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Abstract. The control of biological systems presents interesting appli-
cations such as cell reprogramming or drug target identification. A com-
mon type of control strategy consists in a set of interventions that, by
fixing the values of some variables, force the system to evolve to a desired
state. This work presents a new approach for finding control strategies
in biological systems modeled by Boolean networks. In this context, we
explore the properties of trap spaces, subspaces of the state space which
the dynamics cannot leave. Trap spaces for biological networks can often
be efficiently computed, and provide useful approximations of attraction
basins. Our approach provides control strategies for a target phenotype
that are based on interventions that allow the control to be eventu-
ally released. Moreover, our method can incorporate information about
the attractors to find new control strategies that would escape usual
percolation-based methods. We show the applicability of our approach
to two cell fate decision models.

Keywords: Boolean network + Control strategy + Trap space -
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1 Introduction

The control of biological systems presents interesting applications such as cell
fate reprogramming, drug target identification for disease treatments or stem
cells programming [5,17]. Controlling a cell fate decision network could for
instance allow, in the case of cancer cells, to lead the system to an apoptotic state
and, therefore, evolve towards the elimination of pathological cells [1]. Finding
adequate candidates for control is a complex problem, in particular since the
experimental testing of all the possibilities is not feasible. Mathematical model-
ing can help address this problem by enabling in silico identification of possible
effective candidates.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-60327-4_9) contains supplementary material, which is avail-
able to authorized users.

© Springer Nature Switzerland AG 2020

A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 159-175, 2020.
https://doi.org/10.1007/978-3-030-60327-4_9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-60327-4_9
https://doi.org/10.1007/978-3-030-60327-4_9
https://doi.org/10.1007/978-3-030-60327-4_9

160 L. Cifuentes Fontanals et al.

Modeling of biological processes is often challenged by the lack of information
about kinetic parameters or specific reaction mechanisms. The Boolean formal-
ism aims at capturing the qualitative behavior of systems via a coarse represen-
tation of the relationship between the species of interest. Mechanisms underlying
activation and inhibition processes are summarized in logical functions, allowing
for two activity levels for each variable. The two values can represent for exam-
ple if a gene is expressed or not, or if the concentration of a protein is above or
below a certain threshold. Boolean modeling has in many instances been shown
to capture the fundamental behaviors and dynamics of biological systems and
has been widely used to make predictions or design strategies for therapeutic
interventions [3,6,7].

Control of biological systems is a broad field that encompasses a variety of
approaches and goals. Attractor control aims at leading the system to a desired
attractor, starting from a particular initial state (source-target control) [14] or
from all possible initial states (full-network control) [20]. However, it is often
useful to induce a desired phenotype rather than a specific attractor. Phenotypes
are usually defined in terms of some biomarkers i.e., observable and measurable
components that represent the main characteristics of biological processes. The
approach that focuses control on a set of relevant variables is also known as
target control [16,18]. In this work, we are interested in full-network control for
a target phenotype.

There are different approaches for system interventions, that is, the way the
control is applied to biological systems. In the context of Boolean modeling, we
consider as interventions the perturbations or modifications that fix the value
of some components (node control) [14,20]. In the example of a gene regulatory
network, fixing a variable to a certain value can be understood as the knockout
or permanent activation of a gene. Among other approaches to Boolean network
control is edge control, which targets the interactions between variables [2,15].
For a gene regulatory network, edge control can be interpreted for instance as
the modification of a protein to alter its interaction with a certain gene.

Control of dynamical systems has been a popular research field in systems
biology in the last years, also in the Boolean setting. Many approaches focus
on the structure and topology of the network, for example by looking at feed-
back loops [19] or stable motifs [20], and several studies discuss the complexity
and characteristics of such problems [9,13]. Other approaches include techniques
based on topological information to reduce the size of the search space [16] or
computational algebra methods [15]. Recent works have explored attractor con-
trol through the characterization of basins of attraction, that is, sets of states
from which only a certain attractor can be reached [14]. However, the identi-
fication of basins of attraction might require the exploration of the complete
state space. Attractor reachability can be investigated using trap spaces, which
are subspaces that trajectories cannot leave. By definition, every trap space con-
tains at least one attractor and, therefore, in some cases minimal trap spaces can
be good approximations for the attractors [11]. The identification of trap spaces
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in biological systems can often be performed efficiently by exploiting properties
of the prime implicants [10].

Our approach aims to identify strategies for phenotype control by exploit-
ing properties of trap spaces. We introduce the concept of space of attraction,
a subspace that approximates the basin of attraction, to find control strategies
without the need of computing the whole basin. We extend this idea to define
spaces of attraction for trap spaces and relate them to control strategies, which
are defined as sets of constraints that fix the value of some variables and induce
a certain target phenotype. We exploit properties of trap spaces and computa-
tion techniques for target control to define a new method to compute control
strategies that do not require a permanent intervention and allow the control
to be eventually released. Our approach can incorporate information about the
attractors to obtain new control strategies that might escape percolation-based
target control techniques. The method presented here is widely applicable to
Boolean models of biological systems and can provide, under certain conditions,
control strategies that are independent of the type of update used in the model.

We start by giving a general overview about Boolean modeling (Sect. 2).
Then we introduce the concepts of control strategy and space of attraction in
this setting (Sect. 3), providing the theoretical bases for the computation of some
types of control strategies. In Sect. 4, we present a method to compute control
strategies based on the theoretical principles explained in Sect.3 and imple-
mented using the prime implicants of the function. Lastly, in Sect. 5 we show the
applicability of our method to two cell fate decision networks [7,21].

2 Background: Boolean Networks and Dynamics

A Boolean network on n variables is defined as a function f: B™ — B", where
B ={0,1}. V ={1,...,n} is the set of variables of f, B™ is the state space of the
Boolean network and every x € B™ is a state of the state space. For any = € B"
and I C V, z! is defined as 2!/ = z; for i € V\I and ! = 1 —x; for i € I. If
I = {i}, z! is written as 7.

A dynamics on B" or state transition graph is a directed graph with vertex
set B™. There are several ways of associating a dynamics to a Boolean network f.
In the general asynchronous dynamics or general asynchronous state transition
graph GD(f) there exists an edge from a vertex x to a vertex y if and only
if there exists ) # I C V such that z/ = y and f;(z) = y; for every i € I.
Note that the general asynchronous dynamics considers transitions which update
subsets of components simultaneously in a non-deterministic way. By choosing
different types of updates, other state transition graphs can be defined. The
asynchronous dynamics AD(f) is defined by considering the transitions updating
only one component at a time and the synchronous dynamics SD(f) considers
only the transitions where all the components that can be updated are updated
at once. Note that AD(f) and SD(f) are subgraphs of GD(f). To simplify the
notation, D(f) will denote any of these dynamics associated to f. The choice of
asynchronous and general asynchronous updates is motivated by the attempt to
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capture different, and sometimes unknown, time scales that might coexist in the
modeled system. An example of asynchronous dynamics of a Boolean network
is shown in Fig. 1.

A trap set T C B™ is a set such that for all x € T, if y is a successor of = in
the dynamics, then y € T. A minimal trap set under inclusion is an attractor.
An attractor can be a stable state (or fixed point), when it consists only of one
state, or a cyclic (or complex) attractor when it is larger. In biological systems,
stable states can be identified with different cell fates or cell types, and cyclic
attractors with cell cycles or specific cell processes. Given a Boolean function f
and an attractor A, the weak basin of attraction of A is defined as the set of
states x such that there exists a path from z to an element of A in D(f). The
strong basin of attraction of A is the set of states in the weak basin of A that do
not belong to the weak basin of attraction of any other attractor different from
A. Figure 1 shows the weak and strong basins for an attractor in an asynchronous
state transition graph.

The control interventions considered in this work consist in fixing the values
of some components. Formally, given a state ¢ € B™ and a subset of variables
I C V, we define the subspace induced by ¢ and I as the set X (I,¢) = {x €
B"™| Vi € I,x; = ¢;}. The variables in I are called fized variables, while the other
variables are called free. We denote subspaces as states, using the symbol * for
the free variables. For example, the subspace {x € B*|z; = 1 and 23 = 0} is
denoted as 1 % Ox.

The identification of control variables requires examining the effect that fixing
certain variables has on the dynamics. Given a Boolean function f and a subspace
© = X(1,c), the restriction of the function f to the subspace © is defined as:

flo: © = O, where for all i € V, (f},)i(x) = {fi(x)’ il
¢, 1€l
Note that f;,: © — O can be identified with a Boolean network g: B™ — B™,
where m = n—|I|. Via this identification, we extend all the definitions that apply
to a Boolean network to such restrictions. For example, the state transition graph
corresponding to f},: © — O is defined as usual, only with vertex set © instead
of B™ (see Fig.2). Moreover, if T is a trap set in D(f), then TN O is a trap set
in D(f.).

A subspace that is also a trap set is called a trap space. While trap sets
and attractors might vary when considering different types of dynamics, trap
spaces are independent of the type of update. The Boolean function represented
in Fig. 1 has four trap spaces: 000, 111, 0 % 0, * * *.

In this work we aim at using trap spaces to find control strategies for pheno-
types. Phenotypes are usually defined in terms of the state of some measurable
components called biomarkers, which are observable components that can be
used as indicators of different cell types or cell fates or to distinguish between
healthy and pathological conditions. Although the notion of phenotype is usu-
ally related to stability, we extend this concept to consider any possible state
in order to allow non-attractive states satisfying the phenotype characteristics
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to become attractors in the controlled system. Thus, in this work, we define a
phenotype as a subspace.

3 Spaces of Attraction and Control Strategies

The strong basin of attraction of an attractor A can be naturally related to
control since, by definition, it contains all the states that have paths to A but
not to any other attractor. In contrast to methods requiring basin exploration,
we use subspace approximation of the basins combined with trap spaces com-
putation. To do so, we extend the notion of basin of attraction to trap sets. We
then exploit useful properties of trap spaces, e.g. independence of the update,
efficient identification and potential approximation of attractors, to develop a
new approach for the identification of control strategies.

Basins of attraction of Aj:

- e Strong(A:) = {000,001,010,011,101}
e Weak(A1) = {000,001,010,011, 101, 100, 110}

101
J 010 JT 011 Spaces of attraction of Aj:
g g

. 1 = 0xx, 29 = 00%, 25 = 01, 24 = 0%0, 25 = 0x1

[000]«—— 001 ¢ A )02 » 023 ) 0o ) 125 ’
- .Qe = *01, _(27 = OOO, Qg = 001, _Qg = 0107 QlO = 011,
211 = 101, with £2; C Strong(Ay) for all 1 <4 < 11.

Fig. 1. Asynchronous dynamics of the Boolean function f(z) = (TiZaxs V z1%2,

T1T2Z3V x1T2T3, T12T2 VX123 V T2x3), with attractors A1 = 000 and A = 111 and trap
spaces 000, 111, 00, x * *. All the spaces of attraction of A; are included in its strong
basin (in red) while the basin itself is not a space of attraction. (Color figure online)

3.1 Control Strategies

We now formalise the notion of control strategy. A control strategy is a subspace
defined by a set of interventions that fix the value of some variables and thus
force all attractors to be contained in the subspace defining the phenotype.

Definition 1. Given a Boolean function f and a subspace P C B™, a control
strategy (CS) for the phenotype P in D(f) is a subspace © C B™ such that, for
any attractor A of D(f},), AC P.

If the desired phenotype is a stable state in the original dynamics (P = {y},
y € B"™), a control strategy for P is a subspace © such that y is the only
attractor of f;,. Figure2 shows an example of a control strategy for a stable
state. The size of the subspace defining a control strategy represents the number
of interventions in the system. Therefore, the most interesting control strategies
are the subspaces that are maximal with respect to inclusion.
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A common approach in the context of control is the use of value percolation
[16,18]. Different combinations of variables to be fixed are considered, and their
values propagated iteratively until an invariant subspace is reached. A combina-
tion of variables and values is an intervention strategy if the subspace obtained at
the end of the iterative percolation process is contained in the target phenotype.
Strategies obtained with this approach satisfy the conditions of Definition 1. How-
ever, the class of control strategies identified by the definition is larger, as we will
discuss in the following.

110 111
o ~
100 101 J 1$0 —[110]
T 010 J 011 000 <— 010
/ A

000 +——— 001

Fig. 2. Asynchronous dynamics of the Boolean function f(z) = (z1Z3 V T2Z3, 1 V x3,
z123 V zox3) (left) and fi,(z) = (x1 V T2, z1, 0) with 2 = %% 0 (right). £ is a control
strategy for the phenotype P = {110} in AD(f). {2 does not percolate to P.

3.2 Spaces of Attraction

Trap sets are sets of states that the dynamics cannot leave. Each trap set con-
tains, as a consequence, at least one attractor. The concept of basin of attraction
defined for an attractor can be naturally extended to trap sets. As mentioned
before, we wish to approximate basins of attraction by subspaces. Combining
these two ideas, we introduce the concept of space of attraction of a trap set T
as a subspace {2 such that from any state in {2 there exists a path to 7" and no
trap set disjoint from T is reachable from (2.

Definition 2. Let f be a Boolean function and T be a trap set of f. A space
of attraction of the trap set T in D(f) is a subspace §2 such that for all x € 2
and for any trap set S, if there exists a path in D(f) from x to an element of S,
then SNT # 0.

Definition 2 implies the existence of a path from the space of attraction {2 to
the trap set T since, for any state in {2, the trap set consisting of all the states
reachable from it cannot be disjoint from 7. A trap set can have many spaces
of attraction. In fact, any subspace contained in a space of attraction is also a
space of attraction. Moreover, if there is only a unique trap set T}, minimal with
respect to inclusion contained in a trap set 7', any space of attraction of T is
also a space of attraction of T,,. Both trap spaces and spaces of attraction are
subspaces that characterize the long term behavior of the system. However, in
contrast to trap spaces, spaces of attraction can depend on the update.

If a trap set is an attractor, its spaces of attraction can be related to its basins
of attraction. The spaces of attraction of an attractor A are clearly contained in
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the strong basin of A since, by Definition 2, none of the other attractors can be
reached from any state inside the space of attraction. However, the strong basin
of attraction of A might not be a space of attraction (see Fig.1).

Spaces of attraction, as well as basins, might include paths crossing non-
attractive cycles in the state transition graph. As a consequence, some paths
starting in the space of attraction (or basin) might not reach the trap set (or
attractor), staying indefinitely in non-attractive cycles. While in very specific
circumstances such behavior might be relevant, generally it constitutes an arti-
fact arising from the non-deterministic update. Here, we extend the standard
view on basins of attraction to spaces of attraction, assuming the trajectories of
interest will eventually leave non-attractive strongly connected components in
the state transition graph.

The condition that a subspace needs to satisfy to be a space of attraction
of a trap set T' gets simplified when the subspace considered is the entire state
space. In this case, it is only required that the trap set T can be reached from
every state in the state space (see Lemma 1). This condition already implies that
there cannot be a trap set disjoint from T'.

Lemma 1. Let f be a Boolean function and T «a trap set of f. Then B" is a
space of attraction of the trap set T in D(f) if and only if for all x € B™ there
exists a path in D(f) from x to somey € T.

The application of Lemma 1 to the restriction on a subspace immediately
yields the following corollary.

Corollary 1. Let f be a Boolean function, T a trap set of f and §2 a subspace
such that T C £2. Then £2 is a space of attraction of T in D(f,) if and only if
for all x € (2 there exists a path in D(f,) from x to somey € T.

In other words, a space of attraction of a trap set T for the Boolean function
restricted to that subspace defines the restrictions that we can impose on the
function f to lead the dynamics to T. If T is a trap space, there is always a
trivial space of attraction for the restricted function which is T itself.

Note that a subspace {2 that is a space of attraction of T for the Boolean
function f is not necessarily a space of attraction for f;, (see Fig.3).

i 110} ] 110

] A 1 i A 1

1100 § 100 + 100 ¢~ 101 100 =
(a) i s T (b) .

T 000 « 010 P oo [000]+ 010

1000 : {000 15 001

Fig. 3. (a) 2 = x % 0 is a space of attraction for AD(f) and AD(f,,,), with f(z) =
(:fz V 213,213 V T2x3,T1T2 V 132133) and fh’z (I) = (fQ V 131,I1,0). (b) 2 = %xx0
is a space of attraction for AD(g) but not for AD(g;,,), with g(z) = (x1Z3 V Taz3 V
T1T2,21Z3 V T2T3,T1T2 V CUziEg) and 9o (CE) = (5617$E1, 0)
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Given a trap space T that only contains attractors belonging to a certain
phenotype P, any space of attraction that leads the system to T" would also lead
it to an attractor belonging to P. In other words, any space of attraction for
a trap space T is also a control strategy for a phenotype P if T' only contains
attractors belonging to P. The following proposition formalizes this idea.

Proposition 1. Let P C B™ be a subspace and f a Boolean function. Let T be
a trap space such that if A C T is an attractor of D(f), then A C P. Let {2 be
a space of attraction of T in D(f,,) such that T C (2. Then (2 defines a control
strategy in D(f) for P.

Proof. Let A be an attractor for D(f},). Then A C (2. Since {2 is a space of
attraction of T in D(f},) and A is a trap set in D(f},), TNA # 0. As T
and A are trap sets, T'N A is also a trap set in D(f;,). Since A is minimal,
A=TnNACT. Then, since T is a trap space and for all z € T, f;,(z) = f(z),
A is also an attractor of D(f) and, therefore, A C P. O

Since a trap space is always a space of attraction of itself, given a subspace
P C B", any trap space containing only attractors in P is a control strategy for
P. Note, however, that Proposition 1 does not characterize all the control strate-
gies satisfying Definition 1. The example in Fig.3 (a) shows a control strategy
{2 that does not percolate to any trap space containing only the attractor 110.

From a theoretical standpoint, the type of control strategies identified by
Proposition 1 allow the interventions to be released after a certain number of
steps. That is because these control strategies induce the target phenotype by
leading the system to a trap space. Once the trap space is reached, the control
can be released and the system will remain in the trap space, eventually evolving
to the phenotype of interest. This additional theoretical property could widen
the range of possible choices for system control. Provided that the time scales
of the processes involved are sufficiently understood, it could allow for instance
to apply interventions relying on agents that decay over time.

3.3 Identification of Spaces of Attraction

As explained in the previous section, control strategies for a phenotype P can be
found by identifying spaces of attraction of trap spaces containing only attractors
in P. In this section, we explore ways of finding these spaces of attraction.

Given a trap space T', we look for a subspace {2 such that from all states in
2 there is a path to T in D(f},). To do so, we use the idea of value percolation,
which is a common approach in the context of control. As explained in Sect. 3.1,
it is based on the fact that the constraints given by the fixed variables of a
subspace might induce further variables to get fixed. Thus, in our setting, a
subspace 2 = X(W, ¢) that percolates to the trap space T = X(U, ¢) is a space
of attraction of T"in f;,. The following lemma formalizes this idea.

Lemma 2. Let f: B — B" be a Boolean function, ¢ € B" and S = X (U, c¢),
2 = X (W, c) subspaces of B™ such that S C 2 and W C U C V. If for all
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s € U\W, fs(x) = ¢s for all x € 2, then for all x € §2 there exists a path in
D(f,,) from x to somey € S.

Proof. Since the proof depends on the update, we treat each case separately.

D = AD: For each z € {2 and for each s € U\W such that zs # cs,
fs(x) = c¢s. Therefore, x admits a successor y in AD(f},,) with ys = ¢s. This
implies the existence of a path in AD(f},,) from any state in {2 to S.

D = SD: For each z € 2 and for each s € U, fs(x) = cs. Therefore, x admits
a successor y € S C £2in SD(f;,,).

D = GD: Since all the paths in AD(f) and SD(f) are also paths in GD(f),
the conclusion follows from the previous cases. a

Lemma 2 can be extended with Corollary 1 to provide conditions that allow
the identification of spaces of attraction.

Lemma 3. Let f: B" — B" be a Boolean function and T = X (U, ¢) a trap space
of f withU CV and ¢ € B". Let 2 = X (W,c) be a subspace of B™ such that
TCRand W CUCV. If fs(x) =cs for allz € 2 and s € U\W, then §2 is a
space of attraction of T for D(f,).

To improve the spaces of attraction obtained with Proposition 1, we can
extend Lemma 3 applying the idea used in Lemma 2 several times, building a
path of percolated subspaces ending in the trap space T.

Proposition 2. Let f: B" — B" be a Boolean function and let ¢ € B™. Let
T = X(U,c) be a trap space and 2 = X (W, c) be a subspace containing T with
W CUCV. Let Iy =W and Iy = {s € Uls € I, or fs(x) = ¢s for all x €
Sk}, where Sy = X(Iy,c). If there exists a kp such that Iy, = U, then 2 is a
space of attraction of T for D(f;,,).

Proposition 2 gives sufficient conditions for a subspace to be a space of attrac-
tion of a trap space in the restriction and, together with Proposition 1, provides a
way to identify control strategies for a given phenotype. However, not all spaces
of attraction fall under the conditions given by Proposition 2. The example in
Fig. 3 (a) shows a space of attraction {2 = x x 0 for a trap space T' = 110, which
is a control strategy for P = {110}, where {2 does not percolate to T.

Sometimes the attractors of a system of interest are known. In other cases
they are not known but can be approximated by minimal trap spaces [11], that
is, each minimal trap space contains only one attractor and every attractor is
included in a minimal trap space. This information is not usually exploited by
target control methods, which often rely solely on percolation-like techniques.
The approach described in this work can use this knowledge to find additional
control strategies. If the attractors are known or they can be approximated by
minimal trap spaces, we can easily find trap spaces satisfying the conditions
of Proposition 1 by simply checking whether these attractors or minimal trap
spaces are included in a trap space. Therefore, larger trap spaces containing only
attractors of the target phenotype can be identified. By Proposition 1, spaces
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of attraction for these trap spaces are also control strategies for the phenotype.
These control strategies do not necessarily percolate to the phenotype and, there-
fore, might not be identified by usual percolation techniques. Figure 2 shows an
example of such a control strategy, where {2 =T = % %0 is a space of attraction
for the trap space 7', which contains only the attractor A = 110, and so, is a
control strategy for the phenotype P = A. Note that {2 does not percolate to A.
The attractors of a Boolean network might vary in different dynamics. There-
fore, the trap spaces satisfying Proposition 1 and the control strategies charac-
terized by them might also be dependent on the dynamics. Conversely, the spaces
of attraction obtained by Proposition 2 are independent of the update. Thus,
if the trap spaces considered satisfy the conditions of Proposition 1 in all the
dynamics, the control strategies identified are also independent of the update.

4 Computation of Control Strategies

We propose a method to find control strategies for a given phenotype, using
the ideas explained in the previous section. The main steps of the method are
represented in Fig.4 and the detailed procedure is shown in Algorithm 1.

In order to implement the computation of the control strategies, we use the
prime implicants of the function. Given a Boolean function f: B" — B", a c-
implicant of f;, with ¢ € B and 7 € V, is a subspace @ such that f;(z) = ¢ for
all x € Q. A prime implicant is an implicant that is maximal under inclusion.
Given T = X(U,¢), finding a subspace satisfying the hypothesis of Lemma 3
is equivalent to finding a subspace that is a ¢;-implicant of f; for all ¢ € U.
Moreover, prime implicants can also be used to compute the trap spaces [10]. The
computation of the prime implicants of a Boolean function is in general a hard
problem. However, networks modeling biological systems are usually relatively
sparse, since the number of components regulating a variable is relatively small
compared to the size of the network. Therefore, they are rather tractable in terms
of prime implicants computation. Several tools are available for the computation
of prime implicants and trap spaces. We use PyBoolNet [12], a Python package
that allows generation and analysis of Boolean networks and provides an efficient
computation of prime implicants and trap spaces for quite large networks.

Selected
Phenotype
trap spaces
Prime implicants
‘ Boolean network H I e }7
and trap spaces

Fig. 4. Main steps of the method for finding control strategies for a phenotype, rep-
resented in color boxes according to their role: inputs (blue), precomputation (green),
main computation (beige), output (red). (Color figure online)

Spaces of
attraction

Control strategies
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We describe now the main steps of the method, outlined in Fig. 4.

Inputs. The inputs are the Boolean function describing the system and the
subspace of the target phenotype P. The attractors, if known, are also used as
input. Prime implicants and trap spaces can be given as input or computed from
the Boolean function.

Selection of Trap Spaces. Trap spaces of interest are divided into two types:
trap spaces contained in P (Type 1) and trap spaces not contained in P but
containing only attractors in P (Type 2). As trap spaces have been identified
in the previous step, this selection only requires checking whether a trap space
belongs to one of the types (Algorithm 1: 3-5). Trap spaces of Type 2 are only
identified when all the attractors are known or can be approximated by minimal
trap spaces. In order to avoid unnecessary calculations, we do not consider trap
spaces that percolate to smaller ones, since if a trap space T percolates to a
trap space T5, all spaces of attractions of 77 are also spaces of attraction of T5.

Algorithm 1. Control strategies for a phenotype P

Input: f Boolean function, P phenotype, attr attractors of f (optional), m limit
size of control strategies (optional)
Output: control strategies for P

1: function CONTROLSTRATEGIES(f, P, attr)

2: T < trapSpaces(f)

3: selTS « selectedTrapSpaces1(T, P)

4: if attr # () then:

5: selTS « selTS + selectedTrapSpaces2(T, P, attr)

6: CA 0

7 for ¢ in {1,..., min(m, n)} do: > n total number of variables
8: S «— {S subspace: |fixed(S)| = ¢, 3T € selTS with T C S}

9: for Sin S do:
10: if (S ¢ S for all " in CA) and isSpaceAttraction(f, S, selTS) then:
11: add S to CA
12: return CA

Algorithm 2. Subspace is a space of attraction
Input: f Boolean function, S subspace, TS trap spaces
Output: True if S is space of attraction of a trap space in TS. False otherwise.
1: function ISSPACEATTRACTION(f, S, TS)
2: {” « percolateFunction(f, S)
3: return isNotEmpty({T in TS: T C S and fixed(T) C fixed(f’)})

Computation of Spaces of Attraction. Spaces of attraction for the trap
spaces from the previous step are computed using the theoretical principles
described in Proposition 2. The detailed procedure is shown in Algorithm 1:
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6-11. For each subspace S that contains at least one of the selected trap spaces
(Algorithm 1: 8), it is checked whether it is a space of attraction for one of the
selected trap spaces (Algorithm 1: 10). To do so, the percolated function of f
obtained by fixing the variables in S is calculated (Algorithm 2: 2). If T" is con-
tained in the subspace generated by S and all the variables fixed in T are also
fixed in the percolated function, then the subspace generated by S is a space
of attraction of T' (Algorithm 2: 3). Since the aim is to find maximal spaces of
attraction satisfying this property, the subspaces S are taken randomly fixing
an increasing number of variables, so that supersets of sets already defining a
space of attraction are not considered (Algorithm 1: 8, 10).

Output The obtained spaces of attraction are control strategies for the pheno-
type P by Proposition 1 and, therefore, are returned as output.

The method also allows to include some constraints on the control strate-
gies. One example is the exclusion of some components, which can be taken into
account when selecting the subspaces S (Algorithm 1: 8). In addition, limiting
the number of interventions (Algorithm 1: 7) might allow to reduce the compu-
tational cost without losing interesting solutions, since small control strategies
are usually the most relevant.

The computation of trap spaces scales well with the size of the network
[10]. On the other hand, the identification of control strategies is based on the
exploration of all possible candidate subspaces and might pose a difficulty in
terms of scalability over large networks. Possible approaches that address this
point are suggested in the discussion.

5 Application: Cell Fate Decision Networks

In this section we discuss the application of our method to two Boolean networks
describing cell fate decision processes. In the first case study we consider two
different control problems, one having a phenotype as target for the control, the
second targeting single attractors. The second case study focuses on phenotype
control. We compare the control strategies identified by our approach to the
ones obtained using exclusively value percolation, as described in Sect. 3.1. We
show that, for both examples, new control strategies can be identified with the
procedure introduced in this work.

All computations in this section were done on an 8-processor computer,
Intel®Core™ i7-2600 CPU at 3.40 GHz, 16 GB memory, without any use of
parallelization. The running times indicated are for the full procedure described
in Section 4, with the time for computing and selecting trap spaces being a
negligible fraction of the total time in all cases. The source code is available at
http://github.com/lauracf/trap-space-control.

5.1 MAPK Network

The network considered in this case study was introduced by Grieco et al. (2013)
[7] to model the effect of the Mitogen-Activated Protein Kinase (MAPK) path-
way on cell fate decisions taken in pathological cells (see Fig.5). It uses 53
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Boolean variables, four being inputs (DNA-damage, EGFR-stimulus, FGFR3-
stimulus and TGFBR-stimulus) and three outputs (Apoptosis, Proliferation and
Growth-Arrest). The asynchronous dynamics has 18 attractors, 12 being stable
states and 6 cyclic attractors. All of them can be approximated by minimal trap
spaces, since each minimal trap space only contains one attractor and there is
no attractor that is not contained in a minimal trap space [11]. Therefore, we
can use trap spaces of both Type 1 and Type 2 to compute control strategies.

The phenotype chosen as target for the control is the apoptosis phenotype,
which is defined in [7] as the states fixing Apoptosis and Growth Arrest to 1
and Proliferation to 0. There are 103 non-percolating trap spaces, which are
trap spaces that do not percolate to smaller ones, containing only attractors in
the apoptosis phenotype. Of these, 64 are of Type 1 and 39 of Type 2. We set
an upper bound of four components to the size of the control strategies, since
generally only small control strategies are of interest and this limit already allows
to find relevant ones. In addition, we exclude interventions that fix any of the
output nodes of the network. In this setting, we identify two control strategies
of size 1 ({TGFBR-stimulus = 1} and {DNA-damage = 1}) and no control
strategies of size 2, 3 and 4. The running time is around 6 min.

Using exclusively the percolation of the fixed values we identify two control
strategies of size 1 ({TGFBR-stimulus = 1} and {TGFBR = 1}), 121 control
strategies of size 2, 164 of size 3 and 139 of size 4. Looking at the Boolean
function, we observe that TGFBR is uniquely regulated by TGFBR-stimulus,
so fixing TGFBR-stimulus to 1 implies that TGFBR is also fixed to 1 and,
therefore, these interventions are equivalent in terms of their effect on the apop-
tosis phenotype. However, it is obvious that if the control fixing TGFBR to 1 is
released, TGFBR could be updated to zero again by TGFBR-stimulus, and this
change would induce the system to leave the apoptosis phenotype. Therefore,
the control of TGFBR requires a permanent intervention.

Our method uncovers the control strategy {DNA-damage = 1}, which is
not obtained by using solely value percolation. In fact, the percolation of the
subspace defined by this strategy does not reach the phenotype, but stops at
the subspace T' = {DNA-damage = 1, ATM = 1, TAOK = 1}. This implies
that the components defining the phenotype can still oscillate in the restricted
system. However, since T is one of the trap spaces selected by our method, all
the attractors inside T" belong to the apoptosis phenotype and, therefore, the
constraint {DNA-damage = 1} is identified as a control strategy.

Of the control strategies of size 2, 3 and 4 that can be identified by perco-
lation, 18, 13 and 7 respectively are supersets of the control strategy {DNA-
damage = 1} identified by our method. For this reason, the subspaces obtained
by percolating these interventions are contained in the trap space T" mentioned
above and therefore the associated control can be eventually released, without
affecting the reachability of the target. The remaining control strategies are not
guaranteed to lead to a trap space. As a consequence, in these cases, an early
release of the control could lead to the loss of the control goal. This illustrates
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how our method can complement previous approaches, by identifying new con-
trol strategies of low complexity, while at the same time providing information
about the effects of a possible release of the control.

The components appearing in the minimal control strategies identified (DNA-
damage and TGFBR-stimulus) correspond to two inputs of the model. These
inputs represent anti-proliferative stimuli from the MAPK network [7] and,
therefore, can be expected to play an important role in the phenotype deci-
sion. It is, however, certainly interesting that they are capable of fully inducing
the apoptosis phenotype without further conditions on internal processes.

In addition to the control problem for the apoptosis phenotype, we also
searched for control strategies for the 10 apoptotic stable states. We set the
maximum size of control strategies to five. For eight stable states (4; to Ag in
Table 1) exactly one control strategy of size 4 is obtained. For stable state Ag,
two control strategies of size 5 are found, and for A;¢ no control strategies up to
size 5 are identified. The list of stable states and their control strategies can be
found in the supplementary material. The running time for one stable state is
around 21 min.

Since the chosen stable states belong to the apoptosis phenotype, all the
selected trap spaces are also considered when computing the control strategies
for the apoptosis phenotype. Therefore, the control strategies of the stable states
are subspaces of the ones obtained for the apoptosis phenotype. One of the main
differences is that the four inputs are present in all the control strategies of the
stable states. The input variables are, by definition, not regulated by any com-
ponent, and therefore must be directly controlled if the value in a given steady
state is to be achieved. The analysis of the control problem for the phenotype
revealed that fixing DNA-damage to 1 is enough to lead the system to the apop-
tosis subspace, but fixing the additional inputs is necessary to obtain a specific
steady state. Fixing the four inputs is already enough to induce the stable states
Ay to Ag solely by percolation. However, the stable states Ag and A1 require
additional internal processes to be controlled. For Ag, the two control strategies
identified do not percolate directly to the attractor, but lead the dynamics to one
of the selected trap spaces. For Ajg, no control strategies up to size 5 are found
neither by our method nor percolation techniques, suggesting that a higher num-
ber of interventions might be necessary. These observations show that control
for a phenotype can be more achievable than for a specific attractor, and thus
in some cases more interesting for application.

5.2 T-LGL Network

We now consider a control problem for the network introduced by Zhang et
al. (2008) [21] to model the T cell large granular lymphocite (T-LGL) survival
signaling network (see Fig. 6). It consists of 60 Boolean variables, six being inputs
(CD45, IL15, PDGF, Stimuli, Stimuli2 and TAX) and three readouts (Apoptosis,
Proliferation and Cytoskeleton-signaling). The asynchronous dynamics has 156
attractors, 86 being stable states and 70 cyclic attractors. As in the previous
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network, all of them can be approximated by minimal trap spaces [11]. Thus, we
can use trap spaces of both Type 1 and Type 2 to compute control strategies.

We consider the apoptosis phenotype defined by fixing Apoptosis to 1 and
Proliferation to 0. Note that the third readout, Cytoskeleton signaling, is forced
to 0 by its regulator Apoptosis having value 1. There are 883 non-percolating trap
spaces containing only attractors in the apoptosis phenotype. 729 trap spaces
are of Type 1 and 154 of Type 2. As in the previous case study, we set an upper
bound of four components to the size of the control strategies and we exclude
interventions that fix any of the readout nodes of the network. In this setting,
six control strategies are identified: three of size 3 ({CD45 = 0, IL15 = 0, PDGF
=1}, {CD45 = 0, IL15 = 0, Stimuli = 1}, {CD45 = 0, IL15 = 0, TAX = 1})
and three of size 4 ({CD45 = 1, PDGF = 0, PDGFR = 0, Stimuli2 = 1}, {CD45
=1, PDGF = 0, S1P = 0, Stimuli2 = 1}, {CD45 = 1, PDGF = 0, SPHK1 = 0,
Stimuli2 = 1}). The running time is around 12 min.

The three control strategies of size 3 consist only of input components. All the
control strategies of size 4 have three components in common while the fourth
varies within PDGFR, S1P and SPHK1, suggesting that these three interventions
might be equivalent in terms of their effect on the apoptosis phenotype. In fact,
by looking at the Boolean function, we observe that fixing PDGFR = 0, implies
SPHK1 = 0, which also implies S1P = 0. Identifying equivalent interventions a
priori might allow to reduce the computational cost of the method.

Using only percolation we find exactly one control strategy of size 1 ({Caspase
= 1}) and none of size 2, 3 or 4. However, this control strategy is relatively
trivial since the Caspase component is directly regulating Apoptosis. The control
strategies identified by our method do not percolate directly to the phenotype.
At the end of the percolation process, the dynamics reaches one of the trap
spaces selected as containing only attractors in the apoptosis phenotype. This
case study highlights the added value of our approach which can uncover relevant
system interventions not identified by usual percolation approaches.

6 Discussion

In this work, we considered properties of trap spaces and principles of target
control to introduce a new approach to compute control strategies. The proce-
dure proposed is applicable to both phenotype and attractor control and allows
the interventions to be released after a certain amount of time, in contrast to
usual target control methods that require permanent interventions.

The approach presented here is widely applicable to Boolean models of biolog-
ical systems and can provide intervention strategies that are independent of the
type of update considered in the modeling. Moreover, restrictions on the control
strategies, in the form of variables to be excluded, can be added. Our approach
also allows to incorporate information about the attractors, with the possibility
to obtain control strategies that escape regular percolation-based techniques. As
demonstrated with the two case studies, our method can identify new control
strategies that require a small number of control variables, and thus revealing
potentially valuable intervention approaches.
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Our approach efficiently identifies control strategies for relatively large bio-
logical networks. A naturally important further step is a rigorous comparison
with existing methods, for instance approaches based on stable motifs [18,20].
Furthermore, the performance of the method could benefit from the adoption of
fine-tuning strategies developed to speed up some procedures involved in candi-
date screening. For instance, we could consider the reduction of the size of the
search space by identifying a priori equivalent interventions, adapting existing
approaches [16]. Moreover, approaches based on answer set programming have
been used to efficiently compute minimal intervention strategies [8]. One could
investigate extending such approaches to the detection of the control strategies
characterized in our work. Further steps also include the extension of the method
to other types of control, such as edge interventions or sequential control.
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