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Nonstabilizerness, also known as “magic”, stands as a crucial resource for achieving a potential
advantage in quantum computing. Its connection to many-body physical phenomena is poorly
understood at present, mostly due to a lack of practical methods to compute it at large scales. We
present a novel approach for the evaluation of nonstabilizerness within the framework of matrix
product states (MPS), based on expressing the MPS directly in the Pauli basis. Our framework
provides a powerful tool for efficiently calculating various measures of nonstabilizerness, including
stabilizer Rényi entropies, stabilizer nullity, and Bell magic, and enables the learning of the stabilizer
group of an MPS. We showcase the efficacy and versatility of our method in the ground states of
Ising and XXZ spin chains, as well as in circuits dynamics that has recently been realized in Rydberg
atom arrays, where we provide concrete benchmarks for future experiments on logical qubits up to
twice the sizes already realized.

Introduction.— The simulation of quantum states is
in general very hard for a classical computer [1]. For this
reason, quantum physics could provide an advantage for
this task [2]. It is well known that entanglement is a
necessary resource to achieve this goal [3–10], but it is,
however, not sufficient. In particular, there is a class of
states called the stabilizer states that can be highly en-
tangled, and yet it can be efficiently simulated classically
[11–15]. As a result, universal quantum computation can
only be achieved by utilizing non-Clifford resources. The
amount of non-Clifford resources necessary to prepare a
state is called nonstabilizerness, commonly referred to
as “magic” [16–24], which is a fundamental resource to
unlock potential quantum advantage.

Much like entanglement, nonstabilizerness has been
quantified within the framework of resource theory using
measures of nonstabilizerness [25]. Several measures of
nonstabilizerness have been proposed in quantum infor-
mation theory, with most of them relying on the notion
of quasiprobability distributions [21, 23, 26–29]. How-
ever, most of these quantifiers are difficult to evaluate
even numerically (see, e.g., Refs. [20, 30–35]). This com-
putational intractability has hindered the task of quan-
tifying nonstabilizerness beyond a few qubits, posing a
major challenge in the field. To address this challenge,
two computable and practical measures of nonstabilizer-
ness have been introduced recently: the Bell magic [36]
and the stabilizer Rényi entropies (SREs) [37]. Several
methods have been put forward to compute the SREs,
based on, e.g., tensor networks [38–41] , Monte Carlo
sampling of wavefunctions [42], and average over Clifford
orbits [43, 44]. These methods have enabled the study
of nonstabilizerness in many-body contexts, particularly
its connection to criticality [39, 41, 42, 45, 46]. However,
these approaches still face limitations in their applicabil-

ity and computational efficiency, especially in terms of
demonstrated accessible quantities.

In this work, we demonstrate how, for quantum many-
body states of MPS form, several nonstabilizerness mea-
sures can be cast in the language of tensor networks [47–
52], whose contractions can be approximated using stan-
dard algorithms. More concretely, we represent the Pauli
spectrum of the state as a matrix product state (MPS),
cf. Fig. 1 (a,b), which represents the state in the Pauli
basis. We show that such MPS representation can be
used to compute not only the SRE, but also the Bell
magic, which has so far not been quantified in large quan-
tum systems, as it is too costly to compute by any of the
existing methods. For the SRE in particular, we express
it as a two-dimensional tensor network as shown in Fig.
1 (c), thereby providing a simple means to contract the
tensor network using established MPS methods. Further-
more, we explain how to extract the stabilizer group of
a state within our approach, which in turn allows us to
compute the stabilizer nullity, a strong nonstabilizerness
monotone. We benchmark our method through various
examples, including the quantum Ising chain, the XXZ
chain, and random Clifford circuits with nonstabilizer
states input. We further applied our method to com-
pute the Bell magic in a scrambling circuit (see Fig. 1
(d)) that has recently been experimentally implemented
in Rydberg atom arrays [53]. Reaching system sizes be-
yond the current experimental capabilities, our method
can thus be used to verify and benchmark future experi-
ments.

MPS in the Pauli basis.— Let us consider a system
of N qubits in a pure state |ψ⟩ given by a MPS of bond
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FIG. 1. (a) Definitions of tensors used for the construction of Pauli-MPS. (b) Construction of Pauli-MPS. (c) The SRE
represented as the contraction of a two-dimensional tensor network. (d) The additive Bell magic in a scrambling circuit
recently experimentally realized in Ref. [53]. The red dashed line indicates the highest value of the additive Bell magic
experimentally measured in Ref. [53].

dimension χ:

|ψ⟩ =
∑

s1,s2,··· ,sN

As11 A
s2
2 · · ·AsNN |s1, s2, · · · sN ⟩ (1)

with Asii being χ× χ matrices, except at the left (right)
boundary where As11 (AsNN ) is a 1 × χ (χ × 1) row
(column) vector. Here si ∈ {0, 1} is a local compu-
tational basis. The state is assumed right-normalised,
namely

∑
si
Asi†i Asii = 1. Let us define the binary string

α = (α1, · · · , αN ) with αj ∈ {00, 01, 10, 11}. The Pauli
strings are defined as Pα = Pα1

⊗Pα2
⊗ · · · ⊗PαN

where
P00 = I, P01 = σx, P11 = σy, and P10 = σz. We
define the Pauli vector of |ψ⟩ as |P (ψ)⟩ with elements

⟨α|P (ψ)⟩ = ⟨ψ|Pα|ψ⟩/
√
2N . Also known as the Pauli

spectrum [54], this was recently studied in the context of
many-body systems [55]. When |ψ⟩ has an MPS struc-
ture as in Eq. (1), the Pauli vector can also be expressed
as an MPS as follows

|P (ψ)⟩ =
∑

α1,α2,··· ,αN

Bα1
1 Bα2

2 · · ·BαN

N |α1, · · · , αN ⟩ (2)

where Bαi
i =

∑
s,s′⟨s|Pαi

|s′⟩Asi ⊗ As
′
i /

√
2 are χ2 × χ2

matrices, as shown in Fig. 1. Note that the MPS is nor-
malized due to the relation 1

2N

∑
α⟨ψ|Pα|ψ⟩2 = 1 which

holds for pure states. Moreover, it retains the right nor-
malization, due to the identity 1

2

∑
α Pα(·)Pα = 1Tr[·].

Consequently, the entanglement spectrum of |P (ψ)⟩ is
given by λ′i,j = λiλj for i, j = 1, 2, · · · , χ, where λi is the
entanglement spectrum of |ψ⟩, and hence the von Neu-
mann entropy is doubled. Note also that the coefficients
of |P (ψ)⟩ in the Pauli basis (2) are real, since the Pauli
operators are Hermitian for spin-1/2 systems, although
the local tensors Bi are not necessarily real.

Since the Pauli operators provide an orthonormal ba-
sis in the space of Hermitian operators, one can ex-
pand the density matrix as |ψ⟩⟨ψ| = 1

2N

∑
α⟨ψ|Pα|ψ⟩Pα.

Therefore, the Pauli spectrum is simply the coefficients
of |ψ⟩⟨ψ| in the basis of Pauli operators, i.e., the Pauli
basis. However, constructing the MPS representation of
the Pauli vector |P (ψ)⟩ may appear to be unnecessarily
costly, as the bond dimension is squared from that of the
original MPS |ψ⟩. As we show below, such MPS represen-
tation in the Pauli basis nevertheless provides a powerful
and versatile tool to compute various measures of non-
stabilizerness in the state |ψ⟩. This is because the MPS
representation provides direct access to the Pauli spec-
trum, in terms of which these nonstabilizerness measures
are defined. Specifically, in the following we will consider
the measures SRE [37], the stabilizer nullity [54], and the
Bell magic [36].
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FIG. 2. SRE density mn =Mn/N for the ground state of the
XXZ chain as a function of the anisotropy ∆ for (a) n = 2 in
various system sizes and (b) for n ∈ {2, 3, 4} with N = 64.

.

The SRE is defined as [37]

Mn (|ψ⟩) =
1

1− n
log2

{∑
α

|⟨ψ|Pα|ψ⟩|2n
2N

}
. (3)

Then, the additive Bell magic Ba (|ψ⟩) is given by

Ba (|ψ⟩) = − log2 (1− B (|ψ⟩)) , (4)

where B (|ψ⟩) is the Bell magic, defined as [36]

B (|ψ⟩) =
∑
α,α′,
β,β′

Ξ(α)Ξ(α′)Ξ(β)Ξ(β′)||[Pα⊕α′ , Pβ⊕β′ ]||∞,

(5)
where Ξ(α) = |⟨ψ|Pα|ψ⟩|2/2N is a probability distribu-
tion defined over the set of Pauli strings [56], also known
as the characteristic function [57], and ⊕ denotes a bit-
wise XOR. The infinity norm is zero when the Pauli
strings commute and 2 otherwise. Finally, the stabilizer
nullity ν(|ψ⟩) is simply related to the size of the stabilizer
group Stab(ψ), which is the group of Pauli strings that
stabilize |ψ⟩. The stabilizer nullity is defined as [54]

ν(|ψ⟩) = N − log2 (|Stab(ψ)|) . (6)

More details on these measures can be found in [58].
Hereafter, we will drop the dependence on |ψ⟩ to keep
the notation light.

Replica MPS.— The replica method in MPS was in-
troduced to compute the SRE of MPS in Ref. [39]. While
exact, for practical purposes, the original formulation
performed inferiorly with respect to Pauli sampling meth-
ods due to the extremely high cost with respect to the
bond dimension [38, 40, 41]. Indeed, evaluating the SRE
for an integer index n > 1 required a computational cost
of O(χ6n), rendering it impractical for even the simplest
case n = 2, where previous computations were restricted
to χ = 12 [38, 39]. Here, we show that the MPS in the
Pauli basis can be exploited to significantly reduce the
cost of the replica trick, making it superior also com-
pared to sampling methods in terms of computational
efficiency and flexibility.

To do so, we define a diagonal operator W whose di-
agonal elements are the components of the Pauli vector,
⟨α′|W |α⟩ = δα′,α⟨α′|P (ψ)⟩. The MPO form ofW reads

W =
∑
α,α′

B
α1,α

′
1

1 B
α2,α

′
2

2 · · ·BαN ,α
′
N

N |α1, · · · , αN ⟩⟨α′
1, · · · , α′

N |

(7)

where B
αi,α

′
i

i = Bαi
i δαi,α′

i
. Applying n − 1 times W to

|P (ψ)⟩, we obtain |P (n)(ψ)⟩ = Wn−1|P (ψ)⟩, which is a

vector with elements ⟨α|P (n)(ψ)⟩ = ⟨ψ|Pα|ψ⟩n/
√
2Nn.

We denote the local tensors of |P (n)(ψ)⟩ by B(n)αi

i . We
have

1

2Nn

∑
α

⟨ψ|Pα|ψ⟩2n = ⟨P (n)(ψ)|P (n)(ψ)⟩ (8)

and [59]

Mn =
1

1− n
log ⟨P (n)(ψ)|P (n)(ψ)⟩ − logN. (9)

The exact bond dimension of |P (n)⟩ is min
(
χ2n, 4N/2

)
,

i.e., for large system sizes it grows exponentially with the
order n, as the cost observed in Ref. [39]. However, by
interpreting it as the repeated application of a MPO W
onto an MPS, we can sequentially compress the resulting
MPS after every iteration, and keep the best description
of the resulting state as a MPS with some upper-bounded
bond dimension χn [58]. This can be done with standard
TNS routines used, e.g., in the simulation of time evo-
lution [48, 60]. These methods allow us to monitor the
error of the truncation, for example, by doing conver-
gence analysis. [61]
The Pauli-MPS itself can also be approximated with a

bond dimension χP < χ2. The computational cost of this
compression is O(χ2

Pχ
2+χ3χP ). Assuming χP ≈ χ, this

results in the overall cost of O(χ4). By comparison, the
computational cost of direct Pauli sampling is O(NSχ

3)
[38, 40], where NS is the number of samples. Conse-
quently, our method becomes superior compared to the
latter when NS ≳ χ. Since NS typically grows exponen-
tially with N for the estimation ofM2, our method vastly
outperforms the sampling methods in terms of efficiency
for large N . Although this is at the cost of computing
an approximation to the quantity, the convergence can
be analyzed with the standard TNS methods.

We illustrate the method by computing the SRE in the
XXZ chain, HXXZ = −∑

⟨i,j⟩
[
σxi σ

x
j + σyi σ

y
j +∆σzi σ

z
j

]
,

previously considered in Ref. [38]. We first obtain the
ground state using DMRG with χ = 60 and compress
the bond dimension of the Pauli vector to χP = 400.
Fig. 2 (a) shows the results for n = 2 in various system
sizes up to N = 128. We note that the Rényi-2 SRE
could not be computed accurately for N > 30 in the
previous study [38]. The discussion about convergence
with bond dimension within our approach can be found
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FIG. 3. We show − log2 ∥|Pk⟩∥ at iteration k in (a) the ground
state of the quantum Ising chain at the critical point h = 1
and the XXZ chain at ∆ = 0.9 with N = 128, and (b) random
quantum circuits with depthD = N/4 andNT = N/2 number
of T gates. After sufficiently many iterations, − log2 ∥|Pk⟩∥
flows to (N − ν)/2. The dashed line denotes the analytically
known (N − ν)/2 for each system with the same color.

.

in [58]. Moreover, our method enables easier access to
higher index SRE, as shown in Fig. 2 (b) for n ∈ {2, 3, 4}.
We further notice that the norm of |P (n)(ψ)⟩ can be

interpreted as the contraction of a two-dimensional ten-
sor network (see Fig. 1 (c)). This allows for alterna-
tive strategies to perform the contraction as for example
transverse contractions [62–64], corner transfer matrix
[65] or TRG techniques [66]. We leave these possibilities
for future investigations (see [58]).

Bell magic.— Next, we consider Bell magic, a mea-
sure of nonstabilizerness [39] that has recently been ex-
perimentally measured in Ref. [53]. To compute the Bell
magic, we first evaluate the self-convolution of |P (2)(ψ)⟩:

|Q(ψ)⟩ =
∑

α1,α2,··· ,αN

Cα1
1 Cα2

2 · · ·CαN

N |α1, · · · , αN ⟩ (10)

where Cαi
i =

∑
β,γ δβ⊕γ,αi

B
(2)β
i ⊗ B

(2)γ
i . Then, the ad-

ditive Bell magic is given by

Ba = − log ⟨Q(ψ)|Λ⊗ Λ⊗ · · · ⊗ Λ|Q(ψ)⟩ (11)

where ⟨α′|Λ|α⟩ = 1 if [Pα, Pα′ ] = 0 and ⟨α′|Λ|α⟩ = −1
otherwise. The MPS |Q(ψ)⟩, which has physical dimen-
sion 4 and exact bond dimension χ8, stores the probabil-
ity distribution that can be obtained by Bell difference
sampling [57]. As before, we can compress it to an MPS
with smaller bond dimension to keep the computational
cost manageable.

We have benchmarked the additive Bell magic calcu-
lations in the Ising and XXZ chains, where we find simi-
lar behavior to that of the SRE in both cases (see [58]).
Furthermore, we computed the Bell magic in a state pre-
pared by a quantum circuit recently realized in Ref. [53],
shown in Fig. 1 (d). We verify that the additive Bell
magic increases as a function of the number of CCZ
gates applied. Similar growth of Bell magic can also be
observed in T -doped random Clifford circuits [58].

Stabilizer nullity and stabilizer group.— Here, we
show that the stabilizer nullity [54] can be calculated us-
ing MPS in the Pauli basis. The key insight is that the

stabilizer nullity can be expressed as a particular limit of
the SRE:

ν = lim
n→∞

(n− 1)Mn. (12)

This is evident from Eq. (3), where taking the limit n→
∞ effectively eliminates all Pauli strings except those for
which ⟨ψ|Pα|ψ⟩ = ±1, i.e., those within the stabilizer
group Stab(ψ). We stress however that, unlike the SRE,
the stabilizer nullity satisfies strong monotonicity [67].

Algorithm 1 Stabilizer nullity via Pauli-MPS

Input: Pauli vector |P (ψ)⟩ and convergence tolerance ϵ
Output: Stabilizer nullity ν

1: |P0⟩ ← |P (ψ)⟩
2: N0 ← ∥|P0⟩∥
3: k ← 1
4: repeat
5: |Pk−1⟩ ← |Pk−1⟩/Tk−1

6: Wk ← diag(|Pk−1⟩)
7: |Pk⟩ ←Wk|Pk−1⟩
8: Tk ← ∥|Pk⟩∥
9: k ← k + 1

10: until |1− Tk/Tk−1| ≤ ϵ
11: ν ← N + 2 log2 Tk.

From Eq. (12) and Eq. (9), we see that the nul-
lity can be obtained by applying W multiple times to
|P (ψ)⟩, normalizing the resulting MPS each time. This
algorithm can be modified to reach the large n limit ex-
ponentially faster, following the trick employed in the
exponential tensor renormalization group [68]. The idea
is to construct a new MPO Wk after each iteration,
which is a diagonal operator constructed out of the MPS
|Pk⟩ in the current iteration. The scheme is summa-
rized in the Algorithm 1. After a number of iterations,
the MPS will reach a fixed point |G(ψ)⟩ which satisfies

W∞|G(ψ)⟩ =
√
2ν−N |G(ψ)⟩. One can see |G(ψ)⟩ as the

Pauli vector of ρ(∞), whose Pauli expectation values are
1 if ⟨ψ|Pα|ψ⟩ = ±1, and 0 otherwise. ρ(∞) is thus a
(normalized) projector onto the stabilizer group of |ψ⟩.
The information about the stabilizer group of |ψ⟩ can be
extracted from |G(ψ)⟩, since we have

⟨α|G(ψ)⟩ =
{√

2ν−N , if Pα|ψ⟩ = ±|ψ⟩
0, otherwise .

(13)

The unsigned generators of the stabilizer group can be
extracted using perfect MPS sampling [69] on |G(ψ)⟩,
which is efficient regardless of the size of the stabilizer
group. Indeed, the protocol is equivalent to learning a
stabilizer state by Bell sampling [70], which is always
efficient as it only requires O(N) samples. Once all the
unsigned generators are found, the signs of the generators
can be extracted from |P (ψ)⟩. In this way, we are able
to fully characterize the stabilizer group of |ψ⟩ in a very
efficient manner.
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The learning of the stabilizer group has previously been
used as a first step to learn the full description of T -doped
stabilizer states [71–73]. Once the stabilizer group is ob-
tained, one can efficiently construct a Clifford circuit C
such that C|ψ⟩ = |ϕ⟩ ⊗ |x⟩, where |ϕ⟩ is a state of ν
qubits and |x⟩ is a computational basis state of N − ν
qubits. The learning of the state |ψ⟩ is thus reduced to
the learning of |ϕ⟩. Note that, while the MPS form itself
is already an efficient classical description of a state, the
description in terms of the stabilizer group could be of
interest on its own, as it would be useful, e.g., in the con-
text of Clifford circuits simulation. Furthermore, with
the knowlegde of the stabilizer group, one can construct
a symmetric MPS in the Pauli basis, where the symmetry
generators correspond to the generators of the stabilizer
group. This approach could potentially reduce the com-
putational complexity of MPS simulations in the Pauli
basis.

To benchmark our algorithm, we consider the ground
states of the Ising and XXZ chains. For the Ising chain,
the nullity is ν = N−1 with stabilizer group {IN ,

∏
j σ

z
j }.

For the XXZ chain, the nullity is ν = N − 2 with stabi-
lizer group {IN ,

∏
j σ

x
j ,
∏
j σ

y
j ,
∏
j σ

z
j }. The results of our

algorithm are shown in Fig. 3 (a) for N = 128. We plot
− log2 ∥|Pk⟩∥, which according to the algorithm above
should flow to N−ν

2 in the limit k → ∞. We find that
− log2 ∥|Pk⟩∥ reaches its expected value very quickly (in
less than 10 iterations) in both cases.

Next, we consider a setup where a product state

|+++...⟩, for |+⟩ = |0⟩+|1⟩√
2

, in a linear chain is doped with

NT number of T gates, where T = ei
π
8 σ

z

. We then apply
a random Clifford circuit of depth D. The Clifford gates
are drawn randomly from the set {S,H,CNOT,CZ}
in each layer. The two-qubit gates are applied only to
nearest-neighbors. Notice that, applying our algorithm
to a product state, the MPS |Pk⟩ for each k is again a
product state, and therefore the nullity can be computed
very efficiently. As the stabilizer nullity is preserved by
Clifford unitaries, the nullity of the final state is identical
to the initial state, which is ν = NT . The application of
Clifford gates will however increase the bond dimension
of the MPS, such that the computation of the nullity be-
comes more difficult. We show the results for D = N/4
and NT = N/2 in Fig. 3 (b) for system sizes N = 48 to
N = 80. For this calculation, we allow the bond dimen-
sion to grow as needed to maintain a fixed truncation
error threshold ϵ = 10−6. For N = 80, the bond di-
mension of the MPS reaches χ = 32, while χP reaches
χP = 1024. We see again that − log2 ∥|Pk⟩∥ reaches its
expected value in all cases.

Conclusions.— We have proposed a new MPS frame-
work in the Pauli basis in order to investigate nonstabi-
lizerness in quantum many-body systems. We discuss
how several measures of nonstabilizerness, including the
stabilizer Rényi entropies, the stabilizer nullity, and the

Bell magic can be efficiently approximated within our ap-
proach, and we demonstrated its usefulness in several sce-
narios, from ground states of spin chains to quantum cir-
cuits. Our framework can be easily generalized to mixed
states and qudit systems, and it can be used to calcu-
late nonstabilizerness in different partitions and in the
context of perfect sampling [58].

In terms of future investigations, it would be inter-
esting if our MPS approach could facilitate analytical
treatment of the SRE in some exactly solvable models,
by exploiting our simple interpretation of the SRE as
a two-dimensional tensor network. Furthermore, we ex-
pect that our method would be useful to understand the
role of nonstabilizerness in the context of hybrid quan-
tum circuits, which has been the subject of recent works
[74, 75]. In particular, our method allows for the efficient
computation of the stabilizer nullity, which is a strong
monotone, and is thus suitable to characterize nonstabi-
lizerness in such scenarios. Finally, it would be fascinat-
ing to investigate whether our approach could be utilized
to compute other nonstabilizerness measures that require
optimization, such as the stabilizer fidelity [76] and the
robustness of magic [32].
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[49] R. Orús, Annals Phys. 349, 117 (2014).
[50] P. Silvi, F. Tschirsich, M. Gerster, J. Jünemann,

D. Jaschke, M. Rizzi, and S. Montangero, SciPost Phys.
Lect. Notes , 8 (2019).

[51] K. Okunishi, T. Nishino, and H. Ueda, J. Phys. Soc. Jpn
91, 062001 (2022).
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[62] M. C. Bañuls, M. B. Hastings, F. Verstraete, and J. I.
Cirac, Phys. Rev. Lett. 102, 240603 (2009).

[63] A. Müller-Hermes, J. I. Cirac, and M. C. Banuls, New
Journal of Physics 14, 075003 (2012).

[64] M. Hastings and R. Mahajan, Physical Review A 91,
032306 (2015).
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SUPPLEMENTAL MATERIAL

We present additional information on (1) the properties of the stabilizer entropy, stabilizer nullity, and Bell magic,
(2) generalization to MPO, (3) generalization to qudits, (4) the MPS compression, (5) possibility for doing transverse
contractions, and (6) additional numerical results.

Measures of nonstabilizerness

Stabilizer Rényi entropy

In this section, we define the stabilizer Rényi entropy and we briefly state some of its key properties to allow easy
access to the main results of the paper.

Consider the d = 2N−dimensional Hilbert space of N qubits H ≃ C⊗2N . Let us call PN the group of all N -qubit
Pauli operators with phase 1, and define Ξψ(P ) = d−1 tr(PΨ) = ⟨P ⟩ψ as the squared (normalized) expectation value
of P in the pure state |ψ⟩ with density matrix Ψ = |ψ⟩⟨ψ|. Moreover, Ξψ is the probability of finding P in the
representation of the state |ψ⟩.

The SREs is defined in the Eq. 3. For three common choices of n the stabilizer Rényi entropy (as defined in Eq. (??)
of the main text) reads

Mn(|ψ⟩) =


log2 (|{P ∈ PN : ⟨P ⟩ψ ̸= 0} |)−N n→ 0

−∑
P 2−N ⟨P ⟩2ψ log2

(
⟨P ⟩2ψ

)
n→ 1

− log2

(∑
P 2−N ⟨P ⟩4ψ

)
n = 2

(S1)

where P ∈ PN is an element of the group of all N–qubit Pauli strings with +1 phases. We list some key properties
of the stabilizer α–Rényi entropies, alongside the references that contain the respective proofs:

Faithfulness: Mn (|ψ⟩) = 0 if and only if |ψ⟩ is a stabilizer state (see Ref. [37]).

Stability under free operations: For any unitary Clifford operator C and state |ψ⟩ it holds thatMn(C|ψ⟩) =Mα (|ψ⟩)
(see Ref. [37]).

Additivity : Mn (|ψ⟩ ⊗ |ϕ⟩) =Mn (|ψ⟩) +Mn (|ϕ⟩) (see Ref. [37]).

Bounded : For any N -qubit state |ψ⟩ it holds that 0 ≤Mn(|ψ⟩) < N (see Ref. [37]).

Mn′(|ψ⟩) < Mn(|ψ⟩) for n′ > n (see Ref. [38]).

The stabilizer entropies consitute a lower bound to the so–called T -count t(|ψ⟩) of a state: Mn (|ψ⟩) < t(|ψ⟩) (see
Ref. [78]).

For α > 1/2 the stabilizer entropies constitute a lower bound to the so–called “robustness of magic”: Mn (|ψ⟩) < Rψ

where Rψ = minx {||x||1||ψ⟩⟨ψ| =
∑
i xiσi, σi ∈ STAB} (see Refs. [33, 37]).

Bell magic

In this section, we discuss the properties of Bell magic. Its definition is

B =
∑

Ξ(r)Ξ(r′)Ξ(q)Ξ(q′)||[σr⊕r′ , σq⊕q′ ]||∞, (S2)

where Ξ(r) is the probability of the outcome r if we perform the Bell measurement on two copies of pure state |ψ⟩⊗|ψ⟩

Ξ(r) = ⟨ψ|⟨ψ|Or|ψ⟩|ψ⟩ = 2−N |⟨ψ|σr|ψ⋆⟩|2, (S3)

with Or = |σr⟩⟨σr| is a projector onto a product of Bell states and |ψ⋆⟩ denotes the complex conjugate of |ψ⟩. The
infinity norm is zero when the Pauli strings commute. As a measure of magic, B = 0 only for pure stabilizer states
|ψSTAB⟩ and B > 0 otherwise. B is also invariant under Clifford circuits UC that map stabilizers to stabilizers for
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example B(UC |ψ⟩). Moreover, Bell magic is constant under composition with any stabilizer state, i.e. if |ψSTAB⟩ then
B(|ψ⟩ ⊗ |ψSTAB⟩) = B(|ψ⟩). We further define the additive Bell magic:

Ba = − log2 (1− B) . (S4)

Ba has the same properties of B and, further, it is also additive

Ba(|ψ⟩ ⊗ |ϕ⟩) = Ba(|ψ⟩) + Ba(|ϕ⟩). (S5)

Moreover, Ba has the operational meaning as the number of initial magic states |T ⟩. For example, if we consider the
state |ψ⟩ = |T ⟩⊗k ⊗ |0⟩⊗N−k consisting of a tensor product of k magic states and otherwise the stabilizer state |0⟩,
then the additive Bell magic is

Ba
(
|T ⟩⊗k ⊗ |0⟩⊗N−k) = k. (S6)

Stabilizer nullity

In this section, we introduce the stabilizer nullity, a function ν(|ψ⟩) of any pure state |ψ⟩ that is non-increasing
under stabilizer operations. The stabilizer nullity is surprisingly powerful given its simplicity: it is the number of
qubits that |ψ⟩ is hosted in, minus the number of independent Pauli operators that stabilize |ψ⟩.
Before introducing the definition of nullity, let us first recall the definition of a stabilizer state and introduce a slight

generalization of it. Let |ψ⟩ be a non-zero n-qubit state. The stabilizer of |ψ⟩, denoted Stab(|ψ⟩), is the sub-group of
the Pauli group PN on N qubits for which |ψ⟩ is a +1 eigenstate, that is Stab(|ψ⟩) = {P ∈ PN : P |ψ⟩ = |ψ⟩}. The
states for which the size of the stabilizer is 2N are called stabilizer states. States for which the stabilizer contains only
the identity matrix are said to have a trivial stabilizer. If Pauli P is in Stab(|ψ⟩), we say that P stabilizes |ψ⟩. Now
we can define the stabilizer nullity as

ν (|ψ⟩) = N − log (|Stab(ψ)|) . (S7)

Moreover, one of the most important property of Stab(ψ) is that let P be an N -qubit Pauli matrix and suppose
that the probability of a +1 outcome when measuring P on |ψ⟩ is non-zero. Then there are two alternatives for
the state |ϕ⟩ after the measurement: either Stab(|ϕ⟩) = Stab(|ψ⟩), or Stab(|ϕ⟩) ≥ 2Stab(|ψ⟩), both of which satisfy
ν(|ϕ⟩) < ν(|ψ⟩). Following this previous property of Stab(|ψ⟩) , it is easy to demonstate that the stabilizer nullity
ν is invariant under Clifford unitaries, is non-increasing under Pauli measurements, and is additive under the tensor
product. Moreover, as ν = 0 when |ψ⟩ is a stabilizer state, the stabilizer nullity is invariant under the inclusion or
removal of stabilizer states.

Generalization to matrix product operators

The technique presented in the main text can be straightforwardly adapted to matrix product operators (MPO),
which represent mixed states. We consider a density matrix O of N qubits represented in the following MPO form:

O =
∑
s,s′

U
s1,s

′
1

1 U
s2,s

′
2

2 · · ·UsN ,s
′
N

N |s1, · · · , sN ⟩⟨s′1, · · · , s′N | (S8)

with U
si,s

′
i

i being χ× χ matrices, except at the left (right) boundary where Us1,s
′
1 (or UsN ,s

′
N ) is a 1× χ (χ× 1) row

(column) vector.
The Pauli vector |P (O)⟩ can be obtained in a similar way as in MPS, namely

|P (O)⟩ =
∑
α

V α1
1 V α2

2 · · ·V αN

N |α1, · · · , αN ⟩ (S9)

where V αi
i =

∑
a,b⟨a|Pαi

|b⟩Ua,bi /
√
2 are χ × χ matrices. The procedure above can be seen as MPO version of the

method recently discussed in Ref. [79] to obtain Pauli vector representation from the full density matrix. Notice that,
unlike in the MPS case, in this case the bond dimension remains the same. Indeed, the transformation above is simply
a local basis transformation from the computational basis to the Pauli basis. Note also that the norm of |P (O)⟩ is
Tr

[
O2

]
, which is generally different from 1. Using |P (O)⟩, one can compute the SRE, nullity and the Bell magic of

O in the same way as in the MPS case (see Main text). However, we note that these measures of nonstabilizerness
are only faithful for pure states. Nevertheless, we expect that this technique could be useful, e.g., to compute the
mana [20, 23, 24], which is a good nonstabilizerness measure for mixed states.
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Generalization to qudits

The generalization to d−state qudits is straightforward, by considering the d2 generalized Pauli operators defined
for qudits. With this, one can gain access to the qudit SRE for integer n > 1. One key difference with the qubit case
is that the Pauli operators are not Hermitian for d > 2, and thus the Pauli vector is not necessarily real.

For odd prime d, one can also consider the set of phase-space operators, defined as

A0 =
1

dN

∑
u

Pu, Au = PuA0P
†
u, (S10)

which provide an orthonormal basis for Hermitian operators in Cd
N⊗dN . In analogy to the Pauli vector, one can

compute the vector containing the discrete Wigner function

Wρ(u) =
1

dN
Tr(Auρ). (S11)

One can then compute the mana entropy [45] for integer n > 1 with similar technique as the SRE. The mana itself,
which corresponds to n = 1/2, is not accessible with the replica method. Nevertheless, one can perform sampling on
the MPS containing the discrete Wigner function to compute the mana.

MPS compression

As mentioned in the main text, the MPS |P (n)(ψ)⟩ should be compressed to keep the cost manageable. There are
a few methods to perform the compression, such as the density matrix algorithm [80], the SVD compression, and
variational compression [81]. We refer to Refs. [80, 81] for details on the compression methods.

To compress the Pauli vector |P (ψ)⟩, we perform the SVD compression by iteratively truncating the bond dimension
to χP from left to right, while moving the orthonormality center. We recall that |P (ψ)⟩ without compression is
automatically orthonormalized, which implies that the compression is (globally) optimal. The overall cost of the
compression is O(χ2

Pχ
2 + χ3χP ).

Similar SVD compression can be performed to compress the MPO-MPS multiplication W |P (ψ)⟩. However, the
resulting MPS is no longer orthonormalized, and the considerations above do not apply. Nevertheless, as argued in
Refs. [81, 82] , the SVD compression in the MPO-MPS product would still yield a good result, particularly if both
the MPO and MPS are orthonormalized (which is true in our case).

In our computations of the SRE and the Bell magic, we have performed the compression using only the SVD
compression. We have checked with bond dimension up to χP = 100 that the results using the SVD compression is
consistent with the solution obtained by the density matrix algorithm, which is optimal but more costly.

To calculate the stabilizer nullity, we find that the density matrix algorithm is more reliable to obtain the correct
result. Therefore, we used the density matrix algorithm to obtain the stabilizer nullity of the Ising and XXZ chain.
However, the density matrix algorithm is too costly for the simulation of random Clifford circuits. In that case, we
instead perform SVD compression followed by variational compression.

Transverse contraction

An alternative way to perform the contraction of the two-dimensional tensor netowork in Fig. 1 (c) is by contracting
the tensors in the transversal (space) direction [62–64]. To do so, we first contract the 2n tensors in the first site to
form a transfer matrix with 2n indices, each with bond dimension χ2. Then, we iteratively absorb the tensors on
the right to the transfer matrix, up until the rightmost tensors. Without compression, the cost of this contraction
scheme is O(χ4n+2), which is cheaper than the exact contraction in the direction of Rényi index, or the contraction in
Ref. [39]. Of course, the contractions can also be done approximately by representing the transfer matrix as an MPS.
Whether or not this would yield a better performance compared to the approximate contraction in the direction of
Rényi index is an intriguing question that we leave for future research avenue.

In the case of translation-invariant (TI) MPS in the thermodynamic limit, we can compute the SRE by introducing



4

FIG. S1. The scrambling circuit recently experimentally realized in Ref. [53] to measure the additive Bell magic for N = 9.
The gates U0 and U1 are as defined in Ref. [53].

.

the transfer matrix

τ =
∑
α

B(n)α ⊗B(n)α

=
∑
α

(Bα)⊗2n.
(S12)

Here, we recall that B(n)α is the local tensor of |P (n)(ψ)⟩, which is site independent for TI MPS. The transfer matrix
τ is identical to the one introduced in Ref. [39], however the local tensors that build τ differ. In particular, with our
approach, the transfer matrix can be viewed as an MPO with physical dimension χ2 and constant bond dimension of
4, i.e., the MPO satisfies an area law. The calculation of the SRE is then reduced to the computation of the dominant
eigenvalue of τ . This can be done by approximating the dominant eigenvector |L⟩ as an MPS, and performing power
iteration or Lanczos algorithm by repeated MPO-MPS multiplication.

Additional numerical results

Convergence with bond dimension in replica MPS

In our simulations, we have studied the accuracy of our approach by checking the convergence of our results with
bond dimension. Fig. S2 illustrates an example of the dependence of the SRE m2 in the ground state of the XXZ
chain. In particular, we studied the effect of increasing χ, χP and χ2. We see that as the bond dimensions are
increased, the SRE eventually converges to a constant. Interestingly, we find that χ2 can be set to a smaller value
than χP . In Fig. S2 (d), we show that the decay of the error as a function of the bond dimension appears to be
exponential, consistent with the findings of Ref. [39].

Bell magic

We perform benchmarking simulations of the additive Bell magic in the ground states of the Ising and XXZ chains,
shown in Fig. S3 (a) and (b), respectively. We find that the additive Bell magic exhibits similar behavior to that of
the SRE [38, 39]. Moreover, we investigated the growth of the Bell magic under random Clifford circuits doped with
a single T gate per time step. Here the circuit is a brickwork of two–site Clifford gates chosen randomly from the set
{I, CNOTL, CNOTR}. The initial state is polarized in the y direction, and the T gates are applied to a randomly
chosen site at each time step. The results are shown in Fig. S4 (a). We observe that, at short times, the additive Bell
magic grows linearly as Ba = t.

Furthermore, we computed the Bell magic in a state prepared by a quantum circuit recently realized in Ref. [53],
for N = 9. The relative circuit is shown in Fig. S1. Also in this case, we verify that the additive Bell magic increases
as a function of the number of CCZ gates applied.
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FIG. S2. SRE density m2 = M2/N for the ground state of the XXZ chain with anisotropy ∆ = 0.9 (a) as a function of bond

dimension χ with fixed χP = 400 and χ
(2)
P = 100, (b) as a function of bond dimension χP with fixed χ = 60 and χ

(2)
P = 100,

and (c) as a function of χ
(2)
P with fixed χP ∈ {200, 250, 300} and χ = 60. (d) Difference of m2 computed for bond dimension

χP and the maximum bond dimension χP,m = 400 at fixed χ
(2)
P = 100.

.

Stabilizer nullity

We present an additional result of random Clifford circuits for constant-depth circuit with D = 10 in Fig. S4 (b).
Also in this case − log2 ∥|Pk⟩∥ reaches its expected value in all cases.

Perfect sampling

Here, we show that our approach can also be applied to improve methods based on tensor network sampling, which
recently have been proposed to estimate the SRE [38, 40, 41]. In particular, the Pauli strings can be sampled directly
according to the probability distribution Ξ(α) = |⟨ψ|Pα|ψ⟩|2/2N via perfect Pauli sampling algorithm introduced
in [38, 40]. With the MPS representation in Pauli basis in Eq. (2), this is equivalent to the perfect MPS sampling
proposed in Ref. [69] (see also Refs. [82, 83]). The cost scales as O((χ2)2) = O(χ4) with respect to the bond dimension
χP . At first glance, this appears to be worse than the cost of perfect Pauli sampling in the MPS form of |ψ⟩, which
costs O(χ3). However, similarly as in the replica method, we can truncate χP to a value considerably smaller than χ2,
such that the perfect MPS sampling on Eq. (2) becomes superior to perfect Pauli sampling. The comparison between
perfect sampling in |P (ψ)⟩ and perfect Pauli sampling in |ψ⟩ is shown in Fig. S4 (c). With our method, we find that
M1 can be converged with considerably less resources compared to the standard approach, even when accounting for
the initial overhead of constructing the MPS in the Pauli basis.



6

0.8 1.0 1.2

h

0.4

0.6

0.8

1.0

B a
/L

N = 32

N = 64

N = 128

N = 256

0.0 0.2 0.4 0.6 0.8 1.0

∆

0.2

0.4

0.6

0.8

1.0

N = 32

N = 64

N = 128

(a) (b)

FIG. S3. The additive Bell magic density Ba/N for the ground state of (a) the quantum Ising chain as a function of the
transverse field h and (b) the XXZ chain as a function of the anisotropy ∆.
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FIG. S4. (a) The additive Bell magic Ba in random Clifford circuits doped with a single T gate per time step, averaged over at
least 100 realizations. (b) − log2 ∥|Pk⟩∥ at iteration k in random quantum circuits with depth D = 10 and NT = N/2 number
of T gates. The dashed line denotes the analytically known (N − ν)/2 for each system with the same color. (c) SRE density
m1 = M1/N calculated with perfect sampling on |P (ψ)⟩. The ground state is obtained with χ = 60. Inset: m1 calculated
by the perfect sampling introduced in Ref. [38, 40]. Both results are for the ground state of the XXZ chain with anisotropy
∆ = 0.9 and system size N ∈ {120, 160}. The number of sample is NS = 105.
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