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We introduce a variational Monte Carlo algorithm for approximating finite-temperature quantum
many-body systems, based on the minimization of a modified free energy. We employ a variety
of trial states—both tensor networks as well as neural networks—as variational ansétze for our
numerical optimization. We benchmark and compare different constructions in the above classes,
both for one- and two-dimensional problems, with systems made of up to N = 100 spins. Despite
excellent results in one dimension, our results suggest that the numerical ansédtze employed have
certain expressive limitations for tackling more challenging two-dimensional systems.

Introduction.—Understanding quantum many-body sys-
tems at finite temperature is a fundamental problem, with
applications ranging from condensed matter to materi-
als science. Traditional quantum Monte Carlo meth-
ods [1, 2] offer efficient computation of thermal properties,
but are hindered by the sign problem in low-temperature
fermionic or frustrated systems [3, 4]. A sign-problem-free
method is the variational method, which seeks the optimal
ansatz state through an algorithm guided by the varia-
tional principle. At zero temperature, the combination
of matrix product states (MPS) and the density matrix
renormalization group algorithm has proven particularly
effective, establishing it as a standard for one-dimensional
quantum systems [5]. Yet, developing variational methods
that can effectively tackle finite-temperature problems
in higher dimensions continues to be an open challenge.
For example, while the ground state of the 2D Hubbard
model at half-filling is well understood [6, 7], the low-
temperature regime remains elusive. This work proposes
a robust variational Monte Carlo algorithm for approxi-
mating finite-temperature states and introduces efficient
ansétze, leveraging recent innovations in tensor networks
and neural networks [8-10].

Tensor network states, grounded in solid theoretical
foundations [11-13], efficiently represent short-range equi-
librium quantum many-body systems. Matrix product
states (MPS) and matrix product operators (MPO) excel
at representing one-dimensional systems at finite temper-
atures [14-18]. Despite recent advances [19-22], apply-
ing MPS or MPO to two dimensions is computationally
challenging because their inherent 1D topology assumes a
different notion of locality from typical local Hamiltonians.
Their natural generalizations in 2D, projected entangled
pair states and operators (PEPS and PEPO) [23], face
challenging computational costs [24-27], and have mainly
been used in infinite systems [28-32]. This sparked the de-
velopment of extensions of tensor network wavefunctions,
such as string-bond states (SBS) [8, 33, 34] and entangled
plaquette states (EPS) [33, 35-38], for which expectation
values can be efficiently computed using Monte Carlo
methods. In this paper, we extend these constructions to

represent mixed states, by means of purifications.

Neural network states, inspired by the success of deep
learning, have emerged as a flexible variational ansatz
for which expectation values can also be efficiently com-
puted with Monte Carlo methods [9, 39-44]. Later, neural
network states were connected with extensions of tensor
networks [8, 45]. Despite their computational efficiency,
the theoretical understanding of these classes of varia-
tional ansdtze in representing quantum states is still an
active area of research compared to more established ten-
sor networks [45-53]. Neural networks have been extended
to represent mixed states [54—61], where the challenges
are more pronounced. Initial studies on open quantum
system dynamics with restricted Boltzmann machines
(RBM) [55-57, 59] have revealed discrepancies with exact
results when dissipation strongly competes with unitary
dynamics, even for small systems. Using the graphical
language of tensor networks, we generalize the connec-
tions between tensor network and neural network states
to mixed states, allowing a better understanding of their
relationships and enabling the construction of ansitze
inspired by both.

Current finite-temperature methods typically employ
imaginary time evolution from the infinite-temperature
state [17-19, 62, 63], a technique well suited for tensor
networks due to their theoretical guarantees and efficient
truncation schemes. However, this approach is less ef-
fective for neural networks, where evolution can only be
approximated using Monte Carlo sampling [61, 64, 65],
leading to potential noise and error accumulation in large
or low-temperature systems. The Gibbs free energy prin-
ciple offers an alternative variational framework, but com-
puting the von Neumann entropy is infeasible for most
variational states, except for certain cases such as Gaus-
sian states [66, 67]. To overcome these limitations, we ex-
tend the approach of Ref. [68] to the context of variational
Monte Carlo. The optimization proposed is based on a
modification of the free energy, such that one constructs
the mixed state pr(8r) = arg min,-¢ Fr(p) where

Fr(p) = Brtr(Hp) — Sa2(p). (1)
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FIG. 1. Tensor network representation for mixed states of various tensor and neural network ansétze.
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a) Graphical notation:

tensors as squares, indices as lines, contractions as line connections, and index duplication as red dots (b) A matrix product
operator (MPO) does not ensure the positivity of the density matrix, but a matrix product density operator (MPDO) does, via
purification. Physical indices (downward arrows) have dimension two for spin-1/2 systems; ancillae (upward arrows) have Kraus
dimension x. The gray lines connecting the squares have uniform bond dimensions D. All the ansitze used in this work are
defined and depicted by their purification. (c¢) SnakeMPS: An MPS configured in a snake-like pattern across a 2D lattice. (d)
Projected entangled pair states (PEPS) are theoretically appealing 2D tensor network but computationally demanding. (e) An
entangled plaquette state (EPS) uses index duplication, where physical indices s; are shared between overlapping plaquettes,
each connected to auxiliary indices a;. (f) A string-bond state (SBS): physical indices s; are copied and reused in different MPS
strings. (g) A restricted Boltzmann machine (RBM) state: a neural network ansatz, partially shown for the contribution from
two auxiliary neurons to three spins, illustrating the duplication of both system and ancillary indices and the global purification.

Here, H is the Hamiltonian, and the von Neumann en-
tropy is replaced by the second Rényi entropy Sa(p) =
—log tr(p?). This state does not correspond to the Gibbs
ensemble, but, in the thermodynamic limit, the two be-
come locally indistinguishable. Therefore, the local ob-
servables of pp will converge to the thermal ones as the
size of the system increases. The argument is based on the
distribution of eigenstates in the two ensembles [68]. We
have applied this algorithm to a wide range of neural net-
works and tensor networks (see Fig. 1), and benchmarked
it in 1D and 2D systems against established methods. Our
results demonstrate that the algorithm, when combined
with appropriate variational ansétze, has the potential
to provide robust predictions for the local properties of
finite-temperature quantum systems.

Variational Monte Carlo.—We consider a system of
N spins, each of local dimension d, represented in the
basis |8) = |s1,...,sn). Given an ansatz for the mixed
state p = > . pss’ |8) (8’|, we use Monte Carlo method
to compute the energy E = tr(Hp) and the state purity
I' = trp?. Both are calculated as expectation values
on the probability distribution defined by unnormalized
diagonal matrix elements pss,

2
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Here, Hg/ s are the non-zero matrix elements of the Hamil-
tonian, which are polynomially many for local Hamil-
tonians. The second Rényi entropy is estimated using
Sa(p) = —logT(p). This quantity is challenging to eval-
uate directly, since one must first compute I', which be-
comes exponentially small with system size.

To optimize our variational ansatz, we compute the
gradients of the free energy with respect to the variational
parameters 6, combining the gradients of the energy and

entropy as dgFr(p)
are estimated as
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The key idea here is that while estimating Sa(p) is not
scalable to large systems, gradients dySa(p) can be effi-
ciently estimated by sampling not only pss but also the
distribution proportional to |pss|?.

Variational ansdtze.—We use the graphical notation of
Fig. 1(a) to construct variational ansétze for the density
operator for which pss and its gradients Jypsss can be
computed efficiently, up to a normalization factor. MPO
and PEPO have been shown to be efficient representa-
tions of any finite-temperature thermal states of local
Hamiltonians in 1D and 2D respectively [11-13, 69-71].
For 2D problems, the computational cost of applying
PEPS [Fig. 1(d)] is prohibitive. Their exact contraction
scales exponentially; advanced approximation techniques
scale polynomially, yet poorly for practical purposes [24—
27]. In practice, the most effective solution has been
adapting the MPO [Fig. 1(b)] on the 2D lattice in a snake
pattern [Fig. 1(c)], but the bond dimension required typ-
ically grows exponentially in the length of the lattice.
To ensure that p is Hermitian and positive semidefinite,
we use a purification |¥) such that p = tr4(|U) (¥]) is
recovered by tracing over an ancillary system A. This is il-
lustrated in Fig. 1(b) for the case where |¥) is represented
by an MPS [72].

Purifications allow us to introduce a versatile set of
variational ansédtze. These ansétze are constructed by
dividing the lattice into P overlapping subblocks, each
containing n, spins indexed by s, and associated with



a unique set of ancillae a,. The global wave function

is then expressed as the product of the overlapping sub-

block wave functions as ¥(s,a) = H§=1 ¢L€J7%, allowing

different correlations of the system to be captured in a
way similar to the products of so-called experts in ma-
chine learning [73]. The density matrix of the system is
obtained by tracing out all the ancillae, resulting in a
factorized form pger = H§:1 >a, [S’;],ap( E';],%)*. Each

subblock qb[f;],% can be represented by a full tensor, a
small tensor network, or a neural network such as an
RBM. These give rise to purification ansitze represented
by EPS [35], SBS [33], or RBM [54].

The essential tool for representing EPS and SBS purifi-
cations as tensor networks in Figs. 1(e) and 1(f) is the copy
tensor [Fig. 1(a)], which duplicates indices |s;) into |s;, s;).
In EPS, physical indices are copied and reused in different
plaquettes, each associated with local ancillae represented
by upward indices. The overlapping nature of EPS allows
them to improve upon the mean-field approximations and
capture correlations between subblocks. In SBS, phys-
ical indices are duplicated and fed into different MPS
strings, so that the choice of string patterns determines
the expressiveness of the ansatz. When the underlying
lattice is beyond one dimension, a natural strategy is to
adapt multiple long strings that snake through the entire
lattice. We call this ansatz SnakeSBS and it contains the
SnakeMPS ansatz of Fig. 1(c) as a special case of one
string. As can be inferred for both EPS and SBS from
Figs. 1(e) and 1(f), the partial trace of the ancillae can
be carried out in parallel for each plaquette or strings.

An RBM purification [54-57] involves three sets of
binary units: s;,j € {1,..., N}, the configurations of
the physical spins; hidden units h;,¢ € {1,...,aN}, in-
troducing correlations between the physical spins; and
ancillary units, ax, k € {1,..., 3N}, acting as the purifi-
cation. The relationship between RBM states and MPS,
EPS, and SBS has been established in previous stud-
ies [8, 45, 48, 74]. Using the purification and the graphical
notation, these connections are straightforwardly gener-
alized to their mixed-state counterparts. Ignoring single-
body terms, which can be easily absorbed in the tensor
network representation, the RBM wave function is given
by U(s,a) oc [I0N Xi(s) [T, Ya(s, ax), where X;i(s) =
cosh(b? +2; Wi};si) and Yy(s,ar) = exp(D_; Wi aks;).
The first factor X;(s) entangles physical spins without
involving the ancillae. It can be represented by a matrix

product state tr (Hiej

bond dimension two [8]. The factor Yj(s, aj) entangles
the system with the ancillae. We illustrate its representa-
tion as a tensor network in Fig. 1(g) and observe that such
purifications are global, with a single ancilla attached to
each string, similar to the case of EPS. The distinction
lies in the fact that EPS use dense vectors in their purifi-
cation, while RBM use a specific function whose physical
indices are decoupled. This is in contrast to MPS and
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FIG. 2. Numerical results for approximating the Rényi en-
semble of the non-integrable Ising model with (J, h., hs) =
(1.0,0.5,1.05) using RBM of neural densities a = 8 =1,2,3,4
and MPS of bond dimension D = 4,8,12,16 and Kraus di-
mension x = 2. (a) Relative error in the Rényi free energy as
a function of Sr. MPS ansétze converge to the exact solution
(solid lines) as the bond dimension increases. RBM ansétze
saturate for all Br. (b) Expectation value of average trans-
verse magnetization M, and (c) two-point correlation function
C.o as functions of energy density (H) /N for a system size
of N = 10 x 10. The results converge to the MPO results
representing the Gibbs ensemble [solid lines in (b—c)].

PEPS, where ancillae and systems are treated on an equal
footing. By directly parameterizing Fig. 1(g) with general
tensors, the RBM can be generalized to handle larger
local dimensions [75].

Numerical Results in 1D.— Our variational algorithm’s
performance is first assessed in one-dimensional systems,
using the nearest-neighbor Ising model with a Hamiltonian

N N
H=J> oioi+h.Y of—hsy of.  (4)
(i.5) i=1 =1

We benchmark our algorithm at a non-integrable point
J=1, h, =0.5, h, = 1.05 with an open boundary con-
dition [76]. We first examine a system of N = 16 spins,
comparing with exact diagonalization results. Although
restricted to small systems, the possibility of estimating
the free energy [Eq. (2)] provides a way to benchmark
different ansétze, which is generally prohibited for the
algorithm based on imaginary time evolution. We test
both RBM and MPS, with results shown in Fig. 2(a). In-
creasing the bond dimension of the MPS ansatz improves
convergence to the exact solution, while surprisingly, this
does not happen for RBM. The universal approxima-
tion properties of RBM [77] might lead one to anticipate
similar capabilities for their purified states, and, by ex-
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FIG. 3. Approximation of the Rényi ensemble for the 2D Ising model at J = —1, h. = 0 using various ansatze. (a)—(b)
Variational free energy per site for N = 16 as a function of the number of parameters for different ansétze for h, = 3.0 and
Br = 0.4 (b) he = 2.5. (a) Most ansitze improve with increasing number of parameters, except for the RBM ansatz. (b) The
convergence to exact solutions for different ansétze is plotted as a function of the energy density (H) /N at h, = 2.5. For both
(a) and (b), the solid line corresponds to the exact solution. (c¢) Transverse magnetization M, and (d) nearest-neighbor spin-spin
correlation C,, as functions of energy density, computed for a larger system of N = 10 x 10 spins using SnakeSBS and RBM
ansédtze. The solid lines correspond to QMC results for the Gibbs ensemble.

tension, for the reduced density matrices. However, to
enable analytical partial trace, the purification units of
this RBM ansatz are integrated within the hidden layer
rather than within the visible layer. This violates the
conditions demanded by the universal approximation the-
orem [77]. The universal approximation theorem holds if
the density operator is modeled using a deep Boltzmann
machine (DBM) [61]. But the optimization of DBM is
computationally expensive [48, 78], which restricts the
attainable system sizes [61, 78].

To evaluate the scalability of the ansatz and the algo-
rithm, we scale up to N = 100 spins in Figs. 2(b) and 2(c).
Because our algorithm is variational, using a few thou-
sand samples are sufficent for computing the gradients,
an order of magnitude lower than what is required to
accurately simulate the time evolution reported in previ-
ous works [59, 65]. Two local observables, the transverse
magnetization M, =Y. (¢6F) /N and the two-point corre-
lation function Cpp = ), (070, 1) /N, are measured on
optimized RBM and MPS anséatze. To compare with the
results of the Gibbs ensemble, they are plotted against the
energy density (H) /N. As shown in Figs. 2(b) and 2(c),
both results closely match the MPO results.

Numerical results in 2D.—We turn to the two-
dimensional transverse field Ising model in Eq. (4), with
parameters J = 1,h, = 0,h, = 3 that are close to the
critical value |hS| & 3.044 [79]. We first benchmark the
RBM, MPS, PEPS, and our newly introduced EPS and
SnakeSBS ansitze for N = 16. These anséatze are first
evaluated in Fig. 3(a) at an intermediate temperature
Br = 0.4, which is particularly challenging for variational
methods due to strong competition between quantum and
thermal fluctuations. The RBM show a saturation effect
with a relative error of approximately 2.2%, suggesting
similar representational limits. The EPS ansatz is found
to be less accurate, with a relative error of 2.5%, while

being difficult to scale up because the number of parame-
ters scales exponentially with the size of the plaquettes.
The PEPS ansatz, expected to accurately capture thermal
physics, approaches the exact solution at bond dimensions
D =2 and D = 3 with relative errors of 2.3% and 1.7%.
However, its scalability is challenged by the expensive
contraction procedure. We find that the MPS ansatz
improves consistently with increasing bond dimensions,
with relative errors of 3.7%, 2.4%, 0.9%, and 0.4% for
D =4, 8,16, 32, respectively. Building from several snake-
like MPS strings across the lattice, the SnakeSBS ansatz
improves in Fg(p) with increasing bond dimensions and
number of strings, with relative errors decreasing from
2.6% to 1.9% for ns, = 2 strings and from 1.1% to 0.5%
for ns = 4 strings when increasing from D =4 to D = 12.

Next, we set h,, = 2.5 and plot Fr(p) against the energy
density of the state in Fig. 3(b) to compare throughout
the energy spectrum. For each ansatz, we report only
the top results from our explored parameter range. In
the higher-energy regime, most of the ansédtze closely
match the exact results. However, at lower energies, dis-
crepancies emerge, especially for RBM and EPS. In this
regime, the MPS and SnakeSBS ansitze show better con-
vergence to the exact results with higher bond dimensions.
Although MPS attain lower Fr(p) with a larger bond di-
mension D = 32, we have found that SnakeSBS are the
most scalable anséatze. We optimize the SnakeSBS and
RBM ansétze for a range of energy densities on a larger
system of N = 100 spins and compare the results with
quantum Monte Carlo. As shown in Figs. 3(c) and 3(d),
the approximation for the transverse magnetization M,
is found to be more accurate than that for the two-point
correlation function C. = 3_, » (0705) /N. While the
Ising model we studied can be effectively addressed with
quantum Monte Carlo (QMC), variational approaches
offer additional advantages, such as being capable of mea-



suring more complex observables and not being limited
by the sign problem.

Conclusion and outlook.—We proposed a variational
Monte Carlo algorithm to approximate thermal states
and we use it to optimize variational ansatze based on
both tensor networks and neural networks. Our approach
directly approximates the state at a fixed temperature
and presents a robust alternative to the imaginary time
evolution method. This direct approximation permits a
controlled and gradual enhancement in the expressiveness
of the ansatz to refine the accuracy of the approximation.
We tested this combination on one- and two-dimensional
quantum Ising models, comparing the results with estab-
lished methods. In both 1D and 2D, we observed that
RBM yield saturating results and do not converge to the
exact solution. In contrast, MPS provided perfect results
in 1D. In 2D, we found that SnakeSBS improves with the
increasing number of strings and bond dimensions, out-
performing RBM in our comparison to the exact results.
For N = 100 spins, the results of RBM and SnakeSBS
are qualitatively similar to those of the Gibbs ensemble,
albeit not without limitations.

Using tensor network diagrams, we introduced a series
of string-bond states with purifications. These SBS inter-
polate between MPS and RBM, and can handle systems
with larger local Hilbert spaces with minor modifications.
They are suitable for addressing the dynamics of open
quantum systems [14, 55-57, 60]. Future improvements
may come from using tensor network diagrams as a tool to
design deeper ansatze that can be contracted with Monte
Carlo methods [49, 59, 74]. We anticipate that more
expressive ansitze will enable our algorithm to tackle
complex problems at the forefront of experiments and the-
ory, including three-dimensional models [34], long-range
models [46, 80, 81], frustrated models [34, 82], and chiral
models [8, 51, 83], whose ground-state properties have
been promisingly investigated with neural network or
string-bond states.
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Supplemental Material

We provide detailed descriptions of the application
of variational Monte Carlo methods to mixed states
(App. A), the variational ansiitze used in our study
(App. B), and our numerical implementation, including
the sampling and optimization processes (App. C). Ex-
tended numerical results are also presented for further
validation and performance analysis of our methods and
ansétze (App. D).

Appendix A: Applying the Rényi Free Energy
Principle with Variational Monte Carlo

1. Estimation and variational minimization using
Monte Carlo

To find the thermal state pg(8) at a given inverse
temperature 3, it is in principle possible to minimize the
Gibbs free energy

Fa(p) = Btr(Hp) = S(p), (A1)
where S(p) = —tr(plog p) denotes the von Neumann en-
tropy. However, the computation of S(p) is demanding as
it requires diagonalizing the many-body density matrix p.
An alternative, which is computationally more tractable,
utilizes the a-Rényi entropy, S, (p) = ﬁ log tr p%, lead-
ing to the definition of the a-Rényi ensemble through a
modified free energy F, [68]

Fa(p) =
pa(B)

Ba tr(Hp) — Sa(p),

argmin F,(p).
p>=0,tr p=1

This variational approach requires minimization over den-
sity operators that are (i) positive semidefinite, (ii) Her-
mitian, and (iii) normalized. We focus on the case a = 2,
known as the second Rényi ensemble. Given that our
variational ansétze for pgs are defined up to a normaliza-
tion factor, we incorporate this factor into the Rényi free
energy expression Fg(p) for a =2

Fr(p) = Br (H), - Sa(p)

_ o tr(Hp) tr(p?)
= 0ORr trp + log (trp)z'

(A4)

Variational Monte Carlo works by representing quantities
of interest as expectation values over a specific probability
distribution. These values are then approximated as
statistical averages of samples, which are obtained using
Markov chain Monte Carlo methods.

The first term of Eq. (A4), the energy, can be expressed

and estimated as follows:

<H> = Zs,s’ Hs’spss’ Zs,s' pssHs's ’;)S:S'
Es Pss Zs Pss

Pss (A5)

ss
= Eswdiagp [EIOC(S)] :

= Eswdiagp

Here, the local energy is defined as

(slpH 19
P} = oy~ 2 Motz

s’

(A6)

Egs. (A5) and (A6) are not only applicable for estimating
the energy, but can also be used for other Hermitian ob-
servables, such as magnetization and correlation functions.
For a Hamiltonian H (or any other arbitrary observable)
that is local or a sum of local terms, the local estimators
of Eq. (A6) involve only a polynomial number of nonzero
terms, thus enabling efficient evaluation. It is worth not-
ing that the Metropolis-Hastings algorithm, which only
requires computing the ratio of the probability densities
between the current and proposed states, can be used to
sample from unnormalized probability densities, such as
the unnormalized pss and |pssr|?.

The second term of Eq. (A4), the second Rényi entropy,
requires computing the purity I' = tr p?/(tr p)? before
taking the logarithm. The purity can be estimated as

Zs,s' Ps’sPss’
(Zs pss) (Zs’ 103,3')
Ps’sPss’
_ Zs,sl PssPs's’ ;o (A7)
(Zs Pss) (Zs' Ps's’)

2
—E |pSS'|
— L s~diagp .
s’ ~diag p PssPs’s’

=

The diagonal elements of p can be sampled indepen-
dently. This equation is equivalent to employing the
so-called swap trick to compute the 2-Rényi entropy as
I' = (SWAP) ., on two copies of p.

The gradient of the cost function, necessary for the
variational optimization, can be expressed as well as an
expectation value suitable for Monte Carlo sampling. As-
suming that the density operator is parameterized by a set
of parameters 6, we compute the gradients with respect
to these parameters. The gradient of the energy is given
by

o o[ (15}

trp
Ogpss op
:Es~diagp [Z Hg g pszs ] - <H> ESNdiagP |:ps:s .
(A8)



The gradient of the purity is given by

[ 2 or
0T =tr | | —2— — = | dup| .
\(rp)? o

Using this, we can calculate the gradients of the log purity

9T (2 2
BplogT = 22" —pr [ -2~ 2 )9
6 108 T r_(l“(trp)2 trp) 0P]

_ 2 _ 2
- Ktrp? trp) agp]

(A9)

89/)53’:| |:89PSS:|

= 2Egs/dia — 2Esdia — .

sa~diag p? |: Pss’ diag Pss
(A10)

Finally, the gradient of the functional Fg(p) with respect
to the variational parameters 6 is expressed as

L
Br

where 0y (H) and 0plogT' are given by Eq. (A8) and
Eq. (A10), and both of which are amenable to Monte
Carlo estimations. To optimize the variational parame-
ters, we employ a gradient descent method, updating the
parameters iteratively as follows:

09 Fr(p) = 0p (H) + OplogT, (A11)

0"t = 0" — 09 Fr(p), (A12)

where 7; denotes the learning rate at iteration t.

2. Imaginary time evolution, Monte Carlo flow
equation, and stochastic reconfiguration

The Gibbs state can be obtained through imaginary
time evolution using the equation of motion

dp

L= {1~ (1), p}.

I (A13)

For a specific inverse temperature 3, the evolution starts
from the maximally mixed state 1 and ends at time

T8 = (/2

e PH — ¢=BH/27=BH/Z (A14)
The maximally mixed state is typically represented with a
straightforward neural or tensor network structure. Start-
ing from these variational representations, we can ap-
proximate the imaginary time evolution by projecting
Eq. (A13) onto the variational manifold defined by the
ansatze.

The method of obtaining the Gibbs state, as described,
has its limitations. First, projection onto the variational
manifold can introduce errors that accumulate over time,
leading to a divergence between the numerical solution
and the actual imaginary time evolution. Second, the

targeted Gibbs state is not a fixed point of the imaginary
time evolution. Consequently, any errors arising from
statistical samplings or insufficient convergence of the
Markov chain cannot be corrected back. This contrasts
with the ground state case, where the imaginary time
evolution

O [¥(7)) = —(H — (H)) [¥(7)) (Al5)
has the ground state as its fixed point, lim,_, o |¥(7)) —
|®p), and monotonically decreases the energy. This evolu-
tion process corrects errors introduced by imperfect sam-
pling or projection onto the variational manifold, guiding
the state toward the best approximation of the ground
state within the variational manifold.

To enhance the stability of the variational approach for
thermal states, we introduce a nonlinear flow equation
that shares the fixed-point characteristics of the imaginary
time evolution for the ground state [67, 68]

op, 1

o7 __i{FT_<FT>7pT}'

(A16)

In this equation, the Rényi free energy operator is
F, = frH + ﬁpﬂ and (F;) = tr[pF;(p)]. This evo-
lution, as shown in Eq. (A16), maintains the trace and
positivity of the density matrix. Similarly to imaginary
evolution [Eq. (A15)], the free energy of p, decreases
monotonically with 7. Thus, by selecting a suitable initial
density operator p and integrating Eq. (A16) over an ade-
quate interval, we can obtain a variational approximation
of the Rényi ensemble as defined in Eq. (A4).

To determine the equation of motion for the variational
parameters, we first expand the evolved state according
Eq. (A16) to first order,

ST (Fr—(F-)

~ o= O (Fr—(F-
Prysr~e 2 2 ( (Fr))

)p're_ ) (A17)
and then apply the time-dependent variational princi-
ple [90]. The ideal metric for this space of density oper-
ators is the Bures distance with the L' norm, but due
to computational complexity, we opt for the L? norm,
which is more manageable for Monte Carlo methods [55-
57, 59, 61].

This approach leads to an update rule similar to the
stochastic reconfiguration method [91], where we adjust
the gradient updates of Eq. (A12) using the Gram matrix
of the density matrix,

0" = 0" —mG(0) - VoFr(p). (A18)

The Gram matrix is estimated as follows:
Gij(0) =E smdiag p [A5,(5,8") Do, (5, 8")]
s’ ~diag p

— Esndiagp [A5,(5,8")] - E sndiag p [Ao; (5, 8")],
s’ ~diag p s’ ~diag p
(A19)



where we define the log-derivative of the density matrix
elements as

Olog pss’ 1 Opss
A9(878/): 89 :p , 89 N

(A20)

Employing this method in our numerical optimizations has
proven to reduce the required sample size for estimating
the gradient and Gram matrix, allowing larger step sizes
and thus expediting convergence.

In stochastic reconfiguration, a Gram matrix G is used
to transform the steepest descent directions in the Eu-
clidean parameter space into the steepest descent di-
rections in the variational state space. This method,
equivalent to the natural gradient descent method in ma-
chine learning, has been widely used in various variational
Monte Carlo methods.

Appendix B: Variational ansétze

We describe in more detail the ansidtze we used: matrix
product states (MPS), entangled plaquette states (EPS),
string-bond density states (SBS), and restricted Boltz-
mann machine states (RBM). For these states defined by
their purifications, we discuss how to efficiently compute
the elements of the density matrix pss.

The area law of entanglement entropy and tensor net-
works go hand in hand, providing the key to the effi-
cient representation of the ground state of local gapped
Hamiltonians [92]. A similar story can be told for finite-
temperature states with mutual information, defined as
I(A: B) = S(pa) + S(ps) — S(par) [12]. The mutual
information I(A : B) measures the correlation between
subsystems A and B. The mutual information of a pure
joint state equals twice the entanglement entropy. There-
fore, if the purification satisfies the area law of entan-
glement, the reduced mixed state satisfies the area law
for mutual information. Gibbs states with local interac-
tions and locally purified MPS and PEPS with constant
bond dimensions both adhere to this area law of mutual
information. This suggests that successful ansitze for
finite-temperature states should also comply with this
law. Using tensor network diagrams, we can easily diag-
nose the scaling of mutual information for the anséitze.
For the ansitze we use, we also discuss their scaling with
respect to the mutual information.

1. Matrix product states

A matrix product state (MPS), represented with local
ancillae for purification, is defined as

N

\I/Mps(s, a) =tr H ALJ_;],aj
j=1

(B1)
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This can be visualized, in the case of five spins, as

ay a2 ag Gy as

I R
e - L HIHE -
I I I I

51 52 53 S4 S5

Tracing out the ancillae transforms the purified MPS into
a mixed state, or MPDO:
MY
SN,SN

Here, local purifications imply that M Ul are matrices of

s,8

pappo(s, ') = tr (ML, - (B3)

size D?> ® D?, expressed as

X
MY, =AU @ (4F))",

a=1

(B4)

where y is at most D?. The matrices AE}(’IU I are also of
size D?. An MPDO is graphically depicted as a ladder-
like structure with bond indices of dimension D and a
virtual bond index of dimension y

Typically, x is chosen to be comparable to the physical
dimension, x ~ d.

To compute the elements of the density matrix pggr, we
utilize the chain-like structure of MPO and MPS. We set
the physical indices to specific states s and s’ and decom-
pose the matrix product density operator (MPDO) into
a series of matrices. These matrices are then multiplied
in sequence, a process akin to finding the inner product
in MPS, resulting in the scalar pss,. The computational
cost of this method scales as O(D?). This is analogous
to recurrent neural networks (RNNs) [93], where data is
processes sequentially. Our implementation benefits from
similar advancements in parallel computing on modern
hardware, enhancing the efficiency of our MPS/MPDO
calculations.

2. Entangled plaquette states

An entangled plaquette state (EPS) can represent a
variety of quantum states, including those relevant in
quantum information theory, such as the toric code and
graph states [33]. This has motivated the use of EPS as a
variational ansatz for quantum many-body problems. To
construct a purification, we associate an ancillary spin a,



on each plaquette of the original system. The dimension
of this purifying spin is x4, which is a variable parameter
in our model. The purified state |¥) is then expressed as a
product of local terms, each corresponding to a plaquette
and its associated purifying spin,

‘IIEPS(SI;-~-7SN,a17"'a H¢spap (BG)
Here, [si;]’ap is the coefficient assigned to the configuration

|sp,ap), where s, represents the set of physical spins in
the p-th plaquette. The graphical representation of this
purification is depicted as follows,

a a2 as Gy as

S1 S92 S3 S4 S5 Sg

where the tensors are connected by bond indices, and
each tensor has an additional purifying bond index.

We design EPS to have local purifying ancillae for each
plaquette. This enables efficient and parallel partial-trace
operations. The entangled plaquette density operator
(EPDO) is obtained from the entangled plaquette state
(EPS) by tracing out the auxiliary degrees of freedom as

- ITek, (s2,)

a p=1

(S (¢[;ﬂ,m)*) (St (022.))
P "
112

PEPDO (S, 3

(B8)
This simplifies to a product of plaquette density matrices
for the configurations s, and s . This corresponds to

In this graphical representation, the physical indices are
on two opposite plaquettes. One is on the bra side and
the other on the ket side. The inner indices that connect
them illustrate the partial trace. They have a size given
by the Kraus purification parameter x,. We show this
with a plaquette size of two for simplicity.

To ensure that the density operator is of full rank, we
require (x,)™» > d”, where N, denotes the number of
plaquettes and d represents the physical dimension. This
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condition ensures that the purification space is sufficiently
large to encompass the entire state space of the system.
Moreover, EPDO allows for weight-sharing across pla-
quettes, akin to the functionality in convolutional neural
networks, making it suitable for systems with periodic
boundary conditions.

EPDO have several notable properties that are de-
rived from their purifications. First, EPS are a subset of
MPS [33, 36]. As such, EPDO also form a subclass of
MPDO in one dimension. Second, since EPS obey the
area law of entanglement entropy, EPDO obey the area
law of mutual information [12].

3. String-bond states

String-bond states (SBS) are tensor-network states with
coefficients derived from the product of matrix product
state coeflicients along lattice strings. When we include
ancillae, we express the string-bond state for the purified
state as

Wsps(s, a

H tr H ASJ aj

JEL

(B10)

In this expression, each string ¢ is a sequence selected
from the set of variables s, with each string linked to
a set of auxiliary variables a. The tensors AS] Ef} define
the amplitudes for the states of the system combined
with the ancillae. The choice of the strings and the
ancillae” dimension y, determines the model’s descriptive
capability.

We derive the string-bond density operator (SBDO) by
tracing out the auxiliary degrees of freedom a, a process
that can be performed individually for each string. This
approach resembles the method used for locally purified
density operators, allowing us to consider SBDO as a
type of overlapping MPDO. For an SBDO composed of
ng strings, and assuming a uniform bond dimension D,
the density matrix elements are given by

ns .
Pss’ = Hpg}s'
_ Htr M) g0
S519 5]2’532

In this context, local purifications imply that the matrices

(B11)
gl ) .

S
ing ¥ 1717

MU are of dimension D? ® D? and can be expressed

s,s’

as

Xa
ZAL il g A[’H])

a=1

MIP =

5,8

(B12)

Here, Y, is limited to D?, and the matrices AE}&U] are of
size D2. Visually, for a system with N =5 and n, = 2



strings, the SBDO density matrix is represented as

(B13)

S

—
W,
N
V)
w
VA
Ny

The purification process ensures that the resulting density
matrix is positive semidefinite and Hermitian by construc-
tion.

A SnakeSBS is a string-bond state with multiple MPS
strings that weave through the lattice in various snake-like
patterns. Figure 4 shows four snake patterns where MPS
strings alternate between horizontal and vertical paths.
These patterns are apt at capturing long-range correla-
tions within the lattice. In our numerical experiments,
we employed both SnakeSBS with two strings [panels (a)
and (b)] as well as four strings [panels (a) through (d)].

FIG. 4. Various string configurations in a SnakeSBS.

4. Restricted Boltzmann machine states

A restricted Boltzmann machine density operator (RB-
MDO) is obtained from the partial trace over the ancillary
degrees of freedom in a restricted Boltzmann machine
(RBM). As depicted in Fig. 5, the RBM consists of three
layers: the visible layer, which embodies the physical
degrees of freedom; the hidden layer, which encodes cor-
relations among physical spins; and the auxiliary layer,
which comprises additional degrees of freedom subject
to tracing. The RBM’s capacity to represent complex
correlations can be tuned by varying the densities of the
hidden (o« = Nj/N) and ancillary (8 = N,/N) layers
relative to the visible layer. Enhancing these densities
enables the RBM to model more intricate correlations at
the expense of increased computational requirements.

The RBM purification can be mathematically described
by a state that is a product of exponentials of local fields
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FIG. 5. Illustration of a restricted Boltzmann machine (RBM)
with a purification layer, depicted as a neural network graph
rather than a tensor network diagram, for approximating
mixed quantum states. The top and bottom hidden layers
contain neurons that encode correlations between the wvisible
physical spins, represented by the middle and bottom layers.
The purification layer in green introduces ancillary degrees of
freedom, crucial for constructing a positive semidefinite mixed
state via partial tracing. The inter-layer connections denote
the neural network weights, optimized during training.

and interactions:

Urpm(s,a) =exp ijsj exp <Z bZaJ)
j k (B14)

J

< [T Xi(s) T Ya(s, an),
% k

where

Xi(s) = cosh b?—kZW!}si ; (B15)
J

Yi(s,ar) = exp Zngaksj (B16)

J

In these expressions, s and a represent the states of the
visible and ancillary neurons, which can take values of
{—1,+1}, respectively. Compared to the main text, here
we included the local bias terms, b7 and bj. The factors
X;(s) and Yj(s,ar) encapsulate the contributions from
the hidden and auxiliary layers. By summing over the
degrees of freedom of the hidden layer, and tracing over
the auxiliary ones, we obtain a mixed state that is positive
semidefinite by construction. A notable feature of the
RBM is that both the sum over hidden neurons and the
partial trace over the ancillary degrees of freedom can be
performed analytically.

It was shown in Ref. [8] that X;(s) is equivalent to an
SBS with diagonal matrices of bond dimension 2 given by

: ) _ ho' b /N—whs, .
Af]j = diag (eb”/N+wijs” e bi/N “’Usﬂ). As shown in the

Fig. 1(g) of the main text, the tensor network diagram



for each of the factor Yy (s, a,) can be represented using
the copy tensor [see Fig. 1(a) of the main text] as

ag

Yi(sp,ax) = (B17)

S1 S2 S3 S4 S5

This configuration resembles a latent variable model, fre-
quently used in machine learning, where each system spin
is independent and only interacts with others via the
ancilla.

A RBM accepts only binary inputs {—1, 41}, which are
well suited to the natural states of spin-1/2 systems. Ex-
tending this approach to systems with higher spin is less
straightforward. Following the methodology in Ref. [8],
we can extend the RBM ansatz to accommodate larger
local dimensions. This is achieved by directly parame-
terizing the tensor network diagram [Eq. (B17)] with a
generalized tensors Ty, s, where ay and s; serve as tensor
indices rather than binary values. In this extended RBM
framework, enlarging the ancilla’s dimension effectively
corresponds to incorporating additional ancillae.

In a local or short-range RBM, each hidden and aux-
iliary neuron only connects to a fixed number of visi-
ble spins [8]. The graphical representations Eqs. (B7)
and (B17) show that local RBM are a subset of local EPS.
Although local EPS are more versatile than local RBM,
they require exponentially more parameters relative to
the size of each plaquette, increasing computational com-
plexity. Local RBM adhere to the area law for both
entanglement entropy in their purification and mutual in-
formation in the corresponding mixed states. Conversely,
fully-connected RBM disregard the spatial lattice struc-
ture and the inherent locality of quantum states, leading
to a volume law for entanglement entropy in the purifica-
tion [46], as well as for mutual information in the mixed
states they represent. This behavior contrasts with the
typical area law scaling of entanglement entropy and mu-
tual information found in the ground and thermal states
of local gapped Hamiltonians. Hence it can be expected
that certain RBM states cannot be represented efficiently
using local tensor networks such as MPS and PEPS.

Appendix C: Numerical Implementation

Here, we provide specifics of our numerical implementa-
tion. We discuss techniques to speed up the calculations of
the gradients (App. C1), the sampling process (App. C2)
and the choice of the optimizer (App. C 3). All simulations
were performed using GPU-specific kernels on NVIDIA
P100/V100/A100 graphic cards.
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1. Gradients

In the numerical implementation of our variational
Monte Carlo algorithm, estimating the gradients of Fr(p)
requires the computation of pss as well as the gradient
with respect to the parameters, Jypsss. First, since ten-
sor network anséitze requires mostly tensor contraction
operations (jax.numpy.einsum), they can be automati-
cally batched with jax.numpy.vmap. Since modern GPUs
are highly optimized for performing tensor contractions,
their evaluations is highly parallelizable on GPUs, with
efficiency comparable to that of neural networks. The
derivatives are computed with automatic differentiation
with existing deep learning libraries [84]. When the model
or sample size is large, we compute the gradients in chunks
to reduce the memory footprint. The implementation is
adapted from Netket 3 [86]’s existing chunking utilities.
When the model requires a series of sequential contrac-
tions, we have found it beneficial to also implement the
gradient checkpointing [94] technique to reduce the num-
ber of cached intermediate results in the propagations.
This allowed us to scale up the simulations to larger bond
dimensions.

RBM states with real parameters can only repre-
sent quantum states where all amplitudes are posi-
tive. Even for real-valued states, in order to represent
the sign structure—which arises in any non-stoquastic
Hamiltonian—complex parameters must be used. Equiva-
lently, one may split the complex parameters into two sets
of real parameters: one set representing the amplitudes,
and the other set representing the phase. Handling com-
plex parameters can introduce additional computational
complexity. Specifically, when computing the gradients
and applying the Gram matrix, one needs to calculate four
real vector-Jacobian products (jax.vjp in Jax [84]), due
to the real and imaginary parts of the complex parameters.
In contrast, all of our tensor network ansétze do not have
this problem. Since they naturally handles real-valued
states, there is no need to introduce complex variables for
the sign structure. This simplifies the computation and
results in a three-fold speed increase in the computation
of the gradients for the tensor network ansatz (R — R)
compared to the neural network ansatz (C — C).

2. Samplers

We need to sample from two distinct probability distri-
butions. The first one is a distribution on the diagonal
elements of the density matrix, whose probability den-
sity is proportional to the diagonal elements pgs of the
density matrix. The second one is a distribution over
the off-diagonal elements of the density matrix, whose
probability density is proportional to |pss|2. We use
the Metropolis-Hastings algorithm to generates a Markov
chain of configurations with the desired stationary distri-
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FIG. 6. Extended analysis of the non-integrable Ising model with parameters J = 1.0, h, = 1.05, and h, = 0.5 for a system size
of N = 16 spins, plotted as a function of the inverse temperature Sr. The top panel illustrates the performance of the restricted
Boltzmann machine (RBM) ansatz for different values of o = 8, showing a saturation in the variational free energy per site, the
energy per site, and the Rényi entropy per site as o = § increases. The bottom panels display the results for the MPDO ansatz

with different bond dimensions D.

bution. For the diagonal elements, we adapt the standard
update rule used in VMC methods for sampling pure state
configurations. Common update rules for the diagonal
elements include local spin flips and local exchanges of
pairs [86]. The update rules for off-diagonal elements
need to account for possible quasi-diagonal form of the
density matrix near infinite temperature. We find that
the following approach maintains a reasonable acceptance
ratio near the 50%:

1. With a 50% probability, we flip one index either in
the s or s’ configuration, which corresponds to an
off-diagonal update,

2. With a 50% probability, we flip the same index for
the s and s’, which corresponds to a diagonal flip.

3. Optimizer

Once the gradients with respect to the parameters
[Eq. (A11)] are obtained, first-order optimizers can be ap-
plied to minimize Fgr(p). We use the Adam optimizer [95],
typically with a learning rate of 0.01. Sometimes, the
gradient descent method [cf. Eq. (A12)] can lead to signif-
icant changes in the variational state with minor changes
in parameters 6. In variational Monte Carlo, this issue can
be addressed by the stochastic reconfiguration method,
which takes into account the natural metric in the physical
state space. We use a similar stochastic reconfiguration
method for mixed states as described in App. A2. To
enhance the numerical stability of the optimization pro-
cess, we add a small diagonal shift of ¢ = 0.01-0.1 to

the Gram matrix. This shift helps to prevent numerical
instabilities that can arise from the inversion of the Gram
matrix during the optimization process.

Our optimization process is designed to ensure the
convergence of the Rényi free energy and the stability of
the variational parameters. The process typically runs
between 1000 and 10000 iterations. We define energy
convergence as the point at which the change in energy
between iterations falls below a certain threshold. The
optimization process stops when either the maximum
number of iterations is reached or the energy convergence
is achieved. The optimization process consists of several
stages:

e Warm-up stage: During the initial phase of opti-
mization, we start from a random initial state. The
step size is gradually increased, allowing the opti-
mization process to explore a larger portion of the
parameter space.

e Convergence stage: As optimization progresses, we
reduce the step size. This reduction in step size
helps to ensure the convergence of the optimization
process by allowing it to fine-tune the variational
parameters.

e [Initialization with smaller models: We found that
initializing larger models with optimized smaller
models consistently improves the quality and stabil-
ity of the optimization process. This strategy uses
the solutions of smaller models to provide a good
starting point for the optimization of larger models,



which is reminiscent of how bond dimensions are
enlarged in DMRG.

Given the computational demands of the optimization
process, the free energy is not estimated at each step.
Instead, once the optimization converges, the energy, a
set of relevant physics observables, and the Rényi entropy
of the variational state are estimated. This estimation is
performed using a large number of samples, on the order
of 216, to ensure statistical accuracy.

Appendix D: Additional numerical results

We present additional numerical results with further
comparisons of the variational ansétze across different
models and parameters for both the one-dimensional and
two-dimensional problems.

1. Results on the 1D Ising models

Fig. 6 provides an extended analysis of the non-
integrable Ising model considered in the main text. The
upper panels illustrate the performance of the RBM ansatz
with different neural densities o and g, while the lower
panels display the results for the MPDO ansatz with
varying bond dimensions D. In contrast to the RBM
ansatz, the MPDO ansatz demonstrates a systematic
improvement in capturing the thermal state properties
as the bond dimension increases, as evidenced by the
convergence toward the exact diagonalization results.

Additionally We have also ran the benchmarks for the
integrable one-dimensional transverse field Ising model
with parameters J =1, h, =0, h, =1 (which is critical
at zero temperature) and observed similar trends for both
the RBM and MPS ansétze in the variational free energy,
energy, and Rényi entropy per site.

2. Results on the 2D transverse field Ising model

To compare the performance of different ansatze, we
consider the the two-dimensional quantum transverse field
Ising model of Fig. 3(a) of the main text. The Rényi free
energies at a particularly challenging Sr are summarized
in Table I. Further away from the critical field, we display
the other quantities involved in the cost function over a
range of values of 8g in Fig. 7.
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a:ﬁ:]_ a:ﬂ:Z a:ﬁ:g a:ﬂ:é}
RBM -20.433 -20.428 -20.437 -20.432
D=2 D=3
PEPS -20.420 -20.541
D=4 D=8 D=16 D=32
MPS -20.119 -20.405 -20.715 -20.813
D=4 D=8 D=12 D=16
SnakeSBS(ns=2) -20.346 -20.420 -20.468 -20.510
D=4 D=8 D=12 D=16
SnakeSBS(ns,=4) -20.672 -20.765 -20.795 -20.799
w, x=2,16
EPS -20.380

TABLE I. Rényi free energy values for different ansétze. The
minimal Rényi free energy, determined by exact diagonaliza-
tion, is approximately F.ZP ~ —20.91.
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FIG. 7. The performance of different ansétze for approximating the thermal states of the two-dimensional transverse field Ising

model with parameters J = —1.0, h, =0, and h, = 2.5.
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