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Key Definitions.

To simplify notation, it is helpful to define the trace (or phase-space integral) over the MASH

variables as

tr[A(p, q,S)] =
1

(2πh̄)f

∫
dq

∫
dp

∫
dSA(p, q,S), (S1)

where f is the number of nuclear degrees of freedom. The integral over S is defined as

∫
dSA(S) =

1

2π

∫ π

0
dθ

∫ 2π

0
dϕ sin(θ)A(S), (S2)

with

Sx = sin(θ) cos(ϕ) (S3a)

Sy = sin(θ) sin(ϕ) (S3b)

S1



Sz = cos(θ). (S3c)

The trace over the FSSH variables can be defined similarly, the key difference being that, as the

active surface, n, is not obtained deterministically from the Bloch sphere, it must be introduced as

a separate variable. Hence, we define the FSSH trace as

tr[A(p, q,S, n)] =
1

(2πh̄)f

∑
n=±

∫
dq

∫
dp

∫
dSA(p, q,S, n). (S4)

It will also be helpful to define the MASH and FSSH total energy as

E(p, q, n) = H+(p, q)δ+,n +H−(p, q)δ−,n, (S5)

where

H±(p, q) =

f∑
j=1

p2j
2mj

+ V±(q), (S6)

are the energies on each of the adiabatic states, and we remind the reader that in MASH

n(S) = sign(Sz). (S7)

Sampling of the Bloch Sphere.

For a system that is initially in a pure adiabatic state, the MASH derivationS1 leads to a weight

factor proportional to |Sz| in the calculation of expectation values. In the present work we incor-

porate this weight factor into the initial sampling of the vector on the Bloch-Sphere. This can be

achieved by noting that for a system initially on adiabatic state, a, we have

tr
[
A(p, q)δa,n(S)|Sz|B(p(t), q(t),S(t))

]
tr
[
A(p, q)δa,n(S)|Sz|

]
=

∫
dq

∫
dp

∫
dSA(p, q)|Sz|δa,n(S)B(p(t), q(t),S(t))∫
dq

∫
dp

∫
dSA(p, q)|Sz|δa,n(S)

=

∫
dq

∫
dp

∫
dS ρA(p, q)ρa(S)B(p(t), q(t),S(t))

(S8)
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where ρa(S) is the normalised probability density function used to sample the Bloch sphere for a

system initially on state a

ρa(S) =
|Sz|δa,n(S)∫
dS|Sz|δa,n(S)

. (S9)

Note this is equivalent to sampling θ and ϕ from the distribution

ρa(θ, ϕ) =
sin(θ) | cos(θ)|h(a cos(θ))∫ π

0 dθ
∫ 2π
0 dϕ sin(θ) | cos(θ)|h(a cos(θ))

, (S10)

which is done by uniformly sampling u ∈ [0, 1) and v ∈ (0, 1] and setting

ϕ = 2πu (S11a)

θ = acos
(
a
√
v
)
. (S11b)

Decoherence corrections.

Ref. S1 shows how the application of ‘quantum jumps’ allows one to systematically converge MASH

towards the QCLE. Furthermore, it was shown that in cases where ⟨Sx⟩ = ⟨Sy⟩ = 0, the quantum

jump can be simplified to give a rigorous decoherence correction. Just as with the initial sampling

described above, the resampling of the spin-vector and weight factor described in Ref. S1, can be

combined. This is what is done in the present work. For a system on active surface n(S) = a the

decoherence correction is performed by just resampling the S vector from the initial distribution

given above, ρa(S).

Numerical calculation of MASH and FSSH rates.

For a system which undergoes incoherent dynamics at long time, the rate constant to pass from

reactants to products can be written formally asS2,S3

k = lim
t→∞

d
dt⟨Pp(t)⟩

1− ⟨Pp(t)⟩/⟨Pp(∞)⟩
. (S12)

Often this is simplified by introducing the idea of the plateau time, tpl,
S4 which is short enough

that ⟨Pp(t)⟩/⟨Pp(∞)⟩ ≈ 0, but long enough that the dynamics has settled into the exponential
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decay, such that

k ≈ d

dt
⟨Pp(t)⟩

∣∣∣∣
t=tpl

. (S13)

For the results presented in the main paper, we compute the MASH and FSSH rates by taking

the average of

k(t) =
d
dt⟨Pp(t)⟩

1− ⟨Pp(t)⟩/⟨Pp(∞)⟩
(S14)

between t = 10βh̄ and t = 20βh̄, where the derivative is computed by finite difference from ⟨Pp(t)⟩.

In MASH this is defined as

⟨Pp(t)⟩ =
tr
[
e−βE |Sz|PrPp(t)

]
tr [e−βE |Sz|Pr]

, (S15)

and in FSSH as

⟨Pp(t)⟩ =
tr
[
e−βEδ(Sz − n)PrPp(t)

]
tr [e−βEδ(Sz − n)Pr]

. (S16)

As stated in the body of the main paper, in both MASH and FSSH we use the following general

definition of the reactants and products, valid in both the normal and inverted Marcus regimes,

P (g)
p (t) = h(U0(t)− U1(t))δn(t),− + h(U1(t)− U0(t))δn(t),+ (S17a)

P (g)
r (t) = h(U0(t)− U1(t))δn(t),+ + h(U1(t)− U0(t))δn(t),−, (S17b)

where h(x) is the Heaviside step function. Here we have introduced an additional superscript (g)

to distinguish this general definition from the position, and adiabatic definitions that are not used

in the main paper, but are considered in this supporting information. We remind the reader that

P
(g)
r = 1− P

(g)
p .

Equivalence of different definitions of reactants and products.

Here we demonstrate numerically that the definition of reactants and products given in Eq. S17

give rates which are identical to more common definitions of reactants and products. Firstly in the

normal regime, we compare to a purely position space definition of the reactants and products

P (q)
p (t) = h(U0(t)− U1(t)) (S18a)
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Figure S1: Comparison of ⟨Pp(t)⟩ for different definitions of the reactants and products at long
time. Upper panel: inverted regime βε = 24, with log10(β∆) = −7/5, βh̄Ω = 1/4, γ = Ω and
βΛ = 12. The dashed curve is shifted by t = 60βh̄ to better illustrate the equivalence with the
general definition at long time. Lower panel: normal regime βε = 3, with log10(β∆) = −7/5,
βh̄Ω = 1/4, γ = Ω and βΛ = 12. The dashed curve is shifted by t = 250βh̄ to better illustrate the
equivalence with the general definition at long time.

P (q)
r (t) = h(U1(t)− U0(t)). (S18b)

Secondly, in the inverted regime we compare to using a purely adiabatic state definition of the

reactants and products

P (a)
p (t) = δn(t),− (S19a)

P (a)
r (t) = δn(t),+. (S19b)

Figure S1 compares ⟨Pp(t)⟩ calculated using the general definition (used in the main paper) against

the position and adiabatic definitions. The lower panel shows the results for a system in the normal

regime and the upper panel shows the results for a system in the inverted regime. We see in both

cases that at long time the definition used in the main paper is equivalent to the more commonly

used definitions given in Eqs. S18 and S19.
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Flux-Correlation version of MASH.

It is typically more efficient to calculate d
dt⟨Pp(t)⟩ using the flux-correlation formalism, rather than

from a direct simulation of ⟨Pp(t)⟩.S4 To arrive at the flux-correlation formalism, one differentiates

analytically and then shifts the time origin. As discussed in the main paper, it is not possible to

do this within FSSH. However it is possible for MASH. The following demonstrates that this is

the case and derives the resulting flux-correlation MASH expressions.

Time symmetries.

MASH dynamics obeys a number of important properties that allow one to use the flux-correlation

formalism to efficiently calculate reaction rates.

Time translation.

The first of these properties is time-translation symmetry. As the dynamics has no explicit time

dependence, we can begin by simply changing the origin of time to give

tr
[
e−βE(p0,q0,S0)A(0)B(t)

]
=

1

(2πh̄)f

∫
dq0

∫
dp0

∫
dS0 e

−βE(p0,q0,S0)A(0)B(t)

=
1

(2πh̄)f

∫
dq−t

∫
dp−t

∫
dS−t e

−βE(p−t,q−t,S−t)A(−t)B(0).

(S20)

Now as proved in the original MASH paper (Ref. S1) the MASH dynamics conserve both the

measure and the energy, hence

tr
[
e−βE(p0,q0,S0)A(0)B(t)

]
=

1

(2πh̄)f

∫
dq0

∫
dp0

∫
dS0 e

−βE(p0,q0,S0)A(−t)B(0)

= tr
[
e−βE(p0,q0,S0)A(−t)B(0)

]
.

(S21)

It is important to note that, as discussed in the original MASH paper,S1 MASH does not exactly

obey detailed balance for the calculation of reaction rates. This is because the dynamics does not

in general conserve |Sz(t)| and hence

tr
[
e−βE |Sz|PrPp(t)

]
̸= tr

[
e−βE |Sz|PpPr(−t)

]
. (S22)
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Therefore while the dynamics does obey time-translational symmetry, the correlation functions do

not when |Sz| is treated as part of the initial distribution. However, as we shall explain below,

the fact that the dynamics obey time-translation symmetry is enough to develop an efficient flux-

correlation formalism. Finally we note that although MASH does not formally obey detailed

balance, under the assumption of ergodicity, MASH is guaranteed to correctly thermalise in the

long-time limit.S5 Hence MASH is accurate both at short time and at long time.

Time-inversion symmetry.

The MASH equations of motion are given, in the adiabatic basis, by

Ṡx =
∑
j

2dj(q)pj
mj

Sz −
V+(q)− V−(q)

h̄
Sy (S23a)

Ṡy =
V+(q)− V−(q)

h̄
Sx (S23b)

Ṡz = −
∑
j

2dj(q)pj
mj

Sx (S23c)

q̇j =
pj
mj

(S23d)

ṗj = −∂V+(q)

∂qj
h(Sz)−

∂V−(q)

∂qj
h(−Sz) + 2[V+(q)− V−(q)]dj(q)Sxδ(Sz). (S23e)

These equations of motion are left unchanged under the transformation: t 7→ −t, Sy 7→ −Sy and

pj 7→ −pj . This means than any expression involving backward-propagated trajectories can be

converted into an expression involving forward-propagated trajectories, by reversing the signs of

Sy and pj .

Flux-correlation function.

Using the time-translation symmetry, we can straightforwardly obtain the following general expres-

sion for the product population derivative

d

dt
⟨Pp(t)⟩ =

tr
[
e−βEṖp(0)Pr(−t)|Sz(−t)|

]
tr [e−βEPr|Sz|]

. (S24)

Before we can use the time-inversion symmetry to simplify further, we need to specialise to the

particular definition of the reactants and products. In the following, we consider first the MASH
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flux-correlation formalism when the reactants and products are defined in terms of position or

adiabatic states, as in Eqs. S18 and S19. Then we will consider the flux-correlation formalism for

the general definition of reactants and products used in the main paper (Eq. S17), which combines

results from both the position and adiabatic definitions. In each case, we need to evaluate the

derivative, Ṗp(0).

Position based definition (normal regime).

We begin with considering a position based definition. To do so, it is helpful to simplify notation

by defining the generalised coordinate, Q, such that Q = Q‡ corresponds to U0(q) = U1(q). With

this definition, we have that

P (q)
r (t) = h(−(Q(t)−Q‡)) (S25a)

P (q)
p (t) = h(Q(t)−Q‡). (S25b)

Hence, evaluating the time derivative of P
(q)
p (t), we obtain

Ṗ (q)
p (t) = Q̇(t)δ(Q(t)−Q‡). (S26)

Inserting this into Eq. S24 and employing the time-inversion symmetry, we obtain

⟨Ṗ (q)
p (t)⟩ =−

tr
[
e−βEQ̇δ(Q−Q‡)|Sz(t)|P (q)

r (t)
]

tr
[
e−βEP

(q)
r |Sz|

] . (S27)

Except for the MASH weighting factor, |Sz(t)|, this has an identical form to the standard approach

for calculating classical rates within the Born–Oppenheimer approximation.S4 We note that by

considering the equivalent expression calculated with the MASH weighting factor at the initial

time, |Sz(0)|, one obtains a very useful estimate of the MASH error.S1
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Adiabatic definition (inverted regime).

To evaluate the derivative of Pp(t) in Eq. S19, it is helpful to first use the definition of the active

state in MASH to rewrite the reactant and products as

P (a)
r (t) = h(Sz(t)) (S28a)

P (a)
p (t) = h(−Sz(t)) = 1− h(Sz(t)). (S28b)

Evaluating the derivative requires care, as the MASH dynamics is not analytic at thop (where

Sz(thop) = 0) and hence

d

dt
h(Sz(t)) ̸= Ṡz(t)δ(Sz(t)). (S29)

We therefore return to the definition of the derivative

d

dt
h(Sz(t)) = lim

ϵ→0

h(Sz(t+ ϵ))− h(Sz(t))

ϵ
, (S30)

and carefully take the limit such that t is not exactly the hopping time, but rather (for ϵ → 0+)

infinitesimally before or (for ϵ → 0−) infinitesimally after the hop. To evaluate the derivative we

thus need to consider the behaviour of h(Sz(t+ ϵ))− h(Sz(t)) for small values of ϵ. It is clear that

this can only be non-zero if there is a change in state between the time t and t+ ϵ. Assuming that

ϵ is small enough that there is at most one attempted hop (where Sz = 0) between t and t + ϵ, a

careful consideration of the possibilities (explained in detail below) results in the equation

h(Sz(t+ ϵ))− h(Sz(t)) =
[
h(Sz(t) + ϵṠz(t))− h(Sz(t))

] [
h(Sz(t)) + h(−Sz(t))h(∆Ehop(t))

]
,

(S31)

where ∆Ehop is the difference between the kinetic energy along the derivative coupling vector and

the adiabatic energy gap

∆Ehop =
1

2

(p̃ · d̃)2

d̃ · d̃
− (V+(q)− V−(q)) , (S32)

where p̃j = pj/
√
mj and d̃j = dj/

√
mj are the mass-weighted momentum and derivative coupling

vectors respectively. To understand Eq. S31, we note first that for the left-hand side to be non-zero

the active state must change between t and t+ ϵ. The first of the two terms on the right-hand side
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of Eq. S31 corresponds to whether a hop is attempted and the second to whether it has enough

energy to actually occur. The first term is only non-zero if the current rate of change predicts a

change in the sign of Sz between t and t+ϵ (i.e. an attempted hop). The second term then accounts

for the possibility that the hop is frustrated, in which case the overall expression must be zero (due

to the reflection of Sz off the spin-sphere equator for a frustrated hop). To see that this is the

correct expression, note that if the system is on the upper surface, h(Sz(t)) = 1, then the hop is

necessarily not frustrated (this is true whether t is just before or just after a hop, i.e. whether ϵ is

positive or negative). However, if the system is on the lower surface, h(−Sz(t)) = 1, then it will

hop (or just have hopped) if and only if the kinetic energy along the derivative coupling vector is

greater than the adiabatic energy gap, ∆Ehop(t) > 0.

As we have already alluded to, there is a choice in whether the limit is taken from above

(ϵ → 0+) or from below (ϵ → 0−). First we will take the limit as ϵ → 0−. This will result in

expressions for which t is infinitesimally after the hopping time, rather than before. Noting that

only the first term on the right-hand side of Eq. S31 involves ϵ, the key to evaluating the limit is

the following identity

lim
ϵ→0−

h(x+ ϵb)− h(x)

ϵ
= lim

η→0+
δ(x− η)h(b)b+ lim

η→0−
δ(x− η)h(−b)b

= δ+(x)h(b)b+ δ−(x)h(−b)b,

(S33)

where we will replace x and b with Sz(t) and Ṡz(t). This result is straightforward to verify by

considering the two cases b > 0 and b < 0 separately. Combining this with Eq. S31, and utilising

trivial identities such as δ+(Sz(t))h(−Sz(t)) = 0, one then obtains the following expression for the

time derivative

d

dt
h(Sz(t)) = δ+(Sz(t))h(Ṡz(t))Ṡz(t) + δ−(Sz(t))h(−Ṡz(t))Ṡz(t)h(∆Ehop(t)). (S34)

Physically these two terms correspond to trajectories that have Sz(t) infinitesimally greater than

zero for which Sz(t) is increasing (i.e. trajectories that have just hopped up), and trajectories with

enough energy to hop that have Sz(t) infinitesimally less than zero for which Sz(t) is decreasing

(i.e. trajectories which have just hopped down).
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Following the same line of reasoning it can be shown that taking the limit (ϵ → 0+) leads

instead to

d

dt
h(Sz(t)) = δ+(Sz(t))h(−Ṡz(t))Ṡz(t) + δ−(Sz(t))h(Ṡz(t))Ṡz(t)h(∆Ehop(t)). (S35)

One can therefore equally weight these two expressions to obtain the symmetric expression

d

dt
h(Sz(t)) =

Ṡz(t)

2
[δ+(Sz(t)) + δ−(Sz(t))h (∆Ehop(t))]. (S36)

Each of these three expressions (Eqs. S34, S35 and S36) are equally valid, although they may

be more or less practical. Considering first the symmetric definition, we see that inserting Eq. S36

into Eq. S24 and making use of the time-inversion symmetry gives

d

dt
⟨P (a)

p (t)⟩ =1

2

tr
[
e−βEδ+(Sz)Ṡzh(Sz(t))|Sz(t)|

]
tr [e−βEh(Sz)|Sz|]

+
1

2

tr
[
e−βEδ−(Sz)Ṡzh (∆Ehop)h(Sz(t))|Sz(t)|

]
tr [e−βEh(Sz)|Sz|]

.

(S37)

This expression has the advantage that it is symmetric, although numerical implementation will in-

volve trajectories that hop during the first time step, which one might want to avoid. Alternatively,

therefore, one can make use of Eq. S35, which has the hop infinitesimally after t. This might seem

like it is the wrong choice, but after inserting into Eq. S24 and making use of the time-inversion

symmetry the hop will be infinitesimally before t = 0, resulting in the following expression

d

dt
⟨P (a)

p (t)⟩ =
tr
[
e−βEδ+(Sz)h(Ṡz)Ṡzh(Sz(t))|Sz(t)|

]
tr [e−βEh(Sz)|Sz|]

+
tr
[
e−βEδ−(Sz)h(−Ṡz)Ṡzh (∆Ehop)h(Sz(t))|Sz(t)|

]
tr [e−βEh(Sz)|Sz|]

.

(S38)
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General definition (used in main paper).

Combining the results from the previous two sections we see that the general definition of reactants

and products used in the main paper (Eqs. S17 and ??) can be equivalently written as

P (g)
r = h(−(Q−Q‡))h(−Sz) + h(Q−Q‡)h(Sz) (S39)

P (g)
p = h(Q−Q‡)h(−Sz) + h(−(Q−Q‡))h(Sz). (S40)

Taking the derivative with respect to time, making use of Eqs. S26 and S36, gives

Ṗ (g)
p = Q̇δ(Q−Q‡)[h(−Sz)− h(Sz)]

+
1

2
[h(−(Q−Q‡))− h(Q−Q‡)][δ+(Sz)Ṡz + δ−(Sz(t))Ṡzh(∆Ehop)].

(S41)

Inserting this into Eq. S24 and making use of the time-inversion symmetry we obtain

d

dt
⟨P (g)

p (t)⟩ =
tr
[
e−βEP

(g)
r (t)|Sz(t)|Q̇δ(Q−Q‡)[h(Sz)− h(−Sz)]

]
tr [e−βE [h(−(Q−Q‡))h(−Sz) + h(Q−Q‡)h(Sz)]|Sz|]

+
tr
[
e−βEP

(g)
r (t)|Sz(t)|[h(Q−Q‡)− h(−(Q−Q‡))]δ+(Sz)Ṡz

]
2 tr [e−βE [h(−(Q−Q‡))h(−Sz) + h(Q−Q‡)h(Sz)]|Sz|]

+
tr
[
e−βEP

(g)
r (t)|Sz(t)|[h(Q−Q‡)− h(−(Q−Q‡))]δ−(Sz)Ṡzh (∆Ehop)

]
2 tr [e−βE [h(−(Q−Q‡))h(−Sz) + h(Q−Q‡)h(Sz)]|Sz|]

.

(S42)

Here we have chosen to use the symmetric definition of the derivative of h(Sz(t)), however, we

note that one can also obtain a similar expression that puts the hops infinitesimally before t = 0,

as was done in Eq. S38. Figures S2 and S3 show numerically that this is equivalent to the direct

population dynamics used in the main text. The numerical methodology used to calculate these

results is discussed in the next section.
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Figure S2: Demonstration of the MASH flux-correlation formalism. Upper panel: comparison of
direct population dynamics (Eq. S15) and the cumulative integral of the flux-correlation formalism
(Eq. S42) for the symmetric, βε = 0, spin-boson model with log10(β∆) = −1, βh̄Ω = 1/4, γ =
Ω, and βΛ = 12. Lower panel: generalised flux-correlation function calculated using the flux-
correlation formalism (Eq. S42) the long-time limit of which defines the rate constant. All results
use the same spin-boson model, and the general definition of reactants and products.

Numerical implementation of flux-correlation formalism.

Position based definition (normal regime).

With some straightforward algebraic manipulations, Eq. S27 can be decomposed in the usual

Bennett–Chandler formS6 as follows

⟨Ṗp(t)⟩ =−
tr
[
e−βEQ̇δ(Q−Q‡)|Sz(t)|Pr(t)

]
tr [e−βEδ(Q−Q‡)]

tr
[
e−βEδ(Q−Q‡)

]
tr [e−βEh(−(Q−Q‡))|Sz|]

=−
〈
Q̇|Sz(t)|Pr(t)

〉
Q(0)=Q‡

2 tr
[
(e−βH+ + e−βH−)δ(Q−Q‡)

]
tr [(e−βH+ + e−βH−)h(−(Q−Q‡))]

=−
〈
Q̇|Sz(t)|Pr(t)

〉
Q(0)=Q‡

2
〈
δ(Q−Q‡)

〉
MF

⟨h(−(Q−Q‡))⟩MF

,

(S43)

where ⟨. . . ⟩Q(0)=Q‡ indicates an average over the distribution

ρQ(0)=Q‡(p, q,S) =
e−βE(p,q,S)δ(Q−Q‡)

tr
[
e−βE(p,q,S)δ(Q−Q‡)

] , (S44)
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Figure S3: Log-log plot of the rate against the diabatic coupling, for symmetric, βε = 0, spin-boson
model, with βh̄Ω = 1/4, γ = Ω and βΛ = 12. Direct MASH rates were calculated from the slope
of ⟨Pp(t)⟩, at the plateau time, between t = 10βh̄ and t = 20βh̄. Results from the flux-formulation
were calculated using Eq. S42.

and ⟨. . . ⟩MF indicates an average over the thermal “Mean-Field” distribution

ρMF(p, q) =
e−βH+ + e−βH−

tr[e−βH+ + e−βH− ]
. (S45)

Note that in this form, it is assumed that Sz is sampled with the correct Boltzmann weights.

Alternatively, we can sample S uniformly from the Bloch sphere and write

⟨Ṗp(t)⟩ =−
〈

2e−βE

e−βH+ + e−βH−
Q̇|Sz(t)|Pr(t)

〉
Q(0)=Q‡,MF

2
〈
δ(Q−Q‡)

〉
MF

⟨h(−(Q−Q‡))⟩MF

, (S46)

where ⟨. . . ⟩Q(0)=Q‡,MF indicates an average over the distribution

ρQ(0)=Q‡,MF(p, q) =
(e−βH+ + e−βH−)δ(Q−Q‡)

tr[(e−βH+ + e−βH−)δ(Q−Q‡)]
. (S47)
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Adiabatic state defintion (inverted regime).

We can evaluate Eq. S37 using a modified Bennett–Chandler procedure. We start by noting that

the presence of the derivative coupling in

Ṡz = −
∑
j

2dj(q)pj
mj

Sx (S48)

means that trajectories starting in regions of high derivative coupling will dominate. Ideally, one

should therefore incorporate this into the sampling. Practically for our purposes, the sampling of

the nuclear positions and momenta can be done from an as yet undefined distribution

ρsamp(p, q) =
e−βHsamp(p,q)

tr
[
e−βHsamp(p,q)

] . (S49)

The first term of Eq. S37 can be written in terms of averages over this distribution as

tr
[
e−βEδ+(Sz)Ṡzh(Sz(t))|Sz(t)|

]
tr [e−βEh(Sz)|Sz|]

=
〈
e−β(E−Hsamp)Ṡzh(Sz(t))|Sz(t)|

〉
samp,Sz=0+

tr
[
e−βHsampδ+(Sz)

]
tr [e−βEh(Sz)|Sz|]

. (S50)

The integrals over the spin-sphere in the second term can be performed analytically to give

tr
[
e−βHsampδ+(Sz)

]
tr [e−βEh(Sz)|Sz|]

=
tr
[
e−βHsamp

] ∫ 1
−1 dSz δ+(Sz)

tr [e−βH+ ]
∫ 1
−1 dSz h(Sz)|Sz|

=
2

⟨e−β(H+−Hsamp)⟩samp
,

(S51)

such that overall we have

tr
[
e−βEδ+(Sz)Ṡzh(Sz(t))|Sz(t)|

]
tr [e−βEh(Sz)|Sz|]

=
2
〈
e−β(E−Hsamp)Ṡzh(Sz(t))|Sz(t)|

〉
samp,Sz=0+

⟨e−β(H+−Hsamp)⟩samp
. (S52)
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For the term constrained initially to the lower adiabatic surface, we can follow the same steps to

obtain the final equation for the derivative of the population as

d

dt
⟨P (a)

p (t)⟩ =

〈
e−β(E−Hsamp)Ṡzh(Sz(t))|Sz(t)|

〉
samp,Sz=0+

⟨e−β(H+−Hsamp)⟩samp

+

〈
e−β(E−Hsamp)Ṡzh (∆Ehop)h(Sz(t))|Sz(t)|

〉
samp,Sz=0−

⟨e−β(H+−Hsamp)⟩samp
.

(S53)

Here we give the expression for the symmetric definition of the derivative, Ṗ
(a)
p , however a similar

expression can also be derived for Eq. S38. Note that sampling from the distribution with Sz(0) =

0+ or Sz(0) = 0− is implemented in practice by just setting the initial Sz to a small floating point

number, ±10−10.

General definition (used in main paper).

Combining the ideas of the last two sections, we can arrive at a Bennett–Chandler scheme to

efficiently compute the rate with the general dividing surface. For the first term in Eq. S42, this

can be achieved by writing

tr
[
e−βEQ̇δ(Q−Q‡)[h(Sz)− h(−Sz)]P

(g)
r (t)|Sz(t)|

]
tr [e−βE [h(−(Q−Q‡))h(−Sz) + h(Q−Q‡)h(Sz)]|Sz|]

=
〈
Q̇[h(Sz)− h(−Sz)]P

(g)
r (t)|Sz(t)|

〉
Q(0)=Q‡

2 tr
[
(e−βH+ + e−βH−)δ(Q−Q‡)

]
tr [e−βH+h(Q−Q‡) + e−βH−h(−(Q−Q‡))]

=

2
〈
Q̇[h(Sz)− h(−Sz)]P

(g)
r (t)|Sz(t)|

〉
Q(0)=Q‡

⟨δ(Q−Q‡⟩MF〈
e−βH+

e−βH++e−βH− h(Q−Q‡) + e−βH−

e−βH++e−βH− h(−(Q−Q‡))
〉
MF

.

(S54)

Alternatively sampling S uniformly from the surface of a sphere, we have that

〈
Q̇[h(Sz)− h(−Sz)]P

(g)
r (t)|Sz(t)|

〉
Q(0)=Q‡

=

〈
2e−βE

e−βH+ + e−βH−
Q̇[h(Sz)− h(−Sz)]P

(g)
r (t)|Sz(t)|

〉
Q(0)=Q‡,MF

. (S55)

For the second term and third term, we can follow the same approach as with the pure adiabatic
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dividing surface. This gives

tr
[
e−βE [h(Q−Q‡)− h(−(Q−Q‡))]δ+(Sz)ṠzP

(g)
r (t)|Sz(t)|

]
2 tr [e−βE [h(−(Q−Q‡))h(−Sz) + h(Q−Q‡)h(Sz)]|Sz|]

=

〈
e−β(E−Hsamp)[h(Q−Q‡)− h(−(Q−Q‡))]ṠzP

(g)
r (t)|Sz(t)|

〉
samp,Sz=0+〈

e−β(H−−Hsamp)h(−(Q−Q‡)) + e−β(H+−Hsamp)h(Q−Q‡)
〉
samp

(S56)

and

tr
[
e−βE [h(Q−Q‡)− h(−(Q−Q‡))]δ−(Sz)Ṡzh (∆Ehop)P

(g)
r (t)|Sz(t)|

]
2 tr [e−βE [h(−(Q−Q‡))h(−Sz) + h(Q−Q‡)h(Sz)]|Sz|]

=

〈
e−β(E−Hsamp)[h(Q−Q‡)− h(−(Q−Q‡))]h(∆Ehop)ṠzP

(g)
r (t)|Sz(t)|

〉
samp,Sz=0−〈

e−β(H−−Hsamp)h(−(Q−Q‡)) + e−β(H+−Hsamp)h(Q−Q‡)
〉
samp

. (S57)

Here we have chosen to use the symmetric definition of d
dth(Sz(t)) (Eq. S36). This means that

hops can occur within the first time step, however we found that this did not present a significant

numerical difficulty. We found that it was more important to sample the initial momenta such that

for each p, we also sampled a trajectory with −p at the same S and q. We note that this could have

also been achieved by using the asymmetric version, where hops are always infinitesimally before

t = 0, by appropriately rescaling the momenta. Finally in the present calculations, we used a

very simple choice for Hsamp corresponding to sampling from the reactant diabatic potential origin,

shifted to the diabatic crossing seam

Hsamp(p, q) =

f∑
j=1

p2j
2mj

+ U0(q − qshift) (S58)

with qshift = (Q‡, 0, 0, 0, . . . ). This is not the optimal choice, as it does not take into account the

narrowing of the derivative coupling as ∆ → 0, however it was sufficient for the present purpose.

Additional Results.

In the following, we include results of additional systems, that support the conclusions of the main

text.
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Figure S4: Log-log plot of the rate against the diabatic coupling, for an asymmetric, βε = 3, spin-
boson model, with βh̄Ω = 1/4, γ = Ω and βΛ = 12. FSSH and MASH rates were calculated from
the slope of ⟨Pp(t)⟩, at the plateau time, between t = 10βh̄ and t = 20βh̄. This shows essentially
the same behaviour as seen for the symmetric system in Fig. 1 of the main text.

In Fig. S4, we show that the qualitative behaviour is unchanged from Fig. 1 of the main text

when one adds a small bias to products, βε = 3.

In Fig. S5, we consider a system which is equivalent to that considered in Fig. 1 of the main

text, except that it is in the overdamped γ = 4Ω rather than underdamped regime. This illustrates

that the overcoherence problem is less significant at high friction.

In Fig. S6, we show the results of including the simple decoherence correction on FSSH. These

were left out of the main paper to avoid clutter. This illustrates that unlike for MASH, the simple

decoherence correction is unable to fix FSSH.

In Fig. S7, we consider a system with a large reorganisation energy, βΛ = 60, and high friction,

γ = 32Ω. This illustrates the utility of the flux-correlation formalism, as direct calculation of the

rates would be prohibitively expensive at the smallest values of ∆ considered.

In Fig. S8, we consider a system the same system as Fig. 1 of the main text. This figure

illustrates that the added decoherence correction does not affect the ability of MASH to predict

the correct ∆2 behavior.
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Figure S5: Log-log plot of the rate against the diabatic coupling, for a symmetric, βε = 0, spin-
boson model, with βh̄Ω = 1/4, and βΛ = 12 in the overdamped regime γ = 4Ω. FSSH and MASH
rates were calculated from the slope of ⟨Pp(t)⟩, at the plateau time, between t = 10βh̄ and t = 20βh̄.

0 0.5 1 1.5 2
ε/Λ

-4.5

-4

-3.5

-3

lo
g 1

0(
kβ

h- )

FSSH
FSSH + Decoherence
Marcus Theory
Exact (HEOM)

Figure S6: Logarithmic plot of the rate against reaction driving force, showing the famous Marcus
turn over behaviour for a spin-boson model with weak diabatic coupling, log10(β∆) = −7/5, βh̄Ω =
1/4, γ = Ω, and βΛ = 12. FSSH rates were calculated from the slope of ⟨Pp(t)⟩, at the plateau
time, between t = 10βh̄ and t = 20βh̄. To obtain the red line, the simple gap-based decoherence
correction was applied whenever V+ − V− > 4kBT .
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Figure S7: Log-log plot of the rate against the diabatic coupling, for an asymmetric, ε = Λ/4,
spin-boson model, with βh̄Ω = 1/2, γ = 32Ω and βΛ = 60. MASH rates were calculated using the
flux-correlation formalism, and exact HEOM results were taken from Ref. S3.
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Figure S8: Log-log plot of the rate against the diabatic coupling for a symmetric, βε = 0, spin-
boson model, with βh̄Ω = 1/4, γ = Ω and βΛ = 12. MASH rates were calculated from the slope
of ⟨Pp(t)⟩ at the plateau time, between t = 10βh̄ and t = 20βh̄. Equivalent to Fig. 1 of main text
showing that decoherence correction does not change the MASH result.
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