
ll
OPEN ACCESS
iScience

Article
Raptor: A fast and space-efficient pre-filter for
querying very large collections of nucleotide
sequences
Enrico Seiler,

Svenja Mehringer,

Mitra Darvish,

Etienne Turc, Knut

Reinert

enrico.seiler@fu-berlin.de

(E.S.)

knut.reinert@fu-berlin.de (K.R.)

Highlights
Raptor is a tool to search

through large collections

of genomic texts

Raptor is 12-144 times

faster and uses up to 30

times less RAM than COBS

or Mantis

The Raptor index is 6-50

times faster to build

The use of minimizers and

Bloom filters makes

Raptor very space-

efficient

Seiler et al., iScience 24,
102782
July 23, 2021 ª 2021 The
Authors.

https://doi.org/10.1016/

j.isci.2021.102782

mailto:enrico.seiler@fu-berlin.de
mailto:knut.reinert@fu-berlin.de
https://doi.org/10.1016/j.isci.2021.102782
https://doi.org/10.1016/j.isci.2021.102782
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2021.102782&domain=pdf


ll
OPEN ACCESS
iScience
Article
Raptor: A fast and space-efficient
pre-filter for querying very large
collections of nucleotide sequences

Enrico Seiler,1,2,* Svenja Mehringer,1 Mitra Darvish,2 Etienne Turc,3 and Knut Reinert1,4,*
1Department of Mathematics
and Computer Science, Freie
Universität Berlin, Berlin,
Germany

2Efficient Algorithms for
Omics Data, Max Planck
Institute for Molecular
Genetics, Berlin, Germany

3ENSTA, Paris, France

4Lead contact

*Correspondence:
enrico.seiler@fu-berlin.de
(E.S.),
knut.reinert@fu-berlin.de
(K.R.)

https://doi.org/10.1016/j.isci.
2021.102782
SUMMARY

We present Raptor, a system for approximately searching many queries such as
next-generation sequencing reads or transcripts in large collections of nucleotide
sequences. Raptor uses winnowingminimizers to define a set of representative k-
mers, an extension of the interleaved Bloom filters (IBFs) as a set membership
data structure and probabilistic thresholding for minimizers. Our approach allows
compression and partitioning of the IBF to enable the effective use of secondary
memory. We test and show the performance and limitations of the new features
using simulated and real datasets. Our data structure can be used to accelerate
various core bioinformatics applications. We show this by re-implementing the
distributed read mapping tool DREAM-Yara.

INTRODUCTION

The recent improvements of full genome sequencing technologies, commonly subsumed under the term

NGS (next-generation sequencing), have tremendously increased the sequencing throughput. Within 10

years, it rose from 21 billion base pairs (Venter et al., 2001; International Human Genome Sequencing Con-

sortium, 2001) collected over months to about 400 billion base pairs per day (current throughput of Illumi-

na’s HiSeq 4000). The costs for producing one million base pairs could also be reduced from many thou-

sands of dollars to a few cents. As a result of this dramatic development, the number of new data

submissions, generated by various biotechnological protocols (ChIP-Seq, RNA-Seq, etc.), to genomic da-

tabases has grown dramatically and is expected to continue to increase faster than the cost and capacity of

storage devices can keep up. Ongoing projects like the 100,000 Genome Project (Caulfield et al., 2019) or

the American 1,000,000 Genome Project (All of Us (NIH), 2020) will easily produce data in the range of

several petabases. This growth not only challenges the storage infrastructures and the processing pipelines

of public databases because of the sheer data throughput but also challenges algorithm engineers to

improve the efficiency of sequence analysis pipelines and develop new strategies for compression, data

parallelism, and concurrent computing.

The main task in analyzing NGS data is to search sequencing reads or short sequence patterns (e.g.,

read mapping and variant calling) or analyzing expression profiles in large collections of sequences

(i.e. a database). Searching the entirety of such databases mentioned above is usually only possible

by searching the metadata or a set of results initially obtained from the experiment. Searching (approx-

imately) for specific genomic sequence in all the data has not been possible in reasonable computa-

tional time. The demand for solutions can be seen by the various attempts toward enabling sequence

searches on large databases (see (Marchet et al., 2019) for an overview). While the NIH SRA provides a

sequence search functionality, the search is restricted to a limited number of experiments. Full-text in-

dexing data structures, such as the FM-index, are currently unable to mine data of this scale. Word-

based indices, such as those used by internet search engines, are not directly appropriate for edit-dis-

tance-based biological sequence searches (Bingmann et al., 2019). The sequence-specific solution Ca-

BLAST (Berger and Peng, 2013) and its variants require an index of known genomes, genes or proteins,

and thus cannot search for novel phenomena in raw sequencing files. This holds also true in the field of

mapping-based metagenomic binning and quantitation where the relevant microbial databases grow

about as fast as the sequence archives. The NCBI Refseq database of prokaryotic genomes contains

about 30 GiB of sequence, still small enough to build an FM-index for the genomes, which takes about

24 hr time and about 50 GiB memory (Dadi et al., 2018). However, including the draft genomes into the
iScience 24, 102782, July 23, 2021 ª 2021 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

mailto:enrico.seiler@fu-berlin.de
mailto:knut.reinert@fu-berlin.de
https://doi.org/10.1016/j.isci.2021.102782
https://doi.org/10.1016/j.isci.2021.102782
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2021.102782&domain=pdf
http://creativecommons.org/licenses/by/4.0/


ll
OPEN ACCESS

iScience
Article
analysis increases the database to 380 GiB. Building a single search structure like an FM-index for this

amount of data is infeasible.

Related work

The problem of approximately searching queries in ultra-large databases has recently been addressed by

several groups, focusing on different applications, but all using methods based on the k-mer content of the

databases. In the field of alignment-free metagenomic analysis, which focuses on k-mer based analysis, the

size of the data also becomes slowly prohibitive. For example, Kraken (Wood and Salzberg, 2014) needsz

147 GiB RAM for indexing 380 GBases. For analyzing RNA-Seq data, some groups aimed at searching the

raw files directly for a set of transcripts ((Solomon and Kingsford, 2016) and shortly afterward (Sun et al.,

2017)). They propose novel solutions to the problem of searching a transcript of interest in all relevant

RNA-Seq experiments. Up until recently, these searches were only based on the sequences itself; the

tool REINDEER (Marchet et al., 2020) is the first approach to also account for the sequence abundances.

As a benchmark, all three publications use a dataset of 2; 652 RNA-seq sequencing runs of human blood,

breast and brain tissue (a total ofz6:5 TiB) in which they search for 214; 293 known transcripts. For a single

query their methods need in the range of 2� 20 minutes, which is a tremendous improvement and a

speedup of orders of magnitude compared to previous methods. Although a breakthrough, the methods

presented by the groups need 4 and 0:3� 2 days for processing the above set of 214; 293 queries, respec-

tively. Very recently, this time was improved by the Patro group with the tool Mantis in (Pandey et al., 2018)

to 82 min. Moreover, Bradley et al. (Bradley et al., 2019) propose a Bloom filter based solution that can in-

dex about 170 TiB of (repetitive) raw sequence into an index of 1.5 TiB. However, searching, for example,

220 MiB of plasmid sequence takes 11 days using 8 cores. The same group followed up with a newer

approach called COBS (Bingmann et al., 2019). Finally, the construction time of an index build on top of

170 TiB of input data was further improved by the tool RAMBO (Gupta et al., 2019) which only needs

14 hr on a cluster of 100 nodes.

Taken together, all approaches are still very demanding in terms of memory consumption and run time.

Our contribution

In this paper, we propose a data structure, called binning directory, that can distribute approximate search

queries based on an extension of the recently introduced Interleaved Bloom Filters (IBFs) (Dadi et al., 2018).

A binning directory combines a so called x-partitioned IBF (x-PIBF) with winnowing minimizers and prob-

abilistic thresholding that takes into account the varying number of minimizers in each read.We present our

implementation, called Raptor, discuss its capabilities and limitations, and compare it with the state-of-the-

art methods Mantis and COBS. Our comparison shows that Raptor is up to times faster than the compet-

itors in answering approximate string searches with full sensitivity and a very good specificity. In addition,

we only use a fraction of the memory and can further trade run time for main memory consumption.

RESULTS

General method

Raptor stores a representative transformation of the k-mer content of the database that is divided up into a num-

ber of bins, typically a few hundred to a few thousand (see STAR Methods section for details). The term repre-

sentative indicates that the k-mer content could be transformed by a function which reduces its size and distri-

bution (for example, using winnowing minimizers on the text and its reverse complement or using gapped k-

mers). In this work, we use ungapped ðw; kÞ-minimizers for computing representative k-mers (see also Chikhi

et al. (2016)). A ðw;kÞ-minimizer is essentially the lexicographically minimal k-mer of all k-mers and their reverse

complements in a window of sizew. The same transformation is applied to the k-mers of the query (see Figure 1

for an example and details). Raptor uses a set membership data structure, the x-PIBF, to retrieve binning bitvec-

tors indicating whether a representative k-mer is in a bin or not. It then combines the binning bitvectors of all

representative k-mers in a query into a counting vector and applies a thresholding step to determine the mem-

bership of a query in a bin. The process is illustrated in Figures 2-4.

Evaluation

In the following, we report our computational experiments for Raptor. First, we will use an artificial

dataset to discuss the limitations of binning directories, the impact of compression, the impact of the
2 iScience 24, 102782, July 23, 2021



A B

Figure 1. Examples of (w,k)-minimizers

(A) and (B) show the same k for different window sizes, the former with a window size w = k and the latter with a larger

window of 8. Note that the reverse complemented sequences, shown in lower case, have to be read from right to left. The

window width is indicated by a dash and the minimizing k-mer is placed within the window. Subsequent windows often

share the same minimizer which we illustrated by showing those as well, although they are only stored once.

ll
OPEN ACCESS

iScience
Article
use of ðw;kÞ-minimizers for different window sizes, and the time/space trade-off when using different parti-

tion sizes. We will also compare different binning directories with Mantis and COBS using this dataset.

Secondly, we will evaluate Raptor using a real data set used by several groups to determine the member-

ship of transcripts in RNA-Seq files (Pandey et al., 2018) and compare Raptor with Mantis (Pandey et al.,

2018) and COBS (Bingmann et al., 2019).

Lastly, we evaluated the use of Raptor in conjunction with the distributed read-mapper DREAM-Yara (Dadi

et al., 2018).

All experiments were conducted on a Dell PowerEdge T640 with an Intel Xeon Gold 6248 CPU using 32

threads and 1 TiB of main memory. All file I/O for the artificial dataset was performed to and from amemory

mapped file system (/dev/shm) to eliminate I/O effects, i.e., disk caching, from the measurements. Unless

otherwise stated, all other I/O was performed to and from hard disk drives.
Datasets

We created a random DNA sequence of 4 GiB size and divided it into b bins which would correspond to b

different genomes in, e.g., a metagenomic data set. Using the Mason genome variator (Holtgrewe, 2010),

we then generated 16 similar genomes in each bin which differ about 1% from each other on average. This

could be seen as bins containing the genomes for a very homologous species. The total sequence length is

hence 64 GiB, however, containing b groups of highly similar sequences. Finally, we uniformly sampled a

total of 220 reads of length 100 bp from the genomes and introduced 2 errors in each read to simulate a

sequencing experiment. This artificial dataset is very balanced, which is the ideal case for the x-PIBF, since

its overall size is dependent on the largest bin. We will discuss this issue in the discussion section.

On this data set, we use ð19; 19Þ-minimizers and ð23; 19Þ-minimizers in conjunction with thresholds derived

by the k-mer Lemma or our probabilistic thresholding for determining which bin contains the query. The

value k = 19 was chosen tomake randomoccurrences seldom (see STARMethods for a detailed discussion).

In order to evaluate our method on real data, we took the dataset from (Pandey et al., 2018) which consists

of 2; 568 RNA-Seq experiments. Similarly to (Pandey et al., 2018), we excluded all experiments that have an

average read length below 50bp because reads shorter than that are rarely relevant in practice. Further-

more, this allowed us to test the minimizer approach with a broader window size. This left us with 1; 742

RNA-Seq experiments which have a size of around 6 TiB (gzipped FASTQ files). All tools were tested on

this dataset using k = 20, a value used in the competitors’ publications which also results in an effective

text ratio near 1 (see Table 8).

For the evaluation of DREAM-Yara, we downloaded the NCBI RefSeq for both archaea and bacteria as of

February 14th 2021 and applied TaxSBP to create a taxonomic clustering of the dataset into 64 and 1024

bins. We split the RefSeq according to the clustering into 64 and 1024 gzipped FASTA files containing the

sequence information of the respective clusters. Similarly to the artificial dataset experiment, we sampled
iScience 24, 102782, July 23, 2021 3



Table 1. Run time and memory consumption of Raptor using differently sized IBF for b =64 and b = 1;024

IBF

64

Construct Search Construct Search

Time RAM Time RAM FP Time RAM Time RAM FP

1 GiB ð19;19Þ-IBF 10:47 3,626 0.95 1,236 604,533 ð23;19Þ-MIBF 10:14 3,577 0.92 1,238 28,438

ð19;19Þ-IBFc 11:28 4,456 5.54 3,382 604,533 ð23;19Þ-MIBFc 10:50 3,570 1.80 1,986 28,438

2 GiB ð19;19Þ-IBF 11:37 4,693 0.91 2,260 189 ð23;19Þ-MIBF 10:51 4,564 0.93 2,254 197

ð19;19Þ-IBFc 12:29 6,688 4.98 4,592 189 ð23;19Þ-MIBFc 11:25 4,593 1.56 2,365 197

4 GiB ð19;19Þ-IBF 12:13 6,706 0.93 4,310 189 ð23;19Þ-MIBF 11:05 6,703 0.92 4,310 189

ð19;19Þ-IBFc 13:03 10,000 4.64 5,857 189 ð23;19Þ-MIBFc 11:52 6,924 1.66 2,750 189

8 GiB ð19;19Þ-IBF 12:54 10,791 0.85 8,404 189 ð23;19Þ-MIBF 11:28 10,711 0.89 8,406 189

ð19;19Þ-IBFc 13:51 15,318 3.91 7,072 189 ð23;19Þ-MIBFc 12:22 11,351 1.67 3,112 189

1,024

Construct Search Construct Search

Time RAM Time RAM FP Time RAM Time RAM FP

1 GiB ð19; 19Þ-IBF 4:08 6,803 3.41 1,230 9,696,884 ð23;19Þ-MIBF 2:48 6,918 0.98 1,235 445,968

ð19; 19Þ-IBFc 4:46 6,879 37.29 3,381 9,696,884 ð23;19Þ-MIBFc 3:28 6,853 12.12 1,982 445,968

2 GiB ð19; 19Þ-IBF 5:02 7,798 2.29 2,260 0 ð23;19Þ-MIBF 3:04 7,775 0.94 2,260 141

ð19; 19Þ-IBFc 5:48 7,807 25.39 4,592 0 ð23;19Þ-MIBFc 3:46 7,797 8.15 2,373 141

4 GiB ð19; 19Þ-IBF 5:40 9,964 1.92 4,308 0 ð23;19Þ-MIBF 3:12 9,914 0.92 4,308 0

ð19; 19Þ-IBFc 6:36 9,999 18.46 5,854 0 ð23;19Þ-MIBFc 3:58 9,870 5.80 2,742 0

8 GiB ð19; 19Þ-IBF 6:04 13,908 1.61 8,403 0 ð23;19Þ-MIBF 3:21 13,999 0.94 8,404 0

ð19; 19Þ-IBFc 7:08 15,318 12.95 7,075 0 ð23;19Þ-MIBFc 4:13 14,044 4.59 3,112 0

On the left are the numbers for ð19; 19Þ-minimizers (IBF), on the right for ð23; 19Þ-minimizers (MIBF). Compressed versions are denoted by the suffix ’c’. Construc-

tion times are in MM:SS, search times in SS.ss. RAM represents the memory peak in MiB during the construction and search, respectively. A total of 1,048,576

reads were processed, allowing for up to 2 errors. False positives (FP) are reads originating from bin i assigned to a bin jsi, neglecting the fact that the read may

match with bin j when allowing for 2 errors.

ll
OPEN ACCESS

iScience
Article
220 reads uniformly from the bins. Within a bin, the reads were uniformly sampled from the existing se-

quences. We sampled reads of length 250, and introduced 2 errors in each read.
Speed and space consumption of raptor with ðw;kÞ-minimizers

We start by investigating the false positive (FP) count for different IBF sizes, which in turn affects the size of

the individual Bloom filters in the IBF. A Bloom filter has a FP rate (FPR) depending on the ratio of stored

elements to its size. For a fixed number of elements stored, it holds that the less space we allocate, the

more FPs will occur. In our experiment this will lead to overcounting k-mers and hence lead to FP assign-

ments of reads to bins. While one can easily compute the FPR for each individual Bloom filter (i.e. bin) of an

IBF, it is harder to evaluate when a high Bloom filter FPR results in the FP assignment (FP) of a read to a bin.

To evaluate this effect, we allocated IBFs of 1; 2; 4 and 8 GiB size and report the used RAM, construction

time, search time and FP bin assignments for b= 64 and b= 1; 024 bins for uncompressed and compressed

vectors using h= 2 hash functions. Also, we use ð19; 19Þ-minimizers and the traditional k-mer counting

lemma threshold in one experiment and ð23; 19Þ-minimizers in conjunction with a new probabilistic

threshold in a second experiment. The results are shown in Table 1.

Our experiments show that allocating only 1 GiB for an IBF using ð19; 19Þ-minimizers results in a high num-

ber of FPs for all values b - we would have to conduct about 6,105 and 9:6,106 wrong verifications for the IBF

for b= 64 and b = 1; 024, respectively. For ð23; 19Þ-minimizers, the numbers are over one order of magni-

tude smaller (2:8,104 and 4:4,105). This is to be expected since we store a smaller set of representative

k-mers. By doubling the size of the IBF, the number of FPs is already heavily reduced for ð19; 19Þ-minimizers.

Indeed, there are no more FPs caused by the Bloom filter. Note that the 189 FP for b= 64 are reads whose
4 iScience 24, 102782, July 23, 2021



ll
OPEN ACCESS

iScience
Article
minimizer composition actually occurs in a different bin than its original bin by chance. Since distributing

the k-mers to more bins reduces the chance of the same minimizer composition being present in different

bins, the FP count for b= 1; 024 is 0. For ð23; 19Þ-minimizers, we can still see 197� 189= 8 FP induced by the

Bloom filter for b= 64 and 141 for b = 1; 024. This indicates that the distribution of the ð23; 19Þ-minimizers is

not completely uniform or that our probabilistic threshold for the counting lemma introduced a few FP. In

general, the effect of using minimizers on the FP rate is negligible. For larger sized IBF, no FP searches

induced by the Bloom filter occur for both minimizer sets. The FP counts are obviously the same if we apply

lossless compression to the bitvector.

Next, we look at the time and space usage for index construction. The construction time for b= 64 is be-

tween 11 and 13 min and for b= 1; 024 between 4 and 6 min. For 1; 024 bins, the wall clock time is smaller,

since we can easily parallelize the construction (in chunks of 64), which is not possible for 64 bins. The time

for 64 bins is larger than for 1024 bins since we insert more data in a single bin than in the case for 1024 bins.

The space needed for construction is the size of the IBF and thread-local storage for the input sequences. In

order to compress the IBF, both the uncompressed and compressed version must be in memory for a short

amount of time, resulting in an increased memory peak.

For ð23; 19Þ-minimizers, the construction time is generally lower since we insert fewer representative k-

mers. While for b = 64, the times are comparable, the IBF can be built almost twice as fast for b= 1; 024

compared to ð19; 19Þ-minimizers.

Now we discuss the time and space usage for the search. For b = 64, Raptor needs about 1 s to search for

the 220 reads for all IBF sizes. This holds true for both minimizer sets. Although Raptor searches fewer repre-

sentative k-mers in case of the ð23; 19Þ-minimizers, we need to compute theminimizers of the query before-

hand, which is additional work. For b= 1; 024we need between 2.2 s for a 2 GiB IBF and 1.6 s for an 8 GiB IBF.

The increase for larger b is to be expected since we need to check for all bits in the binning bitvector. This

takes longer for larger binning bitvectors. For ð23; 19Þ-minimizers, we only see a slight increase and still

need about 1 s. The benefit of querying fewer k-mers becomes pronounced and the IBF is up to twice

as fast as the IBF for ð19; 19Þ-minimizers.

When searching, it is also interesting how large the memory footprint is if we use compressed bitvectors.

For b= 64 and ð19; 19Þ-minimizers, we see for the IBF that compression actually increases the memory foot-

print until we use ann IBF of 8 GiB. This means that the bitvectors are not sparse and that the space over-

head of the compression algorithm outweighs the benefit of compressing the data.

In addition, the search time increases by a factor of about 4 for b= 64 and about 8� 11 for b = 1; 024, which

makes compression here unattractive.

This changes for ð23; 19Þ-minimizers. For b = 64, the search time increases from about 1 s to only 1.6 s while

we can compress the bitvector from 4.3 to 2.7 GiB or from 8.4 to 3.1 GiB. For b = 1; 024, the compression is

similar since we store the same number of k-mers, but the run time increases by a factor of 5� 8. This is due

to the need to decompress the 1; 024 bit long binning bitvector which takes longer than for the 64 bit long

bitvector. Still, for ð23; 19Þ-minimizers and smaller b, using compression offers an attractive time/space

trade-off. For querying, we can observe that, in general, a sparser bitvector returns the results faster.

Finally, we investigated the impact of partitioning the IBF into x = 1; 2; 4; 8 parts. Since Raptor cannot

directly evaluate the counting vector for each read after having looked at one part, we need to store the

intermediate results and check if we match the threshold after having counted the k-mers in all parts of

the partition. To do this, Raptor allocates a buffer vector of size 107 where each position holds a vector

of b bits that is assigned to one of the reads. After counting the occurrences of the k-mers of a read in

one partition, we can add the result to the vector and use the vector for the next batch of reads. We report

on the construction and search time, as well as on the maximummemory allocated by the resulting x-PIBF,

for b= 64 and b= 1; 024 bins. We use an 8 GiB IBF in these experiments. The results are shown in Table 2.

In general, we observe for all minimizers that the construction and query times grow higher the more parts

Raptor uses. For ð19; 19Þ-minimizers, the build time increases from about 13 min to 23 min for b = 64, while

for b= 1; 024 it increases from about 6 to 8 min. For b = 64, the search time for the IBF increases from about
iScience 24, 102782, July 23, 2021 5



Table 2. Construction and search time for partitioned IBF of size 8 GiB

IBF

64

Construct Search Construct Search

Time RAM Time RAM FP Time RAM Time RAM FP

1-IBF ð19; 19Þ-IBF 13:03 10,823 0.92 8,398 189 ð23; 19Þ-MIBF 11:23 10,773 0.89 8,405 189

ð19; 19Þ-IBFc 13:10 15,318 4.47 7,072 189 ð23; 19Þ-MIBFc 12:04 11,351 1.41 3,112 189

2-IBF ð19; 19Þ-IBF 16:49 6,757 1.56 4,470 189 ð23; 19Þ-MIBF 14:34 6,804 1.18 4,478 189

ð19; 19Þ-IBFc 18:38 7,853 7.74 4,118 189 ð23; 19Þ-MIBFc 15:08 6,888 2.37 2,071 189

4-IBF ð19; 19Þ-IBF 19:59 4,814 2.56 2,427 189 ð23; 19Þ-MIBF 19:31 4,796 1.75 2,422 189

ð19; 19Þ-IBFc 18:43 5,055 12.86 2,339 189 ð23; 19Þ-MIBFc 19:21 4,869 4.16 1,284 189

8-IBF ð19; 19Þ-IBF 22:35 3,930 4.27 1,405 189 ð23; 19Þ-MIBF 29:34 3,918 2.68 1,406 190

ð19; 19Þ-IBFc 23:37 3,969 23.06 1,336 189 ð23; 19Þ-MIBFc 27:47 3,934 6.90 857 190

1,024

Construct Search Construct Search

Time RAM Time RAM FP Time RAM Time RAM FP

1-IBF ð19; 19Þ-IBF 6:09 13,992 1.69 8,398 0 ð23; 19Þ-MIBF 3:24 14,094 0.93 8,404 0

ð19; 19Þ-IBFc 7:10 15,318 12.44 7,071 0 ð23; 19Þ-MIBFc 4:13 14,107 4.57 3,112 0

2-IBF ð19; 19Þ-IBF 6:32 10,548 3.48 6,396 0 ð23; 19Þ-MIBF 4:10 10,642 1.51 6,396 0

ð19; 19Þ-IBFc 7:36 10,542 24.94 6,037 0 ð23; 19Þ-MIBFc 5:01 10,646 8.70 4,079 0

4-IBF ð19; 19Þ-IBF 6:48 8,490 6.29 4,348 0 ð23; 19Þ-MIBF 5:32 8,572 2.61 4,350 0

ð19; 19Þ-IBFc 7:52 8,489 47.10 4,259 0 ð23; 19Þ-MIBFc 6:23 8,572 16.48 3,204 0

8-IBF ð19; 19Þ-IBF 7:51 7,631 11.70 3,318 0 ð23; 19Þ-MIBF 8:25 7,512 4.62 3,318 8

ð19; 19Þ-IBFc 8:39 7,432 92.77 3,278 0 ð23; 19Þ-MIBFc 9:19 7,512 32.07 2,772 8

The IBF is partitioned into 1 to 8 parts. On the left are the numbers for ð19; 19Þ-minimizers (IBF), on the right for ð23; 19Þ-minimizers (MIBF). Compressed versions

are denoted by the suffix ’c’. Construction times are inMM:SS, search times in SS.ss. RAM represents thememory peak inMiB during the construction and search,

respectively. Raptor processes a total of 1,048,576 reads, allowing for up to 2 errors. False positives (FP) are reads originating from bin i assigned to a bin js i,

neglecting the fact that the read may match with bin j when allowing for 2 errors.

ll
OPEN ACCESS

iScience
Article
1 s for a 1-PIBF to 4.3 s for an 8-PIBF. When using more parts, the run time increases, but the space needed

to hold a single part in memory decreases. While we need 8 GiB memory to use a 1-PIBF, we only need 1.4

GiB if we use an 8-PIBF. When using ð23; 19Þ-minimizers, we see similar trends for b = 64. Furthermore, like

in the unpartitioned case, the search time is faster. Indeed, for an 8-PIBF we need only 2.68 s for the query

and for an 8-PIBFc only 6.9 s while using only 857 MiB peak memory.

For b= 1; 024 and ð19; 19Þ-minimizers, the search times for the IBF increases from 1.69 s to 11.7 s for ann 8-

PIBF. As before, compression is unattractive for this case, while it pays off for the ð23; 19Þ-minimizer version.

In general, the construction time of Raptor’s index increases, the more parts we create, since we have to

stream over our input x times and store x parts on the disk. However, we observe that this increase has a

lower rate than the increase in the parts, as both constructing and querying an x-PIBF do take less than

x times the time of a 1-PIBF. The reason for this is that we do not have to access the bitvector for k-mers

that are not in the current part.
Impact of probabilistic thresholding on false negatives

In this section, we show that our probabilistic thresholding is crucial in avoiding false negatives. When we

use ð19; 19Þ-minimizers, the k-mer lemma ensures that we have no false negatives, but this is no longer true

when using minimizers with w > k. This is apparent since the number and distribution of ðw;kÞ-minimizers is

sequence dependent and hence leads to a different threshold for each read. In the methods section, we

describe how we derived a method to compute, for a given maximal number of errors, a threshold depend-

ing on the parameters w, k and the number of minimizers a query has.
6 iScience 24, 102782, July 23, 2021



Table 3. False positives (FPs) and false negatives for differently sized ð23;19Þ-MIBF using the adapted k-mer lemma

(Lemma 2 in extra content)

IBF

64 1,024

FP FN FP FN

1 GiB 309 796 1803 753

2 GiB 189 1803 0 1696

4 GiB 189 2270 0 2172

8 GiB 189 2422 0 2308

The resulting threshold isz41%. False positives are reads originating from bin i assigned to a bin jsi, neglecting the fact that

the readmay match with bin jwhen allowing for 2 errors. False negatives are reads originating from bin i not assigned to bin i.

ll
OPEN ACCESS

iScience
Article
Tools like Mantis and COBS, which use a simple percentage cutoff, would suffer in a similar increase in false

negatives if they used minimizers. However, they could use our results to adapt their thresholding. In our

dataset, the number of minimizers for each read ranges from 15 to 35 while our thresholds range from 4

to 13.

For example, for a query of length 100 with 20 minimizers the threshold is 6, which is lower than 0:41, 20 =

8:2. Using our threshold avoids falsely filtering out the query. In general, the percentage of minimizers that

need to be present ranges from 26% to 38%. This shows that applying a single threshold is not sufficient.

Table 3 shows the resulting FPs and FNs of our adapted Lemma for various IBF sizes.
Comparison with other tools

In the following, we compare Raptor with the state-of-the-art tools Mantis (Pandey et al., 2018) and COBS

(Bingmann et al., 2019) using the artificial data set and a real data set of 1; 742 RNA-Seq experiments also

used in (Pandey et al., 2018) as described earlier. Note that the computational experiments for the real data

set only use one thread for all tools, the same as it was done in the competitors’ publications. The effect of

parallelization was tested using the artificial data set where we used 32 threads.

We built an index over the artificial dataset (separated in 64 and 1; 024 bins) with COBS and Mantis for a k-

mer size of 19. Afterward, we queried the same reads we have already searchedwith Raptor using BDs. Both

COBS and Mantis consider a transcript found if the amount of k-mers found is more or equal to a given

threshold. Instead of using the default threshold of 80 percent, we determined a threshold according to

the standard k-mer counting lemma, which was 53 percent.

Moreover, we had to adapt our input for the index construction of Mantis by adding random quality scores

to our FASTA files because Mantis only accepts FASTQ files as input. But even with this adaptation, Mantis,

or more precisely the helper tool Squeaker, resulted in a segmentation fault for the artificial dataset sepa-

rated in 64 bins, thus we only present result for Mantis with 1; 024 bins.

As can be seen in Table 4, the construction of COBS and Mantis takes at least three times longer than for

Raptor. Furthermore, searching with Raptor only needs a fraction of the space (about 5 � 8 GiB vs. 20 GiB)

COBS and Mantis need, while being as accurate. The most striking difference is the search time. For

ð19; 19Þ-minimizers, Raptor needs between 0.9 s for b= 64 and 1.6 s for b = 1; 024. This is about 144 times

faster than COBS and (for b = 1; 024) about 30 times faster than Mantis.

Next, we evaluated the tools on the real dataset. We built an index over the dataset (that means for 1; 742

bins) with COBS, Mantis, and Raptor using a binning directory for a k-mer size of 20 (since this value was

used in (Pandey et al., 2018)). For Raptor, we created two versions, one using a binning directory with an

IBF with ð20; 20Þ-minimizers and one version using a binning directory with an IBF with ð40; 20Þ-minimizers.

Mantis uses a cutoff in order to sort out low-frequency k-mers that probably resulted from sequencing er-

rors (Pandey et al., 2018). In order to be comparable, Raptor applied the same cutoffs for both versions of

the binning directories. The results are shown in Table 5.

Raptor’s construction time of the binning directory is faster thanMantis and COBS. The space consumption

drops to only 5% of that of Mantis when using ð40; 20Þ-minimizers. COBS’s construction time and space
iScience 24, 102782, July 23, 2021 7



Table 4. Comparison COBS and Mantis for the artificial dataset with 64 and 1,024 bins

IBF

Construct Search

Time RAM Space Time RAM FP

64 COBS 89:06 20,654 21 130.8 20,492 125

Mantis – – – – – –

1,024 COBS 26:37 20,657 21 134.33 20,470 0

Mantis 78:33 (+49:12) 36,048 21 46.81 21,018 0

Construction times are in MM:SS and search times in SS.ss. The construction time in brackets for Mantis is the additional time

the preprocessing tool Squeaker needs. The used disk space is in GiB, the maximum RAM inMiB. All approaches are built for

k = 19.

ll
OPEN ACCESS

iScience
Article
consumption is nowhere near the other two applications, because COBS has no preprocessing step and

does not use cutoffs to filter out erroneous k-mers. Therefore, further comparisons to COBS are omitted.

In order to compare the query times, three differently sized sets (100, 1; 000, and 10; 000 transcripts) were

used. Each set was created by randomly picking human gene transcripts. The lengths varied between 46 bp

and 101; 518 bp.

The FPR was determined by comparing Raptor’s results to Mantis, assuming Mantis correctly finds all ex-

periments as it claims to be exact. A similar evaluation was applied in (Pandey et al., 2018). Also, the defi-

nition of a found transcript is based on the evaluation of (Pandey et al., 2018). Therefore, both Mantis and

Raptor consider a transcript found in an experiment if 80% of its representative k-mers are found.

As shown in Table 6, Raptor using a BD with ð40; 20Þ-minimizers is significantly faster (12� 58 times) than

Mantis and uses only a fraction of main memory while still being specific with a low FP rate of about

0.017. Even when using ð20; 20Þ-minimizers, Raptor outperforms Mantis in space and time consumption.
Biological case study

To evaluate the use of Raptor in conjunction with other bioinformatics applications, we re-implemented the

distributed readmapping tool DREAM-Yara (Dadi et al., 2018). These changes consisted of changing to the

IBF implementation used in Raptor as well as the incorporation of minimizers. Additionally, smaller changes

to address inconsistencies in command line usage and bugs where applied to both the original and new

DREAM-Yara.

We will compare the original DREAM-Yara using 19-mers to the new DREAM-Yara using 19-mers and both

ð23; 19Þ- and ð31; 19Þ-minimizers for different IBF sizes.

The steps involved building the FM-indices used by DREAM-Yara were not affected by the adaptations,

hence the build time andmemory consumption for the FM-Index in DREAM-Yara are for both new and orig-

inal around 40 min and 85 GiB, respectively, for 1024 bins and 5 hr 20 min and 89 GiB, respectively, for 64

bins.
Table 5. Comparison of raptor, COBS, and Mantis

IBF

Construct

Time RAM Space

ð20; 20Þ-IBF 34 8.1 8

ð40; 20Þ-IBF 2 0.9 0.8

COBS 4,620 702.6 4,265

Mantis 135 29.7 17

Construction times are in minutes. The used disk space and the maximum RAM are given in GiB. All approaches are built for

k = 20.

8 iScience 24, 102782, July 23, 2021



Table 6. Comparison of raptor and Mantis

Transcripts

Search

Time RAM FPR

100 ð20; 20Þ-IBF 7 8 0.025

ð40; 20Þ-IBF 1 0.8 0.015

Mantis 12 18.7 0.0

1,000 ð20; 20Þ-IBF 10 8 0.03

ð40; 20Þ-IBF 1 0.8 0.016

Mantis 30 19 0.0

10,000 ð20; 20Þ-IBF 46 8 0.031

ð40; 20Þ-IBF 4 0.8 0.017

Mantis 232 23.3 0.0

Search times are in seconds, RAM is given in GiB. All approaches are built for k = 20.

ll
OPEN ACCESS

iScience
Article
As can be seen in Table 7, the memory consumption of both versions of DREAM-Yara is virtually the same

when using 19-mers and an IBF of size 16 GiB. The IBF build step uses around 17.1 GiB and 17.4 GiB of

memory while the mapping requires approximately 30 and 23 GiB for 64 and 1024 bins, respectively.

The new DREAM-Yara shows a performance improvement regarding run time, reducing the time needed

to build the IBF from 9:17 to 7:3 and 9:14 to 7:49 for 64 and 1024 bins, respectively. The mapping time simi-

larly decreased from 5:15 to 3:26 min and from 7:39 to 6:18 min. While the original version already had 255

(64 bins) and 220 (1024 bins) unmapped reads, the new version increased this by a handful of reads to 257

and 234, respectively.

Applying minimizers allows using smaller IBFs, for ð23; 19Þ-minimizers, a 4 GiB IBF is sufficient, and for

ð31; 19Þ-minimizers, even 2 GiB are enough. This decreases the memory consumption by around the

amount of memory saved by the smaller IBF, resulting in needing around 5 and 3 GiB required to build

the IBF. The memory consumption of the mapping step decreases to 17.5 GiB for ð23; 19Þ-minimizers

and to 15.2 GiB for ð31; 19Þ-minimizers when using 64 bins and to 10.8 and 9 GiB when using 1024 bins.

The time needed to build an IBF only varies by a few seconds between 64 and 1024, with 19-mers for

the new DREAM-Yara having the biggest difference with 12 s (7:37 and 7:49 for 64 and 1024 bins, respec-

tively), while the difference is 3 s otherwise. When using the same parameters, the new version is around

1.5 min faster to build the IBF (from 9:17 to 7:47). Using minimizers amplifies this effect, resulting in an

IBF build time of 4:15 for ð23; 19Þ-minimizers and 2:15 for ð31; 19Þ-minimizers due to a smaller IBF size
Table 7. Comparison of DREAM-Yara with and without minimizers

IBF

IBF Mapper

w k Size Time RAM Time RAM Unmapped reads

64 – 19 16 9:17 17,129 5:15 29,913 255

19 19 16 7:37 17,148 3:26 30,087 257

23 19 4 4:15 4,858 3:54 17,516 257

31 19 2 2:15 2,820 4:24 15,200 257

1024 – 19 16 9:14 17,404 7:39 23,091 220

19 19 16 7:49 17,400 6:18 23,037 234

23 19 4 4:12 5,082 6:59 10,865 234

31 19 2 2:18 3,051 6:52 8,988 234

IBF sizes are in GiB, times in MM:SS, and RAM in MiB. Both the original (the w column contains a � ) and new version of

DREAM-Yara were used to build an index of the NCBI RefSeq and search for 220 reads. All approaches use a k of 19, and

the new DREAM-Yara additionally uses minimizers with a window length of 23 and 31, to build an IBF of a given size. Shown

are the time and memory consumption for building the IBF and mapping the reads.

iScience 24, 102782, July 23, 2021 9



Table 8. Effective text ratios rðkÞ
b,k 12 13 14 15 16 17 18 19 20

64 62.84 40.52 14.19 3.96 1.57 1.13 1.03 1.01 1.00

1,024 225.98 62.19 15.92 4.08 1.58 1.13 1.03 1.01 1.00

For 64 and 1; 024 bins and different values of k for the artificial data set. Values are rounded.

ll
OPEN ACCESS

iScience
Article
and less representative k-mers to process. The new version of the IBF is also able to answer queries faster

than the version used in the original DREAM-Yara, hence the time needed for mapping decreases when

switching to the newer version. Comparing for 19-mers, there is a change from 5:15 to 3:25 for 64 bins

and from 7:39 to 6:18 for 1024 bins. Since the thresholds for minimizers are heuristic, this generally results

in more verification being necessary, i.e. themapper needs tomapmore reads. Hence, while still faster than

the original version, the runtime for 64 bins increases to 3:54 and 4:24 for ð23; 19Þ- and ð31; 19Þ-minimizers,

respectively. Likewise, the runtime for 1024 bins increases to 6:59 and 6:52 for ð23; 19Þ- and ð31; 19Þ-mini-

mizers, respectively.

When using minimizers and hence a probabilistic thresholding, the number of unmapped reads increased

only by 2 respectively 14 which is quite acceptable considering the memory decrease.

DISCUSSION

In this paper, we presented an approach to answer approximate string queries using a representative set of

k-mers of the database and query. We stored a set of ðw;kÞ-minimizers as representative k-mers of the data-

base in a binning directory using a partitioned, IBF.

Binning directories could be used in various settings which we discuss below.

Using BDs for metagenomic profiling

Tools like Kraken (Wood and Salzberg, 2014) or Centrifuge (Kim et al., 2016) performmetagenomic binning

by querying the k-mer content of genomes using NGS reads and inferring the presence or absence of or-

ganisms in the sample using the taxonomy of a phylogenetic tree.

Hence, we could use BDs for a classification based on taxonomic levels (e.g., species, genus,.) or assem-

bly level, and group the reference genome sequences accordingly. Using the counts for k-mers given by the

BD, we can infer the composition of a metagenomic sample. Indeed, (Piro et al., 2020) already applied this

idea as described in (Dadi et al., 2018) for this task. This resolved the problem of uneven bin sizes by

applying a preprocessing step to distribute the k-mer content of bins more evenly.

Using BDs for querying file content

Another application for BDs which we also used in one benchmark is to query all existing human RNA-Seq

files in the SRA for the presence of transcripts. For this application, the bins would be defined by the respec-

tive file content. Wewould expect that the effective text size nðkÞ is considerably less than 5 TBases since we
sample from human genes. Of course, this application scenario is not limited to RNA-Seq files.

Using BDs for read mapping

In the context of read mapping, we can use the BD as follows. The database would be the reference ge-

nome(s) we want to map our reads against. Assume we have divided them into bins such that similar parts

of the genomes are placed within the same bin. In the context of metagenomics analysis, this could be

achieved by using a taxonomic tree (see also (Dadi et al., 2018)); alternatively, the sequences could be clus-

tered based on similarity. The sequences in the bins could then be indexed using a compressed suffix array

or other suitable indices and the BD can be used to distribute the approximate searches. The biological

case study in this paper is an example of such an application.

Possible extensions

Currently, Raptor stores all representative k-mers, even if some representative k-mers in the reference data-

set are ubiquitous, i.e. they appear in all or almost all, e.g., 95%, bins. While some approaches, like Mantis,

exclude certain k-mers from consideration, one could instead exclude them from the IBF and store them in
10 iScience 24, 102782, July 23, 2021



Figure 2. Binning directory in conjunction with the k-mer Lemma

Bins with a counter greater than or equal to the threshold (in this case 4) need to be validated for p.

ll
OPEN ACCESS

iScience
Article
a small lookup table. Whenever such a k-mer is queried, we can increase the counters on all bins and save

the lookups in the IBF. This might reduce the size of the IBF and speed up the search time.

While not shown in this paper, the update operation on an IBF was already used in DREAM-Yara (Dadi et al.,

2018) and ganon (Piro et al., 2020). Adding data is trivial since we just need to set the corresponding bits in

the x-PIBF. For removing data from the x-PIBF we need to clear and rebuild the affected bins of the update.
Limitations of study

The main limiting factor of our method is its susceptibility to uneven bin sizes as well as a high number of

bins. The number of bins b directly affects the run time and memory consumption since the processed sub-

bitvectors are of size b. While the increase in memory consumption is negligible, processing several ten

thousand of bins will lead to a moderate slowdown. The size of the IBF is determined by the bin with

the highest k-mer content. Hence, having unevenly distributed k-mer content across the bins will force

us to increase the size of the IBF to accommodate a reasonable FP rate for the biggest bin, even though

the smaller bins could achieve the same FP rate with a much lower size. However, we are actively working

on a version of the IBF that will automatically adapt to inputs with uneven bin sizes. Furthermore, we will

enhance the IBF by adding a hierarchical structure, i.e. a multi-level tree structure, which will dramatically

reduce the number of bins needed to represent a dataset.
A B

Figure 3. Impact of an error on the number of k-mers

The sequences (A) and (B) represent the same sequence without and with an error at position 6 replacing a T with a G,

respectively. The sequence in (A) has 3 minimizers, one of which (caca) is destroyed by the error position. Hence, we could

assume that a sequence with one error at this position has a count of 2. However, introducing the error by replacing T with

G has the effect that the first window now has a different minimizer not covering the error position (ggca) and hence (B) still

has a minimizer count of 3. Thus, (A) and (B) would be wrongly deemed not matching with 1 error.

iScience 24, 102782, July 23, 2021 11



Figure 4. Example of an IBF

Differently colored Bloom filters of length n for the b bins are shown in the top. The individual Bloom filters are interleaved

tomake an IBF of size b3 n. In the example we retrieve 3 positions for a k-mer (ACGTACT) using 3 different hash functions.

The corresponding sub-bitvectors are combined with a bitwise & resulting in the needed binning bitvector.

ll
OPEN ACCESS

iScience
Article
In conclusion, we presented a novel, versatile, fast, and memory efficient data structure for k-mer-based

analysis of large sets of sequences using binning directories. Our implementation, Raptor, is ready for sec-

ondary memory use and its data structures can be efficiently compressed if the used bitvector is sparse.

Furthermore, we showed that the concept of ðw;kÞ-minimizers allows to effectively reduce the set of repre-

sentative k-mers without sacrificing specificity nor sensitivity by applying our probabilistic thresholding.

Raptor outperformed the state-of-the-art tools Mantis and COBS in both run time and space consumption.

The use of ð40; 20Þ-minimizers was able to reduce the memory footprint of our method from 8 to 0.9 GiB for

the RNA-Seq dataset introduced in (Pandey et al., 2018), which is about one order of magnitude less

compared to Mantis (z19� 23 GiB). Using ðw;kÞ-minimizers, the run time was better by factors between

12 and 144 compared to Mantis and COBS which enables completely new ways for analyzing large

sequencing archives in ways that were not possible before. Raptor and binning directories are available

in the SeqAn library (Reinert et al., 2017) of efficient data types and algorithms.
STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
12
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B ð½MaterSection�; ½MaterSection�Þ-Mminimizers

B Effective text size and ratio

B Binning directories

B Answering a query with Raptor

B Probabilistic thresholding

B Index based model for one error

B Extension for indirect errors

B Extension for multiple errors

B x-partitioned IBF

B Compressing bitvectors

d QUANTIFICATION AND STATISTICAL ANALYSIS
iScience 24, 102782, July 23, 2021



ll
OPEN ACCESS

iScience
Article
ACKNOWLEDGMENTS

The authors acknowledge the support of the de.NBI network for bioinformatics infrastructure, the Intel Se-

qAn IPCC, the Max Planck Society and the IMPRS for Biology and Computation (BAC).

AUTHOR CONTRIBUTIONS

E.S. designed and wrote the software and conducted the experiments on the artificial data set. S.M. de-

signed the software. M.D. contributed to the software and analyzed the real data set. E.T. provided the

probabilistic method to determine the minimizer threshold. K.R. designed the study and was a major

contributor in writing the manuscript. All authors read and approved the final manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: April 1, 2021

Revised: June 7, 2021

Accepted: June 21, 2021

Published: July 23, 2021
REFERENCES

All of Us (NIH) (2020). All of us research program
overview. https://allofus.nih.gov/about/all-us-
research-program-overview.

Berger, B., and Peng, J. (2013). Computational
solutions for omics data. Nat. Rev. 14, 333–346.

Bingmann, T., Bradley, P., Gauger, F., and Iqbal,
Z. (2019). COBS: A compact bit-sliced signature
index. In String Processing and Information
Retrieval (Springer), pp. 285–303.

Bloom, B.H. (1970). Space/time trade-offs in hash
coding with allowable errors. Commun. ACM 13,
422–426. https://doi.org/10.1145/362686.362692.

Bradley, P., den Bakker, H.C., Rocha, E.P.C.,
McVean, G., and Iqbal, Z. (2019). Ultrafast search
of all deposited bacterial and viral genomic data.
Nat. Biotechnol. 37, 152–159. https://doi.org/10.
1038/s41587-018-0010-1.

Caulfield, M., Davies, J., Dennys, M., Elbahy, L.,
Fowler, T., Hill, S., Hubbard, T., Jostins, L., Maltby,
N., Mahon-Pearson, J., et al. (2019). The National
genomics research and healthcare
knowledgebase. https://figshare.com/articles/
dataset/GenomicEnglandProtocol_pdf/4530893.

Chikhi, R., Limasset, A., and Medvedev, P. (2016).
Compacting de Bruijn graphs from sequencing
data quickly and in low memory. Bioinformatics
(Oxford, England) 32, i201–i208.

Dadi, T.H., Siragusa, E., Piro, V.C., Andrusch, A.,
Seiler, E., Renard, B.Y., and Reinert, K. (2018).
DREAM-Yara: an exact readmapper for very large
databases with short update time. Bioinformatics
(Oxford, England) 34, 766–772.

Gog, S., Beller, T., Moffat, A., and Petri, M. (2014).
From theory to practice: Plug and play with
succinct data structures. In 13th International
Symposium on Experimental Algorithms (SEA),
pp. 326–337.

Gupta, G., Coleman, B., Medini, T., Mohan, V.,
and Shrivastava, A. (2019). RAMBO: Repeated
and Merged Bloom filter for multiple set
membership testing (MSMT) in sub-linear time.
arXiv, 1–14, arXiv:1910.02611. http://arxiv.org/
abs/1910.02611.

Holtgrewe, M. (2010). Mason – a read simulator
for second generation sequencing data.
Technical Report FU Berlin. http://publications.
imp.fu-berlin.de/962/.

International Human Genome Sequencing
Consortium (2001). Initial sequencing and
analysis of the human genome. Nature 409,
860–921.

Jokinen, P., and Ukkonen, E. (1991). Two
algorithms for approximate string matching in
static texts. Lecture Notes Comp. Sci. 520,
240–248.

Kim, D., Song, L., Breitwieser, F.P., and Salzberg,
S. (2016). Centrifuge: rapid and sensitive
classification of metagenomic sequences.
Genome Res. 26, 1721–1729.

Marçais, G., Pellow, D., Bork, D., Orenstein, Y.,
Shamir, R., and Kingsford, C. (2017). Improving
the performance of minimizers and winnowing
schemes. Bioinformatics (Oxford, England) 33,
i110–i117.

Marchet, C., Boucher, C., Puglisi, S.J., Medvedev,
P., Salson, M., and Chikhi, R. (2019). Data
structures based on k-mers for querying large
collections of sequencing datasets. bioRxiv.
https://doi.org/10.1101/866756.
Marchet, C., Iqbal, Z., Gautheret, D., Salson, M.,
and Chikhi, R. (2020). REINDEER: efficient
indexing of k-mer presence and abundance in
sequencing datasets. bioRxiv. https://doi.org/10.
1101/2020.03.29.014159.

Pandey, P., Almodaresi, F., Bender, M.A.,
Ferdman, M., Johnson, R., and Patro, R. (2018).
Mantis: a fast, small, and exact large-scale
sequence-search index. Cell Syst. 7, 201–207.e4.

Piro, V.C., Dadi, T.H., Seiler, E., Reinert, K., and
Renard, B.Y. (2020). ganon: precise
metagenomics classification against large and
up-to-date sets of reference sequences.
Bioinformatics (Oxford, England) 36, i12–i20.

Reinert, K., Dadi, T.H., Ehrhardt, M., Hauswedell,
H., Mehringer, S., Rahn, R., Kim, J., Pockrandt, C.,
Winkler, J., Siragusa, E., et al. (2017). The SeqAn
C++ template library for efficient sequence
analysis: a resource for programmers.
J. Biotechnol. 261, 157–168.

Solomon, B., and Kingsford, C. (2016). Fast search
of thousands of short-read sequencing
experiments. Nat. Biotechnol. 34, 300–302.
http://www.nature.com/nbt/journal/v34/n3/full/
nbt.3442.html.

Sun, C., Harris, R.S., Chikhi, R., and Medvedev, P.
(2017). AllSome sequence Bloom trees. In
Research in Computational Molecular Biology
(Springer), pp. 272–286.

Venter, J.C., Reinert, K., and Zhu, X. (2001). The
sequence of the human genome. Science 291,
1304–1351.

Wood, D.E., and Salzberg, S. (2014). Kraken:
ultrafast metagenomic sequence classification
using exact alignments. Genome Biol. 15, R46.
iScience 24, 102782, July 23, 2021 13

https://allofus.nih.gov/about/all-us-research-program-overview
https://allofus.nih.gov/about/all-us-research-program-overview
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref2
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref2
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref3
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref3
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref3
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref3
https://doi.org/10.1145/362686.362692
https://doi.org/10.1038/s41587-018-0010-1
https://doi.org/10.1038/s41587-018-0010-1
https://figshare.com/articles/dataset/GenomicEnglandProtocol_pdf/4530893
https://figshare.com/articles/dataset/GenomicEnglandProtocol_pdf/4530893
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref7
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref7
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref7
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref7
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref8
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref8
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref8
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref8
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref8
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref9
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref9
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref9
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref9
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref9
http://arxiv.org/abs/1910.02611
http://arxiv.org/abs/1910.02611
http://publications.imp.fu-berlin.de/962/
http://publications.imp.fu-berlin.de/962/
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref12
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref12
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref12
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref12
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref13
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref13
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref13
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref13
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref14
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref14
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref14
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref14
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref15
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref15
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref15
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref15
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref15
https://doi.org/10.1101/866756
https://doi.org/10.1101/2020.03.29.014159
https://doi.org/10.1101/2020.03.29.014159
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref18
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref18
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref18
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref18
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref19
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref19
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref19
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref19
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref19
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref20
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref20
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref20
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref20
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref20
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref20
http://www.nature.com/nbt/journal/v34/n3/full/nbt.3442.html
http://www.nature.com/nbt/journal/v34/n3/full/nbt.3442.html
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref22
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref22
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref22
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref22
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref23
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref23
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref23
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref24
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref24
http://refhub.elsevier.com/S2589-0042(21)00750-1/sref24


ll
OPEN ACCESS

iScience
Article
STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

NIH brain, breast, and blood tissue (2652 experiments) Pandey et al., 2018 https://doi.org/10.5281/zenodo.1186393

NCBI RefSeq Archaea and Bacteria Various https://doi.org/10.5281/zenodo.4647988

Clustered NCBI RefSeq (64 bins) This paper https://doi.org/10.5281/zenodo.4650188

Clustered NCBI RefSeq (1024 bins) This paper https://doi.org/10.5281/zenodo.4651078

Clustered NCBI RefSeq queries (64 and 1024 bins) This paper https://doi.org/10.5281/zenodo.4651379

Artificial data set (64 and 1024 bins) This paper https://github.com/seqan/raptor

Software and algorithms

Raptor This paper https://github.com/seqan/raptor

Mantis Pandey et al., 2018 https://github.com/splatlab/mantis

COBS Bingmann et al., 2019 https://github.com/bingmann/cobs

DREAM-Yara Dadi et al., 2018 https://github.com/seqan/dream_yara

TaxSBP Vitor Piro https://github.com/pirovc/taxsbp
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Con-

tact, Knut Reinert (knut.reinert@fu-berlin.de).

Materials availability

This study did not generate new materials.

Data and code availability

The data used for our experiments pertaining RNA-Seq is the same as used inMantis (Pandey et al., 2018). It

consists of 2652 human sequencing experiments which originate from blood, breast and brain tissue sam-

ples. A list of SRRs and URIs of these experiments is provided by the authors of Mantis via Zenodo at https://

doi.org/10.5281/zenodo.1186393.

Datasets related to the biological case study using DREAM-Yara are available via Zenodo. These include:

The NCBI RefSeq of archeal and bacterial genomes as of February 14th 2021 17:09 CET (https://doi.org/10.

5281/zenodo.4647988), the version clustered into 64 bins (https://doi.org/10.5281/zenodo.4650188), the

version clustered into 1024 bins (https://doi.org/10.5281/zenodo.4651078), and the queries used for

both versions (https://doi.org/10.5281/zenodo.4651379).

All scripts and supplemental code used in this paper, including those related to the artificial dataset and

DREAM-Yara, are available at https://github.com/seqan/raptor.

Pre-built DREAM-Yara indices for parameters shown in this paper are available at https://ftp.imp.fu-berlin.

de/pub/raptor/.

Raptor is written in C++20 using the SeqAn Library (Reinert et al., 2017) and available at https://github.

com/seqan/raptor.

METHOD DETAILS

ðw;kÞ-Mminimizers

In this work we introduce the concept of ðw; kÞ-minimizers for computing representative k-mers. In Figure 1,

we show an example for this concept. The reverse complement sequence is denoted in lower case, and we
14 iScience 24, 102782, July 23, 2021

mailto:knut.reinert@fu-berlin.de
https://doi.org/10.5281/zenodo.1186393
https://doi.org/10.5281/zenodo.1186393
https://doi.org/10.5281/zenodo.4647988
https://doi.org/10.5281/zenodo.4647988
https://doi.org/10.5281/zenodo.4650188
https://doi.org/10.5281/zenodo.4651078
https://doi.org/10.5281/zenodo.4651379
https://github.com/seqan/raptor
https://ftp.imp.fu-berlin.de/pub/raptor/
https://ftp.imp.fu-berlin.de/pub/raptor/
https://github.com/seqan/raptor
https://github.com/seqan/raptor
https://doi.org/10.5281/zenodo.1186393
https://doi.org/10.5281/zenodo.4647988
https://doi.org/10.5281/zenodo.4650188
https://doi.org/10.5281/zenodo.4651078
https://doi.org/10.5281/zenodo.4651379
https://github.com/seqan/raptor
https://github.com/seqan/raptor
https://github.com/splatlab/mantis
https://github.com/bingmann/cobs
https://github.com/seqan/dream_yara
https://github.com/pirovc/taxsbp


ll
OPEN ACCESS

iScience
Article
used the lexicographically smallest k-mer for clarity. In practice, this leads to a skewed distribution of min-

imizers which can be corrected by, for example, applying an XOR operation with a random value to each k-

mer hash value before taking the numeric minimum (see (Marçais et al., 2017) for a discussion). In the Fig-

ure you see a short example of a) ungapped 4-mers in a window of size 4, which means we take the lexico-

graphically smallest of the k-mer and its reverse complement as the minimizing k-mer. The second case b)

shows the minimizing 4-mers for a window of size 8. We form the minimum of all k-mers and their reverse

complement in this window. We denote the window span with ’-’ and place the minimizing k-mer at the

respective window position. For the properties and the size of the data we will handle, k will usually be

in the range of 16� 32.
Effective text size and ratio

In general, Raptor assumes that we have a collection of strings fTjg over an alphabet S, with a total length

n =
P
j

��Tj

��. Raptor stores the k-mer content of fTjg or a representative transformation of it. Raptor uses

ðw; kÞ-minimizers for computing the set of representative k-mers.

To capture the repetitiveness of the fTjg, we define the effective text length nðkÞ as the number of distinct,

representative k-mers in all the Tj. In order to store the set of texts fTjg, we further assume that we have

divided the Tj into b bins Bi (mind that a single Tj itself could be divided into several bins without many ad-

aptations). For the strings in a bin Bi, we denote the set of representative k-mers with BiðkÞ and the effective

text length with niðkÞ as the number of representative k-mers of the strings in Bi , i.e. the cardinality of BiðkÞ.

Dividing the strings into bins could result in a large or small intersection of their representative k-mer con-

tent, depending on the method. To capture this, we define the effective text ratio riðkÞ as
P

i
niðkÞ

nðkÞ . The effec-

tive text ratio is a measure of how well we have partitioned our k-mer content into the bins. Ideally it is 1 and

in the worst case it is b. We want to point out that the effective text length nðkÞ is a crucial measure for the

problem of indexing large genomic text collections. For example, (Bradley et al., 2019) compute an index

for 170 TiB of sequence data. However, this data set is quite repetitive since its effective text length nð31Þ is
only 6,1010.

For our artificial data set, we give the effective text ratio rðkÞ for different k for both 64 and 1; 024 bins in

Table 8.

One can see that we need a k-mer size of at least 16 to achieve an effective text ratio under 2. For kR 19 the

effective text ratio is near 1 which means that most k-mers in the bins are unique. For this reason we used

k = 19 in our experiments.
Binning directories

We define a binning directory (BD) for the text collection fTjg divided into b bins Bi as a data structure that

returns the counts of the representative k-mers in the query multiset IðkÞ for each bin Bi. In this work a

binning directory uses a set membership data structure, namely the x-PIBF, that returns the bin member-

ship as a (compressed) bitvector which we call the binning bitvector. The BD then combines the binning

bitvectors into count vectors. Our Tool Raptor uses (probabilistic) thresholding to determine whether a

query is in a bin or not.

Implementing a simple version is indeed not difficult. The problems lie in the fact that the effective text size

nðkÞ can be very large, i.e. 1010 to 1012. For example, the metagenomics data set used in (Dadi et al., 2018)

contains about 2,1010 different 19-mers. A naive implementation that stores all those 19-mers in a hash ta-

ble containing the binning vectors for 1; 024 bins would need about 40 TiB (an open addressing hash table

with about 4,1010 entries, each pointing to a 1; 024 bit bitvector). Hence, the challenge is implementing the

BD in a more space-efficient way while maintaining a fast run time.

We approach this problem in two ways in this paper. For implementing a binning directory, we adapted the

IBF data structure presented in (Dadi et al., 2018) to work well on secondary memory. We call it the x-par-

titioned IBF (x-PIBF). Secondly, we employ ðw;kÞ-minimizers to reduce the number of representative k-mers

significantly while still accurately answering the question in which bins a query can occur.
iScience 24, 102782, July 23, 2021 15



ll
OPEN ACCESS

iScience
Article
Answering a query with Raptor

Answering a query includes the retrieval of the binning bitvectors and the counting of k-mers to determine

the bins to be searched. Using a x-PIBF, Raptor has to compute h hash functions, retrieve h sub-bitvectors

and compute a bitwise AND. We can use a standard bitvector of size n that uses n bits, or the compressed

bitvector of the SDSL (Gog et al., 2014) that uses approximatelym,
�
2 + log n

m

�
bits, wherem is the number

of bits set and n the length of the bitvector.

For counting, Raptor has to traverse the binning bitvector of size b and increment counters for each bit set

to 1. To speed up this crucial step we used, for uncompressed bitvectors, the lzcount intrinsic operation

which counts the number of leading zeros in a 64 bit word. This accelerated the bin counting step by a fac-

tor of almost 2 compared to the individual checking of each bit. A further speed up is possible once the

AVX512 SIMD extensions are available on standard computers (already possible for Intel’s Skylake proces-

sor). These optimizations cannot be directly applied to compressed bitvectors.

Having the counts, we apply a thresholding according to the original k-mer counting lemma (Jokinen and

Ukkonen, 1991) or according to a probabilistic model for ðw;kÞ-minimizers.

Lemma 1. For a given k and number of errors e, there are kp = jpj � k + 1many k-mers in p and an approx-

imate occurrence of p in T has to share at least t = ðkp �k ,eÞ k-mers.

Hence, if the count exceeds the threshold for the bin, we report the pattern to occur in this bin, otherwise

not. This approach is depicted in Figure 2. However, using minimizers makes the direct application of

Lemma 1 impossible for w > k. We present a solution in the next section.
Probabilistic thresholding

Lemma 1 works only for ðk; kÞ-minimizers. It does not hold for general ðw; kÞ-minimizers. The latter is

apparent since the number and distribution of ðw;kÞ-minimizers is sequence dependent and hence leads

to different thresholds for each read. This problem is exemplified in Figure 3. The examples show that an

error does not only directly invalidate the minimizers covering the error position but also indirectly affects

minimizers not covering the error position, resulting in a different count of minimizers.

Taking these indirectly destroyed minimizers into consideration, there are several ad hoc ways to compute

the threshold. The first is to adapt Lemma 1 such that we compute the threshold as follows: For a given k, w

and number of errors e, there are wp = jpj � w + 1 many windows in p and if we take the multiplicity of the

minimizers into account, an approximate occurrence of p in T has to share at least t = ðwp �w ,eÞminimizers,

i.e. we replace k with w. However, this leads to low thresholds. The threshold in Figure 3 aÞ would be nega-

tive, i.e. 13� 8+ 1� 8 = � 2, and thus useless for filtering.

Another way to compute an individual threshold is to repeat the following two steps for each error: 1)

compute the minimizer coverage of a query p (counting each minimizer only once) 2) One maximum

coverage position is chosen and the minimizers covering this position are removed. The overall number

of removed minimizers is subtracted from the number of minimizers to obtain the threshold t. This works

better than the first approach, but is time-consuming to compute.

We can show that a simple probabilistic model yields thresholds that are on average much better than the

above ad-hoc methods and removes the need to compute an individual threshold for each read. For this,

we proceed as follows. We refer to the size of the query as p, the size of the window in which we compute

minimizers is denoted by w, and m is the number of minimizers in a query. As pointed out above, an error

affects several minimizers depending on its position and the character that is replaced. Each error lowers

the threshold of the counting lemma. We want to derive a probabilistic model that computes this threshold

for a given p as good as possible with only w, k, and m as input. We aim at having an as high as possible

threshold without missing too many hits (i.e. having false negatives).

For this, we use the following definitions:

� Xi : Random variable that is 1 if there is a minimizer starting at index i, ci ˛½0;p � k + 1�.
16 iScience 24, 102782, July 23, 2021



ll
OPEN ACCESS

iScience
Article
� Dn: Randomvariable that indicates that nminimizers are affected by at least one error,cn ˛½0;p � k + 1�.
� t: Probability threshold for the number of affected minimizers.

Index based model for one error

In order to define PðDnÞ for one error, we need the distribution of Xi . In practice, assuming an uniform dis-

tribution of the minimizers in ½0;p�k + 1� yields good results:

PðXiÞ = number of minimizer

number of indices
=

m

p � k + 1
(Equation 1)

This can now be used to compute PðDnÞ. Let j be the position within a sequence where the error is located.

Thus, it can affect at most kminimizers directly. Theminimizers that are affected by the error at position j are

the minimizers starting at indices j� i, ci<k. Naturally, these minimizers are the only ones that include the

position j. Hence, there are at most kminimizers that include the position j and thereby there are at most k

minimizers directly modified by the error. This can be expressed via a binomial distribution and yields:

cn ˛½0; k� :
PðDnÞ

=

 
k

n

!
PðXiÞnð1� PðXiÞÞk�n

=

 
k

n

!�
m

p � k + 1

�n�
1� m

p � k + 1

�k�n

(Equation 2)

PðDnÞ can now be used to compute the new filtering threshold. Let d be the number of ðw;kÞ-minimizers

affected such that

Xd
i = 0

PðDiÞ> t and
Xd�1

i = 0

PðDiÞ< t (Equation 3)

Then the following lemma holds:

Lemma 2. For a given p, w, and k and one error, at most d many k-mers are affected with a probability of

t. Thus, an approximate occurrence of the query in T has to share at least t =m� d k-mers with probability

at least 1� t.

This method enables us to use t to control the false positive and false negative rates of our filter. The higher

we choose t, the more minimizers are affected, i.e. the threshold t decreases and the false positive rate in-

creases. The lower we choose t, the fewer minimizers are affected, i.e. the threshold increases t and the

false negative rate decreases.

Furthermore, this model only depends onm which is known for each read. In order to obtain the threshold,

we simply have to look it up in a precomputed table for the specific parameters or compute the table once if

it has not been computed yet.

Extension for indirect errors

The previous model can be extended to account for errors affecting minimizers indirectly. The example in Fig-

ure 3 shows that an error can affect a minimizer even though the error does not overlap with the minimizer.

We define the random variable Cn that is 1 if the error affects n k-mers indirectly. Thus, if we assume for

simplification that the events of directly and indirectly affecting a minimizer are independent, PðDnÞ
becomes:

cn ˛½0;w� :
PðDnÞ=

Pw�k

i = 1

P 0ðDn�iÞPðCiÞ
with

P 0ðDnÞ=
�
P 0ðDnÞ if n <= k

0 else

(Equation 4)
iScience 24, 102782, July 23, 2021 17



ll
OPEN ACCESS

iScience
Article
where P0ðDnÞ is the distribution of the previous model.

The main challenge with this extension is the computation of PðCnÞ. We tried to find a tractable formulation

of Cn, but did not succeed and leave this as an open problem. This is why we estimate PðCnÞ in this work

experimentally by sampling. We generate a query with and without an error and then check the number

of minimizers that are indirectly modified by the error. This sampling method is flexible for different param-

eters and can be easily applied for the relevant range of parameters or be quickly computed on the fly. In

our experiments, a sampling of 10; 000 cases lead to convergence of PðCnÞ. The thresholds are computed

for t = 0:99.
Extension for multiple errors

We can further extend our model to consider multiple errors. For example, assume that there are 2 errors,

e1 and e2, that affect d1 and d2 many k-mers, respectively. Thus, the two errors combined affect at most d =

d1 +d2 many k-mers. Hence, affecting at most dmany k-mers can be achieved by all different combinations

of ðd1;d2Þ such that d Rd1 +d2 and 0 %d1%w, 0 %d2%w.

Generalizing this for e errors affecting d1;.;de minimizers leads to the following distribution:

cn ˛½0;w,e� :
PðDnÞ

=
Xd1 +d2 +.+de = n

0%d1%w;.;0%de%w

Ye
i = 1

P 0ðDdi Þ
(Equation 5)

with P0ðDnÞ being the distribution of the previous model allowing for indirect errors.

We also developedmore involvedmodels to account for two errors being in close vicinity (not shown), how-

ever the rounded thresholds very seldomly change. Hence, we omit them.

In summary, the threshold for the counting lemma can be looked up in a table given the number of errors,

the number of minimizers of a query, and the parameters ðw; kÞ and hence the filtering speeds up consid-

erably. The method models the occurrences of ðw;kÞ-minimizers within the windows and how they affect

each other (see Figure 3 for an example).
x-partitioned IBF

Finally, we propose our last contribution, the use of an x-partitioned interleaved Bloom filter (x-PIBF) in

binning directories, which are an extension of the IBF proposed in (Dadi et al., 2018). An IBF for b bins com-

bines b standard Bloom filters (Bloom, 1970). A Bloom filter is simply a bitvector of size n and a set of h hash

functions that map a value, in our case a representative k-mer, to one of the bit positions. A value is present

in the Bloom filter if all h positions return a 1. Note that a Bloom filter can give a false positive answer. How-

ever, if the Bloom filter size is large enough, the probability of a false positive answer is low. A Bloom filter of

size n bits with h different hash functions andm elements inserted has a probability of giving a false positive

answer of approximately

pfp =

 
1�

�
1� 1

n

�h,m
!h

:

For this reason, we have to allocate sufficient space such that pfp does not become too large. Still, the prob-

lem of using a simple Bloom filter is that it does not point us to the binning bitvectors. To alleviate the prob-

lem, the IBF uses b Bloom filters (one for each bin) with identical hash functions and then interleaves their

bitvectors. Putting it differently, this means that it replaces each bit in the Bloom filter by a (sub)-bitvector of

size b, where the i-th bit ’’belongs’’ to the Bloom filter for bin Bi. The resulting IBF has a size of b , n. When

inserting a k-mer from bin Bi into the IBF, it computes all h hash functions which point to the position of the

block where the sub-bitvectors are and then sets the i-th bit from the respective beginnings. Hence, the IBF

effectively interleaves b Bloom filters in a way that allows us to easily retrieve the binning bitvectors for the h

hash functions. When querying in which bins a k-mer can be found, we retrieve the h sub-bitvectors and

apply a logical AND to them which results in the required binning bitvector indicating the membership

of the k-mer in the bins. The procedure is depicted in Figure 4.
18 iScience 24, 102782, July 23, 2021



ll
OPEN ACCESS

iScience
Article
Finally, the binning bitvectors are summed up to obtain the count vectors. For this, we allocate tmany coun-

ters, each with b entries, where t is the number of threads used. These counters are reused as we process

the reads in parallel.

If the set of stored k-mers is very large or if we want to achieve a very low FPR of the IBF, it might be too big

to keep in themainmemory. For those cases we implemented the x-partitioned IBF (x-PIBF) where we parti-

tion the set of stored k-mers into x parts as follows:

For a x-PIBF of size s bits, we create x parts, each with ½s=x� bits. Then we partition the k-mers based on the

first q characters with qRlogs ðxÞ, where s is the alphabet size. We count the q-mer frequencies of all k-

mers and assign them as evenly as possible to the x parts (see below table for an example). The counting

step can be omitted, in which case we assume a uniform prefix distribution.
Table. Example of the assignment of q-mers to x = 5 partitions

2-mer AA AC AG AT CA CC CG CT

Part 0 0 0 1 1 1 2 2

2-mer GA GC GG GT TA TC TG TT

Part 2 3 3 3 4 4 4 4

Given a DNA alphabet (s = 4) and x = 5, we have to distribute the 16 possible q-mers evenly to the 5 parts. In this example we

assume a uniform distribution of the q-mers.
Finally, we have to adapt our hash functions such that all h hash values for a k-mer lie in the same part of the

x-PIBF. This can easily be done by storing offsets in a qs large table and adding those to the hash values for

an IBF of size ½s=x�.

If we query a set of k-mers, we load the first part of the x-PIBF into memory, stream over all k-mers counting

the relevant ones for this part and ignoring the others. Then we repeat this for all other parts after loading

them. In the Results section we report on the time/memory trade-off.
Compressing bitvectors

Binning directories use a large bitvector containing all the binning bitvectors for all representative k-mers.

In this work we also allow the use of a compressed bitvector implementation from the SDSL (Gog et al.,

2014). While a standard bitvector of size n uses n bits, the compressed bitvector of the SDSL uses approx-

imately m,
�
2 + log n

m

�
bits, where m is the number of bits set, and n the length of the bitvector. Note that

while this can reduce the space consumption for sparse bitvectors, it increases the access time which we will

discuss in the experiments.

To construct a compressed bitvector, we first have to create the entire uncompressed bitvector and then

compress it. This means that both the uncompressed and compressed bitvectors have to be in main memory

at some point during constructionwhich increases thememory footprint during construction while reducing the

memory requirements when using the bitvector. A main property of the compressed bitvector is that it is immu-

table. If we want to change a bit after the vector is constructed, we need to change the bit in the uncompressed

bitvector and reconstruct the compressed bitvector. Since decompression for the compressed bitvector is not

supported by the SDSL, we also need to store the uncompressed bitvector on disk to enable future updates of

the IBF. Nevertheless, we need to have the whole bitvector initially inmemory whichmight pose a problem. This

problem can be solved elegantly using the partitioning of the IBF as proposed before.
QUANTIFICATION AND STATISTICAL ANALYSIS

For the evaluation of our method, we use the notions of false negatives (FN) and false positives (FP). We

examine reads originating from a known bin i. A false positive is a read that originated from bin i but

was assigned to any bin jsi. If a read was assigned to multiple bins, it is likewise classified as false positive,

as at least one of the reported bins must not be bin i. A false negative read is a read originating from bin i

that was not assigned to bin i, independent of how many bins it was assigned to.
iScience 24, 102782, July 23, 2021 19


	Raptor: A fast and space-efficient pre-filter for querying very large collections of nucleotide sequences
	Introduction
	Related work
	Our contribution

	Results
	General method
	Evaluation
	Datasets
	Speed and space consumption of raptor with (w,k)-minimizers
	Impact of probabilistic thresholding on false negatives
	Comparison with other tools
	Biological case study

	Discussion
	Using BDs for metagenomic profiling
	Using BDs for querying file content
	Using BDs for read mapping
	Possible extensions
	Limitations of study

	Acknowledgments
	flink4
	flink5
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	(w,k)-Mminimizers
	Effective text size and ratio
	Binning directories
	Answering a query with Raptor
	Lemma 1

	Probabilistic thresholding
	Index based model for one error
	Lemma 2

	Extension for indirect errors
	Extension for multiple errors
	x-partitioned IBF
	Compressing bitvectors

	Quantification and statistical analysis



