonian
one would derive from our auxiliary action (4.2) after including a small mass for z and
applying the appropriate field redefinitions,

H =
1

2
p2x + pzx+

1

2

((
ω2
1 + ω2

2

)
x2 − ω2

1ω
2
2z

2
)
. (4.50)

Here, ω1 and ω2 are massive constants, while x(t) and z(t) serve as one-dimensional
scalar analogs of the spin-2 DOFs in QG with the associated canonical momenta px
and pz. Naturally, these variables respect the canonical commutation relations [x, px] =
[z, pz] = i. One may note the presence of the Ostrogradsky instability (unbounded-ness
from below) that results from the −z2 term above which, as we have already seen in
detail, implies the presence of a negative norm at the quantum level. We recall that this
may be seen by expanding each canonical variable in terms of creation and annihilation
operators, deriving the resulting Hamiltonian operator through the Heisenberg equation,
and selecting the “+” vacuum for the operator, just as in Section 4.2.1.

We now come to the crux of the PT solution to the ghost problem – all the issues
that result from the negative norm may be avoided if we assume that z (the ghost mode)
lives in the complex plane. While this is not allowed in traditional quantum mechanics,
since z would not be Hermitian, it is allowed in the present framework provided that z
respects the less strict anti-linear PT symmetry. If we thus assume that z is actually
imaginary, we may express our theory in terms of the real time-dependent quantity y(t)
via a similarity transformation given in terms of the rotation A = eπpzz/2 (recalling that
pz = −i∂z) so as to define the new variables

y = AzA−1 = −iz py = ApzA
−1 = ipz , (4.51)

4In light of this fact, one may interpret the usual more strict requirement of Hermiticity as a sufficient
but not necessary condition for realizing positive eigenvalues.
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which still respect the required canonical relation [y, py] = i. This same rotation applied
to the Hamiltonian (4.50) then yields

H̃ = AHA−1 =
1

2
p2x − ipyx+

1

2

((
ω2
1 + ω2

2

)
x2 + ω2

1ω
2
2y

2
)
. (4.52)

Noting that x and y (px and py) are PT odd (even), it is straightforward to confirm that
this classical Hamiltonian is indeed PT symmetric. This guarantees the positivity of
its eigenvalues, a feature that is made even more clear by noting that the Ostrogradsky
instability is no longer present thanks to the replacement −z2 = y2.

Forgoing a demonstration of the complete proof for the sake of brevity, we may get
a better feeling for why positivity is guaranteed by performing yet another (eigenvalue
preserving) similarity transformation in terms of the operator

Q =

[
1

ω1ω2
ln

(
ω1 + ω2

ω1 − ω2

)](
pxpy + ω2

1ω
2
2xy
)
, (4.53)

so that we arrive at the “canonical” Hamiltonian

eQ/2H̃e−Q/2 =
1

2

(
p2x +

1

ω2
1

p2y + ω2
1x

2 + ω2
1ω

2
2y

2

)
, (4.54)

which is given in terms of real quantities only, bounded from below, and is free of ghosts.

The operator (4.53) is actually a very important object in PT quantum theory and
though we do will not discuss its role further or derive it here (see [111]), it is important
to point out that it corresponds to our sought-after norm operator in (4.47) through the
identification V = e−Q. Indeed it is straightforward to show that, after the introduction
of creation/annihilation operators and the quantization of (4.52), we find the desired
relations

⟨n|e−Q|m⟩ = δmn 1 =
∑
n

|n⟩ ⟨n| e−Q , (4.55)

where |n⟩ are n-particle eigenstates of H̃ that satisfy the eigenvalue equations

H̃ |n⟩ = En |n⟩ ⟨n| e−QH̃ = En ⟨n| e−Q . (4.56)

Furthermore, if we embrace this paradigm in QFT, the propagator function for some
Heisenberg field ϕ must be identified in terms of the appropriate ket state as

DF (x− y) = −i ⟨0|e−QTϕ(x)ϕ(y)|0⟩ , (4.57)

which in turn (at least in principle), allows one to proceed with other aspects of QFT as
usual and without the need to assume a modified iϵ prescription or assume the ghosts are
unstable, etc. The correct interpretation in the context of PT -QFT is that there were
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never any ghosts in the first place, but only a misguided assumption that the original
variables are real due to the requirement of Hermiticity5.

Though the adoption of PT symmetry as a guiding principle clearly represents a
very promising solution to the ghost problem (as well as an interesting expansion of
quantum theory in general), it is certainly too early to say that it resolves all our issues.
The principle drawback to this setup is that the theory is simply not yet well-developed
enough. Though PT symmetry’s role in one-dimensional single particle quantum me-
chanics is well-understood, only some of its simpler implications for full-blown QFT have
been worked out so far (see for example [114, 243–246]). Though establishing PT -QFT
to the level of standard Hermitian QFT is quite the daunting task, it certainly seems to
be one worth undertaking and is currently an area of very active research. Even beyond
its application to the ghost problem in quantum gravity, interesting examples of physical
PT systems have already appeared in the fields of condensed matter physics [247–249]
and quantum optics [250–254], just to name a few examples.

4.5 Covariant operator quantization

Now that we have gained an understanding of the ghost problem and have taken a look
at some of its possible resolutions that have appeared in the literature, we may proceed
with a review of the formalism that we will employ to investigate the ghost problem
from our own point of view. A key part of this process involves isolating the physically
propagating independent DOFs, which requires one to address the inherent redundancy
between physically equivalent states that are related by gauge transformations.

4.5.1 Gauge fixing and BRST symmetry

The process of isolating gauge-invariant quantities in a gauge theory may broadly
be referred to as gauge fixing. For many calculations of interest, gauge fixing may be
achieved by following the original work of Dirac and Bergman on constrained systems
[255], however this procedure inherently comes with a loss of explicit Lorentz covariance,
a fact that makes it practically impossible to carry out renormalization of the associated
quantum theory. Moreover, when this simplest method of gauge fixing is applied, the
original information about the theory’s inherent symmetry properties is lost after a par-
ticular gauge is chosen. In certain calculations involving theories based on a simple gauge
group like QED, the issue of covariance may actually be ameliorated by appealing to the
Gupta-Bleuler formalism [256, 257], which incorporates covariant gauge-fixing terms into
the action that lead to constraints which the gauge fields must satisfy, as dictated by the
EOMs. However, choosing covariant gauge conditions alone is not generally sufficient in

5The obvious corollary here is that if PT symmetry is able to resolve the ghost problem in quantum
gravity, the metric must actually be anti-Hermitian i.e. gαβ → igαβ and gαβ → −igαβ . Interestingly,
though this may seem like an impossibility at first glance, the implications of a complex metric have been
worked out in some detail with no inconsistencies arising, provided of course that one stays in the PT
framework [241].
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more complex theories with non-simple gauge groups such as QCD due to complications
that arise from self-interactions between the gauge fields. The solution to this particular
issue was eventually put forth by Faddeev and Popov [258, 259], when they introduced
fictitious ghost particles (not to be confused with physical Ostrogradsky ghosts) that
serve to cancel unphysical contributions to asymptotic observables order by order. The
end result of all the years of work that went into solving these problems in quantized
gauge theories has culminated in what we now know as BRST theory. Indeed, it is now
understood that to rigorously isolate the physical states within a quantum theory while
maintaining explicit covariance, the most general and comprehensive approach is to es-
tablish a BRST symmetry in the theory. The BRST construction now plays a crucial role
in the Standard Model, as the formal proofs of stability, renormalizability, and unitarity
rely heavily on its application [260–262]6. We will thus also employ the BRST formalism
in this work, following a brief introduction to its key elements that closely follows [266].

Given some classical gauge theory, the first step towards setting up the BRST formal-
ism is to choose a set of gauge fixing conditions Ga = 0, which are functions of the gauge
fields ϕa that are present in the classical action Scl. With these conditions established
one may then introduce the first of a set unphysical BRST fields, the bosonic auxiliary
“Nakanishi-Lautrup” (NL) fields Ba that will act as Lagrange multipliers and enforce the
Ga after being integrated out. One may then in turn introduce the gauge fixing action

Sgf =

∫
d4xBaGa , (4.58)

which is reminiscent of simpler Gupta-Bleuler-style methods of gauge-fixing.

The next step in the BRST construction is to introduce the remaining unphysical
BRST fields that directly compensate for the unphysical states at each order in pertur-
bation theory; the Faddeev-Popov (FP) ghost and anti-ghost fields, Ca and C̄a. As the
role of these fields is to precisely cancel unphysical bosonic degrees of freedom, they are
defined to carry integer spin while obeying fermionic statistics. Naturally, we must ensure
that only the contributions from unphysical modes of the classical fields are canceled and
that this cancellation is precise so that no spin-statistic-theorem-violating (anti)ghosts
appear as asymptotic states. This feature is achieved by introducing (anti)ghosts into the
action so as to establish a BRST symmetry. The associated BRST algebra is generated
by the nilpotent fermionic charge Q and is a graded algebra where the grading is referred
to as the “ghost number”, which is assigned to each type of field as

gh
(
ϕa
)

= 0 gh
(
Ba

)
= 0 gh

(
Ca
)

= 1 gh
(
C̄a

)
= −1 . (4.59)

In order to consistently introduce the (anti)ghosts and construct the total BRST
action, we simply require that the total action, as well as all observables, carry ghost
number zero and that Q generates nilpotent (Q2 = 0) BRST transformations. The Q

6Since its introduction, BRST theory, and in particular BRST cohomology, has been well-studied by
many other theoreticians and was also expanded upon into an even more rigorous Hamiltonian-based
framework known as the BFV (Batalin-Fradkin-Vilkovisky) formalism [263–265].
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operator is naturally defined to act on other operators in terms of (anti)commutators,
though it is related to infinitesimal BRST transformations on fields through the relation

[iQ, X]∓ = δX (4.60)

where ∓ stands for commutator or anti-commutator as appropriate. With this, BRST
transformations of fields may be expressed in a general fashion as

Φ′
A = ΦA + ϵ δΦA , (4.61)

where ϵ is a constant, anti-commuting, and anti-Hermitian parameter of the transforma-
tion, ΦA = {ϕa, Ba, Ca, C̄a}, and

δϕa =
∑
ξ

(
δ(ξ)ϕa

)∣∣∣
ξb=Cb

δBa = 0

δCa = Cb∂bC
a δC̄a = iBa .

(4.62)

Here, δ(ξ)ϕa represents the gauge transformation of ϕa with respect to the local gauge
transformation parameter ξa(x). At this stage, one of the principal benefits of the BRST
is already manifest; despite the fact that we have fixed the gauge by introducing (4.58)
into our action, the formalism retains all the information about its original gauge sym-
metry through the action of Q on the original fields.

To finally construct the total action, which we require to be Hermitian, BRST-
invariant, and carry ghost number zero, we need only consider the transformation rules
(4.62). Since the classical action Scl already satisfies these properties thanks to its gauge
symmetry, we simply need to add a ghost number zero action made up of ghost and
antighosts that cancels the BRST transformation of (4.58). The most straightforward
way to derive this ghost action is to transform the so-called “gauge fixing fermion” C̄aGa,
leading to the BRST action

SBRST = −i
∫

d4x δ
(
C̄aGa

)
. (4.63)

As a result of (4.62), transformation of the gauge fixing fermion necessarily generates
the gauge fixing action (4.58) as well as the desired unique FP ghost action (SFP) that,
thanks to the nilpotency of Q, precisely cancels the BRST transformation of Sgf. The
total BRST action is thus finally given by

ST = Scl + SBRST = Scl + Sgf + SFP , (4.64)

where δST = 0 and gh(ST) = 0.
At this stage it is interesting to point out that BRST symmetry is in fact a su-

persymmetry in the sense that it comes with a Grassmann-odd charge that transforms
Grassmann-odd objects into Grassmann-even objects, and vice-versa. Though BRST
symmetry is actually distinct from the more familiar supersymmetry that is often con-
sidered in extensions to the SM (SUSY), both symmetries may coexist in the same theory
and indeed often appear together in the study of supersymmetric gauge theories.
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4.5.2 The LSZ formalism

Once the total BRST action corresponding to a given classical action is established,
we may proceed with the actual quantization. We will employ the formalism originally
laid out by Lehmann–Symanzik–Zimmerman (LSZ) [267, 268] and elaborated on by
others [266, 269], which follows similar logic to a traditional second quantization in the
Heisenberg picture, with the important caveat being that it will allow us to establish
covariant commutation relations between our fields in contrast to the more commonly
seen equal-time commutation relations. In what follows we will ignore effects such as
wave function renormalization since they do not effect the essence of our results, though
it is straightforward to include such phenomena in the formalism as well. The LSZ
formalism dictates that all the fields in a theory, which we denote generally as Φ(x),
be considered Heisenberg fields with time-independent state vectors. It also makes the
assumption that the Φ(x) act as free fields that satisfy the free equations of motion in
the asymptotic limit t = x0 → ±∞:

Φ(x)→
{

Φin(x) , x0 → −∞
Φout(x) , x0 → +∞ . (4.65)

In what follows we will designate asymptotic free fields in these particular limits with the
superscripts “in” or “out” as above and will also write “as” when referring to a general
asymptotic field. It should also be noted that the x0 → ±∞ limit taken here should,
strictly speaking, be considered a weak limit.

Moving forward, we decompose each asymptotic field as a sum of products of oscil-
lators and plane wave functions as

Φas(x) =
∑
p

(
Φ̂as(p)fp(x) + Φ̂as

g (p)gp(x) + Φ̂as
h (p)hp(x) + · · ·+ (h.c.)

)
, (4.66)

where p represents the three-dimensional spatial components of the full four-momentum
pα. Here, fp(x), gp(x), hp(x), · · · , are the plane wave functions which solve increasing
powers of the Klein-Gordon equation,

(□−m2)fp(x) = (□−m2)2gp(x) = (□−m2)3hp(x) = · · · = 0 . (4.67)

The simple-pole function fp(x) is given by

fp(x) =
1√

2EV
eipx , (4.68)

where V is a finite normalization volume, E2 = |p|2 + m2, and px = −E x0 + p · x.
The higher-pole functions are constructed in a similar manner and we refer the reader
to Appendix A for more details, including their specific forms.

In (4.66), Φ̂as(p) is a quantum mechanical operator that is referred to as an oscillator.
In our nomenclature, the first operator in (4.66) with no subscript represents the funda-
mental simple-pole oscillator associated with the Heisenberg field Φ(x). Oscillators with
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g, h, etc. subscripts are referred to as double-pole, triple-pole, etc. oscillators and do not
correspond to independent DOFs, rather, they are functions of simple-pole oscillators
and their derivatives that are fixed by the free equations of motion. A key feature of
the decomposition (4.66) is its invertability, which comes as a result of the orthogonality
relations between plane wave solutions (A.6 – A.9) and allows one to write a simple-pole
oscillator in terms of its original Heisenberg field as

Φ̂as(p) = lim
x0→±∞

∫
d3x i

(
f∗p(x)

↔
∂0 + g∗p(x)

↔
∂0(□−m2)

+ h∗p(x)
↔
∂0(□−m2)2 + · · ·

)
Φ(x) , (4.69)

where A
↔
∂0B = A∂0B −B∂0A.

Oscillators should be understood as products of creation(annihilation) operators
and, when Φ(x) corresponds to a field carrying space-time indices, polarization ten-
sors. Specifically, this means that for a general asymptotic spin-1 vector oscillator v̂α(p)
we may write the decomposition v̂α(p) =

∑
i v̂i(p)ε

iα
(p) where the v̂i are independent

creation/annihilation operators and ε
iα

(p) denotes a set of orthonormal and complete
polarization vectors (i = 0, 1, 2, 3). Naturally, a general asymptotic tensor oscillator
t̂αβ(p) may be decomposed in the analogous way as t̂αβ(p) =

∑
i t̂i(p)ε

iαβ
(p).

We will be mostly concerned with the physical (gauge-invariant) components of vector
and tensor fields that by definition correspond to transverse polarization tensors that
satisfy

pαε
j α

= 0 pαε
j αβ

= 0 . (4.70)

In this spirit, it is convenient to select the specific vector basis

(
ε
1α

)
=


0
1
0
0

 (
ε
2α

)
=


0
0
1
0

 (
ε
3α

)
=


0
0
0
1

 , (4.71)

which may also be used to define the convenient tensor basis

(
ε+αβ

)
=

1√
2

(
ε
1α
ε
1β
− ε

2α
ε
2β

)
=

1√
2


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


(
ε×αβ

)
=

1√
2

(
ε
1α
ε
2β

+ ε
2α
ε
1β

)
=

1√
2


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


(
ε
1αβ

)
=

1√
2

(
ε
1α
ε
3β

+ ε
3α
ε
1β

)
=

1√
2


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 (4.72)
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(
ε
2αβ

)
=

1√
2

(
ε
2α
ε
3β

+ ε
3α
ε
2β

)
=

1√
2


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0


(
ε
3αβ

)
=

1√
6

(
ε
1α
ε
1β

+ ε
2α
ε
2β
− 2ε

3α
ε
3β

)
=

1√
6


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −2

 .

For massless fields, this basis of polarization states corresponds to a choice of Lorentz
frame with motion along the z-axis as defined by

pα =
{
E, 0, 0, E

}
, (4.73)

where transverse vectors are identified with j = 1, 2 in (4.71) and transverse tensors are
identified with j = +,× in (4.72). The same basis (4.71, 4.72) may also be used to
describe transverse massive fields in the center of mass frame

pα =
{
m, 0, 0, 0

}
, (4.74)

where j = 1, 2, 3 (j = +,×, 1, 2, 3) is needed to describe all three (five) physical DOFs
in a massive vector (tensor) field. Choosing one of these frames is possible without
loss of generality for our purposes, as all (anti)commutators derived in either frame are
also valid in general [270]. This is of course related to the fact that our polarization
tensors depend only on the direction of the three-momentum and not on its magnitude
i.e. ∂Eεj α(p) = ∂Eεj αβ(p) = 0, which comes as a result of the orthogonality relations

(4.70).
Moving forward, after each asymptotic field in a theory is decomposed in terms of

oscillators and plane wave functions, and the higher-pole oscillators have been solved
for in terms of simple-pole oscillators using the EOMs, we may proceed by reading off
the commutation relations between each field from the propagator matrix Ω−1

AB(p). The
propagator matrix is given by the inverse of the Hessian matrix

ΩAB(p) =

∫
d4x

δ2ST
δΦA(x)δΦB(y)

e−ip(x−y) , (4.75)

where each entry corresponds to the second variation of the total BRST action with
respect to each combination of the fields. With the propagators in hand, the commuta-
tors between fields are then easily obtained from each entry in Ω−1

AB(p) by making the
replacements

ipα
−(p2 +m2)

→ ∂xαD(x− y)
ipα

(p2 +m2)2
→ ∂xαE(x− y)

ipα
−(p2 +m2)3

→ ∂xαF (x− y) · · · ,
(4.76)
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where the superscript refers to differentiation with respect to x, and D(x− y), E(x− y),
F (x − y), · · · are invariant delta functions associated with the power n of the pole
(p2 +m2)n. The simple-pole delta function is given explicitly by

D(x− y) =

∫
d3p

1

2E(2π)3

(
eip(x−y) − (h.c.)

)
(4.77)

while the higher-pole delta functions are constructed from similar sums of the higher-
pole plane wave functions. These delta functions are also naturally related to Feynman
propagators (Green’s functions), though we once again defer to Appendix A for more
details and precise definitions.

At this stage, it is crucial to point out that the covariant-ness of the present setup
is directly related to the fact that the definition of D(x − y) above is given in terms of
an integral rather than a sum over p. This feature is achieved by taking the continuum
limit V →∞ so that

lim
V→∞

1

V

∑
p

=

∫
d3p

(2π)3
, (4.78)

which is what allows one to ensure that all (anti)commutation relations derived in a
specific Lorentz frame will also be valid in any other frame. After rescaling each operator
according to

Φ̂(p)→ (2π)3/2V −1/2Φ̂(p) , (4.79)

it is straightforward to show that, in the continuum limit (4.78), one finds that
√
E′Φ̂′(p)→√

EΦ̂(p). This in turn allows one to recover the Lorentz-invariant statement E′δ3(p′ −
q′) = Eδ3(p− q) and confirm that the rescaled operators are indeed Lorentz scalars.

Finally, we may derive the commutation relations between the simple-pole oscillators[
Φ̂A(p), Φ̂B(q)

]
using the commutators between fields, the field’s oscillator decomposi-

tions (4.66), and the definitions of the invariant delta function propagators. With this the
full quantum theory corresponding to the original classical theory is well defined, though
the task of rigorously establishing what constitutes the physical subspace of quantum
states still remains.

4.5.3 The Kugo-Ojima quartet mechanism

So far we have seen how to setup the BRST total action and how to quantize the
resulting theory in a covariant manner in terms of plane-wave functions and invariant
delta function propagators, however, we still need to address specifically how this whole
construction leads to the desired cancellation of unphysical degrees of freedom. In [271–
274], Kugo and Ojima (KO) demonstrated this crucial feature of BRST-invariant actions
explicitly by showing that the physical subspace Vphys ∋ |fphys⟩ of the total Fock space
V ∋ |f⟩ of such a theory, which generically contains both physical and unphysical states,
is fully populated by the states which are annihilated by the BRST charge:

Q |fphys⟩ = 0 . (4.80)
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Though these states are all physical in the sense that they all carry a non-negative inner
product (norm), we must still go a step further to single out the subspace that contains
only physically propagating transverse states i.e. the space with no longitudinal or zero-
norm states. This desired subspace is defined by the quotient space below and is referred
to as the “BRST cohomology space7”,

Vtr = KerQ/ImQ , (4.81)

where KerQ = Vphys and ImQ = QV = V0 is the BRST co-boundary [277]. Of course,
the definitions above are only a mathematical backbone that supports practical applica-
tion of the “Kugo-Ojima quartet mechanism” and the precise identification of the trans-
verse physical subspace from a given complete Fock space that it entails. The full proof
of this mechanism is laid out very nicely by Nakanishi in [266], though it is worthwhile
to sketch out the important parts here.

We begin with some classifications, noting that all the members of the complete space
V must be either singlets or doublets under BRST symmetry i.e. they are annihilated
by the charge, or they are transformed into another state. This fact comes from the
nilpotency of Q, which guarantees that no higher n-plet representations may exist. The
two members of each doublet may also be categorized as either parent or daughter states,
which we denote as |π⟩ and |δ⟩ respectively. Their familial relationships are characterized
by the relations

Q |π0⟩ = |δ1⟩ ≠ 0 Q |π−1⟩ = |δ0⟩ ≠ 0 , (4.82)

where subscripts indicate FP ghost number. With this and the transformations (4.62) in
mind, it is straightforward to see that each of these operators will always correspond to
the components of certain types of fields: longitudinal components of ϕa → π0, C

a → δ1,
C̄a → π−1, and Ba → δ0. An important corollary to the existence of these doublets is
that, due to the fact that the ghost number of the total action is required to be zero, each
doublet {|π0⟩ , |δ1⟩} is necessarily paired with an FP-conjugate doublet {|π−1⟩ , |δ0⟩}. It
is these pairs of doublets that constitute the titular quartets and populate the BRST co-
boundary V0. All the remaining states in Vphys are thus guaranteed to be BRST singlets
that live in Vtr.

The crux of the KO quartet mechanism lies in the fact that matrix elements be-
tween transverse states and members of the quartets are always vanishing, while matrix
elements between quartet states that are non-vanishing necessarily satisfy the relation

⟨π−1|δ1⟩ = ⟨π−1| Q |π0⟩ = ⟨δ0|π0⟩ ≠ 0 , (4.83)

which guarantees that all intermediate contributions to covariant correlation functions
that arise from the non-transverse bosonic DOFs are precisely canceled by the FP ghosts.
This important conclusion is reached by appealing to the inherent freedom in how one
defines parent and daughter states. Without loss of generality, one may always define

7BRST cohomology is an interesting and well-studied subject that we will not go into further detail
on here, though for the curious reader we recommend [275, 276].
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the parents and daughters in such a way that the quartet states are orthogonal to the
transverse states, and that the n-particle states constructed from quartet members may
be written in terms of the projection operator

P (n) =
1

n

4∑
a,b=1

(
g−1)abφ̂

†
aP

(n−1)φ̂b , (4.84)

where n counts the number of unphysical particles, gab is the inner product metric defined
by
[
φ̂a(p), φ̂†

b(q)
]

= gabδ
3(p−q), and φ̂a = {π0, δ0, π−1, δ1} are the annihilation operators

for each of the quartet members. Now, since Vtr is by definition the subspace with zero
unphysical particles, we may define it in terms of this projection operator as Vtr = P (0)V.
Then, taking advantage of the recursive nature of the definition above, a straightforward
proof by induction implies that V0 =

∑∞
n=1 P

(n)Vphys = QV and

⟨fphys|P (n)|gphys⟩ = 0 for n ≥ 1 . (4.85)

Therefore, despite the fact that quartet states may appear as asymptotic multi-particle
states in Vphys as defined in (4.80), their inner product with any other state in Vphys is
always zero. In other words, the quartet states that satisfy (4.83) do not pose a problem
for establishing unitarity of the physical S-matrix on Vtr. As we will see in the coming
sections, it is indeed possible to confirm that the relationship (4.83) holds for all of the
non-transverse states in quadratic gravity. Construction of the gauge-fixed (Heisenberg
picture) quantum Hamiltonian, representations of the physical S-matrix, and all of the
resulting analyses then follow using standard techniques.

4.6 Quantum quadratic gravity

4.6.1 Second-order quadratic gravity

We begin our investigations of the ghost problem in scale-invariant QG by following
the work presented in [3] and considering the previously studied scale-invariant action
(3.37) which, as we have already seen, generates an Einstein Hilbert term through the
non-minimal ϕ2R coupling after ϕ acquires a VEV via the spontaneous breakdown of
scale symmetry. Without loss of generality, we may rewrite the gravitational part of this
action in the broken phase as

SQG =

∫
d4x
√
−g
[
M2

Pl

2
R− 1

α2
g

(
RαβR

αβ − 1

3
R2 + βR2

)]
, (4.86)

where we have assumed that MPl = MPl(vϕ) has been generated dynamically and we
have reparameterized the couplings κ and γ in terms of the new dimensionless couplings
αg and β (which should not be confused with the β in (3.37)) for future convenience.
Here we have also used the identity

CαβγδC
αβγδ = 2RαβR

αβ − 2

3
R2 + G (4.87)
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to re-express the Weyl-squared term where G is the Gauß-Bonnet invariant shown in
(2.35), which is a total derivative (boundary term) that may be neglected for our pur-
poses.

Though global scale symmetry is not clearly manifest in the action (4.86), indeed,
it is precisely the action describing standard non-scale-invariant QG as in Stelle’s proof
of renormalizability, it is important to recall that SI may be realized non-linearly if one
was to reintroduce the scalar kinetic term and calculate how the NG boson transforms
under scale symmetry, similarly to the toy model demonstration in Section 2.2.2.

In order to proceed with the quantization of our theory using the methods estab-
lished in Section 4.5, it will be greatly beneficial to first reorganize the DOFs by rewrit-
ing the fourth-order action (4.86) in an equivalent second-order form. This is most
easily achieved by introducing auxiliary fields which we include by adding the term√
−g 1

4H
αβMαβ,γδH

γδ to the action, where Hαβ(x) is an auxiliary tensor field and the
rank-four “metric” M is defined according to

Mαβ,γδ = δαβγδ − gαβgγδ

M−1αβ,γδ = δαβγδ − 1

3
gαβgγδ

Mαβ,µνM
−1µν,γδ = δγδαβ ,

(4.88)

with the rank-four identity matrix δαβγδ defined in the usual way,

δαβγδ =
1

2

(
gαγgβδ + gαδgβγ

)
. (4.89)

Crucially, adding this kind of term to the action does not change the physics since the
EOM that follows, Hαβ = 0, may easily be used to return the original set of EOMs for
the metric. The trick here comes in the fact that this statement remains true if we shift
H → H + cM−1G for some constant c which, paired with the identity

RαβR
αβ − 1

3
R2 = GαβM

−1αβ,γδGγδ (4.90)

where Gαβ = Rαβ − 1
2gαβR is the Einstein tensor, allows us to complete a square by

writing

−c
2

4
GM−1G+

1

4

(
MH + cG

)T
M−1

(
MH + cG

)
=
c

2
GH +

1

4
HMH . (4.91)

Then, with c = 2α−1
g , we may eliminate the Weyl-squared term (4.87) from the original

action.
The other quadratic βR2 term may be eliminated in an analogous way, just as it was

in in Section 3.2 when we exposed the scalaron. This requires the introduction of an
auxiliary scalar field χ(x) which, using the relation

β

α2
g

R2 − 1

β

(
1

2
χ− β

αg
R

)2

=
1

αg
Rχ− 1

4β
χ2 , (4.92)
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allows us to establish the complete auxiliary action

SQGaux =

∫
d4x
√
−g
[
M2

Pl

2
R+

1

αg

(
GαβH

αβ +Rχ
)

+
1

4

(
HαβH

αβ −Hα
αHβ

β
)
− 1

4β
χ2

]
. (4.93)

It is then a simple matter to confirm that this action and (4.86) are classically equivalent
by integrating out the auxiliary fields Hαβ and χ with their EOMs,

Hαβ = − 1

αg

(
2Rαβ −

1

3
gαβR

)
χ =

2β

αg
R . (4.94)

Naturally, due to the classical equivalence at the level of the EOMs, the auxiliary
action (4.93) is invariant under local diffeomorphisms just as the original action is. These
(infinitesimal) transformations act on each of the fields as

g′αβ = gαβ + αgLξgαβ H ′
αβ = Hαβ + αgLξHαβ χ′ = χ+ αgLξχ , (4.95)

where Lξ is the Lie derivative in the direction of the arbitrary vector field ξα(x). When
viewed in the language of constrained systems [278], these four symmetries imply that
Saux generates a set of eight first-class constraints which eliminate sixteen of the forty-
two DOFs in phase space, however, it is a well established fact that QG propagates eight
independent DOFs; a massless spin-2 graviton, a massive spin-2 ghost, and a massive
scalar [279]. This implies the existence of an additional ten second-class constraints
according to Dirac’s rule, 1/2(20 + 20 + 2 − 2 ∗ 8 − 10) = 8, whose presence is rather
inconvenient for covariant quantization.

To get around this troublesome feature, we appeal to the Stückelberg mechanism
which allows us to replace the second-class constraints in our system with first-class con-
straints by introducing new fields that enforce new gauge symmetries (which correspond
to the new first-class constraints) [280]. This mechanism may be realized in the present
theory by introducing both a vector Aα(x) and a scalar π(x) through the replacement

Hαβ → Hαβ −
(
∇αAβ +∇βAα

)
+

2

m
∇α∇βπ , (4.96)

which, applied to the action (4.93), yields the second-order action that will serve as a
basis for all of our upcoming analyses,

SSOQG =

∫
d4x
√
−g
[
m2

α2
g

R+
1

αg

(
GαβH

αβ +Rχ
)

+
1

4

(
HαβH

αβ −Hα
αHβ

β
)

− 1

4β
χ2 +

1

4
FαβF

αβ +
(
∇βHα

β −∇αHβ
β
)(
Aα − 1

m
∇απ

)
−Rαβ

(
Aα − 1

m
∇απ

)(
Aβ − 1

m
∇βπ

)]
. (4.97)
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Here, we have integrated by parts and used the contracted Bianchi identity ∇αGαβ = 0
to simplify and collect terms, introduced the mass scale m = αgMPl/

√
2, and written the

standard field strength Fαβ = ∇αAβ −∇βAα. An important feature of the Stückelberg
mechanism is its preservation of the physical content in a theory despite the introduction
of new fields and symmetries. We may confirm that this occurs here by once again
integrating out the auxiliary fields with the EOMs obtained from (4.97),

Hαβ = − 1

αg

(
2Rαβ −

1

3
gαβR

)
+∇αAβ +∇βAα −

2

m
∇α∇βπ (4.98)

χ =
2β

αg
R . (4.99)

As previously eluded to, our second order action has acquired new gauge symme-
tries that correspond to the new first-class constraints introduced by the Stückelberg
procedure. The first of these is associated with Aα and it acts on each of the fields as

g′αβ = gαβ H ′
αβ = Hαβ +∇αζβ +∇βζα χ′ = χ

A′
α = Aα + ζα π′ = π ,

(4.100)

where ζα(x) is a local parameter of the transformation. Likewise, we find a new symmetry
associated with π whose transformations are given by

g′αβ = gαβ H ′
αβ = Hαβ χ′ = χ

A′
α = Aα +∇ασ π′ = π +mσ ,

(4.101)

in terms of the local parameter σ(x). Naturally, the action (4.97) has maintained its
original diffeomorphism invariance as well, where the new Stückelberg fields transform
in terms of Lie derivatives just as the original fields in (4.95). Finally, we may confirm
that the Stückelberg mechanism has worked as intended by counting the DOFs in our
new action. After the introduction of Aα and π we find twenty-six fields and nine gauge
symmetries which allows us to count 1/2(20 + 20 + 2 + 8 + 2 − 2 ∗ 18) = 8 DOFs as
expected, without any second-class constraints.

4.6.2 Quantization

Gauge-fixing

In order to address the ghost problem that presents itself in the classical second-order
theory we have just established, it must first be quantized. We follow the procedure
outlined in Section 4.5 by first establishing a BRST symmetry in order to gauge fix the
theory. This process will be similar to the BRST treatments of GR and massive spin-2
Fierz-Pauli theory carried out in [270] and [281], though the presence of additional gauge
symmetries and ghosts will naturally complicate matters in the present case.
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To begin, we define a set of BRST fields for the diffeomorphism, Stückelberg vector,
and Stückelberg scalar symmetries,

Ba =
{
bα(x), Bα(x), B(x)

}
Ca =

{
cα(x), Cα(x), C(x)

}
(4.102)

C̄a =
{
c̄α(x), C̄α(x), C̄(x)

}
,

where the Ba are bosonic NL fields and the Ca and C̄a are fermionic FP ghosts and anti-
ghosts which, despite the over-bar notation, are independent fields and not Hermitian
conjugates of one another. Our next task is to establish a BRST-invariant gauge fixing
action composed of the fields above for each of our three gauge symmetries, which requires
that we establish how each field behaves under a BRST transformation.

In line with (4.62), the original five fields in the classical theory transform as a sum
of their gauge transformations (4.95), (4.100), and (4.101) after replacing the gauge
parameters with the appropriate FP ghosts:

δgαβ =
αg

m

(
∇αcβ +∇βcα

)
δHαβ = m

(
∇αCβ +∇βCα

)
+
αg

m

(
∇γHαβ +Hαγ∇β +Hβγ∇α

)
cγ

δχ =
αg

m
cα∇αχ

δAα = mCα +∇αC +
αg

m

(
∇βAα +Aβ∇α

)
cβ

δπ = mC +
αg

m
cα∇απ .

(4.103)

The remaining nine new BRST fields then transform as

δbα = 0 δBα = 0 δB = 0

δcα =
αg

m
cβ∂βc

α δCα =
αg

m

(
cβ∂βC

α + Cβ∂βc
α
)

δC =
αg

m
cα∂αC

δc̄α = ibα δC̄α = iBα δC̄ = iB .

(4.104)

We proceed by selecting gauge fixing conditions Ga = {G(ξ)
α , G

(ζ)
α , G(σ)} for each

symmetry which may in turn be used to generate our desired gauge fixing and FP ghost
actions through the relation (4.63). We begin with the condition

G(ξ)
α = gβγ

(
∂γ g̃αβ −

g1
2
∂αg̃βγ

)
+

1

2
bα (4.105)

to fix diffeomorphism invariance, where

g̃αβ =
m

αg
gαβ −

1

m

(
Hαβ − gαβχ−∇αAβ −∇βAα

)
− 2

m2
∇α∇βπ (4.106)
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is defined so as to be invariant under both Stückelberg symmetries and thus only serves
to break diffeomorphisms. The Stückelberg vector symmetry may be fixed the same
spirit i.e. with the diffeomorphism and scalar-symmetry-invariant condition

G(ζ)
α =

1

m

(
∇βHα

β − g2
2
∇αHβ

β +∇αχ

)
−mAα +∇απ −

1

2
Bα . (4.107)

This leaves only the scalar symmetry, which we fix with the condition

G(σ) = ∇αA
α − g3

2
Hα

α − χ−mπ − B

2
. (4.108)

The gi in the above conditions are arbitrary constants akin to the ξ that appears in the
Rξ gauge-fixing scheme often employed in the SM [123]. These constants may be fixed
to select analogues of some of the most commonly employed gauges in QFT, as we will
see shortly. With all of the above we may write the gauge-fixed total action ST as a
sum of the classical action (4.97) and the BRST actions generated by our chosen gauge
conditions through the relation (4.63):

ST = SSOQG − i
∫

d4x
√
−g δ

(
c̄αG(ξ)

α + C̄αG(ζ)
α + C̄G(σ)

)
= SSOQG + Sgfξ + Sgfζ + Sgfσ + SFPξ + SFPζ + SFPσ . (4.109)

This action describes the full interacting theory in the gravitational sector, however,
it is the free part of the action that is quadratic in the dynamical fields that will be of
most interest for our purposes. To isolate the free action we may perturb ST around
Minkowski space by expanding the metric according to

gαβ → ηαβ + αghαβ , (4.110)

where we have singled out the coupling αg as a small (dimensionless) perturbation pa-
rameter. Before writing the resulting free action, it is convenient to redefine the bare
graviton hαβ(x) in terms of the Stückelberg-invariant graviton corresponding to the met-
ric (4.106) as

h̃αβ = mhαβ −
1

m

(
Hαβ − gαβχ− ∂αAβ − ∂βAα

)
− 2

m2
∂α∂βπ (4.111)

in order to simplify gauge fixing terms and diagonalize the spin-2 kinetic terms. We may
also define

H̃αβ =
1

m
Hαβ χ̃ =

√
3

m
χ π̃ = π +

1

m
χ (4.112)

to normalize the auxiliary fields and diagonalize the scalar sector in a similar manner.
All together, the graviton expansion and redefinitions above lead to the free action

S
(0)
T = S

(0)
SOQG + S

(0)
gf + S

(0)
FP , (4.113)
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S
(0)
SOQG =

∫
d4x

[
1

2

(
h̃αβEαβγδh̃γδ − H̃αβEαβγδH̃γδ

)
+
m2

4

(
H̃αβH̃

αβ − H̃α
αH̃β

β
)

+
1

2
χ̃
(
□−m2

β

)
χ̃− 1

2
Aα
(
ηαβ□− ∂α∂β

)
Aβ

+mAα

(
∂βH̃

αβ − ∂αH̃β
β
)
− π̃

(
ηαβ□− ∂α∂β

)
H̃αβ

]
(4.114)

S
(0)
gf =

∫
d4x

[
bα

(
∂βh̃

αβ − g1
2
∂αh̃β

β +
1

2
bα
)

+Bα

(
∂βH̃

αβ − g2
2
∂αH̃β

β + ∂απ̃ −mAα − 1

2
Bα

)
+B

(
∂αA

α − g3m

2
H̃α

α −mπ̃ − 1

2
B

)]
(4.115)

S
(0)
FP = i

∫
d4x

[
c̄α
(
ηαβ□ + (1− g1)∂α∂β

)
cβ

+ C̄α
(
ηαβ
(
□−m2

)
+ (1− g2)∂α∂β

)
Cβ

+ C̄
((
□−m2

)
C +m(1− g3)∂αCα

)]
, (4.116)

where we have integrated by parts, dropped all O(αg) interaction terms, and identified
the canonical mass of χ̃ as m2

β = m2/(6β).
The spin-2 kinetic terms in (4.114) are defined in terms of the flat space Lichnerowicz

operator (the kinetic operator of linearized GR)

Eαβγδ = Eαβγδ

∣∣
gαβ=ηαβ

, (4.117)

where the general Lichnerowicz operator8 is defined in terms of the Hessian of the
Einstein-Hilbert Lagrangian as

Eαβγδ =
2√
−g

(
∂2
(√
−gR

)
∂gαβ∂gγδ

)
=

1

2

((
δαβγδ − gαβgγδ

)
∇µ∇µ + gαβ∇γ∇δ + gγδ∇α∇β −Dαβγδ

)
+ Cα(γβδ)

− 1

3

(
δαβγδ −

1

4
gαβgγδ

)
R , (4.118)

where we have defined the totally symmetric derivative operator

Dαβγδ =
1

2

(
gαγ∇β∇δ + gαδ∇β∇γ + gβγ∇α∇δ + gβδ∇α∇γ

)
. (4.119)

We also note that in the current parameterization, the gauge-invariant scalar χ̃ (which
may be identified as the scalaron familiar from Section 3.4.1) completely decouples from

8We thank Taichiro Kugo for pointing out this definition.
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the rest of the free theory, a feature that will lead to a practically trivial quantization
compared to the other fields.

As previously mentioned, our general choice of gauge fixing conditions allows us to
investigate several realizations of well-known gauges in the present theory, the first of
which corresponds to something like a unitary gauge after fixing the parameters to

unitary gauge: g1 = 1 g2 = 2 g3 = 0 . (4.120)

Under this particular choice of parameters, it is possible to redefine H̃αβ in terms of a
gauge-invariant tensor field reminiscent of the Proca field parameterization in the SM by
writing

Uαβ = H̃αβ −
1

m

(
∂αAβ + ∂βAα

)
− 1

m2

(
∂αBβ + ∂βBα − 2∂α∂βπ̃

)
. (4.121)

After rewriting the action in terms of this “Proca” field, one finds that the classical part
(4.114) reduces to

S
(0)
SOQG =

∫
d4x

[
1

2

(
h̃αβEαβγδh̃γδ − UαβEαβγδUγδ

)
+
m2

4

(
UαβU

αβ − Uα
αUβ

β
)

+
1

2
χ̃
(
□−m2

β

)
χ̃

]
, (4.122)

where the Stückelberg fields have been eaten by H̃αβ, leaving only a standard massless
graviton, a (ghostly) massive spin-2 Fierz-Pauli field, and a scalaron behind. Just as in
the unitary gauge SM, this gauge choice allows us to easily see the physical DOFs that
result from our theory, however, it is quite inconvenient for practical calculations. This
is in part because the gauge fixing and FP ghost actions become rather complicated in
this gauge, despite the fact that Uαβ is not present in them. However, the real issue lies
in the UV-divergent behavior of the Uαβ propagator which comes out like

−i ⟨0|TUαβUγδ|0⟩ ∼
pαpβpγpδ

m4(p2 +m2)
. (4.123)

We will investigate this kind of unitary gauge and Proca parameterization in more
detail with respect to conformal gravity later on, so for now, we will move forward with
the present theory by considering a different specific gauge that is better suited for our
purposes. This is the Feynman-style gauge defined by the parameters

Feynman gauge: g1 = 1 g2 = 1 g3 = 1 , (4.124)

which leads to a much more manageable set of propagators with improved UV behavior.
The full propagator matrix Ω−1

AB(p) in this gauge is defined as the inverse of the Hessian
matrix of the free total action:

ΩAB(p) = i

∫
d4x

δ2S
(0)
T

δΦA(x)δΦB(y)
e−ip(x−y) (4.125)
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Ω−1
AB(p) = −i ⟨0|TΦAΦB |0⟩ =

Ω−1
boson 0

0

(
0 Ω−1

ghost

Ω−1 †
ghost 0

)
AB

, (4.126)

Ω−1
boson =



h̃γδ H̃γδ χ̃ Aγ π̃ bγ Bγ B

h̃αβ
−Fαβγδ

p2 0 0 0 0 −i(ηαγpβ+ηβγpα)
p2 0 0

H̃αβ
Gαβγδ

p2+m2 0 0 ηαβ

3(p2+m2) 0 −i(ηαγpβ+ηβγpα)
p2+m2 0

χ̃ −1
p2+m2

β
0 0 0 0 0

Aα
ηαγ

p2+m2 0 0 −mηαγ

p2+m2
−ipα

p2+m2

π̃ 1
3(p2+m2) 0 0 −m

p2+m2

bα (h.c.) 0 0 0

Bα 0 0

B 0


where Fαβγδ = 2δαβγδ − ηαβηγδ Gαβγδ = 2δαβγδ −

2

3
ηαβηγδ , (4.127)

Ω−1
ghost =


c̄γ C̄γ C̄

cα
−iηαγ

p2 0 0

Cα 0 −iηαγ

p2+m2 0

C 0 0 −i
p2+m2

 . (4.128)

We thus see that the Feynman gauge (4.124) has indeed led to a set of easily-manageable
simple-pole propagators that are all convergent in the UV. This type of behavior may
be seen in the covariant quantization of more standard theories when the same kind of
gauge is chosen as well, in particular with respect to Yang-Mills theory [274], General
Relativity [270], and Fierz-Pauli massive gravity [281].

Asymptotic fields

As outlined in Section 4.5.2, the next step in the covariant quantization process is to
establish asymptotic solutions to the EOMs in terms of plane waves and oscillators. Vary-
ing the total action (4.113) in the Feynman gauge (4.124) with respect to the graviton,
auxiliary fields, and Stückelberg fields yields the EOMs

Eαβγδhγδ + ∂(αbβ) −
1

2
ηαβ∂γb

γ = 0

EαβγδHγδ +
m2

2

(
Hαβ − ηαβHγ

γ
)
−m

(
∂(αAβ) − ηαβ∂γAγ

)
−
(
ηαβ□− ∂α∂β

)
π − ∂(αBβ) +

1

2
ηαβ∂γB

γ − m

2
ηαβB = 0 (4.129)
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(
□−m2

β

)
χ = 0(

ηαβ□− ∂α∂β
)
Aβ −m

(
∂βHα

β − ∂αHβ
β
)

+mBα + ∂αB = 0(
ηαβ□− ∂α∂β

)
Hαβ + ∂αB

α +mB = 0 ,

while the NL boson EOMs are found to be

∂βhα
β − 1

2
∂αhβ

β + bα = 0

∂βHα
β − 1

2
∂αHβ

β −mAα + ∂απ −Bα = 0 (4.130)

Hα
α − 2

m

(
∂αA

α −B
)

+ 2π = 0 ,

and the FP ghost EOMs are given by

□cα = 0 □ c̄α = 0(
□−m2

)
Cα = 0

(
□−m2

)
C̄α = 0 (4.131)(

□−m2
)
C = 0

(
□−m2

)
C̄ = 0 .

We have dropped all of the tildes in the equations above to avoid clutter, however, one
should keep in mind that we will always consider the canonically normalized fields defined
in (4.111) and (4.112) from here on out.

The present gauge choice not only leads to nice UV behavior in the propagators
(4.126), but it also allows for an easy oscillator decomposition of each field due to the
fact that every propagator behaves as a simple pole. In the asymptotic limit (4.65), these
decompositions may be written in terms of simple-pole oscillators only as

hαβ(x) = ĥαβ(p)fp(x) + (h.c.) Hαβ(x) = Ĥαβ(p)fp(x) + (h.c.)

χ(x) = χ̂(p)fp(x) + (h.c.) Aα(x) = Âα(p)fp(x) + (h.c.)

π(x) = π̂(p)fp(x) + (h.c.) bα(x) = b̂α(p)fp(x) + (h.c.)

Bα(x) = B̂α(p)fp(x) + (h.c.) B(x) = B̂(p)fp(x) + (h.c.)

cα(x) = ĉα(p)fp(x) + (h.c.) c̄α(x) = ˆ̄cα(p)fp(x) + (h.c.)

Cα(x) = Ĉα(p)fp(x) + (h.c.) C̄α(x) = ˆ̄Cα(p)fp(x) + (h.c.)

C(x) = Ĉ(p)fp(x) + (h.c.) C̄(x) = ˆ̄C(p)fp(x) + (h.c.)

(4.132)

where the appropriate sums over p and asymptotic “as” designations (see equation (4.66))
are silently understood. We may also realize the asymptotic versions of our chosen gauge
fixing conditions by plugging in the asymptotic solutions above into the EOMs (4.129–
4.131), keeping in mind the plane-wave identities listed in Appendix A, which yields

pβĥαβ(p) =
1

2
pαĥβ

β(p) + ib̂α(p) (4.133)
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pβĤαβ(p) = im

(
pαpβ
m2

− ηαβ
)
Âβ(p)− 2pαπ̂(p)− iB̂α(p)− 1

m
pαB̂(p) (4.134)

Ĥα
α(p) =

2

m

(
ipαÂα(p)− B̂(p)

)
− 2π̂(p) . (4.135)

Finally, with our asymptotic decompositions in hand, we may establish commutator
relations between each oscillator by simply reading off the coefficient of the pole (−p−2

and −(p2 +m2)−1 for massless and massive fields respectively) in each entry of (4.126).
We thus find that the non-zero (anti)commutators are given by[

ĥαβ(p), ĥ†γδ(q)
]

=
(
2δαβγδ − ηαβηγδ

)
δ3(p− q)[

Ĥαβ(p), Ĥ†
γδ(q)

]
= −

(
2δαβγδ −

2

3
ηαβηγδ

)
δ3(p− q)[

χ̂(p), χ̂†(q)
]

= δ3(p− q)[
Âα(p), Â†

β(q)
]

= −ηαβδ3(p− q)[
π̂(p), π̂†(q)

]
= −1

3
δ3(p− q)[

ĥαβ(p), b̂†γ(q)
]

=
[
Ĥαβ(p), B̂†

γ(q)
]

=
(
ipαηβγ + ipβηαγ

)
δ3(p− q)[

Ĥαβ(p), π̂†(q)
]

= −1

3
ηαβδ

3(p− q)[
Âα(p), B̂†

β(q)
]

= mηαβδ
3(p− q)[

Âα(p), B̂†(q)
]

= ipαδ
3(p− q)[

π̂(p), B̂†(q)
]

= mδ3(p− q){
ĉα(p), ˆ̄c†β(q)

}
=
{
Ĉα(p), ˆ̄C†

β(q)
}

= iηαβδ
3(p− q){

Ĉ(p), ˆ̄C(q)
}

= iδ3(p− q) .

(4.136)

Naturally, we are also interested in the (anti)commutator relations between asymptotic
fields, though in the present theory that contains only simple-poles, these quantities may
easily be read from the oscillator relations above and we will thus refrain from writing
them all out explicitly here. For example, we may pass to the continuum limit (4.78)
and find [

hαβ(x), hγδ(y)
]

=
(
2δαβγδ − ηαβηγδ

)
D(x− y) (4.137)

in line with the discussion around (4.76), which may be compared with the first entry
in (4.136). The same kind of relation then holds for all the other field commutators.
With this, our theory is fully quantized and may be analyzed using all the techniques of
operator QFT.
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However, before proceeding, it is important to also nail down the BRST transfor-
mation properties of each fundamental oscillator by plugging the decompositions (4.132)
into the transformation rules (4.103) and (4.104):[

Q, ĥαβ
]

= 2p(αĉβ)

[
Q, Ĥαβ

]
= 2p(αĈβ)[

Q, χ̂
]

= 0
[
Q, Âα

]
= −imĈα + pαĈ[

Q, π̂
]

= −imĈ
[
Q, B̂a

]
= 0{

Q, Ĉa

}
= 0

{
Q, ˆ̄Ca

}
= B̂a .

(4.138)

Here we have used the relation (4.60) to express these transformations in terms of
(anti)commutators with the BRST charge operator to aid us in the final part of our
analyses – an establishment of the subspace of physical states in quadratic gravity and
an investigation of unitarity.

4.6.3 Unitarity

The quartet mechanism

Unitarity may be formally established in the SM by appealing to the Kugo-Ojima
quartet mechanism, as outlined in Section 4.5.3. We recall that this mechanism hinges
on separating all of the states in our theory into BRST-invariant physical states and
quartet states that satisfy the relation (4.83), repeated here for convenience:

⟨π−1|δ1⟩ = ⟨π−1| Q |π0⟩ = ⟨δ0|π0⟩ ≠ 0 . (4.139)

Though application of this mechanism alone is not enough to demonstrate unitarity in
QG due to the presence of physical ghosts, it is still important to identify which states
are truly physical and which are unphysical remnants of the gauge freedom present in
the original theory before we tackle the additional problems brought on by fourth-order
derivatives in our classical action.

Beginning with the massless sector, we consider the graviton in the reference frame
(4.73) and use the oscillator gauge conditions (4.133) to express four of the ten compo-
nents of ĥαβ in terms of b̂α as

ĥ01 = −ĥ13 +
i

E
b̂1 ĥ02 = −ĥ23 +

i

E
b̂2

ĥ03 = −1

2

(
ĥ00 + ĥ33

)
+

i

2E

(
b̂0 + b̂3

)
ĥ22 = −ĥ11 +

i

E

(
b̂0 − b̂3

)
.

(4.140)

This leaves six more components to fill the roles of gauge-invariant physical states and
π0 quartet members. Using the transformations (4.138), it is straightforward to identify
the physical BRST singlet states as

âh,+ =
1

2

(
ĥ11 − ĥ22

)
âh,× = ĥ12 , (4.141)
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which, being transverse singlets, commute with the BRST charge ([Q, âh,j ] = 0) and
have non-vanishing commutation relations only with themselves,[

âh,j(p), â†h,j′(q)
]

= δjj′δ
3(p− q) . (4.142)

We have named the two independent polarizations j = {+, ×} above in order to reinforce
the fact that the states (4.141) represent the familiar “plus” and “cross” polarizations of
weak-field GR. This identification is reinforced by decomposing the graviton oscillator
as

ĥαβ(p) =
∑
j

(
ε
j αβ

(p)âh,j(p)
)

+ · · ·+ (h.c.) , (4.143)

where ε
j αβ

are the transverse-traceless polarization tensors derived in Section 4.5.2. It is
important to stress that no a priori assumptions were made about the polarizations of the
physical modes in this theory, rather, the required spin-2 representations of the Poincaré
group appear naturally after considering the behavior of the fundamental oscillators
under BRST transformation.

The “· · · ” in (4.143) are composed of the remaining four longitudinal (unphysical)
graviton states and after once again considering the transformations (4.138), it becomes
clear that these states may be most conveniently parameterized in terms of the vector
oscillator

(
ψ̂α

)
=

i

2E


−ĥ00
2ĥ13
2ĥ23
ĥ33

 (4.144)

where they naturally fill the π0 role in the quartets, being that they are BRST-non-
invariant. Indeed, one may derive the transformations[

Q, ψ̂α

]
= iĉα

[
Q, b̂α

]
= 0 {Q, ĉα} = 0

{
Q, ˆ̄cα

}
= b̂α , (4.145)

to confirm this role and see that the other δ0, δ1, and π−1 roles must be played by b̂α, ĉα,
and ˆ̄cα respectively. Then, after noting that these quartet participants commute with
each other according to[

ψ̂α(p), b̂†β(q)
]

= −ηαβδ3(p− q)
{
ĉα(p), ˆ̄c†β(q)

}
= iηαβδ

3(p− q) , (4.146)

we may confirm that the massless quartet mechanism functions as required through the
relation

⟨0|b̂α(p)ψ̂†
β(q)|0⟩ = −i ⟨0|ˆ̄cα(p)ĉ†β(q)|0⟩ = −ηαβδ3(p− q) . (4.147)
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The massive quartet mechanism functions in much the same way as the massless,
though here we consider the center of mass frame defined in (4.74) and find that the fol-
lowing five operators represent gauge-invariant singlet components of Ĥαβ after applying
the gauge conditions (4.134) and (4.135):

âH,+ =
1

2

(
Ĥ11 − Ĥ22

)
âH,× = Ĥ12

âH,1 = Ĥ13 âH,2 = Ĥ23

âH,3 =
1

2
√

3

(
Ĥ11 + Ĥ22 − 2Ĥ33

)
.

(4.148)

Naturally, due to the fact that these operators represent physical ghost states, they
commute with the BRST charge ([Q, âH,k] = 0) and the commutation relations among
them appear with a relative minus sign as compared to (4.142),[

âH,k(p), â†H,k′(q)
]

= −δkk′δ3(p− q) . (4.149)

Here we have written k = {+, ×, 1, 2, 3} to designate the five independent transverse
polarizations (see Section 4.5.2) contained in Ĥαβ as

Ĥαβ(p) =
∑
k

(
ε
kαβ

(p)âH,k(p)
)

+ · · ·+ (h.c.) . (4.150)

All of the independent components of Ĥαβ have thus been accounted for, meaning
that unlike in the massless sector where some graviton components played the π0 role,
the quartets in this sector must be made up of purely auxiliary and BRST fields. The
oscillator transformations (4.138) once again allow for a straightforward identification of
the π0 operators as

(
Ψ̂α

)
= − 1

m


Â0 + iπ̂

Â1

Â2

Â3

 Ψ̂ = − 1

m
π̂ , (4.151)

while the δ0, δ1, and π−1 roles are filled by the remaining BRST fields in an analogous
fashion to the massless case. One finds as expected that all of the massive quartet
participants transform according to[

Q, Ψ̂α

]
= iĈα

[
Q, B̂α

]
= 0

{
Q, Ĉα

}
= 0

{
Q, ˆ̄Cα

}
= B̂α (4.152)[

Q, Ψ̂
]

= iĈ
[
Q, B̂

]
= 0

{
Q, Ĉ

}
= 0

{
Q, ˆ̄C

}
= B̂ , (4.153)

and commute with themselves following[
Ψ̂α(p), B̂†

β(q)
]

= −ηαβδ3(p− q)
{
Ĉα(p), ˆ̄C†

β(q)
}

= iηαβδ
3(p− q) (4.154)
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[
Ψ̂(p), B̂†(q)

]
= −δ3(p− q)

{
Ĉ(p), ˆ̄C†(q)

}
= iδ3(p− q) . (4.155)

With this, we encounter the required realizations of the massive quartet mechanism as
confirmed by the relations

⟨0|B̂α(p)Ψ̂†
β(q)|0⟩ = −i ⟨0| ˆ̄Cα(p)Ĉ†

β(q)|0⟩ = −ηαβδ3(p− q) (4.156)

⟨0|B̂(p)Ψ̂†(q)|0⟩ = −i ⟨0| ˆ̄C(p)Ĉ†(q)|0⟩ = −δ3(p− q) . (4.157)

As a final note, we address the physical scalar sector that is fully populated by χ̂.
Due to the fact that χ(x) is gauge-invariant before even introducing any BRST fields
(none of which it interacts with), there is no quartet mechanism to be realized in this
sector. Furthermore, due to the relative plus sign in its only non-vanishing commutation
relation [

χ̂(p), χ̂†(q)
]

= δ3(p− q) , (4.158)

χ contributes only independent and unitary interactions to the overall picture. We will
thus put this scalar sector aside for the remainder of this work and focus on the remaining
seven physical DOFs in the spin-2 sector: the two massless healthy graviton states and
the five massive ghostly states corresponding to Hαβ.

Conditional unitarity in quadratic gravity

We begin our investigations of unitarity in the physical spin-2 subspace by construct-
ing the physical Hamiltonian operator H. This operator is subject to the Heisenberg
equation

[H, ϕa(x)] = −i∂0ϕa(x) , (4.159)

where ϕa(x) = {hαβ(x), Hαβ(x)}, and may be solved for using the decompositions (4.132)
along with the relation

i∂0fp(x) = p0fp(x) , (4.160)

which yields

H =

∫
d3p

∑
j,k

(
Ehâ

†
h,j(p)âh,j(p)− EH â

†
H,k(p)âH,k(p)

)
. (4.161)

We have expressed H as normal ordered with respect to the positive energy choice of
vacuum as defined by

âh,j(p) |0⟩ = âH,k(p) |0⟩ = 0 , (4.162)
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per the discussion in Section 4.2.1. This feature is made apparent by considering the
commutation relations (4.142) and (4.149) which imply that the Hamiltonian (4.161)
commutes with each of the state operators according to[

H, â†h,j(p)
]

= Ehâ
†
h,j(p)

[
H, â†H,k(p)

]
= EH â

†
H,k(p) , (4.163)

thus generating independent one-particle eigenstates with positive eigenvalues for each
operator as desired.

Now, following the LSZ formalism as laid out by Kugo and Ojima in [270], we may
make the assumption that the asymptotic “in” and “out” Fock spaces in our theory are
complete,

V in = Vout = V , (4.164)

and that there exists a pseudo-unitary (S†S = SS† = 1) S-matrix operator S with
elements defined by

Sαβ = ⟨β; out|α; in⟩ = ⟨β; in|S|α; in⟩ , (4.165)

where |α⟩ and |β⟩ are arbitrary external states in the Fock space on which S is defined.
Reiterating the discussion in Section 4.5.3, we may define the physical transverse subspace
of V (the BRST cohomology space) as

Vtr = Vphys/V0 = KerQ/ImQ (4.166)

and note that Vphys = SVphys = S†Vphys due to the fact that Vphys is invariant under
time evolution thanks to Q being a conserved quantity.

In the usual formulation of covariantly quantized gauge theories, V is generally
an indefinite-metric space that is restricted to the positive-semidefinite subspace Vphys
through the quartet mechanism which confines all positivity-spoiling longitudinal modes
and identifies the BRST co-boundary V0 as the zero-norm subspace of Vphys. In this
case, Vtr is then necessarily a positive-definite metric space, and unitarity of S on Vtr
follows from the relation

1 = ⟨α; in|α; in⟩ = ⟨α; in|S†S|α; in⟩

=
∑
n

⟨α; in|S†|n; in⟩ ⟨n; in|S|α; in⟩ =
∑
n

∣∣ ⟨n; in|S|α; in⟩
∣∣2 , (4.167)

where |α⟩ is an arbitrary (normalized) external state in Vtr, |n⟩ represents some n-particle
external state also in Vtr, and the completeness relation 1 =

∑
n |n; in⟩ ⟨n; in| has been

inserted between S† and S. With this, the general notion of the quantum probability for
the state transition α→ n to occur may be expressed as∣∣ ⟨n; in|S|α; in⟩

∣∣2 < 1 . (4.168)

In other words, it is sufficient to demonstrate that the relation (4.167) holds in order to
establish unitarity in a given theory.
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There is however an important caveat to the demonstration of unitarity through
(4.167), namely, that the positive-definiteness of Vtr is not guaranteed by the quartet
mechanism alone, but also relies on the value of the inner product (the commutation
relations) between the arbitrary state operators α. In traditional gauge theories these
inner products are always positive, however, this is not the case in the present theory
where the âH,k commutators (4.149) appear with a relative minus. Despite the fact that
Vtr contains no longitudinal or zero-norm modes thanks to the quartet mechanism, this
indicates that Vtr as a whole is in fact an indefinite space and that the first equality in
(4.167) does not hold in general, similarly to the toy model of ghost decay we encountered
in Section 4.2.2. We thus finally confront the true heart of the ghost problem in the
present theory since we are unable to confirm the relation (4.167) and demonstrate
unitarity through a sensible interpretation of probability. It is also important to recall
that choosing the other negative energy vacuum does not resolve the issue since we
encounter inconsistencies with the iϵ prescription and a violation of causality before
even reaching this point in the discussion.

Even though unitarity is violated on Vtr as a whole, there is still hope for quadratic
gravity as a quantum theory (possible complete resolutions aside) through the notion of
conditional unitarity introduced in Section 4.3. The fact that the massive spin-2 ghost
is the only source of negative norm means that we may easily define a positive-definite
subspace of Vtr by projecting the ghosts out kinematically. To this end, we consider
Vtr in a basis spanned by the total four-momentum eigenstates |pT , j⟩ and find that the
subspace9 populated by interactions with a total four-momentum that is less than the
ghost mass,

V<tr =
{
|pT , j⟩ ; −p2T < m2

}
, (4.169)

is indeed positive-definite. V<tr contains no ghosts (by definition), which implies that all
inner products in this space are positive-definite and leads to the usual demonstration of
unitarity on V<tr through the relation (4.167). It is also important to point out that when
viewing conditional unitarity in the context of perturbation theory, one should replace
the kinematical condition in (4.169) with

p2T +m2 ≳ O
(
m2
)
, (4.170)

in order to ensure that the spin-2 ghost propagator ∼ (p2T + m2 − iϵ)−1 is sufficiently
suppressed. Furthermore, we note that the notion of meta-stability such as that discussed
in [218] has no bearing on our perturbative conditional unitarity simply due to the fact
that meta-stability is a non-perturbative effect that does not appear in this context.

As a final point of order, we stress the fact that considering QG in the picture of
conditional unitarity does not mean that ghosts are completely absent from the theory;
they are only excluded from the space of possible external (asymptotic) states and may
still mediate loop interactions. Indeed, conditional unitarity may be assumed in the

9It should be noted that V<
tr is Lorentz invariant simply due to the fact that its supspace Vtr = Vphys/V0

is Lorentz invariant [270].
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model of inflation presented in Section 3.4.1 where the ghosts contribute in important
ways to the quantum effective potential, despite the fact that interaction energies related
to inflation need never reach values near the ghost mass.

4.7 Quantum conformal gravity

Most of our analyses up to this point have been based on globally scale-invariant
quadratic gravity though, as mentioned in the Introduction, this theory’s locally invariant
cousin also represents a very theoretically appealing upgrade to Einstein’s GR. Despite
the fact that Weyl symmetry is known to be anomalous, it is nevertheless worthwhile
to quantize as if there would be no anomaly since it is a purely quantum effect whose
presence may only be established after quantization. The remainder of this work will
thus be focused on quantum conformal gravity and another investigation of the ghost
problem therein, albeit from a more academic perspective barring any workarounds of
the conformal anomaly.

After establishing a classical second-order action describing CG, we will take a brief
aside to look at how the theory lends itself to a description of the current universe
after the spontaneous breaking of conformal symmetry. However, in an effort to avoid
repeating analyses that would almost exactly mimic those carried out in the case of QG
with broken scale symmetry, we will restrict ourselves to the case of unbroken conformal
symmetry when tackling the ghost problem here which, as we will see, leads to an entirely
new theoretical take on the issue.

4.7.1 Second-order conformal gravity

The action that describes Weyl’s conformal gravity may be derived in a similar man-
ner to the action (4.86) of globally scale-invariant quadratic gravity though, with the
requirement of local conformal invariance, no βR2 term is allowed in the action since the
Ricci scalar transforms non-linearly under conformal symmetry. Neglecting this term, as
well as total derivatives, grants us the fourth-order gravitational action

SCG = − 1

α2
g

∫
d4x
√
−g
(
RαβR

αβ − 1

3
R2

)
, (4.171)

which is invariant under both infinitesimal local diffeomorphisms and Weyl transforma-
tions. Despite the fact that neither the Ricci tensor or Ricci scalar transform linearly
under conformal symmetry, the relative factor of −1/3 in (4.171) ensures that the trans-
formations of each term cancel exactly (up to total derivatives), thus ensuring conformal
invariance of the action as a whole.

Following the same line of logic used in our analysis of the globally invariant theory
in Section (4.6.1), our next task is rewrite CG in a more manageable form that is second-
order in derivatives and produces only first-class constraints. To this end, we employ the
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same auxiliary field trick as in (4.91) and consider the action

SCGaux =

∫
d4x
√
−g
[

1

αg
GαβH

αβ +
1

4

(
HαβH

αβ −Hα
αHβ

β
)]

, (4.172)

which is classically equivalent to the fourth-order action (4.171) after integrating out the
auxiliary field. We note that since the present theory contains no fourth-order βR2 term
in the original action, no auxiliary χ is required to establish equivalence here. The further
rewriting of (4.172) into a first-class theory through the introduction of Stückelberg fields
and symmetries also requires fewer extra components in CG than it does in QG. No scalar
like π(x) need be included, only the vector field Aα(x) through the replacement

Hαβ → Hαβ −
(
∇αAβ +∇βAα

)
, (4.173)

which may be compared with (4.96). Then, after applying this replacement to (4.172),
we arrive at an action describing second-order CG that will serve as the classical starting
point for the remainder of our work:

SSOCG =

∫
d4x
√
−g
[

1

αg
GαβH

αβ +
1

4

(
HαβH

αβ −Hα
αHβ

β
)

+
1

4
FαβF

αβ +Aα

(
∇βH

αβ −∇αHβ
β −AβR

αβ
)]
. (4.174)

It is straightforward to confirm that this action is indeed physically equivalent to the
original action by integrating out the auxiliary and Stückelberg fields using the Hαβ

EOM,

Hαβ = − 1

αg

(
2Rαβ −

1

3
gαβR

)
+∇αAβ +∇βAα , (4.175)

which returns (4.171) as desired.
In addition to invariance under the infinitesimal diffeomorphisms

g′αβ = gαβ + αg

(
∇αξβ +∇βξα

)
H ′

αβ = Hαβ + αg

(
Hαγ∇βξ

γ +Hβγ∇αξ
γ + ξγ∇γHαβ

)
A′

α = Aα + αg

(
Aβ∇αξ

β + ξβ∇βAα

)
,

(4.176)

and infinitesimal Weyl transformations

g′αβ = gαβ + αg ωgαβ

H ′
αβ = Hαβ + 2∇β∇αω − αg

(
Aα∇βω +Aβ∇αω − gαβAγ∇γω

)
A′

α = Aα ,

(4.177)

the action (4.172) has also acquired an additional gauge symmetry as part of the Stückel-
berg mechanism. Naturally, this new symmetry acts analogously to the vector symmetry
(4.100) that we introduced in the previous study:

g′αβ = gαβ H ′
αβ = Hαβ +∇αζβ +∇βζα A′

α = Aα + ζα . (4.178)
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To reiterate our previous discussions, the utility of this symmetry lies in the fact
that it allows us to exchange second-class constraints for first-class constraints in the
Hamiltonian picture. In other words, the introduction of the vector field Aα and the
associated symmetry above may be viewed as a simple change of variables in phase
space. After this change of variables, our action presents twenty-four fields and nine
gauge symmetries, thus implying 1/2(20 + 20 + 8 − 2 ∗ 18) = 6 DOFs through Dirac’s
formula. This matches the expected six independent massless DOFs of CG: a spin-2
graviton, a spin-2 ghost, and a spin-1 vector that may appear as a standard particle or
as a ghost depending on the overall sign of the action [282].

The Higgs mechanism in conformal gravity

Before following the track laid out in the last section and performing a complete
covariant quantization of conformal gravity, it is a good time to take a brief aside to
discuss another interesting feature of the theory at hand. We have already seen how
globally scale-invariant QG can generate a standard Einstein-Hilbert term after coupling
to a scalar that acquires a VEV through SSB, a feature that is crucial for making touch
with the low energy physics we observe in the current universe. The same general type
of behavior may naturally occur in CG as well, and since the symmetry is local in this
case, we will see that the generation of the Einstein-Hilbert action and mass scales in
general follows very analogously to the Higgs mechanism in the SM wherein gauge bosons
acquire mass terms when the scalar coupled to them acquires a non-zero VEV.

In addition to our freshly derived second-order action for CG, we consider the familiar
action below,

Sϕ =

∫
d4x
√
−g
(

1

2
∂αϕ∂

αϕ+
1

12
ϕ2R+ U(ϕ)

)
, (4.179)

which describes a real dilaton ϕ(x) conformally coupled to gravity with some potential
U(ϕ) that we take to be conformally invariant. This is nothing more than the scalar part
of the action (3.37) that we investigated with respect to inflation, with the previously
arbitrary matter-gravity coupling now set to β = 1/6. Fixing the coupling this way is the
only way to ensure local invariance of the whole action under conformal transformations
(as opposed to the global symmetry that is present with an arbitrary coupling), as it
allows the non-linear transformation of the Ricci scalar to cancel precisely with the
transformation of the scalar kinetic term. This may be seen explicitly using the Weyl
transformation rules

g′αβ = eαgωgαβ ϕ′ = e−αgω/2ϕ U ′(ϕ) = e−2αgωU(ϕ) . (4.180)

The complete action of interest,

SSOCGϕ = SSOCG + Sϕ , (4.181)

is thus locally invariant under both (4.180) and the usual diffeomorphisms as in (4.176).
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We have already seen that adding such a scalar action to the action for QG may lead
to the spontaneous breakdown of global scale symmetry, particularly when the spin-2
ghost contributes to the one-loop effective potential as in Section 3.4.2. There is no
reason to assume the case will be any different here, so for our current purposes we may
assume that this occurs and interpret (4.181) in the broken phase10. This is achieved by
making the replacement

ϕ → µ

αg
+ φ (4.182)

where µ = αg ⟨ϕ⟩ is a dimensionful constant and φ(x) represents fluctuations around the
minimum of the original ϕ. With this, the original scalar action (4.179) becomes

Sϕ
SSB→ Sφ =

∫
d4x
√
−g
[

1

2
∇αφ∇αφ+

1

12

(
φ2 +

2µ

αg
φ+

µ2

α2
g

)
R

]
(4.183)

and an obvious analogy to the toy model describing local SSB and the Higgs mechanism
laid out in Section 2.2.2 becomes clear. Though manifest conformal symmetry appears
to be lost in (4.183), it is in fact preserved at the non-linear level through the Weyl
transformation

φ′ = e−αgω/2

(
µ

αg
+ φ

)
− µ

αg
, (4.184)

thus identifying φ as an NG boson of the spontaneously broken conformal symmetry.
The Einstein-Hilbert term (the last term in (4.183)) that was generated through

our unspecified realization of SSB inherently implies that one of the spin-2 states in
our theory must become massive [57] and we may anticipate the presence of a Higgs
mechanism that rearranges our originally massless DOFs into such a massive field. To
see exactly how this happens here, we once again linearize our action by writing

gαβ → ηαβ + αghαβ (4.185)

as in (4.110) and find that the the quadratic (free) part of (4.181) is given by

S
(0)
SOCGφ =

∫
d4x

[
hαβEαβγδ

(
µ2

24
hγδ −Hγδ

)
+

1

4

(
HαβH

αβ −Hα
αHβ

β
)

+
1

4
FαβF

αβ +Aα

(
∂βH

αβ − ∂αHβ
β
)

− 1

2
φ□φ− µ

6
φ
(
ηαβ□− ∂α∂β

)
hαβ

]
, (4.186)

recalling the definition of the flat space Lichnerowicz operator Eαβγδ in (4.117). Varying
this action with respect to Hαβ, hαβ, Aα, and φ yields the EOMs

10SSB has indeed been shown to occur explicitly in the closely related model of Georgi-Glashow theory
conformally coupled to gravity [283, 284]. See also the discussion in [285].
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Eαβγδhγδ −
1

2

(
Hαβ − ηαβHγ

γ
)

+
1

2

(
∂αAβ + ∂βAα

)
− ηαβ∂γAγ = 0

Eαβγδ
(
Hγδ −m2hγδ

)
+

m√
3

(
ηαβ□− ∂α∂β

)
φ = 0(

ηαβ□− ∂α∂β
)
Aβ − ∂βHα

β + ∂αHβ
β = 0

□φ+
m√

3

(
ηαβ□− ∂α∂β

)
hαβ = 0 ,

(4.187)

where the canonical mass is given by m = µ/(2
√

3).
After combining these EOMs and their traces, it is straightforward to identify that

the field redefinition

Ψαβ =
1

m

(
Hαβ − ∂αAβ − ∂βAα

)
+

2√
3m2

∂α∂βφ (4.188)

allows us to interpret our theory in terms of a massive gauge field that is reminiscent
of the SM Proca field parameterization. Indeed, after combining the EOMs (4.187), we
may insert this definition to arrive at the EOM

EαβγδΨγδ − m2

2

(
Ψαβ − ηαβΨγ

γ
)

= 0 , (4.189)

which is none other than the EOM of massive spin-2 Fierz-Pauli theory [286]. Similarly
to the case of massive electrodynamics, we may derive non-kinetic constraint equations
from this EOM,

∂βΨα
β = 0 Ψα

α = 0 , (4.190)

which imply our new massive Proca field satisfies the usual Klein-Gordon equation(
□−m2

)
Ψαβ = 0 . (4.191)

It is interesting to note that these constraints are not imposed by any gauge conditions
(Ψαβ is gauge-invariant), rather, they are built into the EOMs just as one sees when the
same kind of analysis is applied to the broken phase SM.

Taking this a step farther, we may also redefine the massless spin-2 DOF in terms of
the Stückelberg-invariant field

ψαβ = mhαβ +
1√
3
ηαβφ−Ψαβ , (4.192)

which paired with (4.188), allows us to rewrite our broken phase action11 as

S
(0)
SOCGφ =

∫
d4x

[
1

2

(
ψαβEαβγδψγδ −ΨαβEαβγδΨγδ

)
+
m2

4

(
ΨαβΨαβ −Ψα

αΨβ
β
)]
. (4.193)

11Similar methods of rewriting linearized QG in terms of such massless and massive spin-2 modes have
also been used in [107, 218, 287].
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It is easy to see that the action above returns the EOM (4.189) when varied with respect
to Ψαβ as well as the usual EOM for massless spin-2 fields,

Eαβγδψγδ = 0 , (4.194)

when varied with respect to ψαβ. One may also notice the relative sign difference between
the kinetic terms in (4.193), confirming the expected ghostly behavior of Ψαβ.

The fact that we are able to derive an EOM like (4.191) confirms that a Higgs
mechanism is indeed in effect. In the SM Higgs mechanism, the gauge bosons eat one
component of the complex Higgs field, however, here we see that there is in fact a kind
of “double” Higgs mechanism taking place where two different NG bosons, Aα and φ,
are eaten by the originally massless spin-2 field Hαβ and completely removed from the
action. The total number of DOFs is also conserved in this process as it must be; before
SSB we find 2 + 2 + 2 + 1 = 7 while after we count 2 + 5 = 7.

At this stage we may also draw attention to the differences between the present
scalar φ and the Stückelberg scalar π we encountered in the previous study. Though
they may both be eaten through redefinitions of Hαβ to illuminate its role as a massive
spin-2 field, this was only possible in the previous study after choosing a particular
gauge (see (4.121) and the surrounding discussion). Moreover, beside the simple fact
that the present Weyl symmetry acts quite differently on fields in general compared to
the Stückelberg symmetry associated with π, the present Higgs mechanism is associated
with SSB and represents a fundamentally different phenomenology when compared with
the symmetry in the previous theory that remains unbroken (prior to gauge-fixing).

Unitary gauge

Before proceeding with the quantization of CG in the unbroken phase, it is instructive
to look at another important similarity between the present broken phase theory and SM-
style gauge theory, namely, the existence of a unitary gauge. To this end we perform a
Stückelberg vector transformation with the parameter ζα = −Aα so that

H ′
αβ = Hαβ −∇αAβ −∇βAα A′

α = Aα −Aα = 0 , (4.195)

followed by a Weyl transformation with the parameter ω = 2α−1
g ln(αgϕ/µ) which cor-

responds to the transformation

ϕ′ =

(
µ

αgϕ

)
ϕ =

µ

αg
. (4.196)

Gauge fixing the second-order action (4.181) in this way yields

S
(U)
SOCGφ =

∫
d4x
√
−g
[
m2

α2
g

R+
1

αg
GαβH

αβ +
1

4

(
HαβH

αβ −Hα
αHβ

β
)]
, (4.197)

where we have dropped all the prime designations and identified µ = 2
√

3m. We thus
find that, analogously to the discussion in Section 2.2.2, the identification of the vector
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and scalar fields as NG bosons is reinforced since they may be removed from the action
entirely with a gauge transformation.

This action still contains an off-diagonal kinetic term, however, one of the principle
benefits of employing the unitary gauge is that it allows us to separate the kinetic terms
for our massless and massive DOFs even without linearizing the metric as in (4.110).
This may be achieved with a simple Taylor expansion by shifting the general metric
according to

gαβ → gαβ + aHαβ (4.198)

and taking successive functional derivatives, with a serving as an arbitrary constant that
parameterizes the expansion. For the Einstein-Hilbert part of the action,

SEH[g] =
m2

α2
g

∫
d4x
√
−gR , (4.199)

this process looks like

SEH
[
g + aH

]
= SEH[g] +

∫
d4x

(
a
δSEH[g]

δgαβ
Hαβ +

a2

2

δ2SEH[g]

δgαβδgγδ
HαβHγδ +O

(
H3
))

=
m2

α2
g

∫
d4x
√
−g
(
R− aGαβH

αβ +
a2

2
HαβEαβγδH

γδ +O
(
H3
))
, (4.200)

where we naturally encounter the the full non-linear Lichnerowicz operator Eαβγδ defined
in (4.118). The second-order CG part of the action,

SCGaux[g] =

∫
d4x
√
−g
[

1

αg
GαβH

αβ +
1

4

(
HαβH

αβ −Hα
αHβ

β
)]
, (4.201)

may then be expanded in the same way as

SCGaux

[
g + aH

]
= SCGaux[g] +

∫
d4x

(
a
δSSOCG[g]

δgαβ
Hαβ +O

(
H3
))

=

∫
d4x
√
−g
[

1

αg

(
GαβH

αβ − aHαβEαβγδH
γδ
)

+
1

4

(
HαβH

αβ −Hα
αHβ

β
)

+O
(
H3
)]
. (4.202)

With this it is easy to see that the particular choice of a = αg/m
2 cancels the off-

diagonal GαβH
αβ terms when we sum up the expanded actions:

S
(U)
SOCGφ = SEH + SCGaux

=

∫
d4x
√
−g
[
m2

α2
g

R− 1

2m2
HαβEαβγδH

γδ

+
1

4

(
HαβH

αβ −Hα
αHβ

β
)

+O
(
H3
)]
. (4.203)
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We thus arrive at a diagonalized action that is equivalent to the complete unitary gauge
action (4.197) up to terms of O(H3) that includes the conventional Einstein-Hilbert
contribution for the metric as well as a ghost-like massive spin-2 component for Hαβ.

Our definition of this diagonal action at the non-linear level also implies that the
ability to diagonalize and eliminate kinetic mixing between hαβ and Hαβ is not related
to the choice of any particular background metric. We may confirm this assertion by
expanding around a general background ḡαβ with the replacement

gαβ → ḡαβ + αghαβ , (4.204)

which paired with the normalizations hαβ = mψαβ and Hαβ = m−1Ψαβ, yields

S
(U)
SOCGφ =

∫
d4x
√
−ḡ
[
m2

α2
g

R̄− m

αg
Ḡαβψ

αβ +
1

2

(
ψαβĒαβγδψ

γδ −ΨαβĒαβγδΨ
γδ
)

+
m2

4

(
ΨαβΨαβ −Ψα

αΨβ
β
)

+O(αg)

]
. (4.205)

Here, quantities with over-bars are evaluated in terms of the background metric and it is
easy to see that we find exact agreement with (4.193) when this background is Minkowski
(ḡαβ = ηαβ). It is also interesting to note that there is a shortcut to deriving this action
based on simply assuming that the bare metric perturbation depends on two independent
spin-2 fields i.e. by writing

gαβ → ḡαβ +
αg

m

(
ψαβ + Ψαβ

)
. (4.206)

Applying this expansion to non-linear unitary gauge action (4.197) after setting Hαβ =
m−1Ψαβ immediately grants (4.205) without the need to Taylor expand.

The ability to disentangle the kinetic mixing and separate our massless and massive
spin-two fields, both at the quadratic and nonlinear levels, implies the possibility to define
a conventional “Einstein” metric for theories of quadratic gravity. This Einstein metric
corresponds exclusively to the two standard massless graviton degrees of freedom, unlike
the original metric found in the fourth-order formulation of the theory which carries
additional hidden degrees of freedom. This Einstein metric approach not only makes
the theory’s physical content more clear through its expression in terms of diagonalized
fields, but it also allows for a more straightforward analysis of unitarity.

It is essential to note that adopting this unitary picture for quadratic gravity is only
feasible in the presence of the explicit mass scale that appears after SSB. However, as we
touched on in the previous analysis, there are drawbacks to portraying quadratic gravity
in this manner, as it characterizes a system where the ghostly massive spin-two field is
coupled with the (non-renormalizable) Einstein-Hilbert action. Consequently, manifest
power-counting renormalizability is lost, as the propagators do not behave in the desired
∼ 1/p4 manner at high momenta. It is however important to note that this does not
mean that the theory as a whole is fundamentally non-renormalizable, indeed explicit
full renormalizability was proven by Stelle [57]. To reconcile these facts, one need only
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consider that even though ψ and Ψ enter only linearly through the expansion (4.206),
the separation of spin-2 modes can be performed at the non-linear level. This implies
that Ψ may be considered a type of Pauli-Villars regulator, which further implies that
the original Weyl-squared term also takes on the role of a UV regulator [288].

4.7.2 Quantization

In contrast to the unitary gauge scenario just presented, the original h–h propagator
does indeed exhibit 1/p4 behavior in the UV prior to any diagonalization or choice of
gauge. Thus, in an effort to avoid repeating previous analyses and to get a more complete
picture of quantum quadratic gravity and the ghost problem, we will proceed by following
the work in [4] and covariantly quantize conformal gravity in the original off-diagonal
parameterization, without the addition of any external fields (ϕ) and the resulting SSB,
where the full renormalizability of the theory is more readily apparent.

Gauge-fixing

The remainder of our analyses will be based on the second-order action (4.174),
restated here for convenience:

SSOCG =

∫
d4x
√
−g
[
− 1

αg
GαβH

αβ − 1

4

(
HαβH

αβ −Hα
αHβ

β
)

− 1

4
FαβF

αβ −Aα

(
∇βH

αβ −∇αHβ
β −AβR

αβ
)]
. (4.207)

It should be noted that, following [4], there is an overall minus sign introduced in this
action which has the effect of forcing Aα to be a standard vector field as opposed to a
ghost. This parameterization has been chosen to simplify our eventual analyses of the
ghost problem by relegating it to the massless spin-2 sector only, as we have already
investigated the issue in the more physical broken phase (where Aα is a ghost) and the
goal now is to look at the renormalizable theory in as transparent, albeit more academic,
a fashion as possible.

We begin as before by introducing a gauge-fixing BRST symmetry which requires a
new set of fields for each gauge symmetry of (4.207),

Ba =
{
bα(x), Bα(x), B(x)

}
Ca =

{
cα(x), Cα(x), C(x)

}
(4.208)

C̄a =
{
c̄α(x), C̄α(x), C̄(x)

}
,

where the lower-case and upper-case vectors once again correspond to diffeomorphisms
and Stückelberg vector symmetries. The difference in the present case is that the upper-
case scalar fields above now correspond to the Weyl symmetry of our original action as
opposed to the Stückelberg scalar symmetry that was present in SOQG. As we will see
shortly, C and C̄ both propagate in either case, a feature that has also been observed in
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the theory of a conformally coupled scalar with no Weyl-squared term [289], but should
be contrasted with the discussion in [290].

Moving forward, we recall the gauge transformations (4.176–4.178) and find that
BRST symmetry acts on each of the original fields as

δgαβ = αg

(
∇αcβ +∇βcα + gαβC

)
δHαβ = ∇αCβ +∇βCα + 2∇β∇αC + αg

((
∇γHαβ +Hαγ∇β +Hβγ∇α

)
cγ

−
(
Aα∇β +Aβ∇α − gαβAγ∇γ

)
C
)

δAα = Cα + αg

(
∇βAα +Aβ∇α

)
cβ ,

(4.209)

while the new BRST fields transform according to

δbα = 0 δBα = 0 δB = 0

δcα = αg c
β∂βc

α δCα = αg

(
cβ∂βC

α + Cβ∂βc
α + CαC

)
δC = αg c

α∂αC

δc̄α = ibα δC̄α = iBα δC̄ = iB .

(4.210)

Our next task is to write down convenient gauge-fixing conditions, though in the
absence of explicit mass scales, our choices are somewhat limited when compared to the
conditions we employed in Section 4.6.2. To fix diffeomorphism invariance, we select the
condition

G(ξ)
α =

1

αg
gβγ
(
∂γgαβ −

1

2
∂αgβγ

)
, (4.211)

which is nothing more than the de Donder condition ∂β(
√
−ggαβ) = 0 that is often

employed when studying weak field gravity. The Stückelberg symmetry is then fixed by
the analogous condition

G(ζ)
α = ∇βH

αβ − 1

2
∇αH β

β , (4.212)

while we select the Feynman-esque (with respect to Aα) condition

G(ω) =
1

2

(
Hα

α − 2∇αA
α +B

)
(4.213)

to fix the conformal symmetry. Then, following the recipe laid out in Section 4.5, we
may generate the appropriate BRST actions for our theory using (4.63) which leaves us
with the the total action

ST = SSOCG + Sgfξ + Sgfζ + Sgfω + SFPξ + SFPζ + SFPω . (4.214)

We note that it is of course also possible to introduce more general conditions than those
chosen above in order to consider different gauges, however, in line with our current goal
of analyzing CG in the renormalizable picture, we have selected the particular options
that lead to the best possible behavior in the UV.
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Our next task is to isolate the free part of the non-linear total action so that we may
derive the propagators for each field in our theory. This is achieved by linearizing the
metric around Minkowski space with the replacement (4.110) so that the total action
may be written as

ST

∣∣∣
gαβ→ηαβ+αghαβ

= S
(0)
T + S

(int)
T , (4.215)

where S
(int)
T = O(αg) may be ignored for our purposes, and S

(0)
T is given explicitly by

S
(0)
T = S

(0)
SOCG + S

(0)
gf + S

(0)
FP , (4.216)

S
(0)
SOCG =

∫
d4x

[
HαβEαβγδhγδ −

1

4

(
HαβH

αβ −Hα
αHβ

β
)

+
1

2
Aα
(
ηαβ□− ∂α∂β

)
Aβ −Aα

(
∂βH

αβ − ∂αHβ
β
)]

(4.217)

S
(0)
gf =

∫
d4x

[
bα

(
∂βh

αβ − 1

2
∂αhβ

β

)
+Bα

(
∂βH

αβ − 1

2
∂αHβ

β

)
+

1

2
B
(
Hα

α − 2∂αA
α +B

)]
(4.218)

S
(0)
FP = i

∫
d4x

[
c̄α
(
□cα − ∂αC

)
+ C̄α

(
□Cα + □∂αC

)
+ C̄□C

]
. (4.219)

Naturally, BRST invariance is preserved under linearization of the metric so that (4.216)
is invariant under the expanded transformation rules (4.209, 4.210) at zeroth order in αg:

δhαβ = 2∂(αcβ) + ηαβC δHαβ = 2∂(αCβ) + 2∂α∂βC δAα = Cα

δbα = 0 δBα = 0 δB = 0

δcα = 0 δCα = 0 δC = 0

δc̄α = ibα δC̄α = iBα δC̄ = iB .

(4.220)

Finally, the propagator matrix Ω−1
AB(p) may be derived in the usual way, as the inverse

of the Fourier transform of the Hessian matrix ΩAB(p):

ΩAB(p) = i

∫
d4x

δ2S
(0)
T

δΦA(x)δΦB(y)
e−ip(x−y) (4.221)

Ω−1
AB(p) = −i ⟨0|TΦAΦB |0⟩ =

Ω−1
boson 0

0

(
0 Ω−1

ghost

Ω−1 †
ghost 0

)
AB

, (4.222)
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Ω−1
boson =



hγδ Hγδ Aγ bγ Bγ B

hµν −Fµνγδ

p4

Fµνγδ

p2 0 − i(ηνγpµ+ηµγpν)
p2 0 −ηµν

p2 +
2pµpν

p4

Hµν 0 0 0 − i(ηνγpµ+ηµγpν)
p2 0

Aµ −ηµγ

p2 0 −ηµγ

p2

ipµ

p2

bµ 0 0 0

Bµ (h.c.) 0 0

B 0


where

Fµνγδ = ηµνηγδ − 2δµνγδ +
ηµγpνpδ + ηµδpνpγ + ηνγpµpδ + ηνδpµpγ

p2
, (4.223)

Ω−1
ghost =


c̄γ C̄γ C̄

cµ − iηµγ

p2 0 −pµ

p4

Cµ 0 − iηµγ

p2 −pµ

p2

C 0 0 − i
p2

 . (4.224)

Asymptotic fields

With the propagators in hand, the quantization process proceeds as in the last study
by establishing asymptotic solutions to our EOMs under the LSZ formalism. The EOMs
obtained from (4.216) after varying with respect to the original three bosonic fields in
our theory are given by

Eαβγδhγδ −
1

2

(
Hαβ + ∂α

(
Aβ −Bβ

)
+ ∂β

(
Aα −Bα

)
− ηαβ

(
Hγ

γ − 2∂γ
(
Aγ −Bγ) +B

))
= 0

EαβγδHγδ − 1

2

(
∂α bβ + ∂β bα − ηαβ∂γ bγ

)
= 0(

ηαβ□− ∂α∂β
)
Aβ − ∂βHαβ + ∂αHβ

β + ∂αB = 0 ,

(4.225)

though instead of trying to solve them directly, it is easier to first combine with the NL
EOMs i.e. the gauge-fixing conditions

∂βhαβ −
1

2
∂αhβ

β = 0

∂βHαβ −
1

2
∂αHβ

β = 0

∂αA
α − 1

2
Hα

α −B = 0 ,

(4.226)
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so as to arrive at the simpler set of equations below where the d’Alembertian of each
field is isolated:

□hαβ −Hαβ + ∂α
(
Aβ −Bβ

)
+ ∂β

(
Aα −Bα

)
= 0

□Hαβ − ∂αbβ − ∂βbα = 0

□Aα = 0 .

(4.227)

Our desired asymptotic solutions to (4.225) are given in terms of oscillator decompo-
sitions of each field after taking the asymptotic limit (4.65) as in (4.66). The simplest of
these is given by

Aα(x) = Âα(p)fp(x) + (h.c.) , (4.228)

which contains a simple-pole only, where there is an implicit sum over p and Aα(x)
is regarded as an asymptotic Heisenberg field, though we have dropped the notation
describing these features to avoid clutter. When we next solve for the spin-2 decom-
positions, we encounter the first major deviation from the previous diagonalized broken
phase quantization. Due to the fact that their propagators have poles that converge
faster than p−2, we must introduce higher order oscillators to fully solve the EOMs. By
looking at the p−2n nature of their propagators (n = number of poles required) we may
predict that their decompositions take the forms

hαβ(x) = ĥαβ(p)fp(x) + ĥgαβ(p)gp(x) + ĥ
hαβ

(p)hp(x) + (h.c.) (4.229)

Hαβ(x) = Ĥαβ(p)fp(x) + Ĥgαβ(p)gp(x) + (h.c.) . (4.230)

Then, after inserting these decompositions into the simplified EOMs (4.227), the com-
plete decompositions are found to be given in terms of

ĥgαβ(p) = Ĥαβ(p)− ipα
(
Âβ(p)− B̂β(p)

)
− ipβ

(
Âα(p)− B̂α(p)

)
(4.231)

ĥ
hαβ

(p) = ipαb̂β(p) + ipβ b̂α(p) (4.232)

Ĥgαβ(p) = ipαb̂β(p) + ipβ b̂α(p) . (4.233)

Applying the same kind of pole-structure-based ansätze to the NL fields we find

bα(x) = b̂α(p)fp(x) + (h.c.) (4.234)

Bα(x) = B̂α(p)fp(x) + (h.c.) (4.235)

B(x) = B̂(p)fp(x) + B̂g(p)gp(x) + (h.c.) , (4.236)

where the double pole oscillator B̂g(p) must be solved for using the complete set of
bosonic EOMs (4.225) and (4.226), yielding

B̂g(p) = −ipαb̂α(p) . (4.237)
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This same full set of equations also determines how our chosen gauge conditions manifest
in terms of fixing the longitudinal parts of ĥαβ, Ĥαβ, and Âα to

pβĥαβ(p) =
1

2

[
pαĥβ

β(p)− 1

E
η0βĤα

β(p)− iÂβ(p)

(
ηαβ −

1

E
η0βpα

)
− i

4E2
b̂β(p)

(
ηαβ +

1

E

(
η0αpβ − η0βpα

))
+ iB̂β(p)

(
ηαβ +

1

E

(
η0αpβ − η0βpα

))
− 1

E
η0αB̂(p)

]
(4.238)

pβĤαβ(p) =
1

2

[
pαĤβ

β(p) + ib̂β(p)

(
ηαβ +

1

E

(
η0αpβ − η0βpα

))]
(4.239)

pαÂα(p) = − i
2
Ĥα

α(p)− iB̂f (p) , (4.240)

where the rather odd factors of η0α arise from the relations

∂αgp(x) = ipαgp(x) +
i

2E
η0αfp(x) (4.241)

∂αhp(x) = ipαhp(x) +
i

2E
η0αgp(x)− i

8E3
η0αfp(x) . (4.242)

In the ghost sector, the EOMs are given by

□cα − ∂αC = 0 □ c̄α = 0

□Cα + □∂αC = 0 □C̄α = 0

□C = 0 □C̄ + ∂αc̄
α −□∂αC̄

α = 0 ,

(4.243)

which, due to the lack of gauge symmetry in this sector12, leads to the straightforward
oscillator decompositions

cα(x) = ĉα(p)fp(x) + ĉαg (p)gp(x) + (h.c.)

Cα(x) = Ĉα(p)fp(x) + (h.c.)

C(x) = Ĉ(p)fp(x) + (h.c.)

(4.244)

c̄α(x) = ˆ̄cα(p)fp(x) + (h.c.)

C̄α(x) = ˆ̄Cα(p)fp(x) + (h.c.)

C̄(x) = ˆ̄C(p)fp(x) + ˆ̄Cg(p)gp(x) + (h.c.) ,

(4.245)

where the two double-pole oscillators are fixed by

ĉαg (p) = ipαĈ(p) ˆ̄Cg(p) = −ipαˆ̄cα(p) . (4.246)

12It is in fact possible to have extra gauge symmetries appear in the ghost sector, in which case
additional “ghosts for ghosts” must be added into the BRST construction (see [291] for an example of
this kind of theory). Our second-order first-class parameterization of CG, as well as our chosen gauge
conditions, allows us to avoid this complication here.
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Due to the presence of non-zero higher pole oscillators in some of our decompositions,
the (anti)commutators between each of our Heisenberg fields are not as trivial to derive as
they were in the broken phase study (see the discussion around (4.137)). Here, they must
determined from the propagator matrix (4.222) using the replacements (4.76), restated
here for convenience:

ipα
−p2

→ ∂xαD(x− y)
ipα

(−p2)2
→ ∂xαE(x− y)

ipα
(−p2)3

→ ∂xαF (x− y) . (4.247)

One should recall the role of D(x−y), E(x−y), and F (x−y) as invariant delta functions
corresponding to the first, second, and third powers of the d’Alembertian, which appear
after passing to the continuum limit (4.78) (see Appendix A). With these considerations,
we find the non-zero bosonic field propagators

[hαβ(x), hγδ(y)] =
(
2δαβγδ − ηαβηγδ

)
E(x− y)−Dx

αβγδF (x− y)

[hαβ(x), Hγδ(y)] =
(
2δαβγδ − ηαβηγδ

)
D(x− y)−Dx

αβγδE(x− y)

[hαβ(x), bγ(y)] =
(
ηαγ∂

x
β + ηβγ∂

x
α

)
D(x− y)

[hαβ(x), B(y)] = ηαβD(x− y) + 2∂xα∂
x
βE(x− y)

[Hαβ(x), Bγ(y)] =
(
ηαγ∂

x
β + ηβγ∂

x
α

)
D(x− y)

[Aα(x), Aβ(y)] = ηαβD(x− y)

[Aα(x), Bβ(y)] = ηαβD(x− y)

[Aα(x), B(y)] = −∂xαD(x− y) ,

(4.248)

whereDαβγδ is the differential operator defined in (4.119). The non-zero anti-commutators
in the ghost sector then follow in a similar fashion:

{cα(x), c̄β(y)} = iηαβD(x− y)
{
cα(x), C̄(y)

}
= i∂xαE(x− y){

Cα(x), C̄β(y)
}

= iηαβD(x− y)
{
Cα(x), C̄(y)

}
= −i∂xαD(x− y){

C(x), C̄(y)
}

= iD(x− y) .

(4.249)

We are also interested in the non-zero (anti)commutators between simple-pole oscilla-
tors which may be derived by simply reading off the coefficients of −p−2 in the associated
propagators (4.222):

[
ĥαβ(p), Ĥ†

γδ(q)
]

=
(
2δαβγδ − ηαβηγδ

)
δ3(p− q)[

ĥαβ(p), b̂†γ(q)
]

=
(
ipαηβγ + ipβηαγ

)
δ3(p− q)[

ĥαβ(p), B̂†(q)
]

= ηαβδ
3(p− q)
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[
Ĥαβ(p), B̂†

γ(q)
]

=
(
ipαηβγ + ipβηαγ

)
δ3(p− q) (4.250)[

Âα(p), Â†
β(q)

]
= ηαβδ

3(p− q)[
Âα(p), B̂†

β(q)
]

= ηαβδ
3(p− q)[

Âα(p), B̂†(q)
]

= −ipαδ3(p− q)

{
ĉα(p), ˆ̄c†β(q)

}
= iηαβδ

3(p− q)
{
Ĉα(p), ˆ̄C†

β(q)
}

= iηαβδ
3(p− q){

Ĉα(p), ˆ̄C†(q)
}

= pαδ
3(p− q)

{
Ĉ(p), ˆ̄C†(q)

}
= iδ3(p− q) .

(4.251)

Naturally, these relations may be shown to be consistent with the field commutators
(4.248) and (4.249) after decomposing them in terms of oscillators. The BRST trans-
formation properties of each simple-pole oscillator may now also be obtained after de-
composing the field transformations (4.220) and employing the relations above, which
yields [

Q, ĥαβ
]

= pαĉβ + pβ ĉα − iηαβĈ[
Q, Ĥαβ

]
= pαĈβ + pβĈα + 2ipαpβĈ[

Q, Âα

]
= −iĈα

(4.252)

[
Q, b̂α

]
= 0

[
Q, B̂α

]
= 0

[
Q, B̂

]
= 0

{Q, ĉα} = 0
{
Q, Ĉα

}
= 0

{
Q, Ĉ

}
= 0{

Q, ˆ̄cα
}

= b̂α

{
Q, ˆ̄Cα

}
= B̂α

{
Q, ˆ̄C

}
= B̂ ,

(4.253)

where we have used the relation (4.60) to express these relations in the more convenient
commutator form. Finally, with all of the relations above, we have fully established
our desired quantization of SOCG whose total Fock space is spanned by the creation
operators in each of the simple-pole oscillators.

4.7.3 Unitarity

The quartet mechanism

We proceed with an analysis of unitarity in the quantum system defined by the
(anti)commutator relations (4.250) and (4.251), which begins with a classification of our
total space of quantum states in terms of physical transverse states and states that belong
to KO quartets. Since all of the fields in the present theory are massless, we may simplify
the upcoming calculations by selecting the particular Lorentz frame (4.73), recalling the
crucial fact that all (anti)commutators derived in this frame are also valid in general.
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Then, after eliminating twenty four components of ĥαβ, Ĥαβ, and Âα using the oscillator
gauge conditions (4.238–4.240), we may identify the six operators

âh,+ =
1

2

(
ĥ11 − ĥ22

)
âh,× = ĥ12 (4.254)

âH,+ =
1

2

(
Ĥ11 − Ĥ22

)
âH,× = Ĥ12 (4.255)

âA,1 = Â1 +
i

E
Ĥ13 âA,2 = Â2 +

i

E
Ĥ23 , (4.256)

which are BRST singlets ([Q, âh,j ] = [Q, âH,j ] = [Q, âA,k] = 0), as the annihilation oper-
ators corresponding to our expected six physical DOFs. Naturally, there is some freedom
in how one defines these operators in terms of the original oscillator components, how-
ever, the choices above are by far the most illuminating since they allow us to decompose
the simple-pole oscillators in terms of the transverse polarization tensors ε

j αβ
and ε

kα

where j = {+, ×} and k = {1, 2} (see Section 4.5.2):

ĥαβ(p) =
∑
j

ε
j αβ

(p)âh,j(p) + · · ·+ (h.c.) (4.257)

Ĥαβ(p) =
∑
j

ε
j αβ

(p)âH,j(p) + · · ·+ (h.c.) (4.258)

Âα(p) =
∑
k

ε
kα

(p)âA,k(p) + · · ·+ (h.c.) . (4.259)

With this, identification of âh,j , âH,j , and âA,k as the annihilation operators of physical
massless spin-2 and spin-1 fields is obvious.

The remaining annihilation operators (which appear in the “· · · ” above) must now
be redefined in terms of KO quartet participants in order to ensure that they do not
threaten unitary and represent only (unphysical) longitudinal quantum states. This may
be achieved by defining the nine BRST-non-trivial operators

(
ψ̂α

)
=


− iĥ00

2E + iĤ33
4E3 + Â3

2E2

− iĥ01
E

− iĥ02
E

iĥ33
2E + iĤ33

4E3 + Â3
2E2


(

Ψ̂α

)
=


−Â0

− iĤ01
E

− iĤ02
E

−Â3

 Ψ̂ =
Ĥ00

2E2
+
iÂ0

E
, (4.260)

in addition to the modified NL and anti-ghost annihilation operators

B̂ = B̂ − iE
(
B̂0 + B̂3

) ˆ̄C = ˆ̄C − iE
( ˆ̄C0 + ˆ̄C3

)
. (4.261)

These particular parameterizations have been chosen because they lead to the simple
BRST transformations
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[
Q, ψ̂α

]
= iĉα

[
Q, Ψ̂α

]
= iĈα

[
Q, Ψ̂

]
= iĈ[

Q, b̂α
]

= 0
[
Q, B̂α

]
= 0

[
Q, B̂

]
= 0

{Q, ĉα} = 0
{
Q, Ĉα

}
= 0

{
Q, Ĉ

}
= 0{

Q, ˆ̄cα
}

= b̂α

{
Q, ˆ̄Cα

}
= B̂α

{
Q, ˆ̄C

}
= B̂ ,

(4.262)

which may be derived from the oscillator transformations (4.252) and (4.253). It is
important to note that the map between the original oscillators and the new operators
as defined in (4.254–4.256), (4.260), and (4.261) is invertible, meaning that all original
components have been accounted for. This guarantees that we may express the complete
Fock space in terms of this new basis of states.

We may now consider the (anti)commutation relations between the operators in our
new quartet basis. Using the relations (4.250) and (4.251), the physical subspace is found
to be characterized by[

âh,j(p), â†H,j′(q)
]

= δjj′δ
3(p− q)

[
âA,j(p), â†A,j′(q)

]
= δjj′δ

3(p− q) , (4.263)

while in the quartet subspace we find[
ψ̂α(p), b̂†β(q)

]
= −ηαβδ3(p− q)

[
Ψ̂α(p), B̂†

β(q)
]

= −ηαβδ3(p− q)[
Ψ̂(p), B̂†(q)

]
= −δ3(p− q)

{
ĉα(p), ˆ̄c†β(q)

}
= iηαβδ

3(p− q){
Ĉα(p), ˆ̄C†

β(q)
}

= iηαβδ
3(p− q)

{
Ĉ(p), ˆ̄C†(q)

}
= iδ3(p− q) .

(4.264)

Every (anti)commutation relation not shown above is vanishing, with the exception of
some commutators between ψ̂α, Ψ̂α, and Ψ̂, however as previously mentioned, these kind
of relations between π0 states are irrelevant in the context of the KO quartet mechanism
[266].

In fact, with the transformation properties (4.262) and the (anti)commutation rela-
tions (4.263) and (4.264), we have everything we need to classify each non-transverse
state in our quantum theory in terms of the parent and daughter relationships{

|π0⟩
}

=
{
ψ̂†
α |0⟩ , Ψ̂†

α |0⟩ , Ψ̂† |0⟩
}

(4.265){
|δ1⟩

}
=
{
Q |π0⟩

}
=
{
iĉ†α |0⟩ , iĈ†

α |0⟩ , iĈ†f |0⟩
}

(4.266){
|π−1⟩

}
=
{
− ˆ̄c†α |0⟩ ,− ˆ̄C†

α |0⟩ ,− ˆ̄C† |0⟩
}

(4.267){
|δ0⟩

}
=
{
Q |π−1⟩

}
=
{
− b̂†α |0⟩ ,−B̂†

α |0⟩ ,−B̂† |0⟩
}
, (4.268)

which as outlined in Section 4.5.3, fully characterizes the quartet mechanism through the
relation (4.83) and guarantees that none of the states above will threaten the unitarity of
our quantum theory. However, just as we saw in the last study, this does not necessarily
mean we are safe from unitarity violation arising from the transverse physical subspace.
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Analysis of the physical subspace

We begin our analyses of unitarity in the physical subspace of CG by once again
appealing to the formalism established by Kugo, Ojima, and Nakanishi [266, 269] and
recall that their proof of unitarity in Yang-Mills theories rests on the assumption that
there exists an S-matrix on the physical Fock space Vtr that is pseudo-unitary, leaves the
vacuum invariant, and commutes with the gauge-fixed Hamiltonian and BRST charge
operators:

SS† = S†S = 1 (4.269)

S |0⟩ = S† |0⟩ = |0⟩ (4.270)

[H, S] = [Q, S] = 0 . (4.271)

Though we may make these assumptions in the present case as well, there is another key
component to the proof of unitarity – the physical Fock space comes equipped with a
positive-definite inner product,

⟨f |f⟩ > 0 ∀ |f⟩ ∈ Vtr , |f⟩ ≠ 0 . (4.272)

We have already seen that this last feature is not found in the broken phase calculation
carried out in the last section and the case is no different here. Specifically, we are
referring to the spin-2 commutation relations in (4.263) which are off-diagonal in nature
and thus represent an indefinite inner product, despite the lack of a relative minus sign.
It should be noted that the presence of an indefinite inner product does not necessarily
mean that the associated theory lacks unitarity, rather that the issue becomes subtle
and must be treated rigorously. The subject of indefinite metric QFT has been studied
in the past (Nakanishi’s work [292] is particularly useful for what follows), though it is
certainly not yet understood to the level of standard positive-definite QFT. The task
of establishing a complete solution to the ghost problem in this context is thus a truly
monumental task and beyond the scope of this work. We will instead content ourselves by
making an important step in the right direction through a new view on where unitarity
breaks down in CG, which is possible thanks to the novel covariant quantization of the
theory that we performed in the previous sections.

Before proceeding with this goal in mind, we note the simplifying fact that a distinct
portion of our physical subspace is in fact easily shown to be unitary based on the
requirements above. This is of course the subspace of spin-1 states corresponding to âA,k

which possesses the positive-definite inner product

⟨0|âA,k(p)â†A,k′(q)|0⟩ = δkk′δ
3(p− q) , (4.273)

and since there are no non-vanishing commutators between âA,k and âh,j or âH,j , we will
set these states aside for the rest of our analyses.

The gauge-fixed Hamiltonian H corresponding the subspace of Vtr spanned only by
âh,j and âH,j may be derived by solving the Heisenberg equation

[H, ϕa(x)] = −i∂0ϕa(x) , (4.274)
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where ϕa(x) = {hαβ(x), Hαβ(x)}. After decomposing each field in terms of its oscillators
and dropping all quartet members, the right side of this equation may be evaluated with
the relations

i∂0fp(x) = Efp(x) i∂0gp(x) = Egp(x) +
1

2E
fp(x) . (4.275)

Then, after assuming a logical ansatz for the form of H and evaluating the commutation
relations on the left side of the Heisenberg equation, we arrive at the definition

H =

∫
d3p

∑
j

[
E
(
â†h,j(p)âH,j(p) + â†H,j(p)âh,j(p)

)
+

1

2E

(
â†H,j(p)âH,j(p)

)]
(4.276)

which is normal-ordered with respect to the (+) vacuum as defined by

âh,j(p) |0⟩ = âH,j(p) |0⟩ = 0 , (4.277)

and commutes with the spin-2 operators according to[
H, â†h,j(p)

]
= Eâ†h,j(p) +

1

2E
âH,j(p)

[
H, â†H,j(p)

]
= Eâ†H,j(p) . (4.278)

We are interested in the one-particle eigenstates of H, which we denote as |p, j⟩, that
may be solved for using an ansatz consisting of a linear combination of creation operators
acting on the vacuum,

|p, j⟩ =
(
châ

†
h,j(p) + cH â

†
H,j(p)

)
|0⟩ , (4.279)

where ch and cH are arbitrary constants that are determined by acting on the ansatz
state with the Hamiltonian (4.276). This yields the eigenvalue equation

H |p, j⟩ = E
(
châ

†
h,j(p) +

(
cH +

ch
2E2

)
â†H,j(p)

)
|0⟩ = λE |p, j⟩ , (4.280)

which fixes ch = 0 and cH = 1 after normalizing the eigenvalue to λE = E. This implies
the existence of just a single one-particle energy eigenstate, making the generalization to
n-particle eigenstates straightforward:

|pn, jn⟩H =
1√
n!
â†H,j1

(p1) · · · â†H,jn
(pn) |0⟩ (4.281)

H |pn, jn⟩H =
n∑

i=1

(
Ei

)
|pn, jn⟩H . (4.282)

The fact that there is no one-particle eigenstate associated with â†h,j comes as a result of

the action of the last term in the Hamiltonian (4.276), which effectively converts â†h,j to

â†H,j . However, as it turns out, the one-particle state corresponding to â†H,j is only one
part of the complete set of eigenstates.
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There is actually a unique way to construct a particular multi-particle eigenstate13

containing both spin-2 operators that satisfies an eigenvalue equation analogous to (4.280).
To derive the precise form of this state, let us consider some general state containing at
least one â†h,j ,

· · · â†h,j(p) · · · |0⟩ , (4.283)

where the · · · represent an arbitrary number of â†h,j and at least one â†H,j operator. Acting

on (4.283) with H, one finds that the last term in H converts â†h,j(p) to (4Ep)−1â†H,j(p),
which should somehow be canceled if the eigenvalue equation is to be satisfied. This
turns out to be possible if we separate an â†H,j(q) from · · · in (4.283) so that it becomes

· · ·Epâ
†
h,j(p)â†H,j(q) · · · |0⟩ . (4.284)

The factor of â†h,j(p) may then be canceled by the analogous conversion that comes from
the negative counterpart of this state,

(−1) · · ·Eqâ
†
h,j(q)â†H,j(p) · · · |0⟩ . (4.285)

All together, one finds that the (normalized) linear combination of â†h,j and â†H,j given
by

â†hH,j(p, q) =
1

2

(√
Ep/Eq â

†
h,j(p)â†H,j(q)−

√
Eq/Ep â

†
h,j(q)â†H,j(p)

)
(4.286)

is a unique eigenstate with eigenvalue (Ep + Eq).
We may calculate the norm of this new state with the commutation relations (4.263),

⟨0| âhH,j(p, q)â†hH,j′(p
′, q′) |0⟩ = δjj′D(p, q;p′, q′) , (4.287)

where we have defined the shorthand

D(p, q;p′, q′) =
1

2

(
δ3(p− q′)δ3(q − p′)− δ3(p− p′)δ3(q − q′)

)
. (4.288)

Finally with all of the above, we may express the most general m,n-particle eigenstate
of our Hamiltonian as

|pm, qm, jm;kn, ln⟩H =

1√
m!n!

â†hH,j1
(p1, q1) · · · â†hH,jm

(pm, qm)â†H,l1
(k1) · · · â†H,ln

(kn) |0⟩ , (4.289)

where the corresponding eigenvalues are given by
∑m

i=1(Epi + Eqi) +
∑n

j=1Ekj
. The

complete set of all these states forms a basis on the space of H eigenstates which we
denote as VH.

13We thank Taichiro Kugo for pointing out the existence of this additional eigenstate.
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The existence of the rather odd multi-particle operator âhH,j is obviously related to
the off-diagonal nature of the spin-2 inner product, a feature that has another interesting
consequence. Since the commutator between âH,j and â†H,j vanishes, so does the scalar
product between the n-particle state and its dual, H⟨pn, jn|. In fact, the only general
non-vanishing scalar product that we may construct on our spin-2 subspace is between
the n,m-particle eigenstate (4.289) and its “off-diagonal dual” that is given by the the
bra version of (4.289) with H ↔ h,

h

〈
p′
m, q

′
m, j

′
m;k′

n, l
′
n

∣∣ =

1

(m!n!)1/2
⟨0| âhH,j′1

(p′
1, q

′
1) · · · âhH,j′m(p′

m, q
′
m)âh,l′1(k′

1) · · · âh,l′n(k′
n) . (4.290)

It is easy to see that the subspaces spanned by (4.289) and (4.290) are isomorphic, thus
implying that the only non-vanishing scalar product involving general eigenstates is given
by 〈

p′
m, q

′
m, j

′
m;k′

n, l
′
n

∣∣pm, qm, jm;kn, ln
〉

h H
=

1

m!n!

[(
δj′1j1 · · · δj′mjmD(p′

1, q
′
1;p1, q1) · · ·D(p′

m, q
′
m;pm, qm) + permutations

)
×
(
δl′1l1 · · · δl′nlnδ

3(k′
1 − k1) · · · δ3(k′

n − kn) + permutations
)]
. (4.291)

With this we may finally construct the all-important unit operator on the space of the
H eigenstates,

1 =
∑
m,n

∑
jm,ln

∫
d3pmd3qmd3kn(−1)m |pm, qm, jm;kn, ln⟩H h⟨pm, qm, jm;kn, ln| , (4.292)

where it is understood that the m,n = 0 term gives the vacuum contribution. We note
that the factor of (−1)m above appears as a result of the multi-particle eigenstate (4.286),
whose existence follows from the indefinite inner-product on the space of spin-2 states.

Failure of the probability interpretation

After constructing the Hamiltonian operator, deriving the associated eigensystem,
and establishing a unit operator, we are finally in a position to take a deeper look at
unitarity through its definition in terms of the S-matrix. We begin by recalling the crucial
assumption of asymptotic completeness that underlies the LSZ formalism,

V in ≃ Vout ≃ V and SV = S†V = V , (4.293)

and note that it must also apply to VH ⊂ Vtr as the only subspace of spin-2 energy
eigenstates. This feature, paired with the pseudo-unitarity of S and the facts that V inH
and VoutH are Hamiltonian-invariant subspaces, allows us to write

SV in(out)H = V in(out)H , (4.294)
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given that the Hamiltonian commutes with S. We point out all of these features because
together they imply that the unitarity of S on V inH may be expressed in terms of either
of the general statements

S†V inH = V inH ⇔ S†
1S = S1S† = 1 . (4.295)

Our goal now will be to explicitly check if this last statement will allow us to define
a sensible notion of quantum probability in the usual way. To this end we recall the unit
operator defined in (4.292) and consider the state

|pm, qm, jm;kn, ln; in⟩H = 1
out |pm, qm, jm;kn, ln; in⟩H =∑

m′,n′

∑
j′
m′ ,l

′
n′

∫
d3p′

m′d3q′m′d3k′
n′ (−1)m

′ ∣∣p′
m′ , q′m′ , j′m′ ;k′

n′ , l′n′ ; out
〉
H
Sαβ , (4.296)

where we have restored the suppressed “in” and “out” designations (âh,j → âinh,j , etc.)

which identify 1
out as the unit operator written purely in terms of “out” states. Here we

also see the appearance of the explicit S-matrix element

Sαβ = ⟨β; out|α; in⟩h H , (4.297)

which represents the transition amplitude between states labeled by

α =
(
pm, qm, jm;kn, ln

)
β =

(
p′
m′ , q′m′ , j′m′ ;k′

n′ , l′n′
)
. (4.298)

With all of these considerations, the usual consistent interpretation of probability
may be expressed by

1 = ⟨α; in|α; in⟩h H
?
= ⟨α; in|S†

1S|α; in⟩h H , (4.299)

where we have used the relation (4.295). This is the same type of expression as (4.167)
that was used to confirm unitarity violation in the broken phase theory, though here the
first equality is actually satisfied as a result of the inner product (4.291). Here we are
interested in the last equality which would establish unitarity and is thus under scrutiny.
With the definition of the unit operator in (4.292), this last equality may be written
explicitly as

1
?
=
∑
m,n

∑
jm,ln

∫
d3pmd3qmd3kn

(
(−1)m h⟨α; in|S† |pm, qm, jm;kn, ln; in⟩H

× h⟨pm, qm, jm;kn, ln; in|S |α; in⟩H
)
, (4.300)

and we encounter an integrand that is clearly not positive-definite for general n and m
as a result of the troublesome factor of (−1)m. This feature then implies that

h⟨α; in|S† |pm, qm, jm;kn, ln; in⟩H ̸= H⟨α; in|S† |pm, qm, jm;kn, ln; in⟩h , (4.301)
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which in turn means that unitarity is violated, as the integrand of (4.300) may not be
interpreted as the probability for some initial state α to transition to a final (2m + n)-
particle state as would be required.

We thus arrive at a new interpretation of the ghost problem in the context of indefinite
metric QFT. It should come as no surprise that, despite the fact that the inner product
(4.291) is non-negative, its off-diagonal and thus indefinite nature leads to a conclusion
that is similar to that of the broken theory of Section 4.6, where the metric on spin-2
states is diagonal, but still indefinite. In the present case, we see the ghost problem
arise through a different route – the off-diagonal indefinite metric structure implies the
presence of the multi-particle Hamiltonian eigenstate (4.286) whose existence generates
the factor of (−1)m that appears in the unit operator (4.292), and ultimately leads
to a violation of perturbative unitarity through a failure to confirm (4.300). While
this outcome was anticipated, to the best of our knowledge, this marks the first time
that unitarity violation has been established in Weyl’s conformal gravity within the
framework of the covariant operator formalism and we anticipate that this new view on
the ghost problem in quantum gravity will lead to new avenues of theoretical research
and, hopefully, a satisfying resolution.
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Chapter 5

Conclusion

5.1 Summary

In this thesis we have constructed physical theories under the guiding principle of
scale invariance that may help to resolve some of the most pressing issues in high energy
physics, and have also investigated the new exciting challenges that these theories present.
The Higgs sector hints strongly towards fundamental scale invariance due to the simple
fact that it possesses the only SI-violating term in the SM. The presence of this term raises
theoretical issues regarding the stability of the measured value of the Higgs mass under
radiative corrections when one considers extensions to the SM, however, these issues
may be resolved if the Higgs mass is not a fundamental constant but is instead generated
dynamically by quantum effects. The most straightforward renormalizable extension of
Einstein’s General Relativity is also naturally scale-invariant with the exception of a
single term in its action that might be generated in the same fashion, while further clues
pointing towards SI come from cosmology through the approximately scale-invariant
primordial fluctuations measured in the CMB. Motivated by the goal of establishing a
combined theory of the particle physics and gravity that is valid up to arbitrary energies
and reflects the unprecedented success of the Standard Model as described by quantum
field theory, one is thus naturally drawn to the idea that our universe might be insensitive
to changes in scale at the most fundamental level. Embracing this paradigm comes
with added complications however, since scale-invariant gravity implies the presence of
physical spin-2 ghosts that threaten unitarity and must be dealt with carefully if the
theory as a whole is to be considered valid.

Following this line of reasoning, we began in Chapter 2 by constructing a model
that couples the SM Higgs sector with a vanishing tree-level mass parameter µH = 0,
a BSM sector containing two additional scalars ϕ and σ as well as a family of sterile
right-handed neutrinos N , and a Jordan frame gravitational sector composed of the
squared Weyl tensor and Ricci scalar. Besides the usual quartic scalar self-interactions,
this model contains portal couplings between each of the scalars, portals between the
BSM scalars and the sterile neutrinos, a mixed Higgs-sterile-SM neutrino portal, and
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non-minimal couplings between each scalar field and the Ricci scalar. All of these terms
are consistent with the SM gauge symmetry, diffeomorphism invariance, and global SI
thanks to the lack of massive constants. However, after including radiative corrections
from the scalar sector we found that the one-loop effective potential possesses a non-
zero minimum in the ϕ direction. The presence of the finite VEV vϕ in the quantum
effective action gives a mass to each field that ϕ couples to and thus implies that SI
is spontaneously broken in line with the Coleman(Gildener)-Weinberg mechanism [11,
151]. While the induced mass of σ is so large that we were able to safely integrate it
out of the action, the non-zero VEV implies other important physical ramifications; it

gives rise to the Planck scale MPl ∼ β
1/2
ϕ vϕ and thus to an Einstein-Hilbert term, and

it generates a mass mN = yϕvϕ for the sterile neutrinos. We also assumed a small but
technically natural Yukawa coupling yϕ ≈ 10−11 that implies mN ≈ 107 GeV, which then
allowed for a scale-invariant realization of the “neutrino option” wherein light masses are
generated for the SM neutrinos and EW SSB is triggered. This in turn generates a Higgs
mass and all of the other SM masses in line with the standard prescription and implies
a deep connection between all of the widely separated energy scales that we observe in
Nature. It should be noted that some degree of fine-tuning was required for the Higgs
portal λHϕ to achieve the correct Higgs mass in this model, however, it was argued that
this value is at least safe from quantum corrections.

Chapter 3 of this work was dedicated to the study of how inflation can be incorporated
into scale-invariant theories of matter and gravity. Starting from the same quantum effec-
tive action that was derived in the Jordan frame in the previous chapter, we transformed
our theory to the Einstein frame in order to separate contributions from the scalaron
DOF hidden in the Jordan frame R2 term. After combining the scalaron terms with the
one-loop effective potential, we arrived at a two-field inflationary potential that exhibits
the valley structure displayed in Figure 3.2 if the scalaron’s mass is much larger than the
Hubble scale during inflation. We assumed that this was indeed the case and eliminated
the scalaron in favor of ϕ, which allowed us to derive an approximated one-field inflation-
ary potential with slow-roll behavior in the ϕ direction. After deriving expressions for
the standard slow-roll parameters with this potential, we generated predictions for CMB
observables for a wide range of input parameters (coupling constants) and found values
of the scalar spectral index in the range 0.964 ≲ ns ≲ 0.975 and a tensor-to-scalar ratio
r ≲ 0.08. The complete display of our results in Figure 3.3 indicates that the inflation-
ary period predicted by our scale-invariant model is consistent with the most stringent
modern observations made by the Planck and BICEP/Keck collaborations [42–44].

We took a look at another realization of scale generation and inflation in the second
part of Chapter 3. In the previous model we assumed, as other analogous studies often
do, that the Weyl squared coupling constant was negligibly small so that the Weyl term
played no important role. This assumption is usually made to avoid the complications
that arise from the massive spin-2 ghost DOFs that are unavoidably introduced by the
Weyl term, however, we found that this ghost is in fact able to effectively fill the role
previously played by the scalar σ, thus rendering the introduction of this field super-
fluous. We derived the one-loop effective potential containing contributions from ϕ and
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the massive ghost part of the graviton hαβ which, following the same kind of analyses
performed in the previous chapter, allowed us to spontaneously break global SI, dynami-
cally generate all important mass scales, and predict inflationary parameters that nicely
satisfy modern constraints (see Figure 3.4). In short, it was found that removing one as-
sumption from the original scale-invariant model allowed us to achieve analogous or even
preferable predictions while simultaneously avoiding the need to include an extra field
into the model by hand. However, allowing even very massive ghosts (mh ≈ 10−2MPl)
to propagate in any model has other important ramifications that must be addressed.

The inclusion of physical effects generated by spin-2 ghosts in the second part of
Chapter 3 served as a bridge to Chapter 4 where we looked into these ramifications in
great detail. We began by demonstrating how actions containing four derivatives acting
on their fields generally exhibit a pathology known as the Ostrogradsky instability at
the classical level [98]. The quantum analog of this pathology, the ghost problem, was
then shown to present in terms of either negative energy eigenvalues or negative norms
between ghost states depending on how one chooses to define the quantum vacuum. We
argued that consistent application of the Feynman prescription requires the negative
norm choice of vacuum and we saw an example of how the standard interpretation of
quantum probability can break down when such negative norms are present.

After gaining this understanding of what the ghost problem actually entails, we re-
viewed several of the most promising attempts to address it that have appeared in the
literature, and investigated the precise nature in which the ghost problem appears in
scale-invariant theories of quadratic gravity. This is a rather complicated task due to the
presence of gauge symmetries so, in an effort to make the process more straightforward,
we rewrote both globally scale-invariant QG in the spontaneously broken phase and
locally scale-invariant (conformal) QG in the unbroken phase in second-order fashions
that clearly exposes their propagating DOFs. This was achieved via the introduction
of auxiliary and Stückelberg fields, the latter of which were introduced along with ad-
ditional gauge symmetries that allowed the theories to be expressed in terms of purely
first-class constraints in phase space. Rewriting QG in this way made it clear how a
spin-2 analog of the Higgs mechanism can manifest when conformal gravity is coupled to
an external scalar field, and allowed for a more straightforward quantization of each re-
alization of scale-invariant QG. We employed the covariant operator formalism of Kugo,
Ojima, and Nakanishi [266, 269] to rigorously establish these quantum theories through
the introduction of BRST symmetry [260–262] and subsequently identified each theory’s
physical transverse subspace of states by appealing to the quartet mechanism [271–274].
In the broken phase theory, we encountered the expected negative commutation relation
between spin-2 ghosts that leads to a violation of unitarity in the theory as a whole.
However, in this case we also made the crucial observation that unitarity was in fact
satisfied on a particular subspace of the complete physical Fock space and defined the
notion of “conditional unitarity” that describes how quantum QG may be considered a
valid effective field theory up to energies nearing the Planck scale, even in the presence
of ghosts. Analysis of the unbroken quantum theory was considerably more complicated
due to the inherently off-diagonal nature of its commutation relations in the spin-2 sec-
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tor, as these imply the existence of multi-particle Hamiltonian eigenstates with no simple
one-particle analogs. However, a breakdown of the probability interpretation was also
encountered in this theory, which came from the unusual way in which the multi-particle
states manifest in the unit operator.

5.2 Discussion

Before concluding it is important that we address several unexplored topics that
relate to the work in this thesis as well as the the future avenues of research that it
has made available. In Section 3.1 we briefly mentioned that non-Gaussian primordial
fluctuations would be neglected in our analysis due to the fact that they are known to
be heavily suppressed in single-field inflationary models, however, it is also expected
that they manifest more strongly in both the CMB anisotropy and measurements of
large-scale structure when one considers multi-field theories [180, 181]. Though the
inflationary potential we derived in [1] is well-approximated as a single field potential
after confining it to a valley structure under the condition (3.23), the most general theory
does strictly speaking contain two scalars fields in ϕ and the scalaron S, which may lead
to relevant non-Gaussianities when the valley condition is relaxed. The influence of spin-
2 DOFs on the inflationary potential may also amplify the effect of non-Gaussanities
as pointed out in [214], which is particularly relevant for the second study of inflation
we carried out in [2]. Techniques for explicitly computing non-Gaussanities in these
contexts are already known [293] and we plan to employ them in the near future. This is
a particularly interesting line of work due to the fact that there are planned experimental
efforts to measure cosmological non-Gaussianities, namely the LSST [294], Euclid [295],
and LiteBIRD [296] projects, which would allow us to constrain our models with real
world data even further than they already have been.

There are also more theoretical topics that should be addressed in the future, first
among them being the role of the conformal anomaly [73–75, 155, 297] and the cosmo-
logical constant problem [298, 299]. In our globally scale-invariant theories the anomaly
generates a finite zero-point energy that should in principle match and cancel very pre-
cisely with contributions from all other sectors in order to reproduce the approximately
vanishing CC that we observe. We addressed this issue in our studies with the introduc-
tion of UΛ into the effective potential which we solved for under the assumption that such
cancellations would occur, but a more in-depth understanding of this process is certainly
warranted. It is also important to consider these kind of issues particularly carefully
with respect to conformal gravity where a non-zero conformal anomaly violates gauge
symmetry and thus implies a fundamental inconsistency [76]. Proponents of conformal
gravity as a fundamental theory argue that this inconsistency only arises when gravity is
treated independently from matter and that the conformal anomaly vanishes identically
to all orders when gravity and matter are treated on an equal footing and renormalized
together, no matter the overall field content [97, 300]. The formalism established in [3, 4]
puts us in a unique place to investigate this kind of idea in detail since, after establishing
a covariant operator quantization as we have, the conformal anomaly in CG manifests as



a BRST anomaly. In this picture, the Wess-Zumino consistency condition [301, 302] for
the conformal anomaly may in principle be understood in terms of BRST cohomology
[303], which should allow for regularization-scheme-independent statements to be made
about the issue that may be compared with other studies of the conformal anomaly in
CG [74, 121]. Even beyond the conformal anomaly, it should also be possible to make
more general regularization-independent statements about the renormalizability of QG
using our BRST/operator-based description [288].

We also plan to take a deeper look into the general solutions to the ghost problem
introduced in Section 4.4 through the lens of our quantum QG formalism. It would be
particularly interesting to investigate Donoghue and Menezes’ unstable ghost solution
[102–104] from an operator-based perspective, which we recall rests heavily on Veltman’s
assertion that unstable particles do not correspond to asymptotic states [236]. Veltman’s
proof is based on a super-renormalizable scalar theory, and though his work has already
been extended for application to gauge theories with complex pole masses [304] (which
we may also expect to appear in gravity in analogy to the Lee-Wick models [99, 100]),
it is not clear whether the same prescription of avoiding cuts through unstable particles
applies when those unstable particles are ghosts. To be specific, the conventional iϵ
prescription that enters into Veltman’s proof assumes that the unstable particle’s pole
appears in the left upper-half of the complex p2 plane, while it is known from the Lee-
Wick model, fakeon prescription, and Donoghue’s own work that this pole is shifted for
ghosts [99, 103, 106]. We also expect that an operator-based view would allow one to
more easily check that the probability interpretation is not spoiled in this unstable ghost
solution like it is in the toy model of Section 4.2.2, as this kind of behavior is tricky or
perhaps even impossible to see in a purely diagram-based approach.

Bender’s PT -symmetric take on the ghost problem [109–114] also lends itself quite
nicely to our operator quantization of QG. Though PT -QFT is still in its infancy, more
than enough work has already been done for the idea to be appealing and the fact that
we are able to derive precise expressions for the gauge-fixed Hamiltonian in QG (see
(4.161) and (4.276)) means that we are in a position to make more precise statements
about PT -symmetric gravity without the need to resort to the usual toy models. Beyond
the many theoretical aspects of PT -QFT that still need to be worked out, it would also
be interesting to explore phenomenological implications for the dark matter and dark
energy problems that may result from adopting PT theory and its assertion that the
spacetime metric is complex.





Appendix

A Plane waves and Green’s functions

In this appendix, we provide a summary of the definitions and properties of plane
wave solutions, invariant delta functions, and propagators introduced in Section 4.5.2
as part of the LSZ formalism. Our construction closely follows that presented in [266],
though we have extended the formalism to include quadrupole functions since these may
appear in the quantization of second-order quadratic gravity depending on what gauge
choice is considered.

The plane wave solution to the Klein-Gordon equation (□−m2)fp(x) = 0, normalized
in a finite volume V , is represented by

fp(x) =
1√

2EV
eipx , (A.1)

where E2 = |p|2+m2 and px = −E x0+p ·x. The plane wave solutions for double-poles,
triple-poles, and quadruple-poles, denoted as gp(x), hp(x), and kp(x) respectively, are
given by

gp(x) = − 1

2
√

2EV

(
1

2E2
+
ix0

E

)
eipx (A.2)

hp(x) =
1

8
√

2EV

(
5

4E4
+

2ix0

E3
− (x0)2

E2

)
eipx (A.3)

kp(x) = − 1

32
√

2EV

(
15

4E6
+

11ix0

2E5
− 3(x0)2

E4
− 2i(x0)3

3E3

)
eipx . (A.4)

These functions are related to one another via successive application of powers of the
Klein-Gordon operator according to

(□−m2)gp(x) = fp(x) (□−m2)2gp(x) = 0

(□−m2)hp(x) = gp(x) (□−m2)3hp(x) = 0

(□−m2)kp(x) = hp(x) (□−m2)4kp(x) = 0

(A.5)

and they satisfy the orthogonality relations
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∫
d3x f∗p(x)

←→
∂0 fq(x) = −iδp,q (A.6)∫

d3x
(
f∗p(x)

←→
∂0 gq(x) + g∗p(x)

←→
∂0 fq(x)

)
= 0 (A.7)∫

d3x
(
f∗p(x)

←→
∂0 hq(x) + h∗p(x)

←→
∂0 fq(x) + g∗p(x)

←→
∂0 gq(x)

)
= 0 (A.8)∫

d3x
(
f∗p(x)

←→
∂0 kq(x) + k∗p(x)

←→
∂0 fq(x)

+g∗p(x)
←→
∂0 hq(x) + h∗p(x)

←→
∂0 gq(x)

)
= 0 , (A.9)

where we use the shorthand A
←→
∂0B = A∂0B −B∂0A.

The plane wave solutions fp(x), gp(x), and hp(x) allow us to construct the associated
positive frequency invariant delta functions

D(+)(x− y) =
∑
p

fp(x)f∗p(y) =
∑
p

1

2EV
eip(x−y) (A.10)

E(+)(x− y) =
∑
p

(
fp(x)g∗p(y) + gp(x)f∗p(y)

)
= −

∑
p

1

4EV

(
1

E2
+

i

E
(x0 − y0)

)
eip(x−y) (A.11)

F (+)(x− y) =
∑
p

(
fp(x)h∗p(y) + hp(x)f∗p(y) + gp(x)g∗p(y)

)
=
∑
p

1

16EV

(
3

E4
+ i

3

E3
(x0 − y0)− (x0 − y0)2

E2

)
eip(x−y) (A.12)

G(+)(x− y) =
∑
p

(
fp(x)k∗p(y) + kp(x)f∗p(y) + gp(x)h∗p(y) + hp(x)g∗p(y)

)
= −

∑
p

1

64EV

(
5

E6
+ i

5

E5
(x0 − y0)

−2(x0 − y0)2

E4
− i(x0 − y0)3

3E3

)
eip(x−y) , (A.13)

which also naturally represent solutions for increasing powers of the Klein-Gordon oper-
ator:

(□−m2)D(+)(x− y) = 0

(□−m2)E(+)(x− y) = D(+)(x− y)

(□−m2)F (+)(x− y) = E(+)(x− y)

(□−m2)G(+)(x− y) = F (+)(x− y) .

(A.14)



The invariant delta functions that arise in the commutators (4.137), (4.248), and (4.249)
are constructed from these functions and their negative frequency counterparts D(−) =
(D(+))∗ (and similarly for the others),

D = D(+) −D(−) E = E(+) − E(−)

F = F (+) − F (−) G = G(+) −G(−) .
(A.15)

In the continuum limit (4.78) where V →∞, the sums over momentum are replaced
with an integral over three dimensional momentum space. In this case, the invariant
delta functions take the forms

D(x− y) =

∫
d3p

1

2E(2π)3

(
eip(x−y) − (h.c.)

)
(A.16)

E(x− y) = −
∫

d3p
1

4E(2π)3

[(
1

E2
+ i

x0 − y0

E

)
eip(x−y) − (h.c.)

]
(A.17)

F (x− y) =

∫
d3p

1

16E(2π)3

[(
3

E4
+ i

3(x0 − y0)
E3

−(x0 − y0)2

E2

)
eip(x−y) − (h.c.)

]
(A.18)

G(x− y) = −
∫

d3p
1

64E(2π)3

[(
5

E6
+ i

5

E5
(x0 − y0)− 2(x0 − y0)2

E4

− i(x
0 − y0)3

3E3

)
eip(x−y) − (h.c.)

]
, (A.19)

which in turn satisfy

D(x)
∣∣
x0=0

= 0 ∂0D(x)
∣∣
x0=0

= −iδ(x)

∂n0E(x)
∣∣
x0=0

= 0 (n = 0, 1, 2) ∂30E(x)
∣∣
x0=0

= iδ(x)

∂n0F (x)
∣∣
x0=0

= 0 (n = 0, . . . , 4) ∂50F (x)
∣∣
x0=0

= −iδ(x)

∂n0G(x)
∣∣
x0=0

= 0 (n = 0, . . . , 6) ∂70G(x)
∣∣
x0=0

= iδ(x) .

(A.20)

One may also express Green’s functions for the Klein-Gordon operator (Feynman prop-
agators) in terms of the invariant delta functions after including Heaviside functions in
the standard way,

DF (x) = θ(x0)D(+)(x) + θ(−x0)D(−)(x) = −i
∫

d4p

(2π)4
eipx

p2 +m2 − iϵ
(A.21)

EF (x) = θ(x0)E(+)(x) + θ(−x0)E(−)(x) = i

∫
d4p

(2π)4
eipx

(p2 +m2 − iϵ)2
(A.22)

FF (x) = θ(x0)F (+)(x) + θ(−x0)F (−)(x) = −i
∫

d4p

(2π)4
eipx

(p2 +m2 − iϵ)3
(A.23)

GF (x) = θ(x0)G(+)(x) + θ(−x0)G(−)(x) = i

∫
d4p

(2π)4
eipx

(p2 +m2 − iϵ)4
. (A.24)



The last important piece of this covariant LSZ construction is the integro-differential
operator

E(η) = −1

2

(
∇2
)−1(

x0∂0 − η
)
, (A.25)

where η is an arbitrary dimensionless constant. This operator acts as an inverse d’Alembertian
specifically when it acts on solutions to the d’Alembert equation,

□E(η)fp(x) = fp(x) , (A.26)

and also functions as an inverse d’Alembertian when applied to the propagators shown
above when m = 0. It is also important to note that, for the Feynman propagators
specifically, the arbitrary constant is fixed to η = 1. In short, one may use (A.25) and
the definitions above to show

□E(η)D(±)(x) = D(±)(x) □E(1)DF (x) = DF (x) . (A.27)

B The LSZ reduction formula in CG

This appendix is devoted to a demonstration of one of the most beneficial features
of the second-order operator-based formulation of quantum gravity that we established
in the main text, namely, that it allows us to define, and eventually calculate, precise S-
matrix elements. We follow the work presented in [4] and focus on the more complicated
case with off-diagonal propagators that appears in conformal gravity with unbroken
symmetry, though the same kind of derivations may easily be generalized to the simpler
case of quadratic gravity with spontaneously broken global scale symmetry as well.

The expressions of interest may be defined by appealing to the LSZ reduction formula
which expresses the matrix elements

Sαβ = ⟨β; out|α; in⟩h H , (B.1)

where α and β are arbitrary in and out eigenstates, in terms of time-ordered correlation
functions [267]. To derive the reduction formula, we must first invert the oscillator
decompositions of our spin-2 fields using the relation (4.69) in order to express the state
operators in terms of asymptotic Heisenberg fields. Recalling (4.229) and (4.230) paired
with (4.257) and (4.258), we may restate these decompositions in the convenient forms

hasαβ(x) =
∑
p,j

(
ε
j αβ

(p)âash,j(p)fp(x) + ε
j αβ

(p)âasH,j(p)gp(x) + · · ·+ (h.c.)
)

(B.2)

Has
αβ(x) =

∑
p,j

(
ε
j αβ

(p)âasH,j(p)fp(x) + · · ·+ (h.c.)
)
, (B.3)

where we have relegated all unphysical quartet and (physical but currently irrelevant)
âA,j(p) contributions to the “· · · ”, as they do not play a part in the H-h scattering events



of interest. Using the relation ε∗j αβεj′
αβ = δjj′ the inverses of these decompositions are

then found to be given by

âash,j(p) = i

∫
d3x ε∗j

αβ(p)
(
f∗p(x)

↔
∂0h

as
αβ(x) + g∗p(x)

↔
∂0□h

as
αβ(x)

)
(B.4)

âasH,j(p) = i

∫
d3x ε∗j

αβ(p)f∗p(x)
↔
∂0H

as
αβ(x) , (B.5)

in line with (4.69).

As we are now working with 4D spacetime-dependent fields, it is beneficial to re-
express our 3D spatial integrals in 4D by recalling the presence of the inherent asymptotic
limits and appealing to the fundamental theorem of calculus,(

lim
x0→∞

− lim
x0→−∞

)∫
d3xF (x) =

∫ ∞

−∞
dx0∂0

∫
d3xF (x) =

∫
d4x ∂0F (x) , (B.6)

which paired with the relations

∂20fp = ∇2fp ∂20gp = ∇2gp − fp , (B.7)

allows us to write all derivatives in terms of □ and express time-ordered products of state
operators in terms of time-ordered products of fields as

âout †H,j (p)T (· · · )− T (· · · )âin †
H,j(p) = i

∫
d4x ε

j αβ
(p)fp(x)□T

(
Hαβ(x) · · ·

)
(B.8)

âouth,j (p)T (· · · )− T (· · · )âinh,j(p) = − i
∫

d4x ε∗j αβ(p)
[
f∗p(x)□T

(
hαβ(x) · · ·

)
+
(
g∗p(x)□− f∗p(x)

)
T
(
□hαβ(x) · · ·

)]
= −i

∫
d4x ε∗j αβ(p)g∗p(x)□T

(
Hαβ(x) · · ·

)
. (B.9)

We note that the last equality above comes after assuming that □ commutes with the T
product and using the graviton equation of motion

□hαβ(x) = Hαβ(x) + · · · , (B.10)

where the “· · · ” represent all of the irrelevant longitudinal (unphysical) terms in the
full EOM (4.225), as well as all O(αg) interaction terms which are also irrelevant in the
present context since they contribute no poles.

All of these preparations then finally allow us to express our S-matrix, in line with
Lehmann’s reduction formula [267] and Weinberg’s cluster decomposition principle [123],
as



〈
p′
m′ , q′m′ , j′m′ ;k′

n′ , l′n′ ; out
∣∣pm, qm, jm;kn, ln; in

〉
h H

=

m′∏
a=1

[
− 1

2

∫
d4x ′

ad4y′a

((
Ep′

a
/Eq′a

)1/2
ε∗
j′a

α′
aβ

′
a(p′

a)ε∗
j′a

γ′
aδ

′
a(q′a)g∗p′

a
(x′a)f∗q′a(y′a)

−
(
p′

a ↔ q′a
))

□x′
a
□y′a

] n′∏
b=1

[
− i
∫

d4z′b ε
∗
l′b

µ′
bν

′
b(k′

b)g
∗
k′
b
(z′b)□z′b

]

×
m∏
c=1

[
− 1

2

∫
d4x cd

4yc

((
Epc/Eqc

)1/2
ε
jc
αcβc(pc)εjc

γcδc(qc)gpc(xc)fqc(yc)

−
(
pc ↔ qc

))
□xc□yc

] n∏
d=1

[
− i
∫

d4zd εld
µdνd(kd)fkd

(zd)□zd

]
×Gα′

1···νn
(
x′1, · · · , zn

)
, (B.11)

where the Green’s function Gα′
1···νn

(
x′1, · · · , zn

)
in full form is given by

Gα′
1···νn

(
x′1, · · · , zn

)
=

⟨0|T
(
Hα′

1β
′
1
(x′1) · · ·Hα′

m′βm′ (x
′
m′) · · ·Hγ′

m′δ
′
m′

(y′m′) · · ·Hµ′
n′ν

′
n′

(z′n′)

×Hα1β1(x1) · · ·Hαmβm(xm) · · ·Hγmδm(ym) · · ·Hµnνn(zn)
)
|0⟩ . (B.12)

We note that the formalism developed in the body of this work also allows one to actually
calculate these Green’s functions, and thus also the matrix elements (B.11), at any finite
order in perturbation theory though such calculations are quite time-consuming and
beyond the scope of this work.
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des isopérimètres”. Mémoires de l’ Académie impériale des sciences de St . Pétersbourg
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