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SUMMARY
Determining the structure and mechanisms of all individual functional modules of cells at high molecular
detail has often been seen as equal to understanding how cells work. Recent technical advances have led
to a flush of high-resolution structures of various macromolecular machines, but despite this wealth of
detailed information, our understanding of cellular function remains incomplete. Here, we discuss present-
day limitations of structural biology and highlight novel technologies that may enable us to analyze molecular
functions directly inside cells.We predict that the progression toward structural cell biologywill involve a shift
toward conceptualizing a 4D virtual reality of cells using digital twins. Thesewill capture cellular segments in a
highly enriched molecular detail, include dynamic changes, and facilitate simulations of molecular pro-
cesses, leading to novel and experimentally testable predictions. Transferring biological questions into algo-
rithms that learn from the existing wealth of data and explore novel solutions may ultimately unveil how
cells work.
INTRODUCTION

Structural biology is an attempt to answer the question ‘‘what

are we made of?’’ This attempt follows the reductionist

approach, which aims to identify the most fundamental constit-

uents of matter and study their properties. It led us to discover

a hierarchy of structures, from molecules through atoms all the

way down to fundamental particles, such as quarks and elec-

trons. Cells are the minimal units of life and are made of billions

of distinct molecules. Although this answers part of the ques-

tion of what we are made of, it does not answer a key question

of cell biology—how do cellular functions spontaneously

emerge from the interaction of these billions of molecules?

Cell biology usually lacks the structural resolution to under-

stand the role of individual molecules and the choreography

that organizes them in functional units, which ultimately distin-

guishes a living cell from an inanimate object. To gain this un-

derstanding, the integration of structural and cellular biology is

an outstanding challenge.

With the discovery of the DNA double-helix and the first pro-

tein structures, a structure-function paradigm emerged, under-

pinning the implicit assumption of structural biology: by knowing

the detailed structures of biomolecules, one will understand their

function, and the sum of all individual structure-function relation-

ships will enable us to explain how cells work. This approach has

been immensely successful because it led to an atomistic picture
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of many molecular machines and for many molecules set the

foundation of our present understanding of their function. How-

ever, with increasing coverage and in-depth characterization of

the cell’s constituents, challenges to this assumption are

emerging.

The first challenge stems from the realization that all biomole-

cules are inherently dynamic. Thermal fluctuations can transmit

energy to molecules from their environment. In response,

these molecules will experience spontaneous conformational

changes, ranging from the local flipping of a side chain to global

folding processes. Instead of considering a biomolecule as a sin-

gle well-defined static structure, we must think of it as a struc-

tural ensemble, i.e., a large collection of conformations, each

populated with different probabilities.1 The molecule will sto-

chastically interconvert between different conformations. For

some molecules, there will be few conformations overwhelm-

ingly more probable than others, such as the globular protein

serum albumin; but for others, the ensemble will be very hetero-

geneous, consisting of many conformations, all nearly equally

probable, such as in the case of disordered proteins. Increasing

evidence points to the fact that the entire conformational

ensemble, including rare conformations, determines the function

of a biomolecule.2,3 Such an ensemble view implies that the

probability of populating the different alternative conformations

can be modulated by thermodynamic parameters, interactions

with other biomolecules, post-translational modifications
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(PTMs), or the local physiochemical features of the environment,

such as ion concentrations. This view is well established in

biophysics; rooted in the statistical mechanics describing mo-

lecular systems; and explored by molecular dynamics (MD)

and biophysical approaches, such as nuclear magnetic reso-

nance (NMR), electron paramagnetic resonance (EPR), Förster

resonance energy transfer (FRET), hydrogen-deuterium ex-

change (HDX) mass spectrometry (MS), and single-molecule

force-spectroscopy. A conformational ensemble view provides

a comprehensive instrument to understand how a dynamic envi-

ronment can modulate a molecular conformational ensemble

and its function (Figure 1).

The second, more profound challenge is related to the limits of

using the reductionist approach to understand complex sys-

tems. In 1972, physicist P. Anderson published the very influen-

tial article ‘‘More is different.’’4 Anderson claimed that the reduc-

tionist hypothesis does not imply a constructionist one. In other

words, knowing the elementary constituents of complex sys-

tems is not enough to understand how these systems actually

work. The reason for this is that new properties and effective

laws emerge in complex systems that are very difficult to predict

from their fundamental description. For example, even if we

knew the precise chemical structure of a lipid molecule, it would

be very challenging to predict that many lipids together with wa-

ter and in the presence of thermal fluctuations will spontaneously

self-assemble into complex structures, such as lipid bilayers. To

describe an isolated lipid molecule, we use concepts such as

configurations, dihedral angles, and chemical bonds. Yet, these

are useless to describe a bilayer, where concepts coming from

materials physics, such as phase behavior, mechanical moduli,

and lateral organization, are instead more pertinent. Similarly,

polymer physics offers important tools to conceptualize the

properties of membrane-less organelles or chromatin, while

characterization of the individual components relies on different

concepts, such as chemical bonds and their rotation, charge dis-

tribution, the scaling law or multivalent binding. However, pre-

dicting their behavior as polymers in situ remains challenging.

Molecules in a cell constantly interact with each other in a self-

organizing manner, creating a dynamic subcellular organization

with higher-order macromolecular assemblies in astonishing

complexity in a tightly regulated choreography. This molecular

sociology of cells5 is not well understood. Hence, we need a

new conceptual framework, language, and technical tools to

bridge the gap from single molecules to the entirety of the cell.

In this perspective on the future of structural cell biology, we

review the limits of present-day approaches. We discuss the

concept of cellular self-organization, which is crucial for cellular

function and includes phenomena such as local confinement,

molecular rulers, and self-organization mechanisms of mem-

branes. We identify high-yield targets for technological develop-

ments and sketch our vision of the next generation of experi-

ments, structural models, and scientific conceptualization and

how this may enable us to extend structural biology from study-

ing isolated macromolecular assemblies toward understanding

how these assemblies self-organize into the complex structures

and pathways that we observe inside cells. Overcoming this

challenge will require the integration of structural and cell

biology, biophysics, and computational sciences.
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STATE OF THE ART OF STRUCTURAL BIOLOGY:
ADVANCES AND LIMITATIONS

As of today, a considerable part of the molecular repertoire of

cells has been elucidated at a high resolution. Structural analysis

in combination with in vitro reconstitution and advanced

biochemical techniques uncovered the mechanisms of an

increasing number of molecular machines at a very high molec-

ular detail. This wealth of data enabled training of a new genera-

tion of AI-based prediction tools that in turn accelerated struc-

ture determination efforts further.6 AI-based analyses revealed

a great number of previously unknown domain folds, alternative

isoforms, and protein interfaces and even allowed the design of

new proteins.7–10 Integrated structural biology has made very

large cellular assemblies amenable to structural analysis, which

had seemed far out of reach only 10 years ago. Finally, in situ

structural biology techniques have been used to provide the first

glimpse of howmolecular machines operate inside cells. This in-

cludes detailed insights into key processes of life, such as DNA

replication, transcription, chromatin remodeling, RNA process-

ing, cellular transport, translation, autophagy, membrane re-

modeling, and many more, as exemplified in work by Greenan

et al.,11 Deguchi et al.,12 O’Reilly et al.,13 Greber et al.,14 Wagner

et al.,15 and Li et al.16 The progress in charting the structured ter-

ritories of the cellular interior has, however, also made it very

apparent that some regions of our cellular maps continue to

remain white spots, despite the new technologies and advances

noted above. In the following section, we will cover several cur-

rent examples, where present-day approaches have reached

their technical limits.

Molecules within cells are inherently dynamic, but present-day

structural biology is mostly blind to conformational dynamics.

Traditional in vitro structural biology techniques, such as sin-

gle-particle cryo-electron microscopy (cryo-EM) or X-ray crys-

tallography, have difficulties in capturing low-abundant or

dynamic species and transition states. They usually select for

high resolution based on the averaging of large numbers of ho-

mogeneous particles. Poorly sampled states, short-lived inter-

mediates, or disordered regions will thus be missed. To some

extent, applying X-ray free-electron laser (XFEL) pulses to pro-

tein nanocrystals17 or performing single-particle cryo-EM under

turnover conditions, where the biological process under scrutiny

is snap frozen,18,19 can enrich the conformational ensemble

of protein complexes. NMR and EPR spectroscopy are capable

of complementing these shortcomings20–22 because they

enable sampling of conformational dynamics of biomolecules,

or at least distinct atoms, in biomolecules. Single-molecule

FRET23,24 and high-speed atomic force microscopy

(hsAFM)25–27 even provide temporal resolution of the dynamics

of individual molecules. Finally, HDX-MS quantifies solvent

accessibility and thus reveals binding sites of other molecules

and interaction partners or conformational changes.28 However,

all these techniques require rather large amounts of the respec-

tive biomolecules or site-specific labeling; they are in part limited

in the size of the studiedmolecule and aremostly applied in vitro.

As a consequence of these limitations, we often understand little

about structural transitions and dynamics, which are key to un-

derstanding how molecules carry out their biological functions.



Figure 1. Scheme illustrating the extent to which the structure of protein complexes may be modulated in eukaryotes
A single structure of a given protein complex represented by its PDB entry should be conceived as a collapsed conceptualization of various splice isoforms, post-
translational modifications (PTMs), alternative interactions, and conformations that modulate the respective structural ensemble inside of cells.
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Thus, characterizing structural dynamics experimentally, albeit

being essential, remains challenging, and novel or further refined

methods are urgently required.

Another emerging fact is that many unstructured molecules

are important for cellular function. For example, proteins con-

taining intrinsically disordered regions (IDRs) are very abun-

dant in higher eukaryotes and play essential roles in various

biological processes,29,30 but we lack information on their
structure or conformation. Such proteins contribute to the

formation of membrane-less organelles, define the biophysical

properties of subcellular microenvironments, bend mem-

branes, extend the interaction repertoire of protein complexes

beyond folded interfaces, and even confine small mole-

cules.31–35 However, all these physiological functions remain

ill-defined at the molecular level due to the absence of struc-

tural data.
Cell 187, February 1, 2024 547



Box 1. Structural understanding of mRNPs

Although many of the key enzymes such as RNA polymerases, the spliceosome, RNA degraders, helicases, and the ribosome are understood in

considerable detail,36–40 we know little about the actual structure of messenger ribonucleoproteins (mRNPs). This is largely because mRNPs

show a large compositional complexity, have a high conformational flexibility, and are constantly remodeled throughout their life cycle. Moreover,

a large number of RNA-binding proteins feature extended IDRs and form biomolecular condensates. The different regions of an mRNA (UTRs, cod-

ing region, and poly(A)-tail) are occupied by different RNA-binding proteins with different IDRs and different condensate properties. Within mRNPs

also RNA structure and RNA:RNA interactions have to be considered. This diversity allows the spatial and temporal separation of RNA processing or

editing events; prevents RNAmodification, tangling, and degradation; and promotes proper packaging, sorting, and transport of mRNAs.41–43 At the

same time, it makes in vitro structural approaches nearly impossible, which complicates the molecular conceptualization of mRNPs.
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Structural biology also largely neglects post-transcriptional

modifications and PTMs. For example, alternative splicing vari-

ants that govern cell-type specificity in eukaryotes are not

commonly considered in structural models, and consensus

gene models are used instead, e.g., for the production of recom-

binant proteins. Many PTMs are highly dynamic and added to

proteins in a stochastic manner. Thus, they often are lost during

averaging techniques, while omics techniques also struggle to

provide a comprehensive picture of all PTMs. Box 1 exemplifies

how these shortcomings limit our understanding of messenger

RNA-protein particles (mRNPs) and their processing.

Functional importance of high-resolution
conformational states
Structural analyses in combination with in vitro reconstitution

have elucidated the fine details of many molecular processes.

However, in vitro structural biology often operates under the

assumption that the structural states that converge to high reso-

lution, e.g., by averaging-based techniques, are also the states

that are functionally important. But is this a valid assumption?

First, production and assembly of the respective molecular in-

gredients in a test tube limit which and how many structural

states can be captured. More importantly, such in vitro ap-

proaches are blind to the cellular context, such as local

concentrations, exclusion effects, PTMs, or alternatively spliced

transcript isoforms. Inarguably, one can infer constructive hy-

potheses about how given structures look or work in situ; yet,

local folding and fine details are likely different inside cells, and

conformational equilibria will be shifted.

Thus, favoring high-resolution structures imposes a bias. For

example, during cryo-EM single-particle classification and sort-

ing, a considerable fraction ofmolecules that do not contribute to

high resolution is often considered ‘‘junk’’ or damaged and is

removed from the analysis. The pitfalls of this procedure were

recently demonstrated for ribosomes: during in situ structural

analysis of translation inside of intact cells, where molecular

damage can be largely ruled out, many of the analyzed ribo-

somes showed clear-cut features of native activity, i.e., the

presence of tRNAs during translation elongation, but still did

not converge to high resolution.44–46 These particles thus likely

represent conformationally variable states or transitions be-

tween structurally more defined intermediates within the

ensemble of all states (Figure 1). This does not mean that they

are functionally less important. To value a given structure based

solely on the resolution that has been achieved may therefore be

misleading. We should embrace the realization that medium-to-

high-resolution structures are often sufficient to draw function-

ally important conclusions and that coupled with AI-generated
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structural ensembles, they allow for an accurate understanding

of processes in cells that could not be captured solely by

in vitro high-resolution structural analysis.

Consequently, the question of whether the resolution of a

structure is high enough onlymakes sense in the context of a sci-

entific question that the structure should answer. To assess a

large conformational change or to understand the overall archi-

tecture of a large macromolecular assembly, medium-range

resolutions at around 10–20 Å, often achieved in integrative

structural biology, are sufficient. In such cases, it does not nega-

tively affect the overall conclusions if some side-chain dihedrals

are wrong. In contrast, understanding the mechanism of ion co-

ordination requires a much higher resolution of <3 Å, possibly

also resolving water molecules around the site, which is typical

for X-ray crystallography or single-particle EM.

Advancing structural biology by combining in vitro and in

situ data
Much of our understanding of molecular activities at high resolu-

tion is inferred from in vitro reconstitution techniques. These

were traditionally used to analyze complex cellular phenomena

experimentally because it is very difficult to observe molecules

at work inside of cells. But in almost every single case when in

situ structural analysis has been successfully carried out, the re-

sults challenged previous dogmas or shifted scientific concepts

considerably. One example is the barrel-shaped 26S protea-

some, composed of the 20S core and 19S caps, which is thema-

jor degradation chamber of cells. While the 19S cap unfolds pro-

teins, the 20S core particle chops them into peptides. For

decades, biochemists have tried to purify double-capped 26S

proteasomes, which had been conceived as notoriously unsta-

ble ex cellulo, falling apart into the 20S core and 19S cap parti-

cles. This quest came to an end when in situ structural analysis

revealed that the majority of proteasomes are actually singly

capped in cells.47 Other examples are ribosomes, which trans-

late the genetic message encoded in mRNAs into proteins by

cycling through various functional states that have been carefully

characterized in isolation. Initially, quantitative assessment of the

distribution of elongation cycle intermediates inside of cells was

inferred from analyses of complexes that were rapidly isolated

from active cells.48 However, the exact distribution of elongation

states turned out to be different once such analyses became

possible inside of cells.44,45 Similarly, the architecture of the bac-

terial expressosome that consists of a leading RNA polymerase

and the trailing ribosome differs inside of cells compared with

previous in vitro analyses.13

Another striking example is the nuclear pore complex

(NPC), a 120-MDa assembly encoded by �30 different



Figure 2. Integrated structural model of the nuclear pore
Different types of data were used tomodel specific parts of the displayed structural model. The resulting high-fidelity model is heterogeneous in terms of accuracy
but a prerequisite formolecular dynamics simulations. The subtypes of components, their accuracy, and emergent properties of themodel are indicated in boxes.
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genes. In vitro structural analysis of nucleoporins by X-ray

crystallography revealed the respective folds and their

subcomplexes, which were essential to understand NPC

architecture. However, the structural ensemble of individual

components was insufficient to understand how NPCs oligo-

merize into fully assembled nuclear pores, which was re-

vealed only in combination with in situ structural analysis49

(Figure 2).

However, the weakness of in vitro structural biology is also its

strength. Although biological complexity inside test tubes re-

mains limited, the ability to precisely control the ingredients

of a given structural analysis provides a strong advantage, as

according to Feynman ‘‘What I cannot create, I do not under-

stand.’’ In vitro structural biology will undoubtedly continue to

be important because it is not limited by cellular abundances

or the molecular weight of the target molecules. It is crucial

when high-throughput is required, for instance, to elucidate

how various small molecules bind to a drug target.50 Recent

developments in multi-dataset crystallographic analyses have

even improved and accelerated the identification of ligand

binding and structural events.51 In combination with functional

assays, in vitro structural studies were and continue to be

essential to understand the molecular details of a process.

They, for example, provide high-resolution information on

active sites of an enzyme and allow to directly study the conse-

quences of mutations or modulatory ligands. Structures ob-

tained in vitro are also often a prerequisite for in situ structural

analysis. This is particularly relevant for template matching, a

method to identify structural signatures of known assemblies

inside of cells (see below).
UNDERSTANDING MOLECULAR ACTIVITIES INSIDE
OF CELLS

To ultimately understand how cells work, we need techniques

thatmonitor molecular activities inside cells in away that enables

us to quantify structural dynamics and local concentrations. For

any class of molecules, it will be important to quantify cellular

content with a very high spatial and temporal resolution. Devel-

oping such techniques remains challenging although recent im-

aging and omics techniques have brought us closer to this goal.

Quantitative and spatial measurements by cryo-ET:
Moving away from averaging
Cryo-electron tomography (cryo-ET) is a versatile method to

visualize the molecular interior of cells. Here, the fraction of a

cell contained in each tomogram is revealed in its entirety, pri-

marily as a 3D distribution of electron optical density. The

respective data can be analyzed in manifold ways, first and fore-

most, by segmentation of easily identifiable features such as ri-

bosomes or membranes. Such analysis techniques are well

suited to, e.g., analyze the local curvature and thickness ofmem-

branes, to trace the trajectory of mRNA molecules decorated

with ribosomes or to identify microtubules or actin filaments. In

combination with AI-based image analysis techniques, segmen-

tation becomes objective and quantitative.52–56 Further minimi-

zation of false negative detections and human interference with

data analysis will be essential to continuously increase the accu-

racy of capturing cellular processes.

Subtomogram averaging in cryo-ET is based on correlation

averaging and classification of structural features observed
Cell 187, February 1, 2024 549
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repetitively in tomograms, thereby enabling the high-resolution

structure determination of large macromolecular complexes

and their functional states. Recently, averaging in close to

atomic detail has become possible, enabling high-resolution

structural biology inside of cells. This, for example, allowed the

elucidation of the substrate-processing species distribution of

26S proteasomes47 or of the functional states of the ribosome

during the translation elongation cycle.45,46,57 This approach,

however, requires that enough particles populate a given func-

tional state.

Therefore, it will be crucial to analyze tomographic content

beyond averaging techniques. One possible solution is template

matching, which is a method that systematically scans tomo-

graphic content for the signature of reference structures. The re-

sulting cross-correlation volume can be statistically analyzed to

assess whether the respective reference structure has been

observed at a given position and orientation in a cellular tomo-

gram,58 thus providing information on conformational state and

location at a single-molecule level in cells. Among the attempts

to experimentally implement this so-called visual proteomics

concept, which aims to generate molecular atlases that describe

the cellular content in high detail, template matching has been

considered a potent approach. However, thus far, template

matching has been suffering from size and abundance limita-

tions59,60 and has rarely been applied to particles other than ribo-

somes or proteasomes. Conceptually, there is no strict physical

limit that would prevent the recognition of smaller and less abun-

dant features, such as the molecular weight limit of single-parti-

cle EM, which has been pushed to ever smaller entities. A recent

preprint reports systematically optimized template-matching

parameters for tomographic data generated with the latest gen-

eration of hardware that was able to detect very subtle confor-

mational changes and particles as small as individual tubulin

segments.61 In the future, the template-free identification of

recurrent structural features62 may facilitate an entirely unbiased

annotation of cryo-electron tomograms. Also, upcoming ma-

chine learning (ML) methods may address this issue.55 At a first

glance, the resulting molecular atlases may appear descriptive.

They, however, can be mined to deduce concepts of functional

organization in space, which otherwise would not be apparent,

and may allow to formulate new types of hypotheses. Examples

for this could include the orientation of the catalytic center of

different macromolecular complexes toward each other, align-

ment of molecules at membrane deformations or aggregates,

local clustering of conformational states, and many more.

Regardless of all these strengths, the cryo-ET technology also

suffers a few limitations. Genetic labeling remains challenging.

Although some solutions that rely, e.g., on the fusion of recogniz-

able shapes or clusters of dense material were proposed, they

are not generically applicable to proteins of any size or expres-

sion level.63 The fact that the fraction of a cell that can be

analyzed by cryo-ET at once is inherently small also limits the an-

alyses. Finally, the inability to resolve biological processes

directly in time, simply because samples have to be flash frozen,

is a severe drawback. Moving forward, visualizing the molecular

sociology of cells comprehensively and in high detail will require

a combination of cryo-ET with complementary techniques that

will allow to, e.g., indirectly stage biological processes in time
550 Cell 187, February 1, 2024
to trigger rare events or to identify molecular content. Those

will include, but not be limited to, fluorescence-based super-res-

olution imaging, subcellular omics, single-molecule approaches,

AI-based targeting of rare subcellular features, optogenetic con-

trol of transient biological events or local confinement, and mi-

crofluidic sorting of cellular populations.

Fluorescence-based super-resolution imaging
Recent methods pushed the resolution of fluorescence-based

super-resolution microscopy (SRM) techniques to subnanome-

ter precision.12,64,65 Thus, SRM techniques are well capable of

resolving individual macromolecules and their domains,

although not with the atomic precision that is achieved with

many structural biology techniques. In combination with cryo-

ET, these advances are paving the way for structural biology in-

side cells. The complementary strengths of SRM with respect to

cryo-ET are its capability of visualizing unstructuredmolecules at

very high detail, providing quantitative data, such as molecule

numbers, stoichiometries, or distances and allowing time-

resolved analyses inside living cells.

Minimal fluorescence photon fluxes (MINFLUX) nanoscopy,

for example, achieves an unprecedented three-dimensional

spatial resolution of 2 to 3 nm, allowing truemolecular-scale fluo-

rescence imaging66 of different subcellular structures, including

the NPC67 and the mitochondrial contact site and cristae

organizing system (MICOS) complex.68 Different adaptations

allow multiplexing and quantitative imaging of multiple targets

simultaneously,67,69,70 as well as single-molecule spatiotem-

poral tracking71 in living cells.12,64 Development of MINSTED

nanoscopy based onMINFLUX combinedwith STED (stimulated

emission depletion) further increases spatial precision and pro-

vides structural information for target macromolecules on the

scale of a single amino acid.72 Using the NPC as a reference

yielded an astonishing localization precision of 2.3 Å. This tech-

nology also revealed that Mic60 proteins in the mitochondrial in-

ner membrane of human cells form ring-like assemblies at junc-

tions of cristae. Another approach to enhance resolution is

resolution enhancement by sequential imaging (RESI),65 which

can separate localizations in very close proximity. This method

uses Exchange-PAINT to label neighboring molecules with

different photo-switchable tags by orthogonal DNA barcoding.

Despite these advances, major technical challenges of fluo-

rescence nanoscopy remain, e.g., the very small field of view,

the long timescales required for image acquisition, and the

lack of multiplexing in live cells. Initial attempts to overcome

these issues have been made; for example, short-distance

self-quenching in fluorophore dimers was used to reduce back-

ground fluorescence signal while increasing the photon budget

in the bound state by almost 2-fold.73 Transient adapter-medi-

ated switching for high-throughput 3D DNA-PAINT (FLASH-

PAINT) allows imaging of a nearly unlimited number of target

sites, revealing the organization of cilia and Golgi in unprece-

dented detail.74 To achieve the highest spatial precision, low

background signal and endogenous (multiplexed) labeling,

smaller fluorophores, and new labeling strategies have to be

developed. With those developments, novel approaches such

as using RNA-FISH coupled with FLASH-PAINT and MINFLUX

could make addressing challenges such as resolving the



ll
OPEN ACCESSPerspective
ultrastructure of membrane-less organelles or the conformation

of mRNPs feasible (Box 1). Moreover, fluorescence lifetime im-

aging of fluorescence resonance energy transfer (FLIM-FRET)

can measure the conformation of IDRs, and when combined

with genetic code expansion technologies, FRET pairs can

be introduced at multiple sites to generate a conformational

map of IDRs directly inside of cells.75 These and additional ap-

proaches, such as fluorescence nanoscopy with expansion mi-

croscopy (ExM)76,77 or SRM with cryo-ET, will further advance

the technological possibilities to observe the molecular details

of subcellular organization changes in living cells with high quan-

titative power, thereby bringing us closer to observing molecules

at work.

Subcellular and spatial omics
The term omics refers to the investigation of the sum of specific

classes of biomolecules, e.g., proteins, lipids, mRNAs, or metab-

olites within cells. Bulk omics approaches are ideally suited to

identify and quantify biomolecules and their variants in specific

cellular states and to quantitatively describe molecular pro-

cesses. However, bulk omics methods cannot capture the dy-

namic spatiotemporal organization of subcellular architecture

because cellular context and spatial information are lost during

cell lysis.

More recently developed spatial omics techniques attempt to

circumvent this limitation,78 but a global and precise picture of

cellular organization is not yet possible. Current spatial omics

applications are either genome-wide or targeted. Genome-

wide approaches profile the entire molecular content of single

cells within their native context, with spatial information from

the location within the tissue, but rarely provide subcellular res-

olution. Targeted omics approaches, on the other hand, profile

the molecular content of a specific cellular segment, a subcellu-

lar structure, or organelle in situ in great detail but only provide a

limited cellular snapshot. The cellular segments have to be bio-

chemically purified or physically separated, e.g., by laser capture

microdissection (LCM), followed by RNA sequencing (RNA-seq)

orMS in order to identify and quantify their content. Alternatively,

if purification is not possible, the content of a specific cellular

segment can be obtained by proximity labeling of RNAs or pro-

teins, using, e.g., APEX2 fused to marker proteins of the respec-

tive subcellular structures, followed by purification and

sequencing or MS of the labeled components.79 While targeted

RNA-seq will capture all expressed RNAs in the respective

segment, the detection of local proteomes by MS is very limited

due to the lack of signal amplification procedures. Lowly abun-

dant proteins, splice isoforms, cleavage products, and PTMs

remain challenging to detect. Hence, further developments of

MS technologies to enhance sensitivity and resolution are

required for this method to catch up with other omics tech-

nologies.

Alternative approaches such as translation imaging in turn

allow tracking of global translation and enable the quantification

of nascent proteomes in specific subcellular compartments,

e.g., at the synapse.80–82 Cross-linking MS (XL-MS), on the other

hand, had originally been limited to in vitro systems of limited

complexity but was recently applied to more complex systems

and in combination with subcellular fractionation and affinity pu-
rification of cross-linked peptides, is capable of charting local

variations of protein interactions.83–85 The technique, however,

remains less comprehensive in terms of coverage compared

with other proteomics techniques.

In contrast, techniques to determine the cellular distribution of

different lipid species at high resolution are still entirely lacking.

Although imaging MS is capable of resolving local lipid compo-

sition, the present resolution is hardly subcellular.86 Much of

our knowledge about local lipid composition is either based on

invasive subcellular fractionation experiments or indirectly in-

ferred by perturbation experiments of lipid regulators. A method

to locally quantify lipid molecules inside of cells could, however,

facilitate novel insights into subcellular organization.

CELLULAR SELF-ORGANIZATION AND ITS IMPACT ON
MACROMOLECULAR ASSEMBLY AND ACTIVITY

Which factors modulate the function of macromolecular assem-

blies in the cellular context? This question has always been cen-

tral for cell biologists, but due to the lack of appropriate tools, it

has been somewhat neglected by structural biologists. In the

following section, we will illustrate some of the principles that

organize cells and contextually modulate molecular function

and structure of macromolecules but that are themselves struc-

turally not well understood. Thus, they comprise high-impact tar-

gets toward understanding cellular self-organization. The dis-

cussed organizing factors are selected in an exemplifying

manner; various others such as the cytoskeleton or PTMs,

although equally important, are not covered due to space limi-

tations.

Local confinement
Local confinement facilitates the contextual regulation of cellular

function.87,88 Molecules that form a functional module have to

interact with each other at the right time and at the right place.

The cell is densely packed with biomolecules, and for each spe-

cific protein-protein interaction, many non-specific interactions

with lower affinity compete with the respective binding partners.

This becomes a considerable challenge with increasing genomic

complexity.89 Thus, the generation of locally confined and

specialized molecular communities reduces complexity and es-

tablishes a dedicated biophysical environment that is suitable for

the proper assembly and function of macromolecules. It may

locally expose interaction partners and promote their binding

or prevent promiscuous interactions by local exclusion.

We are only beginning to understand the self-organizing prin-

ciples of local confinement inside cells, and the respective con-

ditions are challenging to recapitulate in vitro. Although local

confinement by membranes, i.e., in organelles, has long been

known, we understand little how these membranes self-orga-

nize. In recent years, much attention has been dedicated to

membrane-less organelles and whether concepts from polymer

physics or multivalent binding based on biochemical entities are

well suited to explain their biogenesis.35,90,91 Despite the still

pending final verdict on this issue, they can add to explaining

local confinement of functionally dedicated, local molecular

communities. To make things even more complex, cells

may combine this mode of local confinement with additional
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self-organizing principles. For example, alternative splicing fac-

tors are sequestered into nuclear bodies for release in response

to environmental cues;92,93 local translation can ensure the

biogenesis of selected proteins directly in a suitable environ-

ment, e.g., the neuronal synapse,94,95 while co-translational

chaperoning and assembly warrant that nascent chains of pro-

teins already engage in specific interactions before being

released from the ribosome.96 Another self-organizing compo-

nent that influences local confinement in a complex manner is

termed molecular rulers.

Molecular rulers
In their most simple manifestation, molecular rulers define the

distance between two molecular entities. This can be realized

by two short linear motifs (SLiMs) separated by a linker or, simi-

larly, two protein-binding motifs on an RNA. Molecular rulers can

also organize protein complexes. For example, SLiMs in so-

called ‘‘linker nucleoporins’’ organize scaffold nucleoporins in

space, ensure their stoichiometric assembly, and act as sensors

for the correct assembly of subcomplexes that form early during

the NPC biogenesis process.97,98 Molecular rulers may further-

more organize co-translational biogenesis,99 where they define

the exact sequence and timing of co-translational interaction

events that occur, while the respective domains appear from

the exit tunnel of the ribosome.99 Promiscuously interacting do-

mains, such as coiled coils, may be C-terminally encoded to

ensure that the respective native interaction partners have

already been recruited to the nascent chain by other more spe-

cific assembly motifs. In addition, the codon usage of a molecu-

lar ruler may be as equally important as its length because this

defines the necessary timing. Another example is the long-

non-coding RNA that often plays architectural role because

these RNAs organize chromatin in 3D, recruit interaction part-

ners, or scaffold nuclear bodies.100 Architectural RNAs (arcR-

NAs) may adopt a specific 3D conformation inside membrane-

less organelles together with bound RNA-binding proteins; for

example, the lncRNANEAT1 acts as a scaffold for paraspeckles.

NEAT1 length and the specific protein-binding sites within it

determine the dimensions and the inner organization of the

respective condensates in a manner similar to a molecular ruler,

in this context, referred to as micellization of block co-poly-

mers.101 We anticipate that focusing future structural investiga-

tions on molecular rulers will be rewarding. This problem is

very approachable—one essentially needs to solve structures

of the interaction pairs and understand the biophysical behavior

of the linker in between.

Self-organization of membranes
Cellular membranes are highly complex systems characterized

by a heterogeneous and dynamic composition. One of the mys-

teries of membrane biology is why thousands of different lipid

species exist, and lipid composition is strictly regulated in space

and time.102 Lipids locally influence the biophysical properties of

membranes, such as their fluidity, and thus are critical for the

function ofmembrane-bound organelles.103 Local lipid composi-

tion is regulated not only by lipid synthetases and degraders that

control the availability of specific lipid species but also by dy-

namic organelle contacts and lipid transporters that spatially
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affect lipid availability. Lipids and proteins can self-organize in

cell membranes to form nanodomains to concentrate specific

proteins and enhance biochemical reactions.104,105 Recent evi-

dence supports that such mobile nanodomains exist in cell

membranes and can help form protein nanoclusters.106

Technical limitations force us to study membrane proteins and

lipid bilayers separately. Conceptionally this separation is prob-

lematic because both entities are interdependent. Lipids and the

bilayer can induce conformational changes in proteins or pro-

mote the assembly of protein complexes.107 Vice versa, proteins

can lead to extensive membrane-remodeling processes,108–110

for example, the endomembrane system, mitochondria and

chloroplasts in eukaryotes, but also the cell envelope of gram-

negative bacteria, can form a very complex membrane architec-

ture that is constantly remodeled and maintained and, in some

cases, even formed almost entirely from scratch. Basic design

elements such as membrane tubes, budding of trafficking vesi-

cles, or membrane scission are repurposed in manifold ways.

An intriguing example is a set of two ormore highly parallel mem-

branes termed stacked sheets that are found in mitochondria,

the endoplasmic reticulum (ER) and the nuclear envelope, the

Golgi apparatus, the rod outer segment, and annulate lamellae.

Autophagosomes formmembrane sheets from scratch that sub-

sequently bend to engulf cellular debris.111 In some cells, such

membrane sheets even form a helically stacked superstruc-

ture.112 We still do not know the self-assembly mechanisms of

these structures.

Until recently, the architecture of such organelles was thought

to be shaped mainly by membrane-interacting proteins. Yet,

structural analyses of Bin/Amphiphysin/Rvs (BAR) domain, coat-

omer, clathrin, endosomal sorting complex required for transport

(ESCRT), or nucleoporin proteins in vitro have not allowed us to

predict or manipulate the subcellular outline of the endomem-

brane system or mitochondria. It has become clear that addi-

tional principles of self-organization play a crucial role in shaping

organelle architecture.113–115

Molecular rulers may definemembrane distances, which is the

case for nuclear membrane-localized LINC complexes. These

complexes consist of SUN and KASH, two transmembrane pro-

teins that shake hands in the lumen of the nuclear envelope,

whereby the linker length between transmembrane and interac-

tion domains defines the maximal distance between the inner

and outer nuclear membranes.116 However, the overall organelle

shape, more specifically, the surface-to-volume ratio also must

be tightly controlled. This could be done by regulating the osmo-

larity, or similarly, by controlling the number of biomolecules in-

side of a given organelle. Such concepts appear to bewell suited

to explain the transformation of a vesicle into a membrane sheet

and vice versa, but the respective regulatory circuits remain ill-

defined. Together with lipid availability, changing osmolarity reg-

ulates membrane tension, the force per unit length acting on the

cross-section of amembrane, which defines howmuch it may be

deformed.117,118 Evidently, these three parameters are inter-

twined and will be regulated by proteins that make organelle

contacts, transport ions and biomolecules across membranes,

regulate lipid availability, or deform membranes.

Such a system is in turn capable of controlling protein struc-

ture as illustrated by recent work on the NPC, which dilates
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and constricts in response to osmotic shock and the consequent

changes in membrane tension.119 The resulting large conforma-

tional changes have various functional implications that we are

just beginning to understand. Other well-studied examples are

mechanosensitive channels such as piezo.120 Moreover, recent

work, e.g., on BAR domains coupled to IDRs, implies that molec-

ular crowding proximal to membrane is a major driver of mem-

brane curvature formation.121 Similarly, molecular condensation

may also be involved in the budding of trafficking vesicles.122

This appears intuitive when considering that coalescence is

coupled to a membrane association activity. The formation of a

structured protein coat may thus be a consequence, rather

than the driver of membrane curvature.

To understand such complex architectural traits, precise

quantitative and spatial data are needed. Perturbation and syn-

thetic biology experiments that abolish the respective architec-

tures or generate them from scratch may enlighten the complex

circuits of intertwined, self-organizing principles that govern

subcellular organization.

NEXT-GENERATION STRUCTURAL CELL BIOLOGY

A common aim should be that next-generation structural cell

biology targets complex biological processes in their cellular

context. Technological developments alone, as the ones dis-

cussed so far, will not be sufficient to discover and conceptualize

the principles of molecular self-organization. New theoretical

concepts and frameworks that capture dynamics and

complexity will also have to be developed and adopted. Struc-

tural biology should systematically build on information and con-

cepts not only from other disciplines, such as developmental,

systems, and cell biology, but also from physics, information the-

ory, computational sciences, and the science of complex sys-

tems. As a notable example, soft-matter physics concepts

such as phase transitions, criticality, or scaling exponent are

proving necessary to conceptualize the rich phenomenology of

biomolecular condensates and IDRs.31,123–125

What limits our present-day conceptualization? Without a

doubt, cell biological models are context-aware and may cap-

ture self-organizing principles of subcellular architecture. How-

ever, cell biological processes are often depicted in 2D, e.g., in

flowcharts of cellular pathways or interaction maps. While these

are useful for identifying individual factors and their functional in-

teractions in given pathways, they neglect the complex spatial

context of a crowded cell and thus miss fundamental layers of

regulation. They struggle to recapitulate the complex spatial

and dynamical context in situ or how interactions emerge from

the interplay of many multi-valent (many-body) molecular inter-

actions. For example, confinement within organelles, conden-

sates, and lateral domains in membranes lead to varying local

concentration of molecules with distinct functional conse-

quences, from polymer packing that controls RNA and DNA

accessibility to the formation of cellular barriers that can protect

macromolecules by local exclusion.

In structural biology, atomically resolved 3Dmodels of macro-

molecular complexes are routine. However, despite being 3D,

these traditional models are also limited because they only de-

pict distinct functional states of isolated macromolecular com-
plexes and not the subcellular organization that relies on compo-

sitional, structural, and dynamic complexity. They also lack

information about transitions between states and the influence

of neighboring molecules or PTMs and do not integrate func-

tional metadata.

Which new concepts should the next generation of structural

cell biologists aim to uncover? To be useful, a principle should

serve as a guide to understanding observations, planning exper-

iments, and condensing a rich phenomenology. It should also

change the way we think. For example, the laws of General Rel-

ativity, the most accurate theory of gravity, can inspire structural

biology. It taught us that physical systems do not evolve in a

static spatial and temporal background but that the background,

the spacetime, is itself an integral part of the physical system and

that matter and spacetime are locked in a constant dialog. J.A.

Wheeler famously summarized the core principle of the theory

by saying, ‘‘Spacetime tells matter how to move; matter tells

spacetime how to curve.’’126 This can serve as an analogy for

principles of cellular organizations. Proteins and other biomole-

cules do not function in a static background. The molecules

and their background—be it a membrane, a confined compart-

ment, or a complex solution—are part of the same dynamic sys-

tem. They are engaged in a dialog. Thinking of membrane-pro-

tein interactions, for example, we could be tempted to follow

Wheeler in saying, ‘‘Membranes tell proteins where to go, and

proteins tell membranes how to curve.’’ This sentence provides

the gist of many diverse phenomena, and it summarizes the fact

that membranes and proteins control each other in an interde-

pendent way. It furthermore gives a useful mental image to un-

derstand observations and formulate hypotheses. Of course,

not all membrane proteins reshape membranes, but they act

on membranes, and all membranes respond in return. The

concept of the ‘‘fingerprint’’ of a specific membrane protein127

is one attempt to quantify how structural features determine

the strength of the protein’s actions on a membrane and there-

fore what distinguishes a protein that reshapes a membrane

from one that does not. With an increasingly more precise defi-

nition of these concepts, we will be able to integrate them into

existing theories128,129 that describe how membranes are orga-

nized on an organellar scale as a function of their composition. In

this way, we may obtain a quantitative theory—in the form of

equations—that links atomistic details in proteins to large re-

shaping of entire organelles.

Digital twins of cellular segments
How can we progress toward taming cellular complexity? In

initial attempts, 3Dmodels of subcellular segments that incorpo-

rate all available knowledge from structural, morphological, and

omics measurements, as well as biochemical experiments, have

been put forward. For example, these have revealed that a syn-

aptic vesicle consists of a similar number of molecular compo-

nents as a ribosome130 although both objects are organized in

a fundamentally different way. Ribosome architecture relies on

folded protein and RNA interfaces; the synaptic vesicles is a

result of self-organization, membrane-protein interactions, and

molecular sorting. Further steps toward fully representative

models have now been made. For instance, recent models of

an autophagic vesicles or a nuclear pore131,132 include explicit
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membranes and other dynamic components such as intrinsically

disordered proteins (Figure 2). These first comprehensive

models contain the molecular content of the respective subcel-

lular segment. They are best conceived as high-fidelity structural

models in which the structure of a given protein complex has

been used as the basis but has been expanded to the best

possible scientific knowledge with additional information of

non-regularly structured content. This could be knowledge

about biological membranes and lipids, solvents, intrinsically

disordered stretches, and interacting surrounding molecules

and spatial boundaries. Alternatively, cryo-electron tomograms,

which capture the respective subcellular structure, could be fed

into the molecular modeling framework, annotated by template

matching and enriched with additional molecular detail much

like a 3D jigsaw puzzle. Importantly, such high-fidelity structural

models can be used as input for MD simulation framework to

explore their dynamics.

Such dynamic virtual equivalents of cellular objects, which

ideally mirror the respective cellular behavior, are best described

by the digital twin concept,133 which is used in other fields, such

as urban planning or construction.134 A ‘‘digital twin’’ is defined

as a virtual representation of a real-world object (‘‘physical

twin’’) that allows the operator to run virtual experiments without

real-world constraints, such as object size or gravity. Yet, it can

also be more than a static virtual copy and can contain algo-

rithms that allow simulation of its behavior in response to pertur-

bations.

A digital twin could be conceived in different layers of

complexity. Atomic models of macromolecular complexes,

routinely used in structural biology, are accurate representations

of molecular objects that can be explored in a virtual reality;

therefore, they could be considered a basic digital twin of a

macromolecule. As discussed above, structural models may

be further enriched with complementary molecular information,

thus resulting in a high-fidelity version of the model that con-

siders cellular context and represents a digital twin of a macro-

molecular complex with its surrounding environment. This could

be done, e.g., by adding membranes to the structure of a mem-

brane protein, by placing all molecular components of a vesicle

into a virtual box, or by annotating the cryo-electron tomogram of

a subcellular segment with additional molecular detail, e.g., by

template matching. Regardless of which specific approach is

applied, the meaningful integration of different types of data

will be the important common feature. Finally, digital twins

should also become dynamic. Their virtual reality should prog-

ress over time and respond to external perturbations. We thus

envision that a digital twin of a subcellular segment would be

an integrated pipeline of datasets, computer simulations, and

ML methods to study the system in silico to better understand

and discover in situ phenomena (Figure 3). Digital twins could

be constrained by functional meta data to predict cellular

behavior more accurately. Predictions made by digital twins

can in turn guide experimental design and inspire synthetic

biology approaches.

High-fidelity structural models
An important first step toward the digital twin of subcellular seg-

ments is the integration ofmany different technologies. There are
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different approaches to data integration, whereby the combina-

tion of some complementary techniques has become particu-

larly popular. This is apparent for the combination of NMR with

small-angle X-ray scattering (SAXS), or X-ray crystallography

with cryo-EM, where information about the structure of individual

components is combined to obtain the overall assembly.135–137

Some techniques have turned out to be important facilitators

and accelerators of data integration because they elucidate

how molecular components interact or bridge across scales.

This is true for XL-MS that identifies proximate residues in pro-

teins that are frequently used as spatial restraints during

modeling.138 Cryo-ET, in combination with subtomogram aver-

aging, provides moderately resolved maps of macromolecular

assemblies inside cells, which have become popular as a

modeling frameworks that define overall shapes and dimen-

sions.139 Software frameworks such as the integrative modeling

platform140 or Assembline139 are routinely used. They consider

various types of data, including high-resolution structures,

shapes, interaction data, and other spatial constraints. They

sample an exhaustive ensemble of possible solutions and iden-

tify those that explain the given experimental datasets best,

whereby very complex structural assemblies can be elucidated.

Meanwhile, such frameworks have been successfully applied to

various macromolecular assemblies.141

Data integration for structural modeling benefits enormously

from AI-based structure prediction. New algorithms such as

AlphaFold not only unravel protein folds but also predict their in-

terfaces and thus can fill in gaps of structural knowledge, such as

by bridging across subcomplexes.132 AlphaFold predicts 3D

configurations of proteins from their amino acid sequences

with a high accuracy, matching or surpassing some experi-

mental results.6,142,143 The algorithm capitalizes on the wealth

of publicly available information in both sequence and structural

space, in addition to considering fundamental biophysical and

chemical principles of how amino acids engage with each other.

AI-based structure prediction has achieved remarkable success,

but it also has clear limitations. Some of the most important ones

are not capturing alternative conformations, dynamics, or the ef-

fect of mutations.144

The generation of the NPC structure exemplifies the strength of

integrative approaches to deal with very large biological systems

en route toward generating digital twins of subcellular segments.

NPCs consist of 1,000 individual protein building blocks. The

elucidation of individual nucleoporin folds by traditional in vitro

structural biology techniques and AI-based prediction provided

the pieces of the puzzle, while tomographic analyses inside cells

revealed the overall outline of the nuclear pore. This then served

as framework for further computational structural modeling, while

interaction studies and XL-MS techniques elucidated interfaces

and spatial proximity of the individual components. Finally,

when all of these data were jointly analyzed by integrative

modeling, the overall molecular picture of the nuclear pore archi-

tecture was revealed and could subsequently be refined step by

step, analogous to progressively solving a puzzle.49,145–147 This

model has been further complemented with membranes based

on compositional knowledge about lipids and membrane

shapes.132 IDR-containing nucleoporins were added based on

the knowledge about their anchoring sites to the scaffold,



Figure 3. Scheme illustrating a workflow for generating digital twins of subcellular segments
Integrative structural models of complex subcellular segments will be complemented with additional information about cellular context, derived, e.g., from omics
or fluorescence-based techniques. The resulting high-fidelity models will serve as input for MD simulation frameworks to explore their physical properties and
dynamics. The simulations will be augmented with machine learning methods trained on experimental data. Once stimuli are applied the digital twin will predict a
cellular response considering a complex parametric space. These predictions can be experimentally tested.
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resulting in a ‘‘high-fidelity model.’’ Fluorescence-basedmethods

were used to explore their conformation inside of cells.75 Today,

the respective structural models approach completeness

(Figure 2), thus enabling MD simulations of NPCs.75,132 Such

high-fidelity models are heterogeneous in terms of resolution

and accuracy. The individual interfaces stem either from high-res-

olution structural analysis or AI-based prediction and are resolved

with differing accuracy, but certainly to the subnanometer level.

The exact orientations and positions of the individual proteins

are the result of integrative modeling and not precise to the Å level

but allow conceptualizing the overall architecture. Thereby, the

position and conformation of dynamic components such as lipids

or IDRs are not based on traditional structure determination tech-

niques but are added based on the best of present knowledge,

stemming, e.g., from omics or FRETmeasurements. They are still

informative, e.g., about the spatial range such dynamic compo-

nents may have (Figure 2).

In principle, these models can also become multilayered and

consider multiple conformations, splicing isoforms, PTMs, local

lipid composition, or variable stoichiometries, although this is not

yet routinely performed. One challenge thereby is posed by the

structural data that constrain a given model and that may have

been generated for one isoform of a macromolecule or complex,

which, however, may not necessarily be transferable to other

forms. Another issue is the meaningful integration of time as an

additional axis for biological processes.Overall, however, the inte-

grationofdata frommultipledifferent technologieswill becritical to

further define the molecular details of cellular function. Initial op-

tions dealing with this challenge have been reported and tested;
yet, these will need to be continuously refined and further

expanded to incorporate technological advances and novel

findings.

MD simulation
Among the existing modeling frameworks, MD simulations may

be the closest to the ideal of a digital twin of a cellular segment,

because they attempt to comprehensively simulate the molecu-

lar content of a given biological system at atomic resolution. This

approach has matured from a prototype to a standard toolkit

capable of generating hypotheses and making discoveries, as

if it were a ‘‘computational microscope.’’148 In MD simulations,

the forces acting between all atoms are modeled, and high-per-

formance supercomputers are used to numerically solve New-

ton’s second law of motion and predict the dynamics of biomol-

ecules.149 They produce trajectories that sample the molecular

structural dynamics and can also show how molecules reorga-

nize between alternative structural organizations (Figure 4A).

MD simulations are ultimately based on the physics and chemis-

try that accurately describe how atoms interact and how these

interactions determine the dynamics of molecules.

Yet, the approach has limitations that remain to be addressed.

The forces acting between individual atoms are modeled in so-

called ‘‘force fields.’’ No general force field exists, and the specific

system (proteins, lipids, inorganic molecules, etc.) determines

which force field to use. The accuracy ofMD simulations depends

on the accuracy of the force field used. Protein force fields were

optimized to describe single-domain globular proteins.156 Conse-

quently, these force fields were not as accurate when used to
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Figure 4. Molecular dynamics simulations of complex cellular systems
The given examples demonstrate the scope that MD simulations of enriched structural models can provide.
(A) Snapshots of an MD simulation of FAM143B in membrane that predicts clustering of FAM143B over time and consequent budding of endoplasmic reticulum
membranes during ER-phagy, which was experimentally confirmed.150,151 Arrowheads indicate progression in time.
(B) MD simulations of an integrative structural model of tetrameric TRPV4 with the previously unresolved four 150 amino-acid-long N-terminal intrinsically
disordered regions (IDRs). Superimposed IDR extensions (pink) form a halo around the previously known structured part of TRPV4 (gray and cyan). Coarse-
grained MD simulations were carried out within a bilayer (yellow). The simulations uncovered that the IDRs expand the intracellular channel surface from 14 to
34 nm and suggest that the IDRs exert a pulling force on the pore-forming domains through membrane interactions.152

(C) Snapshot of anMD simulation of full-length spike protein (red) with explicit glycosylation sites (blue) and bilayer (gray). These simulations predicted flexibility at
three hinge regions (hip, knee, and ankle) that were confirmed using cryoelectron tomography of viral particles (top inset). The predicted flexibility of the
glycosylation sites was confirmed using subtomogram averaging (bottom inset) and led to the prediction of the surface epitopes approachable by neutralizing
antibodies.153–155
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sample the dynamics of disordered domains and required some

recalibration.157 Similarly, force fields used for simulating DNA

and RNA do not yet match the quality of protein force fields. MD

simulations are also limited by the spatial and temporal timescales

that can be sampled. A virtual simulation box can contain a single

protein surrounded by water or a large membrane patch contain-

ing many proteins and other molecules. The larger the box, the

shorter the covered timescales. Typically, timescales range be-

tween micro- and milliseconds, sufficient for observing events

such as small protein folding, ligand binding, or short-timescale

conformational changes. Yet, longer biological processes, such

as large protein folding or protein-protein interactions, which
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may occur over milliseconds to seconds, are often beyond the

reach of traditionalMDsimulations.Methods to sample larger sys-

tems for more extended times are developed by building on phys-

ical insight158 or by trading a smaller spatial resolution for the abil-

ity to sample longer timescales.159 The latter approach is called

coarse-graining and has, in recent years, enabled simulations of

sub-organellar systems, such as the NPC.132

Are these MD simulations precise enough to conceptualize

complex biomolecular systems? As discussed for structural

models, it depends on the scientific question we are asking.149

MD simulations can help in characterizing individual proteins at

atomic level resolution with sufficient accuracy to enable drug
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design. They can estimate the free energy cost to bend or

compress a membrane of a given composition—important bio-

physical parameters—from the lipids dynamics.160 The results

are often within the experimental uncertainties. MD simulations

excel in providing mechanistic hypothesis, which can be valu-

able even if other predictions are not accurate. For instance, a

simulation of a conformational change could provide an inaccu-

rate free energy estimate and, at the same time, an accurate

sequence of structural intermediates along the conformational

change. New ML and AI-based methods such as AlphaFold

can synergize with MD simulations and enable us to assess pre-

viously uncharacterizedmolecules. IntegratingML- and physics-

based simulations is emerging as a paradigm,158 thus increasing

sampling speed for molecular structures.

MD simulations can be supplemented with experimental data

and used as a framework to integrate different types of informa-

tion. An intriguing example, where IDRs play a crucial role, is the

TRP vanilloid channel (TRPV) 4, which is involved in thermo- and

osmosensing (Figure 4B). The 150 amino-acid-long N-terminal

IDR remained unresolved in traditional structural models; yet,

the integrative structural biology approach using NMR, SAXS,

tryptophan fluorescence spectroscopy, XL-MS, and HDX-MS

combinedwith atomisticMD simulations finally led to a structural

model including the IDRs.152 This model led to the now testable

prediction that the IDR increases the channel dimension at the

plasma membrane from a diameter of 14 nm to 34 nm and that

the IDR interacts with PIP2 in the plasma membrane, which pro-

vides a pulling force leading to channel sensitization.

Increasingly, MD simulations have become integral parts of

interdisciplinary approaches, where experiments, theory, and

simulations complement each other to provide more detailed

mechanistic and structural insights. The severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) pandemic was an op-

portunity to showcase the enabling features of this approach.

Only a few months after its onset, the integration of in situ

cryo-ET and MD simulations provided accurate atomistic

models of the SARS-CoV-2 spike protein’s structural dy-

namics153 (Figure 4C). The integrative approach yielded more

than the sum of its parts: the MD simulation could add atomistic

details and dynamics to medium-resolution cryo-ET structures,

while the structural experiment could validate the MD models

and reveal the organization of multiple spikes on the viral capsid

at the supramolecular level. Notably, the spike protein of SARS-

CoV-2 is highly glycosylated. While it had been known that the

positioning of glycosylation sites on viral surface proteins may

allow viruses to dodge neutralizing antibodies,161,162 the MD

simulations were instrumental in understanding the exact

conformational movements of glycans that create surface

patches where the spike is protected from antibodies, thus form-

ing a glycan shield that hinders an immune response. With such

striking examples, it has become evident that integrated and

complementary experimental studies are required to advance

themolecular understanding of howmacromolecular complexes

function in cells.

MD simulations are moving toward the subcellular and cellular

scale. The first pioneering molecular simulations of viruses or

entire cells were done, and more work will undoubtedly be under-

taken during the next decade.163,164 However, sampling inter-
esting timescales and using an accurate biochemical description

will be challenging. In addition, one outstanding problem remains:

howcanweobtain a high-fidelity in silico representation of subcel-

lular compartments with incomplete knowledge of molecular and

cellular biology? We still ignore many details—and maybe more

general aspects—of the cellular content, pathways, and mecha-

nisms. An MD simulation that does not contain a crucial compo-

nent of a cellular pathway will not produce an accurate descrip-

tion. One promising strategy is to systematically augment MD

simulations with ML methods trained on experimental data.165 In

other words, one would employ an MD simulation for the known

part of the model and use neural network-based approaches to

learn the unknown part from experimental data. Ever-increasing

computational power, improvements to force fields, and more

meaningful coarse-graining, together with an integration of phys-

ics-based simulations with data-driven approaches, will make

digital twins standard tools to conceptualize complex phenomena

and hypothesis generators in cellular biology.

Conclusions
In the past decades, structural biology has evolved, with the

focus shifting from high-resolution and atomistic details of single

molecules toward the characterization of larger complexes and

assemblies and more recently, their analysis in a native environ-

ment—in situ. A definition of molecular function in situ requires

taking into account all aspects of the cellular context and inte-

grative approaches combining different technologies that cap-

ture additional properties such as structural dynamics or phys-

ical forces. As the field progresses in this direction, novel types

of models and concepts will be needed to incorporate and visu-

alize the diverse data types.

Once properly built and tuned, digital twins of cellular seg-

ments should be able to capture synergistic effects of molecular

functions and faithfully predict complex cellular responses.

Example problems could be membrane deformation by protein

clustering or crowding (Figure 4A), the conformation of mRNPs,

the benefit of a local environment for protein folding, how forces

act on subcellular architecture, or whether a small molecule will

be enriched inmembrane-less organelles or not. Importantly, the

information gained will not be limited to the wild-type protein in

an unperturbed cellular context, but such models could be over-

laid with clinically manifested mutations or changing environ-

mental conditions. Casting biological questions into algorithms

will be an important skill for future cell and structural biologists,

given the wealth of available data and the increasing complexity

of cellular modeling frameworks.

The next generation of structural biology investigations are likely

to embrace cell biology by accurately quantifying cellular content

in space, measuring molecular activities inside of cells, and simu-

lating cellular behavior in a virtual reality to make predictions that

are experimentally testable and that motivate synthetic biology

approaches. The combined power of these approaches holds

great potential to elucidate the grammar that underlies the com-

plex choreography of cellular self-organization. When will we

have understood how cells work? Luckily, there will still be a

tremendous amount of work waiting for many generations of

future biologists, who will study cells with methods that remain

to be invented. However, once digital twins of cells predict their
Cell 187, February 1, 2024 557
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behavior that could not have been conceived without them, an

important milestone will have been achieved.
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151. González, A., Covarrubias-Pinto, A., Bhaskara, R.M., Glogger, M., Kun-

cha, S.K., Xavier, A., Seemann, E., Misra, M., Hoffmann, M.E., Bräuning,
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Tebbe, F., Mitrovic, S.A., Nöth, J., Cabezudo, A.C., Donohue, J.K.,

et al. (2023). Crosstalk between regulatory elements in disordered

TRPV4 N-terminus modulates lipid-dependent channel activity. Nat.

Commun. 14, 4165.
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