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ABSTRACT: It is well-known that fewest-switches surface hopping
(FSSH) fails to correctly capture the quadratic scaling of rate constants
with diabatic coupling in the weak-coupling limit, as expected from
Fermi’s golden rule and Marcus theory. To address this deficiency, the
most widely used approach is to introduce a “decoherence correction”,
which removes the inconsistency between the wave function coefficients
and the active state. Here we investigate the behavior of a new
nonadiabatic trajectory method, called the mapping approach to surface
hopping (MASH), on systems that exhibit an incoherent rate behavior.
Unlike FSSH, MASH hops between active surfaces deterministically and
can never have an inconsistency between the wave function coefficients
and the active state. We show that MASH not only can describe rates for intermediate and strong diabatic coupling but also can
accurately reproduce the results of Marcus theory in the golden-rule limit, without the need for a decoherence correction. MASH is
therefore a significant improvement over FSSH in the simulation of nonadiabatic reactions.

Under the Born−Oppenheimer approximation, one assumes
that electronic motion is fast compared to nuclear motion and is
therefore adiabatically separated. The resulting picture of nuclei
moving on a single adiabatic potential energy surface forms the
basis of our modern understanding of molecular structure and
dynamics. Despite its great success, there are many important
molecular processes for which the Born−Oppenheimer
approximation is not valid. Most obviously this can occur in
processes, such as photoexcitation, where the electronic degrees
of freedom are driven far from equilibrium.1−6 However,
nonadiabatic dynamics can also occur closer to equilibrium in
processes that involve significant redistribution of electron
density, such as in electron transfer.7−11 The importance of both
light−matter interaction and electron-transfer processes to
physics, chemistry, and biology as well as modern technology
makes the development of practical simulation methods for
nonadiabatic dynamics of utmost importance.12−14

Unfortunately, finding an exact solution of the full coupled
electron−nuclear Schrödinger equation is impractical for most
systems of interest, and hence, approximations need to be
made.15−19 Fortunately, however, the relatively high mass of
atomic nuclei means that it is often a reasonable approximation
to treat them as classical particles with well-defined positions
and momenta. In 1990, Tully proposed what has become the
most widely used of such “mixed quantum−classical” methods
for simulating nonadiabatic processes, known as fewest-switches
surface hopping (FSSH).20 Within FSSH, the nuclei predom-
inantly move under the force of a single adiabatic potential

energy surface with occasional stochastic hops between the
surfaces. The probabilities for these hopping events are
determined on the basis of the evolution of the electronic
wave function under the time-dependent Hamiltonian gen-
erated by the nuclear trajectory.

Fewest-switches surface hopping has been successfully
applied to study a wide range of nonadiabatic processes.3−6

However, it has long been appreciated that there are problems
that lead to a breakdown in the assumptions behind the FSSH
algorithm.21−24 The result is a deviation between the number of
trajectories on each surface and the wave function coefficients,
which can therefore be termed an inconsistency error. At a more
fundamental level, the error can be attributed to a failure to
describe the decoherence of the electronic wave function that
results from the splitting of a wavepacket after passing through a
coupling region.21−23 This observation has led to the
introduction of many different ad hoc decoherence corrections,
aimed at fixing the inconsistency (overcoherence) error of
FSSH.23−29

Due to their ad hoc nature, decoherence corrections are not
guaranteed to consistently improve the results of a calculation.30
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However, one area in which they have been shown to be
essential is processes, such as electron transfer, which involve
slow population transfer in strongly nonadiabatic systems (weak
diabatic coupling, Δ). A series of papers from Subotnik and co-
workers has demonstrated that the standard FSSH algorithm
fails to properly describe the Δ2 scaling of the rate predicted by
Fermi’s golden rule and the famous Marcus theory of electron
transfer.31−35 This was explained in terms of repeated crossings
of the nonadiabatic coupling region, leading to a buildup of the
inconsistency error.31

Recently, an alternative to FSSH has been derived known as
the mapping approach to surface hopping (MASH).36 MASH
was designed to offer the best of both worlds between surface
hopping and mapping approaches, such as the Meyer−Miller−
Stock−Thoss mapping37,38 and spin mapping.39,40 Unlike
FSSH, which was proposed heuristically, MASH can be
rigorously derived from the quantum−classical Liouville
equation (QCLE).41−46 Tests against exact results for the
Tully models, a series of spin-boson models, as well as 3-mode
and 24-mode vibronic models of pyrazine have shown that the
results of MASH are generally as good as or better than those of
FSSH for an equivalent computational cost.36 Perhaps most
interesting are the results for the spin-boson model, where the
system crosses the coupling region many times during the
dynamics. One might have expected that decoherence
corrections were necessary to improve upon the FSSH results.
However, MASH shows a significant improvement even without
the addition of decoherence corrections. This raises the
question: how well will MASH perform in systems exhibiting
slow population transfer with weak diabatic coupling where the
errors of FSSH are known to be particularly pronounced?31

In the following, we will attempt to answer this question. In
doing so, we will explore the difference between MASH and
FSSH in terms of the language of decoherence, revisiting the
reasons for the breakdown of FSSH in systems with weak
diabatic couplings and showing how MASH improves upon
these issues. We will begin by giving an overview of the two
methods, highlighting the key similarities and differences
between the FSSH and MASH algorithms. We will then
describe how to simulate nonadiabatic rates using these
approaches before a detailed discussion of how each of the
methods performs for a range of different physically relevant
parameter regimes.
Methods. Here we give a brief description of the two methods in
the case of a two-level system. Both FSSH and MASH treat the
nuclear motion classically, with the nuclear positions and
momenta represented by the classical variables q(t) and p(t),
respectively. Between hopping events, the nuclei evolve under a
force that is given by the derivative of the adiabatic potential
corresponding to the “active surface”

= V
F

q
n

(1)

where n is the active-state variable, and we label the upper
adiabat + and the lower adiabat −. Electronic wave function
coefficients, c±(t), are then propagated according to the time-
dependent Schrödinger equation under the Hamiltonian
generated by the nuclear trajectory. In both theories, these
coefficients are used to determine when to hop but are not used
to calculate adiabatic population observables, which are instead
obtained directly from the fraction of trajectories on a given

active surface.4 An intuitive picture of the electronic dynamics
can be obtained using the coordinates of the Bloch sphere

= * + *+ +S c c c cx (2a)
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(2c)

This highlights the equivalence of the electronic dynamics to the
rotation of a classical spin around a magnetic field
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where V± are the potentials corresponding to adiabatic states ϕ±

and = +d
q

is the nonadiabatic coupling vector.

What differs between FSSH and MASH is how the hops
between the surfaces are determined. Within FSSH, the
probability of hopping from one surface to the other in a time
step δt is given by
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where negative probabilities indicate no hop. In contrast to this,
the active surface in MASH is obtained deterministically by the
simple condition

= | | | | = [ ]+n t c t c t S t( ) sign( ( ) ( ) ) sign ( )z
2 2

(5)

i.e., the active state is the one with the larger probability, |c±(t)|2.
The fact that MASH is deterministic might seem surprising,
particularly given that it is the stochastic nature of FSSH that
allows it to describe wavepacket splitting. However, as in other
mapping-based methods,39 the stochastic nature of surface
hopping is replaced in MASH by sampling over initial wave
function coefficients, as we shall explain below. To complete the
specification of the dynamics, we need to define what happens to
the momentum at a hopping (or attempted hopping) event.
While there has been some debate in the literature as to how this
should be done in FSSH,47,48 the derivation of MASH from the
QCLE leads to a unique prescription for how to deal with
momentum rescaling and so-called frustrated hops (where the
trajectory has insufficient energy to hop). The result is
equivalent to what was originally advocated by Tully49 (along
with many others50,51). The momenta are rescaled along the
direction of the nonadiabatic coupling and are reflected in all
cases in which they do not have sufficient energy to hop.

This suffices to describe the dynamical evolution of MASH
and FSSH; however, there is one additional important
difference, how the simulation is initialized. For ease of
comparison between FSSH and MASH, we will focus here on
the calculation of correlation functions that involve only
adiabatic populations and nuclear configurations (although we
note that the MASH derivation leads to a rigorous prescription
for the calculation of correlation functions involving electronic
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coherences). For a system starting in a specific adiabatic state,
both FSSH and MASH are initialized with the corresponding
active state, n(0). In FSSH, the wave function coefficients are
initialized as the corresponding pure state; e.g., if the initial state
is n = + then c+(0) = 1 and c−(0) = 0 and the initial S vector
points to the north pole of the Bloch sphere. In contrast, the
wave function coefficients in MASH are sampled such that the
initial S is distributed over the entire hemispherical surface of the
Bloch sphere corresponding to the initial state, with a probability
density proportional to |Sz|.a It is this sampling that effectively
replaces the stochastic nature of the hops in FSSH.

A discussion of surface hopping would not be complete
without covering decoherence corrections. Importantly, MASH
has the additional property that its decoherence corrections can
be rigorously derived. Because MASH is an exact short-time
approximation of the QCLE, it can be systematically improved
toward the full QCLE result by application of so-called
“quantum jumps”.36 These jumps differ from decoherence
corrections in that they cannot be applied too often (i.e., no
quantum Zeno effect). In general, however, quantum jumps
increase the cost of the simulation. The exception to this is if the
quantum jump is applied at a point where there is negligible
coherence between the two adiabatic surfaces, i.e., ⟨Sx⟩ = ⟨Sy⟩ =
0. At such points, the quantum jump is equivalent to resampling
the S vector from the hemisphere corresponding to the current
active state with the |Sz| probability density (equivalent to the
initial sampling). This is the MASH decoherence correction.36 It
is analogous to the FSSH decoherence correction, where one
resets the wave function coefficients as the pure state
corresponding to the current active state. As it can be
understood as a special case of a quantum jump, it is safe to
use and rigorously justified when applied in regions where ⟨Sx⟩ =
⟨Sy⟩ = 0, i.e., far from the regions of nonadiabatic coupling.
Crucially, as we shall see, MASH is more accurate than FSSH at
short to intermediate times; hence, one can often afford to wait
until this condition is satisfied before applying a correction to the
dynamics (and in many cases one may not even need to correct
the dynamics at all).

Rate Calculations. Full details of the calculation of rate
constants with MASH and FSSH are discussed in the Supporting
Information. Here we give an overview of the most important
aspects of reaction rate theory, focusing on the advantages of
MASH over FSSH in two key areas: efficiency and accuracy.

Typically, the accurate determination of rate constants from a
direct simulation of the population dynamics is not possible, as
the barrier crossing is a rare event, and prohibitively long
trajectories would be required to observe a statistically
significant number of reactions. The standard approach used
to overcome this problem is the flux-correlation formalism.52

This avoids the rare-event problem by reformulating the rate in
terms of a correction to transition-state theory, the transmission
coefficient. Importantly, the calculation of the transmission
coefficient involves running only a short simulation up to the
“plateau” time, tpl, which is much shorter than the time scale of
the reaction (tpl ≪ τrxn) but long enough that the initial transient
behavior has subsided and the population decay is exponential.52

Unfortunately, the FSSH dynamics do not obey time-
translation symmetry, and hence, the flux-correlation formalism
does not rigorously give the same result as calculating the rate
from direct population dynamics. A number of approaches for
overcoming this issue have been suggested, such as using initial
wave function amplitudes in the flux-correlation function
generated from approximate backward-propagation

schemes,34,53 as well as the use of dynamically enhanced
sampling in the form of forward-flux sampling.54 Here, to avoid
making further approximations, we simply calculated the FSSH
rate from direct population dynamics, which can be achieved
due to the low computational cost of the model employed. The
calculation of reaction rates with MASH presents a significant
advantage in this regard. The dynamics of MASH do rigorously
obey time-translation symmetry. This means that all of the usual
machinery of the flux-correlation formalism (such as the
Bennett−Chandler method55−57) can be used to improve the
efficiency of rate calculations in a way that is rigorously
equivalent to the rate that would be obtained (less efficiently)
with a direct simulation of the population dynamics.

The second difficulty associated with the calculation of
reaction rates with FSSH is the overcoherence error.31−35 This
error is known to occur in problems where the system passes
through regions of strong nonadiabatic coupling (equivalent to
weak diabatic coupling) multiple times, resulting in an active
state that is inconsistent with the wave function coefficients.
Importantly, the dynamics of MASH can never become
inconsistent in the way they do in FSSH, as the active state is
determined explicitly from the wave function coefficients. This
means that one may expect the overcoherence error to be less
significant in MASH than in FSSH. To assess this, we consider
the MASH and FSSH dynamics in two different regimes. First,
we focus on how the error affects dynamics near the plateau time
(t ∼ tpl). This is done by calculating rates from the slope of the
product population ⟨Pp(t)⟩ after the initial transient behavior
has subsided for a system initialized in the reactant well in a
classical thermal distribution. Second, we consider the dynamics
over the time scale of the reaction (t ∼ τrxn) by simulating the full
population decay.

Model. To compare numerically the accuracy of MASH and
FSSH for the calculation of nonadiabatic rates, we consider the
prototypical model for electron transfer, the spin-boson
model.58 For ease of interpretation, we will consider the
Brownian-oscillator form of the spin-boson model,59−62 which
consists of a harmonic (mass-weighted) solvent polarization
coordinate, Q, and an Ohmic bath describing the effect of
friction along Q, with spectral density J(ω) = γω. The diabatic
potentials along the solvent polarization coordinate are then the
famous Marcus parabolas8
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where Λ is the Marcus reorganization energy, ε is the reaction
driving force, and Ω is the characteristic frequency of the
parabola. The two diabatic states are coupled by a constant
diabatic coupling Δ, and the resulting adiabatic potentials along
the solvent polarization coordinate are given by
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In both FSSH and MASH simulations, the initial positions and
momenta are sampled from the classical Boltzmann distribu-
tions (not Wigner functions), and the initial active state is
chosen with the associated Boltzmann weighting. As the nuclei
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are classical, the coupling of the solvent polarization coordinate,
Q, to its environment can be implemented efficiently using a
Langevin equation with friction coefficient γ. Note this is
formally equivalent to explicitly simulating the full multidimen-
sional bath.59−62

In the limit of weak diabatic coupling (Δ → 0), Marcus theory
predicts that the rate for going from one well to the other is given
by8

=
Ä

Ç
ÅÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑÑ

k exp
( )

4MT

2 2

(8)

where β = 1/kBT is the inverse temperature. Importantly,
Marcus theory is exact for this model in the weak-coupling limit
under the assumption that the nuclear motion can be treated
classically, i.e., in the absence of nuclear quantum effects such as
zero-point energy and tunneling. This makes Marcus theory a
very useful benchmark for assessing the accuracy of FSSH and
MASH, which also assume that the nuclear motion can be
treated classically. To assess their behavior for intermediate
values of Δ, where Marcus theory is not applicable, numerically
exact quantum-mechanical rates were calculated using the
hierarchical equations of motion (HEOM).63,64 All HEOM
calculations were performed using the HEOM-Lab code65,66

following the method described in refs 62 and 67.
For both MASH and FSSH, the long-time behavior of ⟨Pp(t)⟩

is independent of the precise definition of reactants and
products.b However, the definition of reactants and products
will affect its short-time behavior. The optimum choice for the
calculation of rates is the one for which the dynamics of a system
initialized in the reactants most quickly settles into an
exponential decay. Normally, this is a purely practical matter;
however, choosing a (nearly) optimal definition has additional
importance in the present study: it allows us to separate the
short- and long-time errors. The definition we use is that
everything on the lower adiabatic surface to the right of the
diabatic crossing or on the upper adiabatic surface on the left of
the diabatic crossing is the product and vice versa for the
reactant. Mathematically, this corresponds to

= [ ] + [ ] +P t h U t U t h U t U t( ) ( ) ( ) ( ) ( )n t n tp 0 1 ( ), 1 0 ( ),

(9)

where h(x) is the Heaviside step function and Pr = 1 − Pp. This
definition works well for all of the cases considered in this work.
We demonstrate numerically in the Supporting Information that
this gives the same rate constants as a purely position-space
definition in the normal regime, or a purely adiabatic definition
in the inverted regime, while having a shorter transient.

The parameters for the model are taken to be βΛ = 12, βℏΩ =
1/4, and γ = Ω, for a range of values of ε and Δ. These parameters
were chosen to allow a clear comparison of the accuracy of
MASH and FSSH, at a reasonable computational cost. In
particular, the reorganization energy was chosen to be
sufficiently high that the population transfer is in the slow
incoherent limit but sufficiently low that it is possible to run
direct population dynamics. This allows us to directly calculate
FSSH rates, without needing to employ backward propagation
or forward-flux sampling. Additionally, it allows us to
demonstrate numerically that in MASH direct population
dynamics are equivalent to the results obtained using the flux-
correlation formulation, which we show in the Supporting
Information. The characteristic frequency was chosen to make
the system as classical as possible without the HEOM

calculations becoming too expensive. This was done as our
focus here is on assessing the relative accuracy of the dynamics of
MASH and FSSH, rather than the importance of the nuclear
quantum effects. Finally, it is known that the effect of
overcoherence error becomes less pronounced at high friction,35

and hence, to make the test of MASH as stringent as possible, we
consider a system in the underdamped γ < 2Ω regime. Systems
with a larger reorganization energy and a higher friction are
considered in the Supporting Information.

Results and Discussion. Figure 1 compares the rates calculated
at the plateau time for a symmetric reaction, ε = 0, as a function
of the diabatic coupling, Δ. We see that, for intermediate to large
values of diabatic coupling, log10(βΔ) ≳ −0.75, MASH, FSSH,
and HEOM all closely agree, with the HEOM rate showing only
a slight ∼10% enhancement due to shallow tunneling. For
smaller values of Δ, the reaction approaches the golden-rule
regime, where Marcus theory is valid. Here we see that MASH
continues to closely match the exact results predicted by
HEOM, while FSSH begins to deviate significantly with an
unphysical slope. This deviation is consistent with previous
observations that FSSH struggles in this limit due to its
overcoherence error.31−34 However, it raises the question of why
MASH does not show a similar error.

To understand this, in Figure 2 we analyze ⟨Pp(t)⟩ for the
smallest value of Δ considered in Figure 1. The top left panel of
Figure 2 shows the full ⟨Pp(t)⟩. Although MASH and FSSH
agree during the initial transient, the slope after this time differs
significantly, with FSSH predicting a much slower population
transfer. The remaining panels decompose ⟨Pp(t)⟩ into
contributions from trajectories that have hopped zero or two
times between time zero and the current time, t. The top right
panel shows the sum of the zero- and two-hop trajectories. We
see that the difference in the slopes of the MASH and FSSH
curves closely resembles those in the full ⟨Pp(t)⟩, implying that
other terms are contributing to only the transient and not the
rate. Hence, to understand the difference between the MASH
and FSSH rates, one can focus on just these trajectories.

Figure 1. Log−log plot of the rate vs the diabatic coupling for a
symmetric, βε = 0, spin-boson model, with βℏΩ = 1/4, γ = Ω, and βΛ =
12. FSSH and MASH rates were calculated from the slope of ⟨Pp(t)⟩ at
the plateau time, between t = 10βℏ and t = 20βℏ. Note that Figure S4
shows similar results for an asymmetric model.
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Unsurprisingly, the no-hop contribution to ⟨Pp(t)⟩ (which
involves just a single passage through the crossing region) agrees
very closely between MASH and FSSH. The key difference
occurs in the trajectories that hop twice. The contribution of
these trajectories, along with a depiction of a corresponding
typical reactive path, is shown in the bottom right panel. From
this, we see that trajectories that hop twice contribute
significantly (and correctly) to the rate in MASH but contribute
only a very small amount in FSSH. Hence, the rate predicted by
FSSH can be expected to be up to a factor of 2 too small, as
previously pointed out by Jain and Subotnik in ref 34.

Having established that it is the two-hop trajectories that
differ between MASH and FSSH, we still need to explain why
these trajectories go wrong in FSSH but not in MASH. Figure 3
illustrates the behavior of a typical two-hop trajectory in FSSH
that “should” react but does not. The trajectory starts in the
reactant well at time zero. When t ≈ 7βℏ, the trajectory reaches
the crossing and hops up due to the strong nonadiabatic
coupling and correspondingly large hopping probability. Having
hopped up, the trajectory then continues on the upper state
before turning around and coming back toward the avoided
crossing. Note that at this point the trajectory is not significantly
affected by inconsistency or overcoherence error, as the wave
function coefficients are essentially still in a pure state
corresponding to the active surface (i.e., Sz ≈ 1). When t ≈
10βℏ, the trajectory passes through the avoided crossing for a
second time, and most trajectories hop down (returning to the
reactants). However, we follow one of the few that remain on the
upper surface (probability ∝Δ2). Now the wave function (which
is predominantly in the lower state, Sz ≈ −1) is inconsistent with
the active surface. When the trajectory returns to the avoided
crossing for a third time, we expect it to hop down to the product
well. However, the wave function is evolving in the opposite
direction to the expected hop (from down to up instead of up to
down). Hence, the probability of jumping down is almost zero,
and the trajectory incorrectly stays on the upper surface, leading
to no reaction. In contrast, MASH trajectories cannot have this
problem. When an equivalent MASH trajectory approaches the

avoided crossing for the third time, its spin vector is guaranteed
to correctly point up (because of the consistency between its
spin vector and the active surface). On passing through the
crossing region, its spin vector will then flip down to the lower
hemisphere, resulting in a downward hop and a successful
reaction.

So far, we have considered only the dynamics on the time scale
of a single barrier crossing. However, in the limit of weak diabatic
coupling, the system may come back to the diabatic crossing
(the region of large nonadiabatic coupling) many times before
the reaction takes place. This can lead to a buildup of
overcoherence error, causing the long-time rate behavior to
deviate significantly from the short-time behavior. To investigate
this effect, Figure 4 shows the population of products, ⟨Pp(t)⟩,
for the full population decay, for two different driving forces, βε
= 0 and βε = 3 = βΛ/4, with all other parameters kept the same
as in Figure 2.

Considering first the top panel of Figure 4, where βε = 0, we
see immediately that the long-time behavior of both MASH and
FSSH agrees perfectly with the Marcus theory. This is a
surprising result, as on the basis of the short-time behavior we
would expect FSSH to be too slow. However, it can be explained
away as a fortuitous cancellation of errors due to the symmetry of
the model when ε = 0. This assumption is confirmed by
considering the behavior of an asymmetric reaction, βε = 3, as
shown in the bottom panel. The short-time behaviors of the
symmetric and asymmetric systems are similar as one can see
from the inset.c At long times, however, we see that for the
asymmetric system there is no fortuitous cancellation of errors.
Instead, the buildup of overcoherence error in FSSH leads to a
population decay that is noticeably too fast, with a half-life
approximately 3.5 times shorter than that of Marcus theory. In
contrast, MASH goes from being almost exact at short times to

Figure 2. Decomposition of the population of products according to
the number of hops for a symmetric, βε = 0, spin-boson model, with
βℏΩ = 1/4, γ = Ω, and βΛ = 12 in the limit of weak diabatic coupling,
log10(βΔ) = −7/5.

Figure 3. Example of a typical incorrect “two-hop” FSSH trajectory that
fails to react, along with a comparable but correct MASH trajectory.
The problem for FSSH occurs on the third crossing, where the wave
function is inconsistent with the active state. Sz is then predominantly
moving up, meaning that the probability of hopping down is almost
zero. This example is taken from a calculation with βℏΩ = 1/4, γ = 0, βε
= 0, and βΛ = 12.
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being ∼1.4 times too fast at long times.d We see, therefore, that
while both MASH and FSSH suffer from a buildup of
overcoherence error at long times, this error is significantly
more pronounced in FSSH.

The buildup of overcoherence error at long times is of course
well established. While it is nice that this error is much smaller in
MASH than FSSH, in real simulations on such incredibly long
time scales one should apply decoherence corrections in both
theories. In this regard, the short-time accuracy of MASH also
presents a significant advantage. To see why, we note that the
application of decoherence corrections is always a balancing act:
you need to apply them often enough to fix the overcoherence
error, but apply them too often, and you will force the system to
remain forever on the same adiabat (the quantum Zeno effect).
The advantage of MASH is that it requires decoherence
corrections less often to obtain accurate results. This means that
they can be applied only in regions where it is safe to do so, such
as the reactant wells, and not in the vicinity of the coupling
region. This makes it more robust and means that simpler
decoherence schemes can be successfully used.

In Figure 4, we demonstrate this by considering the behavior
of MASH and FSSH when one applies a simple decoherence
correction.36 For the sake of simplicity, we use an energy cutoff
such that decoherence corrections are applied only in the
reactant and product wells, where it is safe to do so. The actual
cutoff used was V+ − V− > 4kBT; however, the results are
insensitive to the precise value, provided it is small enough that a
decoherence correction is applied when the trajectory is in the
well and large enough that it is not applied in the crossing

region.e In the top panel, we see that, for the symmetric system
where ε = 0, the population decay predicted by MASH is
unaffected by application of the decoherence correction, leaving
it in perfect agreement with Marcus theory. In contrast,
however, the FSSH results are made significantly worse by
application of the decoherence correction, for reasons explained
below. For the asymmetric system, βε = 3, we see that
application of the decoherence correction improves the original
MASH result, removing the ∼40% error and bringing it into
almost perfect agreement with Marcus theory. Again, however,
the simple decoherence correction does not fix FSSH, in this
case taking the rate from being too fast to too slow. These results
can be understood by noting that by applying the decoherence
correction far from the crossing region we simply make the long-
time dynamics consistent with the short-time dynamics. For
MASH, the short-time dynamics has the correct rate, but for
FSSH, the short-time dynamics is wrong, as one can see from the
inset, and hence, we recover the spuriously low rate shown in
Figure 1.

That such simple decoherence corrections do not fix FSSH is
not a new observation, and for this reason, many far more
sophisticated decoherence approaches have been devel-
oped.28,29 However, these methods often come with additional
disadvantages, such as increased cost, and as they are ad hoc,
they are not always guaranteed to improve the results. The point
we stress here is that the increased accuracy of MASH at short
times means that decoherence corrections can be applied much
more infrequently. For many ultrafast problems, this means that
they may not be needed at all, but when they are needed, they
can be both safer and simpler.

Finally, having understood the difference between MASH and
FSSH, we consider the famous Marcus turnover curve. Figure 5
shows the behavior of the rate in the weak-coupling limit
[log10(βΔ) = −7/5] as a function of the bias to products, ε. As in
Figure 1, the FSSH and MASH rates are calculated from the
slope of ⟨Pp(t)⟩ near the plateau time, between t = 10βℏ and t =

Figure 4. Full population decay for symmetric, βε = 0, and asymmetric,
βε = 3, spin-boson models, with βℏΩ = 1/4, γ = Ω, and βΛ = 12 in the
limit of weak diabatic coupling, log10(βΔ) = −7/5. The inset shows
⟨Pp(t)⟩ at short to intermediate times. Decoherence corrections are
applied only when the energy gap is large (V+ − V− > 4kBT), making
long-time behavior consistent with short to intermediate time. This
illustrates not only that MASH is more accurate than FSSH without the
application of decoherence corrections but also that, unlike in FSSH,
simple decoherence corrections are sufficient to bring MASH into line
with the correct result. Note that the addition of the decoherence
correction does not affect the results depicted in Figure 1, as
demonstrated in Figure S8.

Figure 5. Logarithmic plot of the rate vs reaction driving force, showing
the famous Marcus turnover behavior for a spin-boson model with weak
diabatic coupling, log10(βΔ) = −7/5, βℏΩ = 1/4, γ = Ω, and βΛ = 12.
FSSH and MASH rates were calculated from the slope of ⟨Pp(t)⟩, at the
plateau time, between t = 10βℏ and t = 20βℏ.
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20βℏ. As expected from the results presented above, FSSH
deviates significantly from Marcus theory and the exact results,
showing an unphysical asymmetry around ε = Λ. In contrast,
MASH reproduces both the exact results and Marcus theory
very well. MASH is also not perfectly symmetric due to a slightly
larger error deep in the inverted regime (ε = 2Λ) than in the
symmetric case (ε = 0). However, in both cases, the errors are
<10%. The largest error in MASH is observed close to the
activationless limit ε/Λ = 1. Here the MASH rate is ∼15%
higher than the Marcus theory result. In contrast, FSSH is ∼60%
too large. As the avoided crossing is located at the minimum of
the reactant well in the activationless case, this leads to a faster
buildup of overcoherence error and the increase in the rate seen
at long times in the bottom panel of Figure 4 starts to affect the
dynamics even at the short times considered here. This is
confirmed by application of the same decoherence correction
that was used in Figure 4, which stops the buildup of
overcoherence error, resulting in MASH rates that are within
7% of the exact rate for the full range of ε considered.f As in
Figure 4, the increased error of FSSH at short times means that
this simple decoherence correction is not sufficient to fix the
inconsistency error of FSSH, and hence, the rates still deviate
significantly from the Marcus theory result, as one can see in
Figure S6.

In conclusion, it is well established that the overcoherence
error of FSSH is most pronounced for the calculation of reaction
rates in the limit of weak diabatic coupling (the Marcus theory
regime).31−35 Here we revisit this problem to assess the accuracy
of a newly proposed alternative to FSSH, the mapping approach
to surface hopping (MASH). In comparing MASH and FSSH,
we have considered two different time scales: the time scale of a
single barrier crossing event, tpl, and the time scale of the
reaction, τrxn.

On the time scale of barrier crossing, MASH provides a
significant improvement upon FSSH, accurately recovering the
results of Marcus theory without the use of decoherence
corrections. This might seem surprising at first as it is not
immediately obvious how MASH, which is also an independent
trajectory method, can capture decoherence. However, we have
shown that the improvement can be explained in terms of the
dramatic inconsistency between the active state and wave
function coefficients, which can exist in FSSH but is absent from
MASH.

On very long time scales, MASH again provides a significant
improvement over FSSH. While overcoherence error does still
build up in MASH, we have found it to be much less significant
than in FSSH. This can again be explained in terms of the
inconsistency in FSSH, which means that the buildup of error
can be sudden and large, whereas in MASH the buildup of error
is more gradual and ultimately smaller. Perhaps most
importantly, the increased accuracy of MASH compared to
that of FSSH at short times means that when they are used,
decoherence corrections need only be applied well away from
the coupling region, making them safer and simpler to use.

MASH also has additional practical advantages over FSSH in
the calculation of reaction rates. In particular, as the dynamics of
MASH are deterministic and obey time-translation symmetry,
there is no need for approximate backward-time propagation or
advanced methods such as forward-flux sampling. One can
rigorously apply the flux-correlation formalism and related
techniques, such as the Bennett−Chandler method, to
efficiently calculate reaction rates. Given these significant
improvements and the fact that MASH is simple to use, requires

only relatively minor modifications to existing FSSH code, and
can be run at equivalent computational cost, MASH has the
potential to replace FSSH as the go-to method for the simulation
of nonadiabatic processes.

The only thing limiting MASH as a replacement for FSSH is
that the current theory is restricted to two-state problems.
Recently, a modification to MASH has been proposed, designed
for application to multistate problems.70 However, this theory is
different from the MASH described here. It does not reduce to
the current theory in the case of a two-level system, and although
it is accurate for many problems, it was shown to be significantly
less accurate for the time scales of population decay in a spin-
boson model in the inverted regime. Work to develop a
multistate generalization of the present MASH method is in
progress, and if this can be achieved, while retaining the
advantages of the two-state theory, it would present a significant
challenge to the hegemony of FSSH.

Finally, we note that we have focused exclusively on the limit
of classical nuclei. It is, however, well-known that nuclear
quantum effects, in particular tunneling and zero-point energy,
can have a significant effect on the rate of nonadiabatic reactions,
such as electron transfer, intersystem crossing, and proton-
coupled electron transfer.71−78 In recent years, there has been a
continued interest in the development of methods that can
accurately incorporate nuclear quantum effects into the
simulation of electronically nonadiabatic reactions.79−85 While
there has been significant development in methods specialized
for accurately predicting thermal reaction rates,86−91 at present
there is no fully dynamical method that can offer comparable
accuracy.92 This is in part due to the difficulty that such
dynamical methods face in accurately describing rates, even in
the limit of classical nuclei. In this regard, the results of this study
indicate that MASH provides a new and exciting route to the
development of a fully dynamic nonadiabatic theory capable of
accurately describing nuclear tunneling and zero-point energy.
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■ ADDITIONAL NOTES
aSee the Supporting Information for full mathematical details.
bThis is because the parts of the thermal distribution
corresponding to reactants and products are two regions of
high probability density that are well separated in phase space.
Hence, any definition that respects this separation will give the
same long-time dynamics. This is true regardless of whether
MASH and FSSH obey detailed balance globally provided they
do so in the reactant and product wells, which is trivially the case
when the system is electronically adiabatic in these regions.
cSee also Figure S4.
dIt is interesting to note that, despite FSSH and MASH
predicting incorrect rates at long times, they nevertheless
approach the correct equilibrium populations. This has been
observed in previous studies of FSSH,68 and for MASH, it was
recently proven that under the assumption of ergodicity it is
guaranteed to approach the correct long time limit.69

eIn this system, this is equivalent to using the more common
derivative coupling-based cutoff of ref 24. We choose to give the
equivalent energy gap for ease of interpretability. Additionally,
we note that the results in Figure 4 are unchanged if the
decoherence correction is applied at every step where V+ − V− >
4kBT or only when the energy gap reaches a local maximum
along the trajectory greater than the threshold. The latter was
the actual implementation used for the figures.
fNote that, close to the activationless regime, ε ≈ Λ, where the
crossing occurs in the reactant well, the results are somewhat
sensitive to how the decoherence correction is applied and the
exact value of the cutoff used. We wish to stress that this is not
intended as a serious suggestion for a universal decoherence
scheme but is used instead to illustrate the key points made in
the text.
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