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The orientation of nonspherical particles in the atmosphere, such as volcanic ash and ice crystals,
influences their residence times and the radiative properties of the atmosphere. Here, we demonstrate
experimentally that the orientation of heavy submillimeter spheroids settling in still air exhibits decaying
oscillations, whereas it relaxes monotonically in liquids. Theoretical analysis shows that these oscillations
are due to particle inertia, caused by the large particle-fluid mass-density ratio. This effect must be
accounted for to model solid particles in the atmosphere.
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Introduction.—The transport, dispersion, and settling of
volcanic ash [1,2], microplastic particles [3,4], and ice
crystals in cold atmospheric clouds [5–8] have significant
environmental impact. These nonspherical particles are
subject to gravity, as well as viscous and inertial hydro-
dynamic forces and torques. An essential parameter char-
acterizing the latter is the particle Reynolds number, defined
by Rep ¼ avg=ν, where a is the linear size of the particle, vg
is its settling speed, and ν is the kinematic viscosity of air. In
general, the transport of nonspherical particles depends
strongly on their angular dynamics [9–11], which directly
affects the settling speed [1,6,12,13]. This, in turn, deter-
mines its residence times and dispersion ranges in the
atmosphere. The settling speed influences, for instance,
how far microplastic, dust, and volcanic ash can be trans-
ported away from a source or how much time an ice crystal
spends in a cloud [1–3,14]. In addition, the angular dynam-
ics determines the volume swept out. Together with the
settling speed, this volume is a key parameter determining
particle-particle collision rates [15], e.g., relevant for the
formation of aggregates of ice particles in clouds [16–19] or
volcanic ash [2]. The particle orientation also has a direct
impact on the absorption and scattering of radiation by
the atmosphere, which affects the albedo of atmospheric
clouds [20–22], an effect still not understood quantitatively,
despite its importance [23–27].

Many studies investigated the drag and stable orientation
of nonspherical particles settling in viscous liquids at
rest [13,28–32], where the ratio R ¼ ρp=ρf between the
particle-mass density ρp and the fluid-mass density ρf is
close to unity with R > 1 (so the particle settles). In that
case, when Rep ∼ 10, particle orientation aligns rapidly and
monotonically, with its broad side down [11,33]. The
angular dynamics becomes unsteady at larger Rep.
Settling particles in liquids, for example, exhibit a rich
variety of motion patterns at Rep ∼ 100 [34]. In air with
R ∼ 1000, the angular dynamics of thin settling disks
exhibits bistability [35] at Rep ∼ 50. One expects that
particle inertia plays an important role in explaining this
qualitative difference, since R is very large.
We remark that at much higher Rep, the angular

dynamics of nonspherical particles settling in still air
becomes unstable [1]. Vortex shedding causes the charac-
teristic fluttering first considered by Maxwell, see Ref. [36]
and references cited there.
In turbulence, where fluid-velocity gradients give rise to

additional torques, most experiments concern particles with
R ≈ 1 [12,13,31,37–40]. Only a few experiments with
turbulent fiber suspensions were carried out in air [41–43].
For the tumbling of heavy fibers in turbulence, particle inertia
plays a role [39,44], but its effect remains to be quantified.
Experimentally, it remains a challenge to study the

inertial angular dynamics of particles that settle very
rapidly. One needs precise particle tracking over long
periods of time, high-magnification imaging, a particle-
release mechanism that does not set the fluid in motion, and
the container must be large enough to avoid spurious
interaction with the wall [30]. We developed a new
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experimental apparatus that overcomes these challenges
[Fig. 1(a)]. Here we report on the first measurements,
showing that the particle orientation exhibits characteristic
oscillations with timescales comparable to those of atmos-
pheric turbulence. The particles—with Rep between 2
and 35—do eventually align so that they settle with their
broad side down. We explain that the oscillations are
induced by particle inertia, an effect that can significantly
enhance the extent to which turbulence randomizes particle
orientation.
Experiments.—The setup consists of an air-filled settling

chamber with a novel particle injector and two high-speed
camera pairs (TX, TY) and (BX, BY), synchronized
with a high-intensity pulsed light-emitting diode (LED)

array [Fig. 1(a)]. Each camera images a fall distance of
∼30 mm at a nominal resolution of 6.75 μmpx−1. The
apparatus allows us to image individual solid 0.1–5 mm
particles settling in quiescent air. See the Supplemental
Material [45] for a complete description of the setup.
We used the Photonic Professional GT 3D printer

(Nanoscribe GmbH) with submicrometer printing resolu-
tion to print submillimeter-sized spheroids with mass
density ρp ¼ 1200 kgm−3 [49]. Three size groups of
spheroids were produced (Table I), with different aspect
ratios λ ¼ ak=a⊥ (2ak is the length of the particle symmetry
axis, and 2a⊥ is the perpendicular diameter). Three-
dimensional scans of the particle shape using a 3D laser-
scanning microscope (VK-X200K, Keyence) show that the
unevenness in the surface features of the spheroids is
negligible (Fig. S2 in the Supplemental Material [45]). In
total, we carried out between 9 and 22 measurements per
particle shape and size, resulting in a total of 170 successful
experimental runs where the particle was in sharp focus
for all four cameras. Figure 1(b) shows recorded images
of a prolate spheroid (2ak ¼ 410, 2a⊥ ¼ 82) μm as it
falls in the settling chamber. Figures S3 and S4 in the
Supplemental Material [45] contain recorded images of all
particles in Table I.
Figure 1(b) indicates that the orientation of the particle

oscillates as it settles, in sharp contrast with previous
experiments in liquids, where the alignment is mono-
tonic [13,33,37,38,40]. To explain the oscillations observed
here, we developed a theoretical model that includes the
effect of particle inertia.
Model.—Since the particle-to-fluid mass-density ratio R

is large, one suspects that the observed oscillations in
the angular dynamics are due to particle inertia. This

FIG. 1. Experimental setup. (a) Optical table with top cameras
(TX and TY) and bottom cameras (BX and BY) named after the
shown coordinate system (Z is the direction of gravity g), the
settling chamber (SC), the synchronized pulsed LED unit,
controlled with a waveform generator (WG), and the oscilloscope
(OSC). (b) Snapshots of a settling prolate spheroid recorded at
2932 frames=s. The tilt angle—the angle between the particle
symmetry axis and gravity—is shown in 5.1 ms intervals in units
of degrees. See the Supplemental Material [45] for details.

TABLE I. Size groups of particles studied. Parameters: aspect
ratio λ ¼ ak=a⊥ (2ak is the particle length along its symmetry
axis, and 2a⊥ is its diameter); volume Vp; Reynolds number Rep
(using a ¼ maxfak; a⊥g and the observed settling speed);
Stokes time τp ¼ ð2ρp=9ρfÞa⊥ak=ν, where ρp and ρf are the
mass densities of the particle and the fluid, and ν ¼
1.5 × 10−5 m2=s is the kinematic viscosity of air.

Group λ 2ak (μm) 2a⊥ (μm) Vp (mm3) Rep τp (ms)

I 0.20 47.9 239.4 1.44 × 10−3 2.8 42.0
I 0.50 88.2 176.4 1.44 × 10−3 2.5 57.0
I 0.80 120.6 150.8 1.44 × 10−3 2.4 66.7
I 1.00 140.0 140.0 1.44 × 10−3 2.2 71.8
I 1.25 162.0 130.0 1.44 × 10−3 2.6 77.2
I 2.00 222.2 111.0 1.44 × 10−3 3.3 90.4
I 5.00 410.0 81.8 1.44 × 10−3 5.0 122.9
II 0.25 65.5 261.9 2.35 × 10−3 3.8 62.9
II 4.00 399.4 99.9 2.08 × 10−3 5.9 146.3
III 0.25 150.0 600.0 28.28 × 10−3 22.5 329.9
III 4.00 876.9 219.2 22.07 × 10−3 34.3 704.6
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expectation is consistent with a recent theoretical study [27]
of tilt-angle fluctuations of small particles in turbulence.
However,we cannot directly apply themodel fromRef. [27],
because thatmodelwas derived assumingRep ≪ 1, whereas
our particles have Rep of order 10. Therefore, we developed
a theoretical description that extends the validity of the
Rep ≪ 1 model. Specifically, we modified the fluid-inertia
contributions to the hydrodynamic force and torque by
introducing two scalar functions CF and CT that depend on
the settling speed, determined using ab initio simulations of
spheroids fixed in a uniform flow [40,50–54]. Details are
given in Appendix A. As shown below, the new model
accurately describes the experimental results and highlights
the key significance of particle inertia. The model has
three nondimensional parameters (Appendix C): the
aspect ratio λ ¼ ak=a⊥, the nondimensional particle volume
V ¼ gVp=ν2, where g is the gravitational acceleration and
Vp ¼ ð4π=3Þa2⊥ak is the particle volume, and the mass-
density ratio R ¼ ρp=ρf . These parameters determine the
steady-state settling speedv�g and thusRep. For small settling
speeds, Rep ≈ ð1=6πÞRV, up to a λ-dependent factor of
order unity. For oblate disks, particle inertia can be
parametrized by a nondimensional inertia ratio J�. It is
related to our nondimensional parameters by J� ¼
ðπ=64ÞRλ (Appendix C). Our J� values are at least 2
orders of magnitude larger than for disks settling in
water [28,34,55] and larger than in [35] by a factor ∼2.
Results.—The experimental results are compared

with model predictions in Fig. 2. Figure 2(a) shows
how the angle between the particle-symmetry vector
and gravity (the tilt angle φ) decays to the steady
value φ� ¼ 0 for disks and φ� ¼ ðπ=2Þ for rods. The
decay is oscillatory, as opposed to the behavior in
water [13,32] where the decay is monotonic and the
angular dynamics is overdamped (particle inertia is
negligible). This is the case when the damping time τω
of the angular velocity is smaller than the decay time
τφ ∼ ν=½v�g�2 of the tilt angle [33], which happens when
R3V2 ≪ 1 (Appendix C).
Figure 2(b) demonstrates that the model captures the

observed settling dynamics very well. The largest disagree-
ment is in the decay rate, which is hard to measure,
especially for nearly spherical particles. The white markers
in the bottom panel show selected experiments where the
decay was best fitted by an exponential. The smaller scatter
of these data points, closer to the theory, suggests that
systematic errors in extracting the data provide the most
likely explanation of differences between theory and
experiments. Figure 2 reveals good agreement over the
whole range of Rep and λ covered by our experiments. We
mention that differences between model and experiment are
expected to grow at larger Rep, because the determination
of the inertial torque becomes less reliable beyond
Rep ≈ 30 [54].

To develop a qualitative understanding of the oscilla-
tions, we simplified the model further, assuming that
δφ ¼ φ − φ� remains small and that the settling speed is
large. In this limit we obtain a harmonic-oscillator equation
for δφ, namely, δφ̈þ δφ̇þ ðV�

gÞ2CT jhðλÞjR3V2δφ ¼ 0 in
nondimensional units (Appendix D). In particular, V�

g is a
nondimensional settling speed ∝ v�g=ðgτpÞ, and hðλÞ is a

FIG. 2. Comparison between experiments and theory. (a) Time
evolution of tilt angle φ from experiment (blue) and its model
prediction (red) for spheroids with aspect ratios λ ¼ 0.2 and 5
from group I (Table I). (b) Steady-state settling speed v�g,
frequency, and decay rate of the tilt-angle oscillations as functions
of the aspect ratio λ. Markers show averages obtained for all
experiments with error bars indicating 95% confidence bounds
for groups I (red circles), II (green squares), and III (blue
diamonds) (Table I). Solid lines show large-time asymptotes
from a linear-stability analysis of the model described in
Appendix A. Shaded regions indicate how much the theoretical
predictions change as the measured settling speed varies along the
particle trajectory. See Appendixes A and B for details. Dashed
lines show results of a linear-stability analysis of a harmonic-
oscillator approximation, Eq. (D2) in Appendix D.
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shape-dependent function, shown in Fig. S6 [45].
For Rep ≪ 1 and jδφj ≪ 1, this equation simplifies to
the form given in Refs. [27,33,56]. Linear-stability
analysis of the harmonic-oscillator approximation shows
that the particles approach alignment with an exponential
decay, with decay rate μ� ¼ − 1

2
� 1

2

ffiffiffiffi
Δ

p
, with discriminant

Δ ¼ 1–4ðV�
gÞ2CT jhðλÞjR3V2. The nondimensional steady-

state settling speed V�
g is of order unity. For all particles in

our experiments, the values of jhðλÞjR3V2 were large
enough to ensure that Δ < 0, as shown in Fig. 3(a).
A qualitative change occurs when Δ becomes positive:
then the particle orientation relaxes without oscillation. The
expression for Δ shows that this bifurcation cannot occur in
the overdamped limit R3V2 ≪ 1. We conclude that the
bifurcation is due to particle inertia.
Now consider the very slender fibers measured in

Ref. [57]. The asymptotic form of jhðλÞj for large λ implies
that jhðλÞjR3V2 ∝ a6⊥, disregarding factors of log λ. It
follows that, for R ∼ 1000, only fibers with a⊥ larger than
∼20 μm can oscillate. This explains why the fibers with
diameters ∼10 μm used in Ref. [57], represented by the gray

region in Fig. 3(a), did not oscillate. We conclude that the
angular dynamics of slender fibers in the atmosphere can be
very different from that of particles of moderate aspect ratios.
In case of very slender disks, jhðλÞj ≈ 7 × 10−5λ, so the
parameter combination jhðλÞjR3V2 depends on particle
geometry as ða⊥

ffiffiffi
λ

p Þ6. Our estimates indicate that oscilla-
tions are observable for thin disks when a⊥

ffiffiffi
λ

p
is larger than

∼20 μm. This condition is very well fulfilled for the
oblate particles in Table I, as well as for a large class of
ice crystals [6]. A potential shortcoming of this analysis is
that the forces and torques acting on thin disks have not been
thoroughly tested for values significantly smaller than
λ ∼ 0.1 [52,54].
In turbulence, tilt-angle fluctuations are determined by

balancing the inertial relaxation described above with the
effect of turbulent fluid-velocity gradients that upset align-
ment. Typical Kolmogorov times for weak atmospheric
turbulence τK ∼ ðν=εÞ1=2 ∼ 0.4–0.04 s for the dissipation
rate per unit mass ε from 10−4 to 10−2 m2=s3 [6] are of the
same order as the timescales in Fig. 2, indicating that
particle inertia can significantly increase the randomizing
effect of turbulence, just as for small spherical particles,
where particle inertia matters most for Stokes numbers of
order unity and larger [15,58–60]. To describe the effect of
turbulence, we added a stochastic forcing [60] to our model
(Appendix E). Figure 3(b) summarizes the results. It shows
the standard deviation σφ of the tilt-angle fluctuations for
small turbulent dissipation rate, obtained by simulations of
the model from Appendix E. Also shown is the over-
damped approximation obtained by neglecting translational
and rotational accelerations [Eq. (S6) in the Supplemental
Material [45] ]. In Fig. 3(b), Rep was varied by changing
the particle volume, keeping all other parameters the same.
For small Rep, simulations and overdamped theory agree,
so particle inertia has no effect. As Rep grows, σφ decreases
at first, because the fluid-inertia torque aligns the particle
more strongly as the settling speed increases. At the same
time, a difference between simulations and overdamped
theory develops: particle inertia enhances the tilt-angle
fluctuations.
At still larger Rep, σφ starts to increase again, forming a

characteristic minimum. This can be understood in terms of
the harmonic-oscillator approximation: the minimum in
Fig. 3(b) occurs at a critical value of Rep (details in the
Supplemental Material [45]) where Δ becomes negative,
indicating that the increase is due to the bifurcation
described above, causing transient oscillations that result
in larger angular fluctuations. The bifurcation occurs when
Green’s function of the harmonic-oscillator kernel becomes
oscillatory, in the same way as without turbulence. The
critical Rep where this happens is much smaller than the
particle Reynolds numbers where bistability [35] or flut-
tering [34,36] is observed. We remark that a preliminary
analysis suggests that our model may also explain the

FIG. 3. (a) Bifurcation diagram. The dashed horizontal line
distinguishes decay without oscillations (Δ > 0) from decay with
oscillations (Δ < 0). Particles from group I in Table I are shown
as red circles; group II as green squares; group III as blue
diamonds; particles from Ref. [32] asþ; fibers from Ref. [57] as a
gray region. We approximated cylindrical fibers as slender prolate
spheroids and estimated Δ by setting CT ¼ CF ¼ 1, since the
corresponding Rep are very small. (b) Standard deviation of tilt-
angle fluctuations for spheroids settling in weakly turbulent air
with dissipation rate ε, as a function of Rep. Shown are simulation
results of the model described in Appendix E in symbols, for
spheroids with λ ¼ 0.2, but different volumes Vp. Solid lines
correspond to the overdamped approximation, neglecting particle
inertia [Eq. (S6) in the Supplemental Material [45] ]. The
harmonic-oscillator bifurcation (Δ ¼ 0) is shown as a dashed
vertical line.
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bistable angular dynamics observed in Ref. [35]. Also,
dealing with more complex shapes is an important chal-
lenge. Ice crystals, for example, may be hollow or lack fore-
aft symmetry [61]. This may give rise to additional
torques [13,62].
In summary, our experiments and model calculations

show that particle inertia has a strong effect on the angular
dynamics of atmospheric particles, generally enhancing
the orientation fluctuations of settling atmospheric par-
ticles, not only in still but also in turbulent air. This causes
increased settling velocities and lateral drift, in contrast
to the drift-free pattern observed for steadily settling
particles in liquids. Orientation fluctuations also affect
the rate at which nonspherical particles collide [15] or
fragment, a process important for secondary ice particle
production [63,64]. In addition, fluctuations in the orien-
tation of ice crystals affect the radiative properties of ice-
laden clouds, for example, by reducing cloud albedo when
solar radiation is parallel to gravity.
Conclusions.—We identified the key importance of

particle inertia for the motion of nonspherical atmospheric
particles. Our results, made possible by the concurrent
development of a unique experimental setup and by a
reliable modeling strategy, show that heavy spheroids
settling in air at Rep ∼ 1–30 (values typical for atmospheric
particles) approach their stable orientation through
decaying oscillations. We demonstrated that this behavior
is a consequence of particle inertia. This physical effect
must therefore be accounted for in models of important
atmospheric processes, such as the radiative properties and
evolution of ice-laden clouds, as well as residence times
and dispersion ranges of volcanic ash or microplastics in
the atmosphere.
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Appendix A: Model for Rep up to ∼30.—The dynamics
of a settling particle is determined by Newton’s
equations for translation and rotation,

d
dt
x ¼ v; mp

d
dt
v ¼ Fh þmpg; ðA1aÞ

d
dt
n ¼ ω ∧ n;

d
dt
½JpðnÞω� ¼ Th: ðA1bÞ

Here x is the particle position, v its velocity, n is a unit
vector parallel to the symmetry axis of the particle, and ω
is the angular velocity of the particle. Its mass is mp, and
Jp is the particle-inertia tensor [65]. The gravitational
acceleration is denoted by g.
The main difficulty is to determine the hydrodynamic

force Fh and torque Th. For Rep ≪ 1, they can be
determined in perturbation theory [9,11,66,67]. For larger
Rep—as in the experiment—one can parametrize forces
and torques on a spheroid in uniform flow using ab initio
computer simulations [52,53]. The conclusion is generally
that force and torque can be parametrized by introducing
empirically determined correction factors in the perturba-
tive equations of motion. Here we use

Fh ¼ Fð0Þ
h þ CFF

ð1Þ
h ; Th ¼ Tð0Þ

h þ CTT
ð1Þ
h ; ðA2Þ

with correction factors CFðRep; λÞ and CTðRep; λÞ. Fð0Þ
h ¼

−ðmp=τpÞAv and Tð0Þ
h ¼ −ðmp=τpÞCω are Stokes force and

torque in a quiescent fluid [10,65], with particle response
time τp ¼ ð2ρp=9ρfÞðaka⊥=νÞ and resistance tensors
Aðn; λÞ and Cðn; λÞ [Eqs. (4) and (7) in [33] ]. The Rep
corrections are Fð1Þ

h ¼ −ðmp=τpÞð3=16Þða⊥v=νÞð3A −
Iðv̂ ·Av̂ÞÞAv [66], where I is the unit matrix, v̂ ¼ v=v,

v ¼ jvj, and Tð1Þ
h ¼FðλÞðmp=6πÞða3v2=a⊥νÞðn · v̂Þðn∧

v̂Þ=τp [9,11], with a ¼ maxðak; a⊥Þ. For spheroids, the
shape factor FðλÞ is given in Eqs. (4.1) and (4.2) of
Ref. [67]. For CF ¼ CT ¼ 1, Eq. (A2) simplifies to known
expressions for Rep ≪ 1 [27].
Equation (A2) yields good results for Fh up to

Rep ∼ 100, for prolate particles with moderate λ [53],
and there is similar qualitative agreement for oblate
particles [52]. We determined CFðRep; λÞ from interpola-
tions of ab initio simulation results for fixed Rep and λ for
oblate [52] and prolate [53] spheroids as follows. The full
model [Eqs. (A1) and (A2)] has 11 dimensions. Since x is
slaved to the other variables, it is sufficient to analyze the
eight-dimensional system for v, ω, and n. In the experi-
ments, the particles settled with speeds close to the steady-
state settling speed. Therefore, it suffices to evaluate CF at
the steady state

v� ¼ v�gĝ; ω� ¼ 0; φ� ¼ 0;
π

2
: ðA3Þ

Rotational symmetry dictates that the polar angle θ� can
take any value. Solving Eqs. (A1) and (A2) with a given
(not yet known) value of CF, we find
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v�g ¼
4ν

3AðgÞa⊥CF

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

2
CF

a⊥gτp
ν

r
− 1

!
: ðA4Þ

Here AðgÞ is the component of the translational resistance
tensor A in the direction of gravity, for a particle falling
with its steady-state orientation φ�. We used Eq. (A4) to
evaluate the Reynolds number Rep ¼ av�gðCFÞ=ν, with
a ¼ maxfa⊥; akg. Since CF depends on Rep, and Rep in
turn depends on CF through v�gðCFÞ, we solved the
resulting implicit equation numerically to find the desired
value of CF. The results are shown in Fig. 4(a).
We determined CTðRep; λÞ by interpolating the data in

Refs. [52,53], using Rep determined as described above.
The results are shown in Fig. 4(b), and they are consistent
with the ab initio simulations from Ref. [54].
It is not guaranteed that the model works outside the

tested parameter range, for example, for very thin disks or
for very nearly spherical particles. Therefore, we do not
report numerical values for λ close to unity in Figs. 2 and 4.
As mentioned above, we determined the functions
CFðRep; λÞ and CTðRep; λÞ only near the steady state,
for small δφ ¼ φ − φ� (where φ is the tilt angle and
φ� ¼ 0; ðπ=2Þ is its steady-state value). This is sufficient
as long as the dynamics does not depart too far from the
steady state. Figures 2(a) and S5 [45] show that this works
very well. The small drift of the angular dynamics in
Fig. 2(a) may be due to inaccuracies in CF or CT. The
accuracy of the model could be improved by introducing
correction matrices CF and CT in Eq. (A2), instead of
scalars, with elements that depend on φ, in addition to Rep
and λ.

Appendix B: Fitting the model to experimental data.—
This appendix contains the details needed to reproduce
the theoretical fits in Fig. 2. First, Eqs. (A1) and (A2)
can be solved numerically for any initial condition v0, n0,
and ω0 (eight parameters). To reduce the number of
parameters, we fitted only the initial tilt angle φ, its
angular velocity φ̇, the initial settling speed vg, and the
velocity component v⊥ perpendicular to gravity. We
assumed steady-state values for the remaining parameters.
As a result, the dynamics resides in a plane determined

by gravity and the direction of v⊥. The red lines in
Figs. 2(a) and S5 in the Supplemental Material [45] were
obtained in this way. We see that the approximation
works very well.
Second, to determine the shaded regions in Fig. 2(b), we

perturbed the initial angular velocity and settling speed
away from the above initial conditions, using typical
experimental values for the particles from Table I.
Third, the solid lines in the top panel of Fig. 2(b) were

obtained using Eq. (A4). The solid lines in the middle and
bottom panels of Fig. 2(b) were determined from linear-
stability analysis of the eight-dimensional dynamics of v,
ω, and n. Linearizing the dynamics around the fixed
point (A3), we obtained the eigenvalues describing expo-
nential relaxation to the steady state. Two eigenvalues form
a complex pair. The real part gives the decay rate and the
imaginary part gives 2π times the frequency.

Appendix C: Nondimensional parameters.—We non-
dimensionalize velocities with ṽ≡ gτp=AðgÞ, obtained
from Eq. (A4) in the limit of small settling speed,
time with the angular-velocity relaxation time τω ≡
τpJ⊥=ðmpC⊥Þ, force with mpṽ=τω, and torque with
J⊥=τ2ω. Here J⊥ ¼ mp½ð1þ λ2Þ=5�a2⊥ is the moment of
inertia of a spheroid around an axis perpendicular to its
symmetry axis, and C⊥ is the rotational resistance co-
efficient around this axis [33]. In particular, the steady-
state settling speed is nondimensionalized as V�

g ¼ v�g=ṽ.
In these nondimensional units, all terms in Eq. (A1)

are of order unity, except for Fð1Þ
h ∼ ðρp=ρfÞgVp=ν2 and

Tð1Þ
h ∼ ðρp=ρfÞ3ðgVp=ν2Þ2, where Vp ¼ ð4π=3Þa2⊥ak is

the volume of the particle. So there are two
nondimensional parameters in addition to λ ¼ ak=a⊥:
the mass-density ratio R ¼ ρp=ρf and the non-
dimensional particle volume V ¼ gVp=ν2. In the
experiment, R ¼ 996, and V ≈ 0.06 (group I in Table I),
V ≈ 0.1 (group II), and V ≈ 1 (group III). In the limit
of small settling speeds, the parameters V and R
are connected to Rep by Rep ∼ ð1=6πÞRV, up to a
λ-dependent prefactor.
The overdamped limit of the angular dynamics is

obtained when τω ≪ τφ, where τφ ∼ ν=½v�g�2 is the relax-
ation time of the tilt angle in this limit. So the overdamped
limit corresponds to τω=τφ ∼R3V2 ≪ 1.
Willmarth et al. [28] quantified particle inertia

for settling disks by the phenomenological parameter

J� ¼ JðcylÞ⊥ =Jf , where JðcylÞ⊥ ¼ ðπ=2Þρpλa5⊥ is the moment
of inertia of a short cylinder around its axis perpendicular to
the symmetry axis, and Jf ¼ ρfð2a⊥Þ5 is proportional to the
moment of inertia of a fluid sphere with diameter 2a⊥. For
oblate spheroids, this expression reduces to J� ∝ λR.

Appendix D: Harmonic-oscillator approximation.—
The planar dynamics described in Appendix B can be

FIG. 4. Empirical coefficients CF and CT in Eq. (A2) for the
parameters in Fig. 2, obtained as described in Appendix A.
(a) Force coefficientCF as a function of aspect ratio λ. The groups
refer to Table I. (b) Torque coefficient CT .
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further simplified if δφ is so small that its feedback
upon the settling speed vg can be neglected and if the
transversal velocity is much smaller than the settling
velocity. Then the tilt angle obeys a damped-pendulum
equation. In the dimensionless units introduced in
Appendix C, it reads

φ̇¼ω; ω̇¼−ω−
1

2
ðV�

gÞ2CThðλÞR3V2 sinð2φÞ: ðD1Þ

The first term on the rhs of the equation for ω is the
rotational damping due to particle inertia. The timescale
is chosen so that the prefactor jhðλÞjR3V2 is unity. The
dependence of the function hðλÞ on λ is shown in
Fig. S6 [45]. For thin disks, jhðλÞj ∝ λ. In this limit, the
prefactor in the last term on the rhs of Eq. (D1)
evaluates to J�Re2p. This rationalizes the use of J� to
describe the effect of fluid inertia on settling disks [28].
Although Eq. (D1) is approximate, it captures the main

features of the experimentally observed dynamics. The
approach to the steady state is conveniently analyzed by
linear-stability analysis. Linearization of Eq. (D1) yields
the harmonic-oscillator approximation

0 ¼ δφ̈þ δφ̇þ ðV�
gÞ2CT jhðλÞjR3V2δφ: ðD2Þ

In the limit of Rep ≪ 1, a corresponding equation was
considered earlier; see, for example, Eq. (45) in Ref. [33].
Equation (D2) implies that the tilt-angle fluctuation
δφ relaxes to zero exponentially, δφ ∼ aþ expðμþtÞ þ
a− expðμ−tÞ, with eigenvalues μ� ¼ −1=2� 1=2

ffiffiffiffi
Δ

p
and

discriminant Δ ¼ 1–4ðV�
gÞ2CT jhðλÞjR3V2. The square

root is real when 4ðV�
gÞ2CT jhðλÞjR3V2 ≤ 1 and purely

imaginary otherwise. In the former case, relaxation toward
the steady state is monotonic. In the latter case, it involves
oscillations. We remark that jhðλÞj takes small values
(Fig. S6 [45]). This is compensated byR3V2 ≳ 105 for the
particles in Table I, withR ∼ 103. For these particles, Δ is
negative. For much smaller ratios of particle-to-fluid mass
densities, the condition Δ < 0 is harder to satisfy.
The results of the harmonic-oscillator analysis are shown

in Fig. 2 as dashed lines. In the top and middle panels, they
are indistinguishable from the solid lines. For the expo-
nential decay rate, by contrast, the harmonic-oscillator
approximation differs from the solid lines. The bifurcation
predicted by the harmonic-oscillator analysis is shown in
Fig. 3 (dashed lines).

Appendix E: Effect of turbulence.—The effect of
turbulence can be modeled by adding a stochastic
forcing to the model described in Appendix A,
representing the turbulent fluid velocity by a Gaussian
random function uðx; tÞ [Eq. (5) in Ref. [60] ]. Since CF
and CT in Eq. (A2) are approximated assuming small tilt

angles (Appendix A), we must assume that the turbulent
dissipation rate is sufficiently small. The particle
equations of motion (A1) and (A2) change in the
presence of the turbulent flow uðx; tÞ. In the expressions

for Fð0;1Þ
h and Tð1Þ

h , the particle velocity v is replaced by
the slip velocity v − uðx; tÞ at the particle position x.
The second change is that there is an additional
torque due to the gradients of the imposed flow [46]:

Tð0Þ
J ¼ ðmp=τpÞ½CΩðx; tÞ þ H∶Sðx; tÞ�. Here Ωðx; tÞ ¼

1
2
½∇ × uðx; tÞ� is half the turbulent vorticity, and Sðx; tÞ

is the strain-rate matrix, the symmetric part of the matrix
of fluid-velocity gradients. The tensors C and H depend
on particle shape. For spheroids, they are given in
Eq. (7) of Ref. [33]. The colon symbol represents a
double contraction of indices [10].
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