日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学位論文

Controlling two-electron systems in their excited state by an intense laser field: Strong-field ionization of atomic helium & Wave-packet manipulation in molecular hydrogen

MPS-Authors
/persons/resource/persons141962

Borisova,  Gergana Dimitrova
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

Dissertation_Borisova.pdf
(全文テキスト(全般)), 72MB

付随資料 (公開)
There is no public supplementary material available
引用

Borisova, G. D. (2024). Controlling two-electron systems in their excited state by an intense laser field: Strong-field ionization of atomic helium & Wave-packet manipulation in molecular hydrogen. PhD Thesis, Ruprecht-Karls-Universität, Heidelberg.


引用: https://hdl.handle.net/21.11116/0000-000E-59B9-E
要旨
In this work fundamental light–matter interaction is studied in excited-state two-electron systems under the influence of an intense laser field in two respects: First, motivated by the results of a numerical simulation on the role of initial-state electron correlation for the ionization process, strong-field ionization out of selectively prepared doubly excited states (DESs) in helium is studied in a two-colour extreme ultraviolet (XUV)–infrared (IR) experiment using a reaction microscope (REMI). Detected recoil-ion and photoelectron momentum distributions help to identify a variety of different IR-induced ionization pathways for both single and double ionization out of different DESs as the initial state for strong-field interaction. Turning the focus from the atomic to the molecular two-electron system, in the second study, a novel all-optical approach enables visualisation of the dynamics of a vibrational wave packet in an electronically excited state of neutral H2 through molecular self-probing by the ground state encoded in the reconstructed time-dependent dipole response of the excited system from XUV spectroscopy data. In a pump–control scheme, an additional interaction with a 5-fs near-infrared (NIR) pulse of adjustable intensity modifies the vibrational wave-packet revival. The adoption of an impulsive control mechanism together with state-resolved extraction of the accumulated strong-field induced phases leading to the observed revival shift brings access to state-dependent polarizability of different vibronic states in the excited wave packet. In future, both experimental approaches can be applied to multi-electron systems to study and control correlation in specifically prepared excited quantum systems.