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Strahlungskorrekturen zur nichtlinearen Compton Streuung:

Diese Arbeit befasst sich mit Strahlungskorrekturen der nichtlinearen Compton
Streuung, ein Prozess aus der Quantenelektrodynamik mit starken Hintergrund-
feldern. Es wird ein allgemeiner Ausdruck für die Korrektur hergeleitet, die vom
Polarisationsoperator in einer ebenen Welle versursacht wird. Weiterhin wird
diese Korrektur im Rahmen einer Näherung untersucht, in der lokal ein konstantes
Feld angenommen wird, und es wird im Falle eines inkohärenten Prozesses der
Grenzfall von hohen Feldstärken untersucht. Inkohärente Prozesse sind solche,
die mit der Gesamtdauer des Laserpulses skalieren. Für die gesamte Klasse von
inkohärenten Korrekturen zur nichtlinearen Compton Streuung, welche nur aus
Prozessen in erster Ordnung der Feinstrukturkonstante ↵ bestehen, wird ebenfalls
der Grenzfall von hohen Feldstärken untersucht.

Radiative Corrections to Nonlinear Compton Scattering:

This thesis deals with radiative corrections concerning the strong field QED pro-
cess of nonlinear Compton scattering. A general expression for the corrections
due to the polarization operator in a plane wave background field is computed
and studied in the so called locally constant field approximation in which the
background field is locally treated as a constant crossed field. Also, the high field
limit which is the formal limit of having very high laser intensities, while keeping
the electron energy constant, of the polarization correction and other coherent
corrections is computed. Coherent processes are those that scale with the total
time in which an electron is exposed to the background field. For all such coher-
ent corrections to nonlinear Compton Scattering that are of first order in the fine
structure constant ↵, as well as their resummed expression, the high field limit is
computed.
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1 Introduction

Strong field QED is the application of the fundamental theory of quantum electro-
dynamics (QED) to a system in which a high intensity background electromagnetic
field is present. The theory of QED is regarded as one of the most successful theories
of physics as it has been tested in experiment to astonishing precision. An important
example is the electron magnetic moment for which measurements and theory have
agreement on up to 10 significant figures [19]. Even so, there have been only few
experiments so far to test the strong field regime of QED. The most notable strong
field QED experiment to date has been carried out at SLAC in 1996 where a 46.6
GeV electron beam was collided with a laser of 1018 W/cm2 peak intensity [11, 12].
The experiment succeeded at measuring the signature first order processes of strong
field QED which are nonlinear Compton Scattering and nonlinear Breit-Wheeler
pair production. Nonlinear Compton Scattering is the process in which an electron
emits a single high energy photon while traveling through the laser field. Nonlinear
Breit-Wheeler pair production is the process where a high energy photon, typically
one that was emitted by an electron before, decays into an electron positron pair.
Both these processes are ruled out in vacuum QED as they are incompatible with
energy-momentum conservation and they only become possible in strong field QED
due to the interaction of the electron with the background field. Fundamentally,
even the background electromagnetic field consists of photons and is described by
the laws of (vacuum) QED. However, if the photon field can be described by a co-
herent state of sufficiently high intensity, e.g. a high intensity laser field, it may be
well described classically. This approximation holds as long as each mode of the
photon field is occupied by a large amount N� � 1 of photons. The intensity I0

needed for this condition is determined by the laser frequency !0 and must fulfill
I0 � !

4
0 [27], where natural units with c = ~ = 1 are assumed. In the optical regime

(!0 ⇠ 1 eV), this corresponds to I0 � 6 ⇥ 105 W/cm2. The success of QED is
often accredited to the fact that the fine structure constant ↵ = e

2
/4⇡ ⇡ 1/137 is a

small number, thus making it possible to apply perturbation theory. Conceptually
it is easy to see that a sufficiently strong background field will change an electrons
trajectory from that in the vacuum case enough so that it cannot be viewed as a
small perturbation from the vacuum dynamics, and thus leading to the breakdown
of conventional perturbation theory. This issue is typically overcome by employing
the so called Furry picture in which one takes into account the interaction of the
electron and the background field by finding exact solutions to the interacting Dirac
equation. Thus by employing the Furry picture (typically a plane wave background
as an approximation for a laser is assumed) one can make use of perturbation theory
once again and expand observables in powers of the fine structure constant ↵. In this
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context, the first result of this thesis will be the calculation of an order ↵2 radiative
correction of nonlinear Compton Scattering which comes from the photon vacuum
polarization. In strong field QED however, it turns out that there are even more
instances where perturbation theory breaks down. For example, it is known that
tree level probabilities calculated within the Furry picture exceed unity if the laser
pulse length is long enough, thus indicating another breakdown of perturbation the-
ory. This breakdown can be circumvented by taking into account so called damping
effects due to incoherent processes. Yet another different instance where perturba-
tion theory breaks down is found in the limit of extremely high laser intensities.
According to the famous Ritus-Narozhny (RN) conjecture, in this regime the effec-
tive expansion parameter is ↵�2/3 where � is the quantum nonlinearity parameter
which is given by the field strength in units of the critical field Fcr = m

2
/|e| that an

electron of mass m feels in its own rest frame. Thus according to the RN-conjecture
there is another breakdown of perturbation theory when ↵�

2/3
⇡ 1. Unlike in the

other two cases, it is currently not known how to treat this regime of strong field
QED, as in this case all radiative corrections of higher orders in ↵ become relevant.
In light of the RN conjecture it has become of theoretical interest to study the high
field limit, corresponding to �� 1, of strong field QED processes. This will be the
topic of the second part of the thesis where we will study the high field limit of the
aforementioned incoherent processes that are responsible for damping effects in long
laser pulses.
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2 Strong Field QED

Quantum Electrodynamics (QED) is described by the following Lagrangian [9, 33]:

LQED =  ̄(i@̂ �m) �
1

4
Fµ⌫F

µ⌫
� e ̄�µ A

µ
. (2.1)

Here  denotes the electron/positron field which is given as a four component Dirac
spinor with corresponding mass m. Dirac spinors can be acted on by the 4 ⇥ 4
gamma matrices �µ with µ = 0, 1, 2, 3 which fulfill the anti-commutation relation
{�

µ
, �

⌫
} = 2⌘µ⌫ , where ⌘

µ⌫ = diag(1,�1,�1,�1) is the Minkowski metric. A
specific representation of the gamma matrices is given in Appendix A. The gamma
matrices are also used to define  ̄ ⌘  

†
�
0 and @̂ ⌘ �

µ
@µ (for a general four-vector

a
µ we define â = aµ�

µ). The four-vector A
µ describes the photon field and F

µ⌫ =
@
µ
A

⌫
� @

⌫
A

µ is the electromagnetic field tensor. In strong field QED we assume
to have a classical background gauge field A

µ which can be taken into account by
adding another interaction term to the Lagrangian:

LSFQED =  ̄(i@̂ �m) �
1

4
Fµ⌫F

µ⌫
� e ̄�µ A

µ
� e ̄�µ A

µ
. (2.2)

A kinetic term for the background field is omitted, since we already assume that it
fulfills the free Maxwell’s equations [21]. Calculations in vacuum QED are most often
performed using perturbation theory. In the vacuum case this approach works well
because of the small value of the fine-structure constant ↵ = e

2
/4⇡ ⇡ 1/137, where

e < 0 is the electrons charge, making sure that interactions can be treated as small
perturbations to the free vacuum dynamics. From the Lagrangian (2.2) it is clear
that the coupling to the background field is proportional to its field amplitude, which
means that perturbation theory breaks down for sufficiently strong background fields
and interactions with the background field have to be treated non-perturbatively.
A non-perturbative description of the dynamics of an electron in an external field
A

µ(x) requires solving the interacting Dirac equation which is given by:

(i@̂ � eÂ�m) = 0, (2.3)

which can be obtained by setting the radiation field A
µ in Eq. (2.2) to zero and

applying the Euler-Lagrange equations. The radiation field A
µ will be quantized

later on and its influence will be treated perturbatively. While there are no general
analytical solutions of Eq. (2.3) for an arbitrary background field, there is a solution
in the case of a plane wave background due to Volkov [45]. Plane waves are often used
to approximate the conditions of a high intensity laser pulse [14]. When working
with plane waves in particular, it is useful to introduce a new set of coordinates
called light cone coordinates.
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2.1 Light Cone Coordinates
When considering a plane wave background field in strong field QED it is convenient
to employ light cone coordinates. For this, we define the following quantities:

n
µ = (1,n), ñ

µ = (1/2)(1,�n), e
µ
j = (0, ej) (2.4)

where n is an arbitrary unit vector which will be chosen such that it aligns with the
propagation direction of the plane wave field. The vectors ej with j = 1, 2 are unit
vectors which are perpendicular to each other and to n, such that n = e1 ⇥ e2. For
an arbitrary four vector v

µ = (v0,v) the light cone coordinates are defined as

v+ = (ñv) =
�
v
0 + n · v

�
/2

v� = (nv) = v
0
� n · v

vj = � (ejv) = ej · v

(2.5)

where we used the notation aµb
µ = (ab) for the product of two arbitrary four-vectors.

Any four-vector v
µ may be expressed in terms of its light cone components in the

following way:

v
µ = v+n

µ + v�ñ
µ + v1e

µ
1 + v2e

µ
2 . (2.6)

Also the metric may be decomposed in terms of the light cone basis:

⌘µ⌫ = nµñ⌫ + ñµn⌫ � e1µe1⌫ � e2µe2⌫ . (2.7)

By defining the perpendicular vector v? = v1e1 + v2e2, the scalar product of two
four-vectors a

µ and b
µ is given by

(ab) = a+b� + a�b+ � a? · b?. (2.8)

The four dimensional integration measure can be expressed in light cone coordinates
as:

Z
d
4
a =

Z
da�da+da?, (2.9)

where da? = da1da2.

2.2 Plane Waves
Plane waves are the solutions to the Maxwell equations, which only depend on the
parameter � ⌘ x� = (nx). In Lorenz gauge (@µAµ = 0) the field equations for the
free electromagnetic field are given by [9]:

@
2
A

µ = 0. (2.10)
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It can be seen that any four-vector field which only depends on � = (nx) provides a
solution to Eq. (2.10). Gauge invariance allows to impose the additional constraints
A

0 = A
3 = 0 and therefore limiting the field to the physical transverse degrees of

freedom. A general plane wave vector potential is then given by:

A
µ(�) =  1(�)a

µ
1 +  2(�)a

µ
2 , (2.11)

where  j can be arbitrary functions with the physical requirement that they vanish
at infinity such that  i(±1) =  

0
i(±1) = 0 (the prime denotes the derivative d/d�).

Here we defined the four-vectors a
µ
j = (0,aj), where the aj are constant vectors

parallel to ej that include the amplitude of the vector potential. We can therefore
impose the normalization condition  (�)  1. The field tensor F µ⌫ = @

µ
A

⌫
� @

⌫
A

µ

corresponding to Eq. (2.11) is given by:

F
µ⌫(�) = f

µ⌫
1  

0
1(�) + f

µ⌫
2  

0
2(�) (2.12)

where f
µ⌫
j = n

µ
a
⌫
j � n

⌫
a
µ
j . The electric field vector E

i = �F
0i is given by

E(�) = � 
0
1(�)a1 �  

0
2(�)a2. (2.13)

2.3 Important Parameters of Strong Field QED
The classical intensity parameters are defined as:

⇠i =
|e|

m

q
�a2i , ⇠ =

q
⇠21 + ⇠22 =

|eA0|

m
, (2.14)

where A0 is the amplitude of the vector potential. From its definition it can be seen
that ⇠ quantifies the coupling of an electron to the external field (see the last term
in the Lagrangian (2.2)). Thus, the perturbative approach to QED breaks down
when ⇠ & 1. Another important parameter of strong field QED is the critical field
strength Fcr:

Fcr =
m

2

|e|
, (2.15)

with the electrons mass m and the charge e. The critical field (also known as the
Schwinger limit) gives a scale for the field strength at which the vacuum is unstable
to spontaneous electron-positron pair creation [14], it must be noted however that
in a plane wave this process cannot occur due to the fields symmetries [43]. By
denoting the maximum amplitude of the electric field E0 = !0

p
|a1|

2 + |a2|
2, where

!0 is the central frequency of the plane wave, the parameter ⇠ can be expressed as

⇠ =
m

!0

E0

Fcr
=

|e|E0

m!0
. (2.16)
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The quantum nonlinearity parameter � is the field strength in units of the critical
field in the electrons rest frame and is given by [14]:

� =
p�

m

E0

Fcr
=

|e|E0p�

m3
. (2.17)

At last, there is another important parameter of strong field QED given by:

⌘ =
�

⇠
=
!0

m

p�

m
. (2.18)

For optical lasers (!0 ⇠ 1 eV) the condition ⇠ & 1 takes place at intensities of
the order of 108 W/cm2, which can be easily reached by modern laser facilities
[14]. Record intensities that have been reached are of the order of 1023 W/cm2 [47]
which, in the optical regime, corresponds to ⇠ ⇠ 230, and even higher intensity lasers
are currently in development, envisaging magnitudes of 1024 W/cm2 [44]. Even so,
intensities that correspond to the critical field strength, which is Icr ⇡ 1029 W/cm2,
are not feasible in the near future. There are however experimental efforts using
high energy electron beams to reach and exceed these intensities in the electrons
rest frame, corresponding to � & 1 [4, 25, 28].

2.4 The Furry Picture
In vacuum QED one employs solutions of the free Dirac equation as modes of the
quantum field which describes electrons and positrons. In the Furry picture one
replaces the free modes with the solutions of the interacting Dirac Eq. (2.3). Before
discussing the Volkov solutions, which are the solutions of the Dirac equation in a
background plane wave electromagnetic field, we are going to review the solution of
the free Dirac equation.

2.4.1 Free Dirac States

The free Dirac equation is given by [9, 33]:

(i@̂ �m) = 0, (2.19)

for which the solutions are given by (we use the normalisation conventions as in Ref.
[33]):

 e�,s,p(x) = e
�i(px)

us(p)

 e+,s,p(x) = e
i(px)

vs(p)
(2.20)

corresponding to the electron and positron wave functions with four-momentum p
µ

obeying p
2 = m

2. The spinors us(p) and vs(p) are the solutions of

(p̂�m)us(p) = 0 and (p̂+m)vs(p) = 0. (2.21)
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The equations (2.21) each have two independent solutions which are labeled by the
spin quantum number s = ±1. The free spinors are normalized such that [33]:

u
†
s(p)us0(p) = 2"�ss0 v

†
s(p)vs0(p) = 2"�ss0 , (2.22)

where " = p
0 is the energy, and they further obey the following relations:

ūs(p)us0(p) = 2m�ss0 , ūs(p)�µus0(p) = 2pµ�ss0
v̄s(p)vs0(p) = �2m�ss0 , v̄s(p)�µvs0(p) = 2pµ�ss0 ,

(2.23)

where for an arbitrary spinor it is defined w̄ = w
†
�
0. Also the following spin sum-

mations hold:
X

s

us(p)ūs(p) = p̂+m,

X

s

vs(p)v̄s(p) = p̂�m.

(2.24)

2.4.2 Volkov States

We now turn to the case of having a plane wave background field. Solutions to the
Dirac Equation (2.3) in a plane wave are called Volkov states [45] (See also Ref. [9])
and are given by:

 p(x) = Ep,xus(p), (2.25)

where

Ep,x =


1 +

e

2p�
n̂Â(�)

�
e
iSp(x) (2.26)

is the Ritus matrix, and

Sp(x) = �(px)�

Z �

0

d�
0

e (pA (�0))

p�
�

e
2
A

2 (�0)

2p�

�
. (2.27)

Here us(p) is the same spinor that appears in the free solution (2.20). Thus we can
see that the Volkov solution recovers the free solution at �! ±1 as we expect the
field A

µ(�) to vanish in this limit. It is also useful to define another Ritus matrix
given by:

Ēp,x =


1 +

e

2p�
Ân̂(�)

�
e
�iSp(x). (2.28)

The Ritus matrices have the following properties [39]:
Z

d
4
xĒl,xEl0,x = (2⇡)4�4 (l � l

0) ,
Z

d
4
l

(2⇡)4
Ēl,xEl,y = �

4(x� y),
h
i@̂ � eÂ(�)

i
El,x = El,xl̂.

(2.29)
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The Volkov propagator, which is the Green’s function of the Dirac Eq. (2.3), is
given by [27]:

iG(x, y) = i

Z
d
4
p

(2⇡)4
Ep,x

p̂+m

p2 �m2 + i0
Ēp,y. (2.30)

2.4.3 Photon States

The equation of motion for the free photon field is [33]

@
2
A

µ = 0, (2.31)

where the Lorenz gauge @µAµ is employed. Solutions to (2.31) that form a complete
basis are given by the Fourier modes:

A
µ(x) = ✏

µ
r (k)e

�i(kx)
, (2.32)

where k
µ = (!k,k) is the photon four-momentum with k

2 = 0 and ✏
µ
r with r = 1, 2

are the polarization vectors. While the equation of motion (2.31) is solved for
any arbitrary polarization vector, the physical degrees of freedom correspond to
transverse polarizations that satisfy kµ✏

µ = 0 and the additional gauge constraint
✏
0 = 0 [42]. Under these conditions the polarization vectors span the plane in three

dimensional space perpendicular to the momentum k and thus have two degrees of
freedom corresponding to r = 1, 2. The photon propagator (in Feynman gauge) is
defined as [33]:

�iDµ⌫(x� y) = �i

Z
d
4
k

(2⇡)4
e
�ik(x�y) ⌘µ⌫

k2 + i0
. (2.33)

2.4.4 The Furry Picture

In vacuum QED the solutions (2.20) of the free Dirac equation become modes of
the free quantum field. In the presence of a plane wave background field one can
replace the free modes by the Volkov states (2.25). Thereby, Fourier modes e�i(px) are
replaced by the Ritus matrices Ep and the propagator from vacuum QED is replaced
by the Volkov propagator (2.30). The Volkov propagator fully takes into account all
tree level interactions between the electron and the background field. In Feynman
diagrams the Volkov propagator is drawn as a solid double line. The radiation
photon field A

µ in the Lagrangian (2.2) can be treated as a small perturbation after
all, and can be quantized as in the vacuum case. The approach to strong field QED
by quantizing the Volkov modes as well as the radiation photon field is known as
the Furry picture. Computations within the Furry picture are most easily carried
out by employing the position space Feynman rules from vacuum QED [9, 33] and
by only replacing the vacuum propagator with the Volkov propagator (2.30) as well
as incoming and outgoing fermion states with Volkov states. Feynman rules provide
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instructions for obtaining S-Matrix elements from Feynman diagrams. The position
space Feynman rules of strong field QED can be summarized in the following way:

Vertex �ie�
µ

Photon propagator �iDµ⌫(x� y)

Dirac propagator iG(x, y)

Incoming fermion Ep(x)u�(p)

Outgoing fermion ū�(p)Ēp(x)

Incoming anti-fermion v̄�(p)Ē�p(x)

Outgoing anti-fermion E�p(x)v�(p)

Incoming photon ✏
µ
r e

�ikx

Outgoing photon ✏
⇤µ
r e

ikx

(2.34)

When applying the position space Feynman rules (2.34) one has to integrate over
the space-time positions of each vertex. Closed fermionic loops require a trace in
the spinor indices and an additional minus sign.
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3 Corrections to Nonlinear Compton
Scattering from the Polarization
Operator

Nonlinear Compton scattering describes the emission of a photon by an electron
when moving through an external electromagnetic field. We consider an incoming
electron with four-momentum p

µ = ("p,p), an emitted photon k
µ = (!k,k), and

an outgoing electron p
0µ = ("p0 ,p0). The two polarization basis four-vectors of the

outgoing photon are notated as ✏µj (k) with j = 1, 2. We assume a background plane
wave field according to Eq. (2.11) and we employ the Furry picture in which the
electron is described by Volkov states. The tree level diagram for this process is
shown in Fig. 3.1a. A calculation of the tree level scattering probability has been
carried out in Ref. [16]. The work which is presented in this chapter is part of a
larger effort to compute all the radiative corrections to nonlinear Compton Scatter-
ing to order ↵2. In particular, here we consider the correction which comes from
the polarization operator in the outgoing photon line (Fig. 3.1b). The polariza-
tion operator iP

µ⌫ = T
µ⌫ is related to the photons self energy, and in the context

of Feynman diagrams, it is defined as the sum of all insertions into a photon line
which cannot be subdivided by cutting a single line (See Ref. [9]). In the literature,
diagrams which cannot be subdivided by cutting a single line are also referred to as
1-particle-irreducible [33]. To leading order, the polarization operator is represented
by a single fermion loop. A full evalutation of the renormalized leading order polar-
ization operator in the context of strong field QED, where fermion lines correspond
to Volkov propagators, has been carried out in Ref. [27] from which the results will
be used in the following calculations. The other corrections one has to consider
are those from the mass operator and the vertex correction, either of which are not
considered here. The mass operator is related to the electrons self energy and an
evaluation in the context of strong field QED is given in Ref. [15]. The leading order
correction to the scattering probability of nonlinear Compton scattering due to the
mass operator has been computed in Ref. [34]. The vertex correction in strong field
QED has been studied in Ref. [13].

3.1 Calculations
The matrix element of nonlinear Compton scattering including first order loop cor-
rections can be expressed as

S
(1) (p, p0, k) =

⇥
�µ + �(M1)µ + �(M2)µ + �(P )µ + �(V )µ

⇤
⌘µ⌫✏

⌫⇤
l (k). (3.1)

15



p p
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k
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p

p
0

k
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Figure 3.1: Figure (a) depicts the tree level diagram of nonlinear Compton scatter-
ing. The double lines indicate that Volkov states are being used. Figure
(b) depicts the polarization correction to nonlinear Compton scattering.
This correction is characterized by a fermion loop in the outgoing photon
line.

This expression includes the tree level term �µ, two terms containing the Mass
operator �(M1)µ + �(M2)µ, the vertex correction �(V )µ, and the term containing the
polarization operator �(P )µ. In the following we will only consider the terms �µ and
�(P )µ and thus we consider the following scattering matrix:

Sfi =
�
�µ + �(P )µ

�
⌘µ⌫✏

⌫⇤
l (k). (3.2)

According to the position space Feynman rules the terms �µ and �(P )µ are given by:

�µ = (�ie)

Z
d
4
xū (p0) Ēp0,x�

µ
Ep,xu(p)e

ikx
, (3.3)

�(P )µ = (�ie)

Z
d
4
x

Z
d
4
y

Z
d
4
zū (p0) Ēp0,x�

�
Ep,xu(p)(�i)

⇥D�⌫(x� y)T ⌫µ(y, z)eikz,
(3.4)

where the polarizaton operator in position space is defined as

T
µ⌫(x, y) = (�ie)2 tr [�µG(x, y)�⌫G(y, x)] . (3.5)

One can define the polarization operator in momentum space by taking the Fourier
transform in both arguments:

T
µ⌫(x, y) =

Z
d
4
q1

(2⇡)4

Z
d
4
q2

(2⇡)4
e
iq1xe

�iq2y T
µ⌫ (q1, q2) . (3.6)

A full evaluation of the polarization operator T µ⌫(q1, q2) in momentum space is given
in Ref. [27]. The probability of the process described by Sfi is given by:

P
(1) =

1

2"p

Z
d
3
k

(2⇡)3
1

2!k

Z
d
3
p
0

(2⇡)3
1

2"p0
1

2

X

s,s0,l

|Sfi|
2
. (3.7)
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Here we perform a sum over the final spin s
0 = ±1 and the polarization of the

outgoing photon j = 1, 2. We also perform an average over the initial spin s = ±1,
which is why there appears a factor of 1/2. For the following calculations it is
convenient to express the metric as:

⌘
µ⌫ =

n
µ
k
⌫ + n

⌫
k
µ

k�
� ⇤µ

1⇤
⌫
1 � ⇤

µ
2⇤

⌫
2 (3.8)

where k� = (nk) and

⇤µ
j = e

µ
j �

(ejk)nµ

k�
, (3.9)

such that (k⇤i) = (n⇤i) = 0 and (⇤i⇤j) = ��ij. This expansion of the metric is
useful because due to the Ward identity [33, 27] it is �µ

kµ = �(P )µ
kµ = 0 and it is

k
µ
✏lµ(k) = 0, and thus we can write the scattering matrix as:

Sfi =
�
�µ + �(P )µ

�
⌘µ⌫✏

⌫⇤
l (k) = �

X

j=1,2

�
�µ⇤jµ + �

(P )µ⇤jµ

�
(⇤j⌫✏

⌫⇤
l ) . (3.10)

In order to calculate
P

s,s0,l |Sfi|
2 we can make use of the photon polarization sum

(see e.g. Ref. [33])

X

l

✏
⇤
lµ✏l⌫ ! �⌘µ⌫ . (3.11)

and thus
X

l=1,2

(⇤j✏
⇤
l ) (⇤i✏l) ! � (⇤j⇤i) = �ij. (3.12)

Thus we obtain

1

2

X

s,s0,l

|Sfi|
2 =

1

2

X

s,s0

X

j

h
|(�⇤j)|

2 +
��(�(P )⇤j)

��2 + 2Re
�
(�⇤j)

⇤ (�(P )⇤j)
 i

. (3.13)

The first term in Eq. (3.13) is the tree level contribution. The second term is of
order ↵3 and we will not consider this term from here on, as we are only interested
in corrections up to order ↵2. The third term is of order ↵2 and thus we aim to
evaluate it. The contribution to the probability which comes from this term is given
by

�P =
1

2"p

Z
d
3
k

(2⇡)3
1

2!k

Z
d
3
p
0

(2⇡)3
1

2"p0
1

2

X

s,s0

X

j

2Re
�
(�⇤j)

⇤ ��(P )⇤j

� 
. (3.14)
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We continue with the following computations:

X

s,s0

(�⇤j)
⇤ ��(P )⇤j

�
=
X

s,s0


(�ie)

Z
d
4
xū (p0) Ēp0,x⇤̂jEp,xu(p)e

ikx

�⇤

⇥


(�ie)

Z
d
4
x
0
Z

d
4
y

Z
d
4
zū (p0) Ēp0,x0�

�
Ep,x0u(p)(�i)D�⌫ (x

0
� y)T ⌫µ(y, z)⇤jµe

ikz

�

= e
2

Z
d
4
x

Z
d
4
x
0
Z

d
4
y

Z
d
4
ze

�ikx(�i)D�⌫ (x
0
� y)T ⌫µ(y, z)⇤jµe

ikz

⇥

X

s,s0

ūs(p)Ēp,x⇤̂jEp0,xus0 (p
0) ūs0 (p

0) Ēp0,x0�
�
Ep,x0us(p)

= e
2

Z
d
4
x

Z
d
4
x
0
Z

d
4
y

Z
d
4
ze

�ikx(�i)D�⌫ (x
0
� y)T ⌫µ(y, z)⇤jµe

ikz

⇥ Tr
h
(p̂+m)Ēp,x⇤̂jEp0,x (p̂

0 +m) Ēp0,x0�
�
Ep,x0

i
.

(3.15)

The probability is therefore

�P =
e
2

2"p

Z
d
3
k

(2⇡)3
1

2!k

Z
d
3
p
0

(2⇡)3
1

2"p0

X

j

Z
d
4
x

Z
d
4
x
0
Z

d
4
y

Z
d
4
z

⇥ Re

⇢
e
�ik(x�z)

e
i(Sp(x0)�Sp(x))e

i(Sp0 (x)�Sp0 (x
0))(�i)D�⌫ (x

0
� y)T ⌫µ(y, z)⇤j,µ

⇥ Tr


(p̂+m)

✓
1�

e

2p�
n̂Â(�)

◆
⇤̂j

✓
1 +

e

2p0�
n̂Â(�)

◆
(p̂0 +m)

⇥

✓
1�

e

2p0�
n̂Â (�0)

◆
�
�

✓
1 +

e

2p�
n̂Â (�0)

◆��
.

(3.16)

After writing the polarization operator in momentum space (Eq. (3.6)) one can
perform the y and z integrations and thus we obtain:

�P =
e
2

2"p

Z
d
3
k

(2⇡)3
1

2!k

Z
d
3
p
0

(2⇡)3
1

2"p0

X

j

Z
d
4
x

Z
d
4
x
0
Z

d
4
q

(2⇡)4

⇥ Re
n
e
�ix(k�p+p0)

e
�ix0(q+p�p0)

e
�iS̃p(�0)

e
iS̃p(�)e

�iS̃p0 (�)e
iS̃p0 (�

0)

⇥
(�i)⌘�⌫
q2 + i0

T
⌫µ(�q, k)⇤jµTr[· · · ]

�

�
,

(3.17)

where we defined

S̃p (�) =

Z �

0

d�
0

e (pA (�0))

p�
�

e
2
A

2 (�0)

2p�

�
. (3.18)
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By performing the integrals in x+ and x? as well as x0
+ and x0

? we obtain the delta
functions (2⇡)3�

�
k� � p� + p

0
�
�
� (k? � p? + p0

?) and (2⇡)3�
�
q� + p� � p

0
�
�
� (q? + p? � p0

?).
In the following step we will additionally perform the transformation q ! �q:

�P =
e
2

2"p

Z
d
3
k

(2⇡)3
1

2!k

Z
d
3
p
0

(2⇡)3
1

2"p0

X

j

Z
d�

Z
d�

0
Z

d
4
q

(2⇡)4

⇥ (2⇡)3�
�
k� � p� + p

0
�
�
� (k? � p? + p0

?) (2⇡)
3
�
�
�q� + p� � p

0
�
�
� (�q? + p? � p0

?)

⇥ Re
n
e
�i�(k+�p++p0+)e�i�0(�q++p+�p0+)e�iS̃p(�0)

e
iS̃p(�)e

�iS̃p0 (�)e
iS̃p0 (�

0)

⇥
(�i)⌘�⌫
q2 + i0

T
⌫µ(q, k)⇤jµTr[· · · ]

�

�
.

(3.19)

The polarization operator contains more delta functions in its definition [27] which
we will extract, such that we can write

T
⌫µ (q, k) = � (q� � k�) � (q? � k?) T̃

⌫µ (q, k) , (3.20)

and therefore

�P =
e
2

2"p

Z
d
3
k

(2⇡)3
1

2!k

Z
d
3
p
0

(2⇡)3
1

2"p0

X

j

Z
d�

Z
d�

0
Z

d
4
q

(2⇡)4

⇥ (2⇡)6
⇥
�
�
k� � p� + p

0
�
�
� (k? � p? + p0

?)
⇤2
� (q� � k�) � (q? � k?)

⇥ Re
n
e
�i�(k+�p++p0+)e�i�0(�q++p+�p0+)e�iS̃p(�0)

e
iS̃p(�)e

�iS̃p0 (�)e
iS̃p0 (�

0)

⇥
(�i)⌘�⌫
q2 + i0

T̃
⌫µ(q, k)⇤jµTr[· · · ]

�

�
.

(3.21)

We can rewrite the first delta function in two different ways. Either we can write
Q

0µ = p
0µ + k

µ and

�
�
p� �Q

0
�
�
=
"p

p�
� (pn � p̃n) and p̃n =

m
2 + p2

? �Q
02
�

2Q0
�

(3.22)

or we write Q
µ = p

µ
� k

µ and

�
�
p
0
� �Q�

�
=
"p0

p0�
� (p0n � p̃

0
n) and p̃

0
n =

m
2 + p02

? �Q
2
�

2Q�
. (3.23)

where pn ⌘ p · n and p
0
n ⌘ p0

· n. Since we have d
3
p
0 = dp

0
nd

2
p
0
? we can use Eq.

(3.23) to simplify the dp
0
n integral. In that case the delta function in Eq. (3.22)

becomes:

� (pn � p̃n) ! �(0) =
L

2⇡
(3.24)
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where L = 1 corresponds to the quantization length in the direction n. Then we
can use the delta function � (k? � p? + p0

?) to simplify the d
2
p
0
? integral. The

remaining delta function becomes:

� (k? � p? + p0
?) ! �

2(0) =
A

(2⇡)2
(3.25)

where A = 1 is the quantization area and V = A ·L = 1 is the quantization volume.
Thus, by transforming the delta functions according to Eqs. (3.22) and (3.23) we
were able to employ the usual procedure of squaring the delta functions by assuming
a finite quantization volume as it is done in many text books (e.g. in Ref. [42]).
Using that d4q = dq+dq�dq? we can use the remaining delta functions in q to obtain
the following expression for the probability:

�P =
1

(2⇡)3

Z
d
3
k

(2⇡)3
1

2!k

e
2

4p�p0�

Z
dq+

(2⇡)

X

j

Z
d�

Z
d�

0

⇥ Re
n
e
�i�(k+�p++p0+)e�i�0(�q++p+�p0+)e�iS̃p(�0)

e
iS̃p(�)e

�iS̃p0 (�)e
iS̃p0 (�

0)

⇥
(�i)⌘�⌫
q2 + i0

T̃
⌫µ(q, k)⇤jµTr[· · · ]

�

�
,

(3.26)

where it is implied that
p
0
� = p� � k�,

p0
? = p? � k?,

q� = k�,

q? = k?.

Similar as in Ref. [16] we introduce the notation ⇠? = eA?/m. We use that A0 = 0
and A only has perpendicular components such that A = A?. The phase can then
be written as

e
�i�(k+�p++p0+)e�i�0(�q++p+�p0+)e�iS̃p(�0)

e
iS̃p(�)e

�iS̃p0 (�)e
iS̃p0 (�
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
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#
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(3.27)
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Therefore the probability can now be written as

�P =
1

(2⇡)3

Z
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3
k

(2⇡)3
1

2!k

e
2

4p�p0�

Z
dq+

(2⇡)

X

j

Z
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Z
d�

0
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(
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�ik+�

0 + i
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2

2p�p0�

Z �0

�

d�̃

 
1 +


p?
m

�
p�

k�

k?

m
� ⇠?

�2!
+ iq+�

0

#

⇥
(�i)⌘�⌫
q2 + i0

T̃
⌫µ(q, k)⇤jµTr[· · · ]

�

�
.

(3.28)

3.1.1 Calculation of the Trace

It is convenient to rewrite the trace by using manipulations such as
 
1 +

en̂Â(�)

2p�

!
(p̂+m) =

⇡̂(�) +m

2p�
n̂(p̂+m) (3.29)

and

(p̂+m)

 
1�

en̂Â(�)

2p�

!
= (p̂+m)n̂

⇡̂(�) +m

2p�
(3.30)

where

⇡
µ(�) = p

µ
� eA

µ(�) +
e(pA(�))nµ

p�
�

e
2
A(�)2nµ

2p�
(3.31)

and for the momementum p
0 we define:

⇡
0µ(�) = p

0µ
� eA

µ(�) +
e(p0A(�))nµ

p0�
�

e
2
A(�)2nµ

2p0�
(3.32)

and � = (nx). Physically the quantity ⇡
µ(�) corresponds to the classical kinetic

four-momentum of a particle moving through the field A
µ with the initial condition

⇡
µ(� = �1) = p

µ, as it is discussed e.g. in Ref. [21]. Here we only introduce
these quantities for computational convenience. In the following calculations, trace
expressions such as the following are going to be relevant:

Tji =Tr


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✓
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e
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◆
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(3.33)

The different terms in (3.33) can be evaluated using the usual trace technology for �-
matrices, which are summarized in Appendix A. There are several identities related
to the orthogonality of nµ with A

µ and ⇤µ
j , that make the calculation easier, such

as the following:

n̂Â = �Ân̂

⇡̂n̂ = 2p� � n̂⇡̂

n̂n̂ = 0

n̂⇤̂j = �⇤̂jn̂

⇤̂j⇤̂i = �2�ji � ⇤̂i⇤̂j.

(3.34)

The result of the trace calculation can be expressed as:
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(3.35)

Further simplification leads to
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(3.36)

Additionally the following sum can be expressed in a more simple way
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
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(3.37)

where

�A
2 = (Aµ(�0)� A

µ(�))2 = �(A?(�
0)�A?(�))

2
. (3.38)
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3.1.2 Inserting the Polarization Operator

For the following steps of the calculation it will become necessary to insert the full
expression of T µ⌫(q1, q2) from Ref. [27] Eq. (92). It is clear that only the products
T̃

µ⌫(q, k)⇤j⌫ appear in the expression (3.28). From Ref. [27] these products can be
explicitly written as:

T̃
µ⌫(q, k)⇤1⌫ = i⇡e
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µ
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µ
2) e
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(3.39)

It is important to note that Ref. [27] does neither assume the incoming photon
momentum q1 nor the outgoing q2 to be on-shell. In the present case the outgoing
photon momentum which is k will be on-shell, i.e. k

2 = 0. We can use this fact to
simplify the expression for the polarization operator by the shift z� ! z� + µq� in
the z�-integral in Ref. [27], where µ = ⌧(1� v

2)/4. After performing this shift the
phase e

i� is given by:

e
i� = exp

�
i
⇥
(k+ � q+) z� � ⌧m

2
⇤ 

, (3.40)

which is simpler than the expression in Ref. [27] because a term in the exponent
proportional to k

2 = 0 has vanished. The factors b1, b2, b3, b4 are given in Ref. [27]
and we cite them here:
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The definitions of Xij, Zk (i, j, k = 1, 2) and � are given in Section 3.2. Those
expressions correspond to the same symbols in Ref. [27], however after the shift
in the z�-integral. In the following calculations it will be convenient to define the
second term of b3 (b4) as b̃3 (b̃4), such that:

b3/4 = �

✓
i
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+
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23



Using the conditions q� = k�, q? = k? and k
2 = 0, the product (qk) can be written

as:

(qk) = q+k� � k+k�. (3.46)

After inserting Eqs. (3.39) into (3.28) one can take the q+-integral. The appearing
integrals are of the following form and they can be solved with complex contour
integration:
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Now we can evaluate the following expression:
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The probability is then given by:
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By using the definition ↵ = e
2
/4⇡ and by renaming b1 = b21, b2 = b12, b̃3 = b11 and

b̃4 = b22 we obtain
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Insertion of the trace expression yields the following probability
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3.1.3 Gauge Invariance Trick

Due to the gauge invariance the contraction of Eq. (3.3) with kµ is zero (Ward
identity):

Z
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µ
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ikx = 0. (3.53)

Starting from the above condition it can be shown that
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We note that the phase in Eq. (3.54) already appears in the phase of Eq. (3.53)
since:
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The condition (3.54) is equivalent to the statement:
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In any case, with the following scalar products
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we see that
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This lets us eliminate the term �
1

2k�

⇥
p� (k⇡0(�)) + p

0
� (k⇡(�))

⇤
in �P .

3.2 Final Result

Here we give the final result for the correction to the probability of nonlinear Comp-
ton scattering due to the polarization operator. We consider the process with an in-
coming electron with four-momentum p

µ = ("p,p), an emitted photon k
µ = (!k,k),

and an outgoing electron p
0µ = ("p0 ,p0). The expression contains many light cone

components of four-vectors for which the notation in Sec. 2.1 is used. All other
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definitions and notations are given below. The final expression is:
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(3.61)

In this expression we impose the following conservation laws:

p
0
� = p� � k�

p0
? = p? � k?.

We used the following definition:
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where j = 1, 2 and n
µ = (1,n), eµj = (0, ej), n = e1 ⇥ e2 and the plane wave which

propagates along the unit vector n is given by:
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with a
µ
j = (0,aj) and where aj k ej and | (!0�)|  1 such that

A
µ = (0,A?), (3.64)

⇠? =
eA?

m
, (3.65)

⇠i =
1

m

q
�a2i e

2, (3.66)

27



and
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The functions bij(z�) are defined as
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4 Formulation in the
Locally-Constant-Field Approximation

The locally constant field approximation (LCFA) describes the limit in which the
central frequency !0 of the external field goes to zero: !0 ! 0 [16, 21]. Recalling
the classical intensity parameter

⇠ =
|e|E0

m!0
(4.1)

it can be seen that the LCFA corresponds to the limit ⇠ ! 1 while keeping the field
strength E0 fixed. By taking the LCFA it is physically assumed that the formation
length of strong field QED processes is much smaller than the wavelength of the
background field, such that within the formation region of the photon emission (or
pair production) the field is well approximated by a constant crossed field. Indeed,
scattering probabilities calculated within the LCFA are typically identical to the
corresponding expression in a constant crossed field if one performs an additional
integral over the laser phase. It was shown in Ref. [16] (and as was previously
known, see e.g. Ref. [41] p. 519) that the formation phase of photon emission
is 'f ⌘ !0�f ⇠ 1/⇠, thus making this interpretation compatible with the limit of
⇠ � 1. Observables in the LCFA are characterized by the quantum nonlinearity
paramaters defined by:

i = ⇠i
(k0k)

m2
=

|e|Eik�

m3
, (4.2)

where k
µ
0 = !0(1,n) and

 =
q
21 + 22 = ⇠

(k0k)

m2
=

|e|E0k�

m3
. (4.3)

The quantum nonlinearity parameter for the electron is given by:

� =
|e|E0p�

m3
, (4.4)

and when taking the LCFA one keeps  and � finite. The LCFA is a widely used
approximation, as it simplifies expressions significantly. It is commonly used to
model photon emission and pair production in semi-classical numerical simulations,
see Ref. [30] for a recent implementation (See also [21] for a general overview).
The LCFA expression of the tree level expression for the probability of nonlinear
Compton scattering has been derived in Ref. [16]. In Refs. [36, 37] the LCFA
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was used to obtain the scattering probabilities of nonlinear Compton scattering and
nonlinear Breit-Wheeler pair production including particle damping effects. We will
study these damping effects, which are due to the total pulse length of the laser,
in Chapter 5. For now, it is important that when expanding the result from Refs.
[36, 37], one obtains the LCFA version of the incoherent terms of the scattering
probability (3.61) computed in the previous chapter. In the following, we will apply
the LCFA to the result (3.61) and compare the outcome with the literature.

4.1 Applying the LCFA to the Tree Level
Probability

The expression (3.61) gives a correction to the scattering probability of nonlinear
Compton Scattering. Before applying the LCFA there, we will first apply the LCFA
to the tree level amplitude of nonlinear Compton scattering. The S-Matrix element
for the tree level process is given by Sfi = �µ

✏
⇤
l⌫ where �µ is given in Eq. (3.3)

and ✏µl is the photon polarization four-vector. For the calculation of the probability,
Eq. (3.7) can be used and the preceding calculation steps are similar to the steps in
the previous chapter. As a result, the tree-level probability for non-linear Compton
Scattering is given by:
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A computation of the tree level probability as well the expression in the LCFA can
also be found in Ref. [16]. When applying the LCFA it is common to perform a
variable transformation according to:
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(4.6)

such that d�d�0 = d�+d��. Thus the probability can be written as:
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(4.7)

As discussed in Ref. [16], by writing P0 =
R
d�+dP0/d�+ the quantity dP0/d�+ can

be interpreted as the probability per unit phase �+ of the plane wave field. This
interpretation assumes that the formation region of the �� integration is localized
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around 0, such that !0�� ⇠ 1/⇠ ⌧ 1, as discussed before. The usual approach of
taking the LCFA is to expand the fields appearing in the preexponent in (4.7) to first
order in �� and to expanded the phase to third order, which is what also has been
done in Ref. [36]. This approach is similar to applying the method of stationary
phase [2]. Before expanding the phase it can be rewritten in the following way:
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It can be seen that the middle line in Eq. (4.8) may be used to perform a Gaussian
integral in k?, after which the term only contributes to the preexponent. Thus,
in line with the other terms in the preexponent, we may expand this term to first
order in ��. After performing the expansion of the phase the resulting tree level
probability of nonlinear Compton scattering within the LCFA is given by:
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(4.9)

Within the LCFA one must also expand the trace expressions Tjj to first order in
��, which will be done in section 4.3. To be able to compare the expression (4.9)
to the literature, it is useful to redefine the variables �$ �

0 after which one would
obtain another minus sign in the exponent. This would give the expression for the
phase that can be found in Ref. [36].

4.2 The Polarization Correction in the LCFA
In the remainder of this chapter we evaluate the radiative correction (3.61) in the
LCFA. For this, we will consider the expression (3.51) and we will separate it into
two parts:

�P = �Pincoh + �Pcoh, (4.10)
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where
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and
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and where

e
i⌦ = exp
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In this chapter we just consider the case of a linearly polarized plane wave, i.e, we
set  2(�) = 0. Thus we have already set b12 = b21 = 0 in the expressions above. We
have chosen a decomposition such that �Pincoh contains all the terms which include
the integral over z�, while �Pcoh is given by the remaining term. The variable z�
corresponds to the minus component of a space time integral. Thus we expect this
integral to scale linearly with the total phase �� over which the pulse shape function
is supported, e.g. the standard deviation of a Gaussian pulse. A total dimensionless
phase can be defined by � = !0��. The terms containing the z� integral thus
have a formation length that is of the same order of the laser pulse and we interpret
these terms as belonging to the incoherent processes, in which the emitted photon
travels a significant distance before the pair creation occurs. The remaining term
without the z� integral can be interpreted as the coherent process, in which the
pair creation takes place almost immediately after the photon emission. First we
are going to derive the LCFA of the incoherent process. The coherent process will
be studied in Sec. 4.7. In order to apply the LCFA we need to apply the limit
!0 ! 0 to each of the terms defined below Eq. (3.61). Since all bij involve the
quantity ⇠

2 it is necessary to expand the other preexponents to second order in
!0 such that we obtain a result for the bij which is of order zero in !0. In the
following we will write the pulse shape functions as functions of the dimensionless
phase ' = !0�, i.e. as  i(!0�). The prime now defines the derivative with respect
to ' i.e  0

i(') = d i(')/d', such that the Taylor expansion will clearly show which
terms are of what order in !0. By performing the Taylor expansions we obtain:
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With these expansions we can evaluate the prefactors in the probability. First of all
we obtain the following phase:
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Next we can evaluate the functions bij:
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From here on we will limit the analysis to the special case of a linearly polarized
wave for which  2 = 0 and we rename  1 =  . In the same way we have ⇠ = ⇠1 and
 = 1. It can be seen that b12 = b21 = 0 in this case since ⇠2 = 0. For the other
quantities we obtain:
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In order to simplify expressions, we perform a substitution ⌧ 3b = t
3:
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where
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such that
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b. (4.27)

Next, as it is done in Ref. [27] we define the following function:
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in which Ai is the Airy function and Gi is the Scorer function (see Appendix B).
The derivative of the function f is given by:
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Furthermore we define the following two functions:
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and
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These functions obey the following differential equations:
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Having these definitions we can write:
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For ⇢(v) = m
2
b(v)�1/3 we can use the following integral identity:

Z +1

�1

dvg(v)f1[⇢(v)] = �

Z +1

�1

dv


G(v)

⇢(v)

�0
f
0[⇢(v)] (4.34)

which is valid if ⇢(v) ! 1 for v ! ±1 and for any finite function g and where
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Then we obtain
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Now we can insert this term as well as the prefactors from before into the expression
for the probability:
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From here on, one can proceed just like in the tree level case and we can switch
to new variables given by �+ = (� + �

0)/2 and �� = � � �
0 and then expand the

expressions Tjj to first order and the phase in third order in �� around �� = 0.
Because we have already expanded the terms arising from the polarization operator
it is sufficient to replace in the dz� integral �0

! �+. Thus we arrive at
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The explicit expansion of the Tjj will be carried out in section 4.3. We now introduce
the following notation:

(') = | 
0(')|. (4.39)

With the substitution u = m
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⌧ we can rewrite the following expression:
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Also we define the following quantities, which are known in the literature as the
transverse components of the polarization operator in a constant crossed field [27,
37]:
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Now the probability can be written in the following way:
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From the tree level probability we know that the expression
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has to be real within the LCFA. This is because, up to prefactors, this quantity may
be interpreted as the probability per unit phase of the external field. Therefore we
can exclude this term from the imaginary part and we obtain:
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Note that Tjj (compare Eq. (3.33)) is the exact expression one gets if one takes the
trace expression in Ref. [36] Eq. (52) (including the factor 1/4) and takes the sum
over the spins s and s

0. The factor 1/2 in Eq. (4.45) accounts for the averaging over
the spin s. This factor is missing in Ref. [36] because the spin sums as well as the
spin average have not been taken.

4.3 Trace Expansion and Transverse Integration
This section will follow the treatment of the trace terms as well as the transverse
momentum integrals in Ref. [37] very closely. In the following we evaluate the
trace expression (3.35) for i = j in the case of a linearly polarized plane wave field.
Subsequently we will apply the LCFA, by expanding the trace expressions to first
order in ��. For i = j the trace expressions are given by:
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Unlike the trace expressions in Refs. [36, 37] the ones above have already included a
summation over the initial and final spins s, s0. With this being the only difference,
in the following calculation we will obtain at every step the results from Ref. [37]
summed over the spins s, s0 = ±1. As mentioned before, the first step, is to evaluate
the trace, for the case of a linearly polarized plane wave. We thus have  2(�) ⌘ 0
and we redifine  1(�) =  (�), such that

A
µ(�) = A0 (�)e

µ
1 = A1(�)e

µ
1 , (4.47)

where A0 is the amplitude of the vector potential Aµ and | (�)|  1 is normalized.
Now each of the four-vector products in Eq. (4.46) has to be evaluated, which is a
lengthy calculation. The result is the following:
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(4.48)

where �ji is the Kronecker delta. Next, we will apply the LCFA by first substituting:
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Then we must expand the fields in the trace to first order in �� such that:
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Substituting the above expression gives:
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A few more manipulations lead to:
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In the next step, we recall, that the trace expressions will be multiplied with the
phase factor Eq. (4.8) and are integrated over ��. Thus we can neglect certain
terms in the trace, which will vanish after the �� integral is taken. In particular
such terms are given by those which are proportional to the derivative of the phase
with respect to ��:
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where ⇠? = eA?/m. For those terms the integral in �� gives:
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which is equivalent to Eq. (3.54). Thus by leaving out the terms which are propor-
tional to @�(�+,��)/@�� we obtain the following expressions for the trace:
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It can be seen that after eliminating all the terms proportional to @�(�+,��)/@��
the traces only depend on the field derivative A

0µ but not on the fields A
µ, thus

we have achieved manifest gauge invariance. Before performing the transverse k?
integration in Eq. (4.45) the integration measure can be transformed as follows:

d
3
k =

!k

k�
dk�d

2
k?, (4.59)
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k? = dk1dk2. The resulting transverse integrals are Gaussian, which are

also found in Ref. [37]:
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For the �� integral we use the integral representation of the Airy function [32]:
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As a result of these integrations one obtains much simpler expressions for the tree
and loop level probabilities. Applying the integrals to the tree level probability (4.9)
results in:
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where
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for which we define

�p(�) :=
|e|E0p�
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����
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���� , (4.68)

and Ai1(z) =
R1
z Ai(x)dx. For the incoherent part of the polarization correction

Eq. (4.45) we obtain:

�Pincoh = �
1

2

↵m
2

p2�!
2
0

Z p�

0

dq�

Z
d'+

X

j

2 Im

⇢Z 1

'+

d'
m

q�
Pj(q,')

�
Tj('+). (4.69)

4.4 Formulation in Dimensionless Quantities
For a formulation in dimensionless quantities we are going to express the pulse
shape function as a function of the phase ' ⌘ !0�. Accordingly we will change
the notation such that  (�) !  ('). We define the phase dependent quantum
nonlinearity parameters as:

�(') = �0| 
0(')|, (4.70)

(') = 0| 
0(')|. (4.71)
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where the prime now denotes the derivative d/d'. Now the pulse shape functions
are normalized such that | (')|  1 and | 

0(')|  1. In terms of dimensionless
quantities the tree level probability can be written as
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2
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Z 1
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Z
d'+(T1 + T2), (4.72)

T1 = Ai1(z) +
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(4.74)

and
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(1� ⌧)� ('+)

�2/3
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Here the substitutin ⌧ = q�/p� was used. It is possible to write the probability in
terms of modified Bessel-function of the second kind. To do this we can make use
of the following identities [1]:
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◆
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which are valid for x > 0. Also, in order to obtain a compact expression the following
identity is useful:
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which is valid for any function g(z) for which g(0) = 0. The following expression for
the tree level probability can be obtained:
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This is the expression that can be found in Ref. [6]. The incoherent part of the
polarization correction in dimensionless quantities may be written as:

�Pincoh = �
↵

⌘2

Z 1

0

ds

s

Z
d'+

Z 1

'+

d'

✓
T1('+)

ImP1(')

m
+ T2('+)

ImP2(')

m

◆
. (4.80)
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4.5 Incoherent Trident Pair Creation
The probability �Pincoh may be written as:

�Pincoh = �

X
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dq�
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dq�d�

Z 1
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(4.81)

where

dP
Tree
j

dq�d�
= �

↵

2

m
2

p2�
Tj(p�, q�,�) (4.82)

is the differential tree level probability for the emmission of a photon with the mo-
mentum component q� and polarization quantum number j. Note that when taking
the sum over the polarizations j = 1, 2 and the integrals in q� and � one obtains the
total tree level probability (4.64). According to the optical theorem the quantity
Im {�(2m/q�)Pj(q,')} is equal to the probability that a photon of polarization j

creates an electron-positron pair (Breit-Wheeler pair creation) (as discussed in Refs.
[26, 37, 5]). Thus, up to a minus sign, �Pincoh can be interpreted as the probability
that the electron emits an on-shell photon which later creates an electron-positron
pair. This process is known the trident process [21, 6]. The appearance of the tri-
dent probability in the polarization correction of nonlinear Compton Scattering has
been discussed in Ref. [40] where it was also shown that when applying the optical
theorem to the polarization correction of the mass operator, all incoherent contribu-
tions will cancel out. These considerations allow for an interpretation of �Pincoh as
the correction to nonlinear Compton scattering which is due to the possibility that
the outgoing photon may decay into an electron-positron pair at a later time in the
laser pulse. The suppression of the total probability due to incoherent processes are
commonly referred to as damping effects. In Refs. [36, 37] the probabilities of non-
linear Compton Scattering and nonlinear Breit-Wheeler pair creation which include
damping effects due to arbitrary many first order mass and polarization corrections
were derived. The correction �Pincoh is one of the first order corrections one obtains
when expanding the result in Ref. [37] Eq. (13).

4.6 Plots
Fig. 4.1 shows plots of the differential probabilities dP0/dk� (the tree level proba-
bility) and d�Pincoh/dk� (the incoherent polarization correction) in the LCFA. The
results were achieved by performing a numerical integration of the phase integrals
using Wolfram Mathematica 13.3. In both cases we assumed an electron of energy
✏ = 10 GeV and the pulse shape function:

 (�) = e
�( �

��)
2

sin(!0�), (4.83)
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Figure 4.1: This figure contains the differential plots of the LCFA expressions of
dP0/dk� (the tree level probability) and d�Pincoh/dk� (the incoherent
polarization correction). The parameters used are ✏ = 10 GeV, � = 2,
and !0 = 5 fs corresponding to ⌘ ⇡ 0.12 and ⇠ ⇡ 16.85.

with !0 = 1.55 eV and �� = 5 fs, corresponding to a total phase of � = !0�� ⇡

11.77. The specifications of the electron energy and the wavelength correspond to
⌘ ⇡ 0.12. The field amplitude was chosen such that � = 2 and accordingly one has
⇠ = �/⌘ ⇡ 16.85, thus being within the regime of the LCFA.

4.7 The Coherent Part of the Polarization
Correction

The coherent part of the polarization correction is given by:
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where
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We can perform similar calculation steps as in the incoherent case, by making use
of the function defined in Eq. (4.28) and thus we can write:
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where
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, (4.87)

Also we can make use of the relation (4.34) which we can use to rewrite the integral
of f1 into an integral of f 0. Thus we arrive at the following:
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Since the intergrand is symmetric in v we can write
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Thus for the coherent probability we obtain:
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Next, we will perform the following substitution:
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After the substitution we obtain the following integration boundaries:

u(v = 0) = 1, u(v = 1) = 1. (4.92)

After substitution we have
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Performing the substitution in the probability gives:
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As before we transform the phase integrals:

�+ =
�+ �
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2
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0
. (4.95)

The expansion of the phase expression to third order in �� and the expansion of
the trace expression are once again identical to the tree level case. The terms that
come from the polarization operator have already been expanded in powers of !0

such that it is sufficient to only keep the leading order in ��. Thus, for those terms
we just replace �0

! �+. And so we obtain:
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Next, we can express the d
3
k integral in lightcone coordinates by:

d
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Then we can rewrite the probability as:
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Now we recognize that the expression above contains the differential probability for
the tree level process which is given by:
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We know that the above quantity is real, which means that we can take it out of the
real part operator. Then we can use Re f 0(x) = ⇡Gi0(x) (See Appendix B). Thus
we arrive at:
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Next, we can rewrite the result with dimensionless quantities. For this we introduce
the phase '+ = !0�+ and the variable ⌧ = k�/p�. Thus the final result is:
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(4.101)

After the transverse momentum integral is taken the expression dP0/d⌧d'+ (this is
the differential tree level probability) is given by:
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where
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and
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When taking the integral in ⌧ one has to have in mind that  = ⌧�.
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5 The High Field Limit for Incoherent
Processes

High Field limit corresponds to the limit � � 1 while keeping the electron energy
fixed. Studies of the high field limit of various strong field QED processes and
radiative corrections have been of high interest ever since the Ritus-Narozhny con-
jecture was formulated in the 1970s. The Ritus-Narozhny (RN) conjecture states
that in the regime � � 1 the effective expansion parameter of QED in a constant
crossed field is given by ↵�2/3 [31, 20]. From the RN conjecture it follows that when
↵�

2/3
⇡ 1, corresponding to � ⇡ 1600, all orders of perturbation theory become

equally important and thus the perturbative approach to strong field QED breaks
down. It has to be noted that the RN conjecture has not been rigorously proven but
instead it was postulated by Ritus and Narozhny after determining the scaling of
the radiative correction to the mass and polarization operators in a constant crossed
field up to order ↵3. Ref. [20] provides a comprehensive summary of the diagrams
that have been studied and what their scaling is. Since the RN conjecture has not
been proven, the high field behaviour of radiative corrections is still an active area of
research. As an example in Ref. [29] the RN conjecture has recently been confirmed
to be valid in a constant crossed field for a subset of possible corrections, the so
called bubble-type polarization corrections, to the mass operator. While Ritus and
Narozhny only considered the case of a constant crossed field, the validity of the RN
conjecture can be extended to include all plane wave fields of sufficiently low fre-
quency by means of the locally constant field approximation (LCFA), as within the
LCFA, differential probabilities of the plane wave phase are assumed to be identical
to the ones in the constant crossed field case. Beyond the LCFA it has been shown
on multiple occasions that the RN conjecture does not hold [23, 18]. It has to be
noted that all the above references have assumed that the limit � � 1 is achieved
by increasing the field strength of the background field while keeping the electron
energy constant, i.e. it really is the high field limit and not the high energy limit.
In this way, since the parameter ⇠ also scales linearly with the field strength, it is
always guaranteed that ⇠ � � and that ⌘ ⌧ 1 is a constant in this limit, which is
in accordance with the LCFA. Indeed, in Ref. [35] it was shown that the scaling
of the one-loop corrections differs depending on whether the high field limit or the
high energy limit was taken. Here it was concluded that the limit of large electron
energies is in contradiction with the LCFA, which means that the RN conjecture
in a plane wave can only be tested by fixing the electron energy and increasing the
laser intensity. Similar conclusions can be found in Ref. [24]. Experimentally the
regime ↵�2/3

⇠ 1 has not been achieved yet, however several experimental proposals
to test QED at such high intensities have been put forward [46, 10, 7, 8, 17]. In this
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chapter we specifically study the high field limit of the incoherent radiative correc-
tions to nonlinear Compton Scattering. The starting point will be the result Eq.
(4.80) from the last chapter, for which the high field limit will be computed. This
will be followed up by a discussion of effects of the pulse length on the probabilities
of single photon emission. As will be discussed, having a large enough pulse length
is another way of invalidating perturbation theory. The radiative corrections which
are associated to these pulse length effects as well as their high field behaviour will
be the topic of the rest of the chapter.

5.1 High Field Limit of the Incoherent Polarization
Correction

In the following calculation the large � asymptotic of the incoherent part of the
polarization correction Eq. (4.80) is computed. First we state again the explicit
definition of the components Pj of the polarization operator:
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These may also be written in terms of Airy and Scorer functions.
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with ⌧ = k�/p� as before. Using the expressions from above we have
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In the following we will not distinguish between �('+) and �(') anymore. Instead
we just use the notation � for both and we assume this quantity to be large. In
order to find an expansion of the probability for large � values we need to find the
leading order terms of the expressions (5.7),(5.8),(5.9). For M and L the integrand
is finite everywhere, so one can just replace the Airy functions by their leading order
Taylor expansions which are given by:
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+O(x)
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(5.10)

after which the integration can be done. For the N this straightforward procedure
cannot be done, because the remaining integrals would diverge. Instead one can
divide the ⌧ integral into two regions separated at an arbitrary value ⌧0 such that
1/� ⌧ ⌧0 ⌧ 1. Subsequently one may apply appropriate approximations. For
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example we may consider the following integral:
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(5.11)

where � is the Euler–Mascheroni constant. For the integrals that appear in the
calculation above and the subsequent series expansion to first order we used Wolfram
Mathematica. In the end it is important that the result does not depend on the
arbitrary value ⌧0 which is the case in this calculation. This calculation is the first
step to finding the asymptotic of the term N . The subsequent integral in v can be
taken without running into problems. We then arrive at the following asymptotics
for large �:
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By inserting these expressions into Eq. (5.6) we obtain
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(5.15)
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Now that we have the final result we may reinstate the dependence of � on '+ and
'. In fact, the � inside the logarithm originates from the polarization operator and
it therefore depends on '. Also we will include the coefficients from Eq. (4.80).
Therefore we obtain an asymptotic expansion of the integrand in (4.80):

d�Pincoh
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(5.16)

The expression shows that the correction due to the polarization operator in this
process scales as �4/3 ln(�). From the above calculation it is also clear that the term
with the logarithm, which is the term that scales the most with �, comes from the
⌧ values which are close to 0, corresponding to small photon k�.

5.1.1 The Case of a Constant Crossed Field

We now consider the case of a constant crossed field that is switched on for only a
finite time, which corresponds to a finite total Phase �. This case can be modeled
by having � = �0 be constant and by adjusting the boundaries of the phase integrals
in the following way:

Z 1

�1
d'+ !

Z �

0

d'+, (5.17)

and
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'+
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'+

d'. (5.18)

Since � is constant now, the phase integral is simply:
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2
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. (5.19)

Thus we can obtain the high � asymptotic for the total correction �Pincoh by multi-
plying (5.16) by the factor �2

/2:
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(5.20)

For the case of a constant field it is useful to quantify the pulse length � in terms
of the total time T that an electron is exposed to the field. Assuming an electron
with four-momentum p

µ = (",p) and � ⌘ x� it is
d�

dt
=

p�

"
, (5.21)

51



Numerical

Asymptotic

10 50 100
0.1

0.5

1

5

10

50

100

χ

δ
P

in
c

o
h

Figure 5.1: For the case of a constant crossed field, a comparison between the exact
values (circles) of �Pincoh which were computed numerically from the
expression (4.80) and the asymptotic (5.20) (dashed line) is shown. The
parameters being used are ⌘ = 0.1 and � = 2⇡.

and thus we can estimate
�

!0
=

p�

"
T. (5.22)

In the actual case of a constant crossed field, there is no frequency associated with
the background field, and thus the frequency !0 is arbitrary. In the case of a prop-
agating plane wave field within the LCFA, there will always be a finite value of !0

associated, thus the definition of the total phase makes sense in this case. As men-
tioned before the correction �Pincoh is equal to minus the probability of the incoherent
part of the trident process. Indeed the probability of this process is presented in
Ref. [6] and the large � asymptotic for the incoherent process is given in Eq. (6.63)
of Ref. [6], which is in agreement with our result (5.20). A comparison between the
asymptotic and the exact values of �Pincoh is given in Fig. 5.1.

5.2 The Damping of Particle States
The formation length of nonlinear Compton scattering is of the order of 'f ⇠

1/⇠ [16, 41]. If �/'f > 1 where � is the total length of the laser pulse, there
is the possibility that an emitted photon decays into an electron-positron pair and
incoming/outgoing electrons emit more photons while traversing the laser pulse.
Thus the probability of a single photon emission becomes smaller when increasing
the pulse length �. As it turns out, these pulse length effects reduce the probability
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of a single photon emission exponentially, as it was known for a long time [22] and
was derived from first principles in Refs. [36, 37]. The probabilities derived in Refs.
[36, 37] are valid within the LCFA and they depend on the expressions for the mass
and polarization operators within the LCFA. In the following we will summarize
these expression and introduce the notatian that will be used in the subsequent
sections. Subsequently we are going to cite the findings from Refs. [36, 37] regarding
the nonlinear Compton Scattering process, as these results will be used as a starting
point when computing the high field limit of the incoherent corrections to nonlinear
Compton scattering. We will denote the incoming electron momentum as p

µ, the
outgoing electron momentum as p

0µ and the outgoing photon momentum as q
µ.

Due to the plane wave symmetries there is momentum conservation in the minus
and transverse components such that p0� = p�� q�. In order to distinguish between
nonlinearity parameters of incoming and outgoing momenta we will use the following
definitions:

�p(') =
|e|E0p�

m3
| 

0(')|, (5.23)

�p0(') =
|e|E0p

0
�

m3
| 

0(')|, (5.24)

and

q(') =
|e|E0q�

m3
| 

0(')|, (5.25)

where the prime denotes the derivatve d/d' and ' = !0' corresponds to the di-
mensionless phase.

5.2.1 The Mass Operator in the LCFA

The leading order corrections to scattering probabilities are given by the mass oper-
ator and the polarization operator. In the following we will consider these operators
within the linear constant field approximation (LCFA). The mass operator in a con-
stant crossed field was studied in Refs. [38, 39]. Within the LCFA one can use the
expressions from a constant crossed field and make the replacement � ! �('). By
using the same notation as in Ref. [37], the mass operator within the LCFA is given
by:
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(5.26)
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The expression for the mass operator can be simplified by absorbing the u-integral
into Airy and Scorer functions after which one obtains:
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(5.27)
For the calculation of scattering probabilities only the imaginary part of the mass
operator will be relevant. We therefore compute the following quantity:
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(5.28)

which according to the optical theorem is equal to the differential tree level proba-
bility per unit phase ' = !0� of nonlinear Compton scattering of an electron with
initial spin s. Further we write this expression as
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(5.29)
where we define
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Now by introducing the variable ⌧ = q�/p� and using the momentum conservation
p
0
� = p� � q� we can write p

0
� = (1� ⌧)p� and therefore �p0 = (1� ⌧)�p. We then

have:
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With this definition we also have

M̃s(0) =
2m

!0p�
Im {Ms(p,')} . (5.33)
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5.2.2 The Polarization Operator in the LCFA

The polarization operator in a constant crossed field is studied in Refs. [39]. We
note that the polarization operator can be expressed by one longitudinal and two
transverse components. When dealing with on-shell photons, as it is the case in
the incoherent radiative corrections studied in Refs, [36, 37] only the transverse
components have to be considered. Within the LCFA one can use the expressions
from the constant crossed field and replace ! ('). Using the notation from Ref.
[37] the transverse components of the polarization operator are given by:
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48⇡
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(5.34)

with j = 1, 2. The expression for the polarization operator can be simplified by
absorbing the u-integral into the definition of the Airy and Scorer functions through
Eq. (4.28), and thus one obtains:
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With the definition ⌧ := q�/p� it is q = ⌧�. We also define the following quantity:
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with

qj(u) =
8u+ 1 + 3(�1)j

12 · 21/3u5/3
p

u(u� 1)
, (5.38)

which according to the optical theorem is equal to the differential tree level proba-
bility per unit phase ' = !0� of Breit-Wheeler pair production of an initial photon
of polarization quantum number j.

5.2.3 Nonlinear Compton-Scattering including the damping

of particle states in the LCFA

The damping effects which come from the extended pulse length of the background
field are derived from first principles in Refs. [36, 37]. It turns out, the damping
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effects are described by all incoherent radiative corrections that are obtained by
attaching arbitrarily many first order mass or polarization operators to the external
electron and photon lines. First order means in this case that the mass and polariza-
tion operators are proportional to ↵, however higher order one particle irreducible
diagrams, e.g. ↵

2, are not taken into account. The electron and photon states
which include these damping effects can be found by solving the Dyson-Schwinger
equations for the electron and photon wave functions. These wave functions may
be used to compute the probabilities of nonlinear Compton scattering and Breit-
Wheeler pair production by means of perturbation theory. Indeed, while the states
found in Ref. [36] treat the pulse length effects in a non-perturbative way, the result
is nonetheless perturbative with respect to ↵. Here we cite the result for the proba-
bility of nonlinear Compton scattering with an electron of inital spin s = 1,�1 and
final spin s

0 = 1,�1 and a photon of polarization j = 1, 2 from Ref. [37]:
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where the mass and polarization operators are defined as in the previous section.
Here the phase � ⌘ x� ⌘ (nx) has units of inverse energy. The trace expressions
are given by:
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and

z =


q�

(p� � q�)�p (�+)

�2/3
. (5.42)
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5.2.4 Formulation in Dimensionless Quantities

We introduce the quantity ⌧ = q�/p� and thus p
0
� = (1� ⌧)p�. Also we introduce

the dimensionless phases '+ = !0�+ and ' = !0�. Expressions that were given in
terms of � before will now be written in terms of ' by straightforward substitution.
The scattering probability for nonlinear Compton scattering including the damping
of particle states is then give by:
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(5.43)

The exponent may be written in terms of dimensionless quantities by using the
definitions (5.32) and (5.37). The trace terms can be written as:
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and where

z =


⌧

(1� ⌧)�p ('+)

�2/3
. (5.46)

5.3 High Field Limit for Arbitrarily Many First
Order Loop Corrections

The expression (5.43) includes all the incoherent radiative corrections that can be
obtained by attaching arbitrarily many first order mass or polarization operators to
the external electron and photon lines. In this sense the expression already provides
a resummation of all the diagrams of this category. If one is interested in the specific
contributions of each of these diagrams, one can use the series expansion for each
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of the three exponentials and consider each resulting term separately. Indeed, by
expanding the exponentials to first order and by only considering the term containing
one polarization operator and no mass operators, and if one sums over initial and
final quantum numbers, one obtains the correction given by Eq. (4.80), which is the
incoherent part of the polarization correction. The high field limit corresponding
to � � 1 for the case of the one polarization operator correction has already been
computed in Sec. 5.20. We are now interested in finding the asymptotic of every
other term in the exponential series. It is important to note that, because the
expression (5.43) is a probability, it is related to the square of S-Matrix element.
Thus, each term of the exponential series contains not only the square of single
diagrams (non-exchange terms) but also the exchange terms which are products of
two different diagrams. Thus, one cannot map each term of the exponential series
to a single process because each term will include multiple different exchange and
non-exchange terms. Still, in the context of perturbation theory, it is the sum of
all of these exchange and non-exchange terms at a given order of � and ↵ that can
be measured, and thus it is sensible to study the sum of these expressions. When
writing the exponentials as a series expansion one obtains the following expression
for the probability:
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We now define each of the terms in the series as follows:
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In the following we consider the case of a constant crossed field, which gets switched
on at '+ = 0 and gets switched off at '+ = �. In this case the parameter � can be
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taken as constant and the ' integrals simplify:
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5.3.1 The Case of k Polarization Operators and ss
0 = 1

Wie first consider the case l = n = 0 and k � 2. The latter requirement will become
apparent in the subsequent derivation. The expression is:
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We will ignore the '+ integral for now and conser the differential probability:
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As in the case of k = 1 (Sec. 5.20) the main contribution of this integral for
asymptotically large � comes from the region of ⌧ ⇠ 1/�⌧ 1 which asymptotically
approaches 0. This is because at ⌧ = 1/� the Airy function in the polarization
operator does not cause an exponential suppression and when ss

0 = 1 the integrand
gets amplified by the poles of the trace expressions T̃j,s,s0(⌧) at ⌧ = 0. While the
trace expressions also have poles at ⌧ = 1, they are of lesser degree than those at
⌧ = 0, and contributions from ⌧ close to 1 get suppressed by the Airy function in
the trace at large �. We therefore approximate the trace expression by evaluating
it around ⌧ = 0 and only keeping those terms which are of highest order in �. Thus
we approximate the trace by the following expression:
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where we have expanded the Airy function as Ai0(z) ' Ai0(0) = �1/(31/3�(1/3)).
After performing the substitution ⇢ = �⌧ we obtain:
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One can now obtain the asymptotic by simply setting �! 1 in the upper bound-
ary of the ⇢ integral. This step is of course only possible if the resulting integral
converges. This is not the case for k = 1, but for k � 2 the integral does converge.
Thus we obtain:
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Taking the integral in '+ we obtain:
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This expression is indeed an asymptotic for large �, because the integrals in ⇢ and u

have no �-dependence anymore and are thus numerical constants. All the � depen-
dence is now in the prefactor. As mentioned before, the integral is only convergent
for k � 2. For k = 1 there would be a logarithmic divergence, which was treated
in Sec. 5.1. An important difference in Sec. 5.1 is that the result is the sum of the
contributions of all spin and polarization quantum numbers, while here we resolve
each spin and polarization configuration individually.

We now turn to the case of ss0 = �1. This case is very different because now the
leading terms of the trace are given by:
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In fact, the trace terms do not have a pole at ⌧ = 0 anymore. As a result the
integrand of the ⌧ integral does not dominate at ⌧ = 0 anymore and the entire
domain of integration becomes relevant. For k  6 we can approximate the Airy
function in the polarization operator by setting the argument 0 (since � ! 1). In
this case we obtain for ss

0 = �1 and k  6:

P
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j,s,s0 '
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1
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�k Z 1
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⌧

4�k
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(1� ⌧)1/3
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(5.57)

The integrals appearing in the expression above can be computed analytically and
they give:

Z 1

0

d⌧
⌧

4�k
3

(1� ⌧)1/3
=
�
�
2
3

�
�
�
7
3 �

k
3

�

�
�
3� k

3

� for k < 7, (5.58)
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Ai0(0)

Z 1

1

qj(u)du = �
(5 + (�1)j)

p
⇡�(2/3)

6 · 61/3�(1/3)�(13/6)
. (5.59)

Thus in the case k  6 we were able to derive the asymptotic by taking the point
wise limit �! 1 of the integrand. Point wise means that the limit can be taken for
each value of ⌧ in the same way, effectively treating ⌧ as a constant. This approach
was not possible in the previous case ss

0 = 1 because, if done so, the resulting
integrals would diverge. For the case of k � 7 the ⌧ integral in (5.57) would not
converge and thus one has to treat these cases separately. Specifically for the case
k � 8 one can proceed similar as to the case ss

0 = 1. This is because in this case
the polarization operators provide enough powers of ⌧ in the denominator such that
the asymptotic is only determind by the integral in the region around ⌧ = 0. We
can use the expansion of the trace (5.56), perform the substitution ⇢ = �⌧ , and
again put the integration limit of the ⇢-integration to infinity. Thus for ss

0 = �1
and k � 8 we obtain:

P
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◆�k
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(5.60)

For the case k = 7 there would be again a logarithmic divergence, which needs to
be treated separately. As this case does not seem to be of special interest we will
omit this procedure.

5.3.2 The Case of n Mass Operators

For the case of n mass operators in the outgoing fermion line the differential prob-
ability is given by

dP
(0,n,0)
j,s,s0

d'+
= �

↵

4⌘0

1

n!
(�� '+)

n

Z 1

0

d⌧ T̃j,s,s0M̃s0(⌧)
n
. (5.61)

If n � 3, the dominant contribution comes from the integral around ⌧ = 1 � 1/�.
This is because the mass operator has additional powers of 1/(1�⌧) in its definition
and at ⌧ = 1�1/� the Airy functions in the mass operator don’t suppress the result
exponentially. Thus for the purpose of finding the asymptotic for large � we may
expand the trace expression around ⌧ = 1 and thus we obtain:
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,
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(5.62)

with the constants

�
(1)
jss0 =

2� (�1)jss0

2
, �

(2)
jss0 = s

0
� (�1)js. (5.63)

Even though the first term has the highest scaling in � it turns out that all three
terms are of equal importance for the limit. This is because when taking the integral
each power 1/(1 � ⌧) will contribute another power of �. Indeed, by substituting
⇢ = �(1� ⌧) we obtain:
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(5.64)

And thus we obtain the asymptotic by setting � ! 1 as the upper bound of the
⇢-integral. By doing this and also taking the phase integral we obtain:
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Again, this result is valid for n � 3. For n = 2 there would be a logarithmic
divergence in the ⇢ integral which has to be treated in a similar way as the case
k = 1 in Sec. 5.20 from which one can obtain the scaling P

(0,2,0)
⇠ �3

↵
3
�
2 ln�. For

the case n = 1 one can simply take the point wise limit of the integrand resulting a
scaling P

(0,1,0)
⇠ �2

↵
2
�
4/3.

5.3.3 Plots

In order to confirm the results for the asymptotics derived in this section, they were
compared to the exact numerical evaluations of the probabilities P

(0,n,k)
j,s,s0 from Eq.

(5.49) for different values of �. A direct comparison of the numerical values of the
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probabilities and the corresponding asymptotic expressions for different combina-
tions of n, k, j, s and s

0 is shown in Fig. 5.2. Note that each plot shows the absolute
value of the probabilities and their asymptotic expressions in order make use of the
logarithmic scale. While these plots make it evident that the asymptotics work well,
due to the logarithmic scale it is difficult to quantify how good the convergence is
quantitatively at a given scale of �. Thus for a better quantification we define the
following ratio:

R
(l,n,k)
j,s,s0 =

⇣
P

(l,n,k)
j,s,s0

⌘

asymptotic⇣
P

(l,n,k)
j,s,s0

⌘

exact

, (5.66)

where in the numerator are the asymptotic expressions of the probability and in
the denominator are the exact values that are obtained numerically. Thus one can
see how well the asymptotics converge, by looking at how fast this ratio approaches
unity. Plots of the ratios for different combinations of n, k, j, s and s

0 are shown in
Fig. 5.3.

5.3.4 Discussion of the Perturbative Results

Because the exponent with the incoming mass operator does not depend on ⌧ , it is
clear that each power l contributes with ↵�

2/3
/⌘ according to the point wise limit.

As can be seen from the previous calculations, it is in fact the ⌧ -integration, i.e. the
integral over the final photon momenta, that provides additional powers of �. These
additional powers of � are an interesting result because both the polarization and
mass operators are often cited to have a scaling of ↵�2/3 (see e.g. Ref. [20]). Here we
have shown that when considering total probabilities, after performing the outgoing
photon momentum integral, the scaling in � can be even larger if multiple mass and
polarization operators are involved. For both cases, where there is either a chain of
many polarization operators in the outgoing photon line, or where there is a chain of
mass operators in the outgoing electron line, we have shown that the effective scaling,
that each of these operators contributes, is �↵�/⌘. And thus we have shown that
the effective expansion parameter for incoherent processes of strong field QED is
�↵�/⌘ = �↵⇠. This shows that large field strengths enhance the importance of
incoherent radiative corrections (i.e. damping effects) even more than one would
expect from the individual asymptotics of the mass and polarization operators (the
naive expectation would be that the expansion parameter is �↵�2/3

/⌘). From the
condition �↵⇠ = 1 one can estimate that damping effects to all orders become
important when �⇠ = 1/↵ ⇡ 137. In light of the Ritus-Narozhny conjecture it is
important to ask whether these results are relevant for the higher order radiative
corrections of the mass and polarization operators. According to the optical theorem,
any corrections to the mass and polarization operators are related to corrections
of scattering probabilites by the so called cutting rules [33, 26]. Indeed, the set
of bubble-type polarization corrections which are studied in Ref. [29] are exactly
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Figure 5.2: This figure contains several plots of the absolute values of the probabili-
ties P

(0,n,k)
j,s,s0 as well as the corresponding asymptotics as a function of �.

The plots were made for j = 1 and different values of n, k, s and s
0 in the

case of having a constant crossed field of total phase �. The numerical
parameters that were used are: ⌘ = 0.1 and � = 2⇡.
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Figure 5.3: This figure contains several plots of the ratios R
(0,n,k)
j,s,s0 which indicate

how well the asymptotic expressions converge (when the value is 1).
The ratios were plotted as a function of � for j = 1 and different values
of n, k, s and s

0 in the case of having a constant crossed field of total
phase �. The numerical parameters that were used are: ⌘ = 0.1 and
� = 2⇡.
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those diagrams, that should give the probabilities P
(0,0,k)
j,s,s0 from Eq. (5.50) when

taking the imaginary part, i.e. cutting them. In Ref. [29] it was found however
that these bubble-type diagrams have the scaling that is expected from the RN
conjecture and not the larger scaling that we found in this chapter. The reason
for this difference is presumably that when applying the cutting rules, one not
only obtains corrections to single photon emission, but one also obtains corrections
to the trident process. The incoherent parts from the trident process will then
exactly cancel the incoherent parts from the photon emission. This is what has
been explicitly shown when applying the optical theorem to the single polarization
correction of the mass operator in Ref. [40] which was also discussed in Sec. 4.5.
More generally it is physically sensible to assume that radiative corrections to closed
loops only contain coherent contributions, since closed loops are expected to be
localized in space and time. In contrast, incoherent processes are typically those in
which intermediate particles propagate freely for a while, and are thus extended over
space and time. The mathematical details of how this cancellation of the incoherent
parts in the mass operator occurs, could be an interesting topic of future work.

5.4 The Non-Perturbative Case
We consider the case of a constant field. The probability (5.43) can be written as:

dPj,s,s0

d'+
=�

↵

4⌘

Z 1

0

d⌧ T̃j,s,s0e
'+M̃s(0)+(��'+)(M̃s0 (⌧)+P̃j(⌧)). (5.67)

The �+ integral can be taken analytically and we obtain:
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M̃s(0)� M̃s0(⌧)� P̃j(⌧)
.

(5.68)

We note that the asymptotic of e�M̃s(0) is obtained by inserting the asymptotic of
M̃s(0) which is given in Eq. (5.89). This asymptotic is straightforward to obtain
because it is not affected by the ⌧ -integration. As in the perturbative case, it is in
fact the integral in ⌧ that makes the asymptotic non-trivial.

5.4.1 The Case ss
0 = 1

For the treatment of the non-perturbative case we are going to make use of several
asymptotic expressions of the mass and polarization operators. First we are going
to consider the asymptotic of the probability of pair production for the case that
⌧�⌧ 1:

P̃j(⌧) ' �
↵�

⌘

r
3

8

j

4
e
� 8

3⌧� for ⌧�⌧ 1. (5.69)
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This asymptotic can be obtained by making use of the known asymptotic expression
of the Airy function for large arguments x � 1 [32]:

Ai0(x) = e
� 2

3x
3/2

✓
�

x
1/4

2
p
⇡
+O

✓
1

x5/4

◆◆
, (5.70)

and taking the u integral in Eq. (5.37). Furthermore we are going to need the
large � asymptotic of the pair production probability given in Eq. (5.32), within
the regime ⌧ ⌧ 1. For this, since 1� ⌧ ' 1 we can take the limit of � ! 1 inside
the Airy functions and obtain:
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(5.71)

In the probability expression (5.68) it appears the difference M̃s(0) � M̃s(⌧). For
this difference we obtain for ⌧ ⌧ 1:

M̃s(0)� M̃s(⌧) ' a
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where a is a constant that is given in Eq. (5.92), that will however not be relevant
in the following calculation. We have neglected the spin terms in (5.71) since they
are sub-leading in �. For the trace we will use the following expansion which is valid
for ss

0 = 1 and ⌧ ⌧ 1:

T̃j,s,s0 ' �
2(5� 2j)

31/3�(1/3)

�
2/3

⌧ 2/3
. (5.73)

In order to see that most contributions come from the small ⌧ region, it is important
to consider the following function:

f(⌧) :=
1� e

��(M̃s(0)�M̃s0 (⌧)�P̃j(⌧))

M̃s(0)� M̃s0(⌧)� P̃j(⌧)
. (5.74)

Because the polarization operator P̃j also behaves exponentially (Eq. 5.69), this
function has a double exponential behaviour in ⌧ . It is f(0) = � and f has a sharp
drop at a certain value ⌧ ⇤. In order to find ⌧ ⇤ we impose the following condition:

f(⌧ ⇤) =
�

2⇢
, (5.75)

where ⇢ > 1/2 is a constant we introduce, to keep the calculation as general as
possible. We will later show that the value of ⇢ does not change the resulting
asymptotic. To solve this condition for ⌧ ⇤ we make two assumptions:

1. ⌧ ⇤ ⌧ 1/�,
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2. |M̃s(0)� M̃s0(⌧ ⇤)| ⌧ |P̃j(⌧ ⇤)|.

Assumption 1 allows us to use the expansion (5.69). Assumption 2 lets us neglect
the mass operators when calculating ⌧ ⇤. After finding ⌧ ⇤ we have to come back to
see if these assumptions are met and verify self-consistency. By using assumption 2
and neglecting the mass operators the condition (5.75) becomes:

1� e
��|P̃j(⌧⇤)|

�|P̃j(⌧ ⇤)|
=

1

2⇢
, (5.76)

Because the above equation depends only on the product �|P̃j(⌧ ⇤)| it is solved for
a specific value

�|P̃j(⌧
⇤)| = y(⇢) (5.77)

where y depends only on the constant ⇢. Since ⇢ is a constant, also y is a constant.
By assumption 1 we can use the expansion (5.69) and the condition is:

cj(�)e
� 8

3⌧⇤� =
y

�
, (5.78)

with

cj(�) :=
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r
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8
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4
. (5.79)

Solving for ⌧ ⇤ gives:

⌧
⇤ =

8

3� [ln (�cj)� ln (y)]
. (5.80)

It can be seen that ⌧ ⇤ fulfills Assumption 1, as cj is also linear in �. We can also
verify Assumption 2 by making use of the expansion (5.72):

|M̃s(0)� M̃s0(⌧
⇤)| ⇠

1

�1/3 ln(�)
, (5.81)

while |P̃j(⌧ ⇤)| is constant in � according to Eq. (5.77). Thus both assumptions are
fulfilled in the asymptotic regime of large �, which is what we are interested in.
Proceeding, we can perform the integral (5.68) on the domain ⌧ 2 [0, ⌧ ⇤] and to use
the Taylor expansion of f which is given by:

f(⌧) ' ��
1

2
�2(M̃s(0)� M̃s0(⌧)� P̃j(⌧)). (5.82)

The issue here is, making use of the Taylor expansion requires the condition

�|M̃s(0)� M̃s0(⌧)� P̃j(⌧)| ⌧ 1 (5.83)
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which is not fulfilled for ⌧ = ⌧
⇤ since by construction (Eq. (5.77)) �P̃j(⌧ ⇤) is of

order 1. We note however that the following condition is fulfilled:

|P̃j((1� ✏)⌧ ⇤)| ⇠

✓
1

�

◆✏/(1�✏)

(5.84)

for ✏ 2 [0, 1). Therefore, for ✏ > 0 and at sufficiently large �, we are allowed to use
the Taylor expansion (5.82) if we integrate over [0, (1�✏)⌧ ⇤]. By making ✏ a function
of � we can show that the remaining integral over [(1�✏)⌧ ⇤, ⌧ ⇤] is negligible. We need
to watch out however that a choice of ✏(�) fullfills the condition |P̃j((1� ✏)⌧ ⇤)| ⌧ 1
for sufficiently large �. One possibility would be ✏(�) = 1/

p
ln(�). Then we will

conclude that we can can use the expansion (5.82) in an integral over the full intervall
⌧ 2 [0, ⌧ ⇤]. Indeed it can be seen that
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since f(⌧ ⇤) = const. When taking the integral over [0, (1 � ✏)⌧ ⇤], according to our
assumptions, we only need to keep the leading term in the expansion (5.82):
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(5.86)

We see that any effects of integrating only up to (1�✏)⌧ ⇤ instead of ⌧ ⇤ are suppressed
by a factor of ✏. We conclude that we can use the Taylor expansion (5.82) on the full
interval [0, ⌧ ⇤]. We can now proceed to use all of these approximations to calculate
the asymptotic of the full probability:
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In the above calculation we neglected the next to leading order term of expansion
(5.82), according to our considerations above. In the following step we need to rely on
the fact that the ⌧ -integral on the interval [0, ⌧ ⇤] is the most significant contribution
to the full integral (5.68). This is supported by the fact that the function f(⌧),
due to its double exponential behaviour, has a plateau at ⌧ = 0 with f(0) = �
and f

0(0) = 0 and a sharp drop around ⌧ = ⌧
⇤ with the attribute f

0(⌧ ⇤) ! �1

for � ! 1. Also the integral on the domain [1/�, 1] can be taken in the limit
�! 1 by simply computing the point wise limit of the integrand. This calculation
is similar to the one presented in the next section for the case ss

0 = �1 and as result
this integral will have a constant scaling in �, and therefore will only contribute to
lower order than the result (5.87). Thus by assuming that the integral (5.87) gives
the leading order contribution to the integral, the asymptotic of the full probability
is then given by:

Pjss0 '
↵

⌘
e
�M̃s(0) 31/3(5� 2j)��1/3

�(1/3)
h
ln
⇣

�↵�
⌘

q
3
8
j
4

⌘
� ln (y)

i1/3 . (5.88)

Since y is a constant and cj grows linearly with �, the term ln(y) may be disregarded,
thus proving that the asymptotic does not depend on the exact value of ⇢ in Eq.
(5.75).

5.4.2 The case ss
0 = �1

The case ss
0 = �1 is simpler than the case ss

0 = 1, because there are no significant
contributions at very small ⌧ < 1/�. This is because, as was discussed in the
perturbative case, when ss

0 = �1 the trace expression does not have a pole at ⌧ = 0
anymore. The asymptotic can be calculated by taking the point wise limit � ! 1

in the integrand of (5.68). For this we consider the following asymptotics for a fixed
⌧ 2 (0, 1):

M̃s(0) ! a
↵�

2/3

⌘
+ sc

↵�
1/3

⌘
, (5.89)

M̃s0(⌧) !
a

(1� ⌧)1/3
↵�

2/3

⌘
+

s
0
c

(1� ⌧)2/3
↵�

1/3

⌘
, (5.90)

P̃j(⌧) !
bj�

2/3

⌧ 1/3
, (5.91)

with

a = Ai0(0)

Z 1

0

p1(v)dv = �
28⇡

9 · 35/6�(1/3)
, (5.92)
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bj = Ai0(0)

Z 1

1

qj(u)du = �
(5 + (�1)j)

p
⇡�(2/3)

6 · 61/3�(1/3)�(13/6)
, (5.93)

c = �Ai0(0)

Z 1

0

p2(v)dv. (5.94)

Then we have

M̃s(0)� M̃s0(⌧)� P̃j(⌧)

'
↵�

2/3

⌘

a⌧
1/3((1� ⌧)1/3 � 1)� b(1� ⌧)1/3

⌧ 1/3(1� ⌧)1/3

+ c
↵�

1/3

⌘

✓
s�

s
0

(1� ⌧)2/3

◆
.

(5.95)

For the limit of � ! 1 only the middle line of the equation above which scales as
�
2/3 will be important. It is easily verified that this term is positive for all ⌧ 2 (0, 1).

For this reason we can conclude:

e
��(M̃s(0)�M̃s0 (⌧)�P̃j(⌧)) ! 0 for �! 1 (5.96)

for all ⌧ 2 (0, 1). The dominating terms in the trace terms will be given by the
middle lines of Eqs. (5.44) and (5.45), such that:

T̃jss0 ! �
2/3 (1� ⌧)2/3

⌧ 2/3
Ai0(0)


(5� 2j)(1 + ss

0) +

✓
1� (�1)j

ss
0

2

◆
⌧
2

1� ⌧

�
(5.97)

Since we only consider the case ss
0 = �1 here, we can explicitly insert this condition

into the trace and obtain:

T̃jss0 ! �
2/3 Ai0(0)

✓
1 +

1

2
(�1)j

◆
⌧
4/3

(1� ⌧)1/3
. (5.98)

Inserting everything into the expression of the full probability, we see that the �2/3

from the trace will cancel the �2/3 from the denominator and we obtain:

Pjss0 ' �
1

4
Ai0(0)e�M̃s(0)

Z 1

0

d⌧
(1 + 1

2(�1)j)⌧ 5/3

�a⌧ 1/3(1� (1� ⌧)1/3)� bj(1� ⌧)1/3
. (5.99)

The ⌧ -integral does not depend on � anymore and thus the entire � dependence
is contained in the exponential prefactor e

�M̃s(0). By evaluating the remaining ⌧ -
integral in (5.99) numerically, we obtain:

Pjss0 = e
�M̃s(0) ·

(
0.0185375, j = 1

0.0472879, j = 2
. (5.100)
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5.4.3 Plots

In order to confirm the results for the asymptotics derived in this section, they were
compared to the exact numerical evaluations of the probabilities Pj,s,s0 from Eq.
(5.68) for different values of �. A direct comparison of the numerical values of the
probabilities and the corresponding asymptotic expressions for different combina-
tions of j, s and s

0 is shown in Fig. 5.4. While these plots make it evident that
the asymptotics work well, due to the logarithmic scale it is difficult to quantify
how good the convergence is quantitatively at a given scale of �. Thus for a better
quantification we define the following ratio:

R(j,s,s0) =
(Pj,s,s0)asymptotic

(Pj,s,s0)exact
(5.101)

where in the numerator are the asymptotic expressions of the probability and in
the denominator are the exact values that are obtained numerically. Thus one can
see how well the asymptotics converge, by looking at how fast this ratio approaches
unity. Plots of the ratios for different combinations of j, s and s

0 are shown in Fig.
5.5.

5.4.4 Discussion of the Non-Perturbative Results

In the treatment of the perturbative cases we have seen that the integral over out-
going photon momenta makes the scaling of incoherent processes with respect to �
nontrivial. The result was certainly different from the "naive" scaling according to
which each mass and polarization operator in the expression contributes a factor of
↵�

2/3. For the non-perturbative case, i.e. the resummation of all the contributions
from the perturbative case, we have found that at least in the more dominant case
ss

0 = 1 there are also nontrivial contributions from the photon momentum integral.
Just like in the perturbative case, these nontrivial contributions are those which
arise from the region of very small q� for which ⌧ = q�/p� < 1/�. In the case
ss

0 = �1 the asymptotics could be obtained by taking the point wise limit � ! 1

of the integrand, which shows that no such nontrivial contributions play a role. As a
result the probabilities for the case of ss0 = �1 are sub-leading in the high field limit.
It must be pointed out however, that these asymptotic probabilities will be difficult
to verify experimentally. For one, the exponential prefactor diminishes the values
of the probabilities in both cases ss

0 = ±1 very quickly with increasing �, as inco-
herent processes become more and more likely. Also, as discussed before, the most
significant contribution comes from photons which have a very small momentum
minus component. Since the photon is massless, this corresponds to the situation
that the photon gets emitted in a direction that is very close to the propagation
direction n of the plane wave field. In an experiment with a laser, these photons
would be very difficult to distinguish from the laser photons. It also has to be noted
that at � ⇠ 1600 higher order radiative corrections to the first order mass and po-
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Figure 5.4: This figure contains plots of the probabilities Pj,s,s0 and their asymptotics
as a function of � without the exponential prefactor. The plots were
made for different values of j, s and s

0 in the case of having a constant
crossed field of total phase �. The numerical parameters that were used
are: ⌘ = 0.5 and � = 2⇡.
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Figure 5.5: This plot shows the ratios R(j,s,s0) which indicate how well the asymptotic
expressions converge (which is when the value gets close to 1). The ratios
were plotted as a function of � for different values of j, s and s

0 in the
case of having a constant crossed field of total phase �. The parameters
given in the legend correspond to the values (j, s, s0). The numerical
parameters that were used are: ⌘ = 0.5 and � = 2⇡.

larization operators will become important (Ritus-Narozhny conjecture) which are
not accounted for in the expression of the probability Eq. (5.43).
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6 Summary and Conclusion

In the first part of the thesis we have computed a general expression for the first or-
der correction to nonlinear Compton scattering due to the polarization operator. We
have computed the locally constant field approximation of this general expression.
We found that this correction includes an incoherent contribution that has the exact
negative value of the incoherent trident process. Thus, our result agrees with the
known result that incoherent contributions to higher order loop corrections will can-
cel each other out. For this incoherent correction, we computed the high field limit
which is characterized by � ⌧ 1, where � is the quantum nonlinearity parameter.
The expression we found also agrees with the corresponding result for the trident
process from the literature. The expression of the incoherent correction is also a first
order contribution to the damping effects due to long laser pulse lengths. If the laser
pulse in a strong field experiment is significantly larger than the formation length,
it becomes likely for in- and outgoing electrons and photons to decay into different
particle states, and thus the probability of single photon emission is damped. We
recalled from the literature the expression for the probability of nonlinear Comp-
ton scattering, which includes all such damping effects due to processes that are of
first order in ↵. After expanding this expression we identified that each order must
correspond to certain incoherent radiative corrections with a given amount of mass
and polarization operators. For each of these terms, we proceeded to find the high
field limit. We found that terms containing multiple mass or polarization operators
in the outgoing particle lines, exhibit a larger scaling in � than is expected from
the known scaling of single mass and polarization operators. We continued to find
the high field limit of the full expression which contains all such contributions, and
we found that only in the case where the incoming and outgoing electron share the
same spin there is a non-trivial scaling in �. From the asymptotics of the perturba-
tive case we concluded that in the high field limit for incoherent processes, there is
an effective expansion parameter given by �↵�, where � is the total pulse length.
This is an interesting result because the scaling in powers of � is bigger than one
would expect from the Ritus-Narozhny conjecture, which states that the expansion
parameter for radiative corrections in the high field limit in a constant crossed field
is ↵�2/3. We discussed however that in closed loop diagrams the incoherent contri-
butions are expected to cancel out, just like it explicitly could be seen in the case of
the first order polarization correction. Thus our result is not in contradiction with
the Ritus-Narozhny conjecture, if applied to coherent processes and loop corrections
only. For future work it would be interesting to consider the cancellation of inco-
herent processes in closed loops in more detail. Also while the incoherent processes
were studied very extensively in this thesis, it would be interesting to also study the
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coherent correction from the polarization operator more closely.
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A Gamma Matrices

The gamma matrices are four 4⇥ 4 matrices which are defined by the condition

{�
µ
, �

⌫
} ⌘ �

µ
�
⌫ + �

⌫
�
µ = 2⌘µ⌫ , (A.1)

where µ, ⌫ = 0, 1, 2, 3 and where ⌘µ⌫ = diag(1,�1,�1,�1) is the Minkowski metric.
A possible representation of the Gamma matrices is the Weyl representation in which
they are specifically given by [42]:

�
0 =
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1 0
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1 0
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(A.2)

For a four-vector aµ we define

â = aµ�
µ
. (A.3)

In QED computations one often has to compute traces of products of gamma ma-
trices. For these computations it is convenient to know that the trace of an uneven
number of gamma matrices is always zero. For traces of even numbers of gamma
matrices the following identities are helpful:

tr (�µ�⌫) = 4⌘µ⌫ , (A.4)
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(A.6)
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The above trace identities follow from the condition (A.1) and from the Leibniz rule:
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B Airy Functions

Airy functions are the solutions to the differential equation [3]

d
2
y

dx2
� xy = 0. (B.1)

There are two independent solutions to this equation given by [1]:

Ai(x) =
1

⇡

Z 1

0

cos

✓
t
3

3
+ xt

◆
dt, (B.2)

and
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0


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✓
�
t
3

3
+ xt

◆
+ sin

✓
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3

3
+ xt

◆�
dt. (B.3)

There is another integral representation of the Airy function given by [3]:

Ai(z) =

Z 1

�1

d�̃

2⇡
e
iz�̃+i �̄

3

3 . (B.4)

The derivative of the Airy function is given by:

Ai0(z) = i

Z 1

�1
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2⇡
�̃e

iz�̃+i �̃
3

3 . (B.5)

Also the following function has been relevant for calculations:

Ai1(z) =
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dxAi(x) = i
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Evaluating the Airy functions and its derivative at zero, one obtains [3]:

Ai(0) =
1

32/3�
�
2
3

�

Ai0(0) = �
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31/3�
�
1
3

�
(B.7)

Another function that is related to the Airy functions is the Scorer function defined
by:

Gi(x) =
1

⇡

Z 1

0
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✓
t
3

3
+ xt

◆
dt. (B.8)
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From the definitions it follows that:

f(x) = i

Z 1

0

dt exp


�i

✓
tx+

1

3
t
3

◆�
= ⇡Gi(x) + i⇡Ai(x), (B.9)

where we have defined the function f which is often used for QED calculations in a
constant crossed field. For large arguments x � 1 the derivative of the Airy function
has the following asymptotic expression [32].
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3x
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. (B.10)
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C Lists

C.1 List of Figures

3.1 Figure (a) depicts the tree level diagram of nonlinear Compton scat-
tering. The double lines indicate that Volkov states are being used.
Figure (b) depicts the polarization correction to nonlinear Compton
scattering. This correction is characterized by a fermion loop in the
outgoing photon line. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 This figure contains the differential plots of the LCFA expressions of
dP0/dk� (the tree level probability) and d�Pincoh/dk� (the incoherent
polarization correction). The parameters used are ✏ = 10 GeV, � = 2,
and !0 = 5 fs corresponding to ⌘ ⇡ 0.12 and ⇠ ⇡ 16.85. . . . . . . . . 43

5.1 For the case of a constant crossed field, a comparison between the
exact values (circles) of �Pincoh which were computed numerically
from the expression (4.80) and the asymptotic (5.20) (dashed line)
is shown. The parameters being used are ⌘ = 0.1 and � = 2⇡. . . . . 52

5.2 This figure contains several plots of the absolute values of the proba-
bilities P (0,n,k)

j,s,s0 as well as the corresponding asymptotics as a function
of �. The plots were made for j = 1 and different values of n, k, s
and s

0 in the case of having a constant crossed field of total phase �.
The numerical parameters that were used are: ⌘ = 0.1 and � = 2⇡. . 64

5.3 This figure contains several plots of the ratios R
(0,n,k)
j,s,s0 which indicate

how well the asymptotic expressions converge (when the value is 1).
The ratios were plotted as a function of � for j = 1 and different
values of n, k, s and s

0 in the case of having a constant crossed field of
total phase �. The numerical parameters that were used are: ⌘ = 0.1
and � = 2⇡. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 This figure contains plots of the probabilities Pj,s,s0 and their asymp-
totics as a function of � without the exponential prefactor. The plots
were made for different values of j, s and s

0 in the case of having a
constant crossed field of total phase �. The numerical parameters
that were used are: ⌘ = 0.5 and � = 2⇡. . . . . . . . . . . . . . . . . 73
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5.5 This plot shows the ratios R(j,s,s0) which indicate how well the asymp-
totic expressions converge (which is when the value gets close to 1).
The ratios were plotted as a function of � for different values of j, s
and s

0 in the case of having a constant crossed field of total phase �.
The parameters given in the legend correspond to the values (j, s, s0).
The numerical parameters that were used are: ⌘ = 0.5 and � = 2⇡. . 74
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