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Abstract 

The human thalamus is a bilateral and heterogeneous grey matter structure that plays a crucial role in 
coordinating whole-brain activity. Investigations of its complex structural and functional internal 
organization revealed to a certain degree overlapping parcellations, however, a consensus on thalamic 
subnuclei boundaries remains absent. Recent work suggests that thalamic organization might 
additionally reflect continuous axes transcending nuclear boundaries. In this study, we used a 
multimodal approach to uncover how low-dimensional axes that describe thalamic connectivity patterns 
to the cortex are related to internal thalamic microstructural features, functional connectivity, and 
structural covariance. We computed a thalamocortical structural connectome via probabilistic 
tractography on diffusion MRI and derived two main axes of thalamic organization. The principal 
thalamic gradient, extending from medial to lateral and differentiating between transmodal and 
unimodal nuclei, was related to intrathalamic myelin profiles, and patterns of functional connectivity, 
while the secondary axis showed correspondence to core-matrix cell type distributions. Lastly, 
exploring multimodal thalamocortical associations on a global scale, we observed that the medial-to-
lateral gradient consistently differentiated limbic, frontoparietal, and default mode network nodes from 
dorsal and ventral attention networks across modalities. However, the link with sensory modalities 
varied. In sum, we show the coherence between lower dimensional patterns of thalamocortical structural 
connectivity and various modalities, shedding light on multiscale thalamic organization.  
 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 2, 2024. ; https://doi.org/10.1101/2024.02.01.578366doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.01.578366
http://creativecommons.org/licenses/by-nc-nd/4.0/


 John et al.              3 

1.    Introduction 
As part of the diencephalon, the human thalamus is a bilateral grey matter structure that orchestrates 
whole-brain activity (Shine et al., 2023). Due to its extensive connections to the entire cerebral cortex, 
and subcortical structures such as the basal ganglia and the cerebellum, the thalamus can be 
characterized as a ‘connector hub’ region in the brain. In the past, the thalamus was primarily described 
as a relay passively transferring information to the cortex. More recent perspectives, however, are 
superseding this cortico-centric notion and emphasize the thalamic impact on mediating the 
corticocortical information transfer, the integration of information between cortical networks (Sherman, 
2016; Hwang et al., 2017; Sherman and Guillery, 2013) and its role in cognition (Hwang et al., 2022; 
Halassa and Kastner, 2017; Schiff, 2008; de Bourbon-Teles et al., 2014; Saalmann et al., 2012). 

The internal organization of the thalamus is highly complex. Ex vivo, it has been parcellated into 
multiple subnuclei through analyzing histologically stained dissected post-mortem brains (Jones, 1985; 
Morel et al., 1997). These thalamic subnuclei contain a blend of two thalamic cell types, referred to as 
‘core’ and ‘matrix’ cells, in varying proportions (Clascá et al., 2012; Jones, 1998). While core cells tend 
to target specifically layer IV and V of primary sensory cortex, matrix cells have widespread cortical 
projections and innervate the supragranular layers I-III (Clascá et al., 2012; Jones, 2009, 2001, 1998). 
Further, the thalamic nuclei can be broadly classified into first-order nuclei (i.e., ventral posterolateral 
nucleus) that receive ascending sensory and modulatory cortical input, and higher-order nuclei (i.e., 
mediodorsal nucleus) that receive their input entirely from the cortex (Sherman, 2012; Sherman and 
Guillery, 1998). Compared to post-mortem studies, non-invasive neuroimaging using magnetic 
resonance imaging (MRI) provides the opportunity to study the thalamic organization and its 
relationship to the cortex in vivo, enabling data acquisition in large sample sizes and investigations of 
structure-function coupling. While delineating the thalamus locally using standard T1- and T2-weighted 
MRI images remains challenging due to poor tissue contrast (Tourdias et al., 2014), utilizing global 
approaches, such as structural and functional connectivity methods, that consider the extensive 
interrelation between the thalamus and the cerebral cortex has provided valuable insights into thalamic 
organization (Behrens et al., 2003a; Ji et al., 2016). In the pioneering work of Behrens et al. (2003a), 
the thalamus was parcellated based on thalamocortical (TC) probabilistic tractography using diffusion 
weighted imaging (DWI). This parcellation was highly inter- and intra-subject reproducible (Traynor 
et al., 2010) and showed robust correspondence with thalamic function (Johansen-Berg et al., 2005). 
Further approaches based on DWI were explored to uncover thalamic organization (O’Muircheartaigh 
et al., 2011; Battistella et al., 2017; Stough et al., 2014) and accordingly several thalamic atlases have 
been published (Behrens et al., 2003a; Iglesias et al., 2018; Najdenovska et al., 2018). Alongside 
structural connectivity, the functional coupling between the thalamus and cortex has been used to gain 
insights into the thalamic organization through TC functional connectivity (Ji et al., 2016; Hwang et al., 
2017; Zhang et al., 2008). Taken together, the existing literature suggests that the heterogeneous 
organization of the thalamus can be subdivided into nuclei dependent on scale and modality. These 
subnuclei vary in morphology, connectivity, and function. 
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Though subregions derived from different modalities overlap to a certain degree, a consensus of 
thalamic parcellation remains absent due to the high complexity of this region (Iglehart et al., 2020). 
Specifically, drawing clear and universal boundaries proves challenging because of the complex 
connectivity profiles of thalamic nuclei that target multiple cortical regions and are associated with 
various functional networks (Hwang et al., 2017). From a developmental point of view, the emergence 
of thalamic structural and functional properties is guided by molecular gradients of morphogens and 
transcription factors (López-Bendito and Molnár, 2003; Vogel et al., 2022; Govek et al., 2022). This is 
reflected in transitional patterns of gene expression and cytoarchitecture transcending hard borders of 
thalamic nuclei (Roy et al., 2022; Gao et al., 2020; Phillips et al., 2019). Indeed, applying transcriptional 
profiling in mice revealed that gradual changes in gene expression are tied to anatomical and 
electrophysiological properties (Phillips et al., 2019). In line with this, recent advances of studying brain 
organization have shifted their focus on revealing spatially graded changes of neurobiological properties 
across the brain, in addition to the traditional approaches of defining discrete brain regions (Bernhardt 
et al., 2022; Margulies et al., 2016; Smallwood et al., 2021; Valk et al., 2020; Paquola et al., 2019; 
Huntenburg et al., 2018). These continuous axes of spatial variation are referred to as ‘gradients’. While 
this approach has mainly been applied to understand macroscale cortical organization, recent work 
uncovered transitional axes that help explain organizational patterns of the human thalamus (Oldham 
and Ball, 2023; Zheng et al., 2023; Yang et al., 2020). Based on the joint analysis of TC structural 
connectivity and gene expression data, a phylogenetically conserved medial-to-lateral axis has been 
reported that captured transitions in cell type variations (Oldham and Ball, 2023). Furthermore, TC 
functional connectivity has been shown to follow a medial-to-lateral axis associated with thalamic grey 
matter volume, and an anterior-to-posterior axis corresponding to functional networks (Yang et al., 
2020). These axes might arise from smooth transition at the microscale level (Phillips et al., 2019; Roy 
et al., 2022). 

On top of genetic determination, thalamic functional activity has a substantial influence on cortical 
maturation through activity-dependent maturational processes (Antón-Bolaños et al., 2018; López-
Bendito, 2018). A global measure used in neuroimaging that is hypothesized to capture both genetic 
and maturational coherences is structural covariance, which describes covariation in structural 
properties, such as cortical thickness, across different brain regions (Alexander-Bloch et al., 2013a). 
Although the biological mechanisms driving structural covariance remain incompletely understood, 
they may implicate activity-induced synaptogenesis and/or synchronous neurodevelopment 
(Alexander-Bloch et al., 2013b; Evans, 2013), and relate to shared genetic effects (Valk et al., 2020; 
Schmitt et al., 2009). In mice, TC structural covariance has been used to investigate thalamic 
organization, which showed some correspondence between TC structural and functional connectivity 
(Yee et al., 2024), suggesting a link between shared maturational patterning and connectivity in the 
thalamus.  

In the current study, we explored how the internal organization of the human thalamus based on its 
structural connections to the cortex corresponds with the distribution of thalamic microstructural 
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features, as well as TC functional connectivity and structural covariance. We assessed the structural 
connections between thalamic-seeds and the cortex by computing probabilistic tractography and 
extracted low-dimensional axes of thalamic organization. To contextualize our findings, we spatially 
associated these axes to intrathalamic microstructural features, such as grey matter myelin based on 
quantitative T1 (qT1), and the distribution of cell types based on gene expression data. Additionally, 
we explored the association between the lower dimensional organization of structural and functional 
connectivity. Moving to a more global perspective, we further investigated how the thalamic gradients 
are related to macroscale cortical patterns and studied the link to TC functional connectivity and qT1-
based TC structural covariance.  
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2.    Results 
Thalamic Gradients Based on TC Structural Connectivity (Figure 1) 

The first aim of this study was to investigate the spatial organization of the thalamus based on TC 
structural connectivity. To do so, we applied probabilistic tractography to map the white matter 
connections between thalamic voxels and 100 ipsilateral cortical parcels in each subject. The resultant 
thalamic-seed-by-cortical-parcel structural connectivity matrices contained the number of streamlines 
between seeds and parcels. After averaging across subjects, the group-level structural connectivity 
matrix was normalized column-wise (Figure 1A). To uncover the lower dimensions of this structural 
connectivity matrix, we first derived an affinity matrix (Figure 1B) and further applied dimensionality 
reduction via diffusion map embedding. The decomposition yielded ten unitless gradient components, 
where nodes that share similar connectivity profiles were embedded closer together, and nodes with 
little connectivity similarity mapped further apart. Each gradient component represented a particular 
axis of the thalamic organization and explained a certain amount of variance (Figure 1C). Henceforth, 
we focused on the first two components/gradients that accounted for a total variance of 46.42 % in the 
left hemisphere and 46,47 % in the right hemisphere. The principal TC structural connectivity gradient 
(G1sc; explained variance left hemisphere (LH): 25.99 %, right hemisphere (RH): 25.82 %) defined a 
medial to lateral-central axis of the thalamus (Figure 1D). The secondary gradient (G2sc; explained 
variance LH: 20.43 %, RH: 20.65 %) located one apex at the medial-anterior but also posterior pole of 
the thalamus and the opposite apex intersected the thalamus from anterior-lateral to medial-central 
(Figure 1E). Further, we showed robustness of gradient patterns derived from structural connectivity 
matrices thresholded at different percentiles (Supplementary Figure 1). 

To relate the TC structural connectivity gradients to previously defined discrete thalamic subnuclei, we 
used the THOMAS parcellation in MNI152 space (Su et al., 2019; Saranathan et al., 2021). In the 2D 
gradient frame, we color-coded datapoints according to the corresponding subnucleus showing the 
spatial distribution of subnuclei along these two axes. Ordering the distinct nuclei based on the median 
of their gradient loadings revealed for G1sc the following order: AV, MTT, Hb, MD, VA, Pul, MGN, 
VLa, VPL, VLP, CM1 and hence differentiated between higher-order nuclei and sensorimotor nuclei. 
Ordering the nuclei along G2sc resulted in: MGN, VPL, AV, Pul, CM, VLP, Hb, MD, MTT, VA, VLa1, 
and henceforth does not separate first-order and higher-order nuclei (Figure 1F). Here, results of the left 
hemisphere are reported, however, they were similarly replicated in the right hemisphere 
(Supplementary Figure 2).  

 
1 AV: Anterior ventral nucleus, MTT: Mammillothalamic tract, Hb: Habenular nucleus, MD: Mediodorsal nucleus, VA: 
Ventral anterior nucleus, Pul: Pulvinar nucleus, MGN: Medial geniculate nucleus, VLa: Ventral lateral anterior nucleus, VPL: 
Ventral posterior lateral nucleus, VLP: Ventral lateral posterior nucleus, CM: Centromedian nucleus (Su et al., 2019) 
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Figure 1: Thalamocortical Structural Connectivity Gradients. A Normalized group-level structural connectivity matrix 
resulting from probabilistic tractography computation between thalamic seed-voxels and cortical parcels (i.e., TC). B Affinity 
matrix derived from group-level structural connectivity matrix using a normalized angle similarity kernel. C Decomposition 
of affinity matrix into ten gradient components using diffusion map embedding. For each component the corresponding 
explained variance is displayed. D Gradient loadings of component 1 (G1sc) projected on the thalamus (axial planes). The red 
lines in the glass brain indicate the position of each respective axial slice of the displayed thalamus. E Gradient loadings of 
component 2 (G2sc) projected on the thalamus. Slice positions are congruent to D. F Left: Decoding of G1sc and G2sc based on 
THOMAS atlas. 2D space framed by G1sc and G2sc, color-coded by thalamic subnuclei. Middle and right: Raincloud plots 
display the gradient loadings of G1sc and G2sc per nucleus and are ordered by median, respectively. All results are presented 
for the left hemisphere, however, they were similarly replicated in the right thalamus (Supplementary Figure 2). Abbreviations 
in F: AV: Anterior ventral nucleus, VA: Ventral anterior nucleus, VLa: Ventral lateral anterior nucleus, VLP: Ventral lateral 
posterior nucleus, VPL: Ventral posterior lateral nucleus, Pul: Pulvinar nucleus, MGN: Medial geniculate nucleus, CM: 
Centromedian nucleus, MD: Mediodorsal nucleus, Hb: Habenular nucleus, MTT: Mammillothalamic tract  
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TC Structural Connectivity Gradients are Associated with Microstructure and Functional 
Connectivity (Figure 2) 

After computing structural connectivity gradients, we probed whether they relate to underlying thalamic 
organizational properties, such as microstructural features (distribution of qT1 values as a proxy for 
myelin, distribution of core and matrix cells), and thalamic gradients based on TC functional 
connectivity. 

Intrathalamic Myelin 

To examine whether G1sc and G2sc reflect intrathalamic microstructural variation, we used the group-
level thalamic qT1 values as a modality estimate for grey matter myelin (Figure 2A). Note that lower 
qT1 values are associated with a higher myelin content and vice versa. We tested the statistical 
relationship between both gradient maps and the group-level qT1 map using Pearson correlation and 
corrected for spatial autocorrelation using variograms (Burt et al., 2020). This analysis suggested a link 
between G1sc and the spatial distribution of qT1 (LH: r = -0.536, pSA = 0.038), whereas there was no 
significant correlation between G2sc and the qT1 map (LH: r = -0.068, pSA = 0.873). This trend was 
replicated in the right thalamus (RH: G1sc: r = -0.594, pSA = 0.011; G2sc: r = 0.119, pSA = 0.794). 

Distribution of Core and Matrix Cells 

Another main feature of thalamic organization on a microscale level is the varying distribution of core 
cells and matrix cells that also differ in their TC projection patterns (Jones, 1985; Clascá et al., 2012). 
To probe whether our identified gradients mirror this distribution, we used a difference map capturing 
the proportion of core cells and matrix cells based on mRNA level estimates (Müller et al., 2020). 
Statistically testing the relationship between the core-matrix map and G1sc (LH: r = -0.378, pSA = 0.135) 
and G2sc (LH: r = 0.676, pSA = 0.044) in the left hemisphere suggested an association between the 
distribution of core- and matrix cells and G2sc (Figure 2B). This analysis was limited to the left 
hemisphere due to the small sample size on which the right core-matrix map was grounded (see 
methods).  

TC Functional Connectivity Gradients 

Next, we explored the link between the low-dimensional organization of structural and functional 
connectivity (Figure 2C). Therefore, we calculated the TC functional connectivity by correlating the 
resting-state time series of thalamic seed voxels and cortical parcels and averaged across subjects. 
Analog to the computation of structural connectivity gradients, we applied diffusion map embedding to 
uncover the lower dimensional organization of the group-level TC functional connectivity. We 
correlated the resulting principal and secondary functional connectivity gradient maps (G1fc and G2fc) 
with the structural connectivity gradients and corrected for spatial autocorrelation using variograms. In 
both hemispheres, G1fc was correlated with G1sc (LH: r = 0.526, pSA = 0.044, RH: r = 0.564, 
pSA = 0.014). G1fc was not related to G2sc (LH: r = -0.095, pSA = 0.872, RH: r = -0.177, pSA = 0.754). 
The analysis further did not show an association of G2fc with G1sc (LH: r = -0.374, pSA = 0.083, RH: 
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r = -0.133, pSA = 0.532) and G2sc in the left hemisphere (r = 0.265, pSA = 0.242) but was correlated with 
G2sc in the right hemisphere (r = 0.484, pSA = 0.016). 

Taken together, we could show that TC structural connectivity gradients differentially reflected 
microstructure and cellular properties. Further, we observed an association between TC structural 
connectivity gradients and intrinsic TC functional connectivity organization. 
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Figure 2: Contextualization of Gradients with Microstructure and Functional Connectivity. A (left) Individual thalamic 
qT1 values were averaged to create a group-level qT1 map. Note, the inverse relation between qT1 intensity and approximated 
grey matter myelin. (middle) 2D space framed by G1sc and G2sc, color-coded by thalamic group-level qT1 intensity. (right) 
Correlation between qT1-intensity and G1sc (upper), and G2 (lower). B (left) Conceptualized representation of the core-matrix 
framework. Core cells (blue) project in a specific fashion to granular layers of the cerebral cortex, whereas matrix cells (red) 
innervate superficial cortex layers in a distributed fashion. (middle) 2D space framed by G1sc and G2sc, color-coded by the 
core-matrix difference map. Negative values (blue) of the colormap indicate a higher proportion of core cells, whereas positive 
values (red) indicate a higher proportion of matrix cells. (right) Correlation between core-matrix difference map and G1sc 
(upper) and G2sc (lower). C (left) Functional connectivity matrix (z-scored) resulting from correlating thalamic voxel and 
cortical parcel time-series and derived gradient decomposition into 10 components with respective eigenvalues. Principal and 
secondary components (G1fc and G2fc) displayed on the axial thalamus slice (see Supplementary Figure 3 for right hemisphere). 
(middle) 2D space framed by G1sc and G2sc, color-coded by (top) G1fc loadings and (bottom) G2fc loadings. (right) Correlation 
between (top) G1fc and structural connectivity gradients G1sc and G2sc, and (bottom) G2fc and structural connectivity gradients 
G1sc and G2sc; All results displayed for the left hemisphere.  

 

Cortical Projections of Structural Connectivity Gradients and Their Associations to Functional 
Connectivity and Structural Covariance (Figure 3)  

Next, we explored the thalamocortical associations based on white matter connectivity, functional 
connectivity and structural covariance to understand how thalamic and cortical organization interrelate.  

Cortical Projection of TC Structural Connectivity Gradients 

First, we computed for each cortical parcel the correlation between the TC structural connectivity profile 
and G1sc. The resulting Pearson’s r value was projected onto the equivalent cortical parcel (Figure 3A). 
Negatively loaded cortical regions indicated a stronger relationship with the thalamic medial portion, 
whereas positively loaded regions indicated a stronger relation with the lateral-central subregions of the 
thalamus. To decode the macroscale cortical patterns, the correlation coefficients were grouped based 
on functional communities (Yeo et al., 2011) and sorted along the mean r values per community. The 
decoding revealed a trend following the functional hierarchy from limbic to somatomotor networks with 
the visual network deviating from this trend. It is worth noting that the lateral geniculate nucleus (LGN, 
visual projections) is not included in the thalamic mask due to its peripheral localization. Mapping of 
G2sc onto the cortical surface followed the same principle and resulted in a dissociation between 
posterior and anterior cortical areas. More specifically, negative loadings located in the somatomotor, 
and dorsal attention network, whereas positive loadings were situated at the prefrontal cortex and 
cingulum (Figure 3A). Patterns were reproduced for the right hemisphere (Supplementary Figure 4). 
Summed up, the principal structural connectivity gradient mapped onto the cortex differentiated 
somatomotor and limbic areas, while the secondary gradient differentiated between anterior and 
posterior cortical regions.  

Associations of TC Structural Connectivity Gradients with TC Functional Connectivity 

Next, to study the association between structural connectivity gradients and functional connectivity, 
G1sc and G2sc were correlated with the functional connectivity profiles of each parcel. The resulting 
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Pearson correlation coefficients were projected onto the cortical surface (Figure 3B). For G1sc, negative 
loadings that indicate a strong relation with the medially located apex of G1sc were present in regions 
associated with the default mode network (DMN) but also frontoparietal network (FPN), and limbic 
networks. Positive correlations between parcel-wise functional connectivity profiles and G1sc that 
would indicate a relation to the more lateral-central thalamic apex were almost not present (LH: 3 % of 
parcels in range 0 ≤ r ≤ 0.03, RH: 8 % of parcels in range 0 ≤ r ≤ 0.09). For G2sc and parcel-wise 
functional connectivity profiles, negative correlation coefficients were generally low (LH: 10 % of 
parcels in range -0.05 ≤ r, RH: 1 % of parcels in range 0 ≤ r). Positive correlation coefficients were 
present in regions of DMN, FNP, and ventral attention network (VAN). Patterns were reproduced for 
the right hemisphere (Supplementary Figure 4).  

Associations of TC Structural Connectivity Gradients with TC Structural Covariance 

Last, we aimed to descriptively assess to what extent the defined structural connectivity gradients reflect 
patterns of TC structural covariance, a global measure that is hypothesized to capture maturational 
coherence (Alexander-Bloch et al., 2013b). Therefore, we computed a TC structural covariance matrix 
by correlating the qT1 values of each thalamic voxel with the qT1 value of each cortical parcel 
(collapsed along cortical depth) across subjects. Next, we correlated G1sc and G2sc with the parcel-wise 
structural covariance profiles and mapped the results onto the cortical surface (Figure 3C). For G1sc, 
negative correlations indicate stronger covariance between medially located thalamic areas and the 
temporal pole, lateral frontopolar cortex, and parts of the superior temporal gyrus. Positive loadings 
showed a dispersed pattern in superior parts of the cerebral cortex, where highest correlations were 
present in superior frontal, parieto-occipital regions, precuneus, and cingulate gyrus associated with 
lateral portions of the thalamus. Highest loadings were found in the dorsal attention network (DAN). 
Here, results are reported for the left hemisphere (Figure 3C). The pattern in the right hemisphere 
(Supplementary Figure 4) deviated partially (i.e., positive loadings in the superior temporal gyrus), 
possibly linked to asymmetries in cortical microstructural variability across individuals (Supplementary 
Figure 5). For G2sc correlation coefficients were generally low (LH: -0.18 ≤ r ≤ 0.21, Figure 3C; RH:   
-0.28 ≤ r ≤ 0.22; Supplementary Figure 4).  

Last, to assess consistency of gradient observations, we selected three prominent example nuclei of the 
thomas atlas (AV, VPL, and MD) that are distributed along G1sc, and explored the structural and 
functional connectivity projections, and structural covariance patterns. Again, we found the most clear 
differentiation of thalamic cortical projections for structural connectivity, followed by functional 
connections. Covariance showed most deviating patterns from the known projection patterns of the 
nuclei, as well as interhemispheric differences (Supplementary Figure 6).  
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Figure 3: Cortical Projections of Structural Connectivity Gradients and their Associations to Functional Connectivity 
and Structural Covariance. A (left) For each cortical parcel, the structural connectivity profiles of the sc matrix were pearson 
correlated with the structural connectivity gradients. (middle, top) Projection of r values resulting from parcel-wise correlation 
between sc profiles and G1sc onto cortex. Thus, negative values (blue) indicate relation with the medial part of thalamus, 
whereas positive values (red) indicate relation with lateral thalamic portions. (middle, bottom) Decoding of cortical pattern 
leveraging functional communities (ordered along mean). (right) Analog parcel-wise correlation between sc profiles and G2sc. 
B (left) Fc matrix and parcel-wise Pearson correlation of resting-state fc strength with the structural connectivity gradients. 
(middle, top) Projection of r values resulting from parcel-wise correlation between functional connectivity profiles and G1sc 
onto cortex, and (bottom) decoding of cortical pattern leveraging functional communities (ordered along mean). (right) Analog 
parcel-wise correlation between functional connectivity profiles and G2sc. C (left) Scov matrix and parcel-wise Pearson 
correlation of thalamocortical structural covariance with the structural connectivity gradients. (middle, top) Projection of r 
values resulting from parcel-wise correlation between structural covariance profiles and G1sc onto cortex, and (bottom) 
decoding of cortical pattern leveraging functional communities (ordered along mean). (right) Analog parcel-wise correlation 
between structural covariance profiles and G2sc. Abbreviation: sc: structural connectivity, fc: functional connectivity, scov: 
structural covariance 
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3.    Discussion 
In this study, we aimed to characterize the thalamic organization based on its structural connectivity 
profiles to the neocortex beyond the level of distinct nuclei borders. We followed a multimodal 
approach to explore the association between the defined axes of structural connectivity based thalamic 
organization and intrathalamic microstructural properties, TC functional connectivity, and TC structural 
covariance, a proxy for maturational coherence. Our study reported a principal axis/gradient of thalamic 
organization spanning from medial-to-lateral portions and segregating thalamic higher-order nuclei and 
sensorimotor nuclei. We found that this pattern spatially correlated with the intrathalamic qT1 
distribution, which we used as a proxy for microstructure, and with the first gradient based on TC 
functional connectivity. Mapped onto the cortex, the principal structural connectivity gradient separated 
limbic regions and somatomotor regions. Evaluating the multimodal convergence of TC associations 
(structural connectivity, functional connectivity, and structural covariance), we observed for the 
principal axis generally a differentiation between limbic, FPN, and DMN regions from DAN and VAN 
across modalities. Notably, associations with visual and sensorimotor regions were inconsistent, and 
might arise from modality specific differences or methodological noise. The secondary axis/gradient 
reflected the spatial distribution of core and matrix cells, and was associated with the secondary gradient 
based on TC functional connectivity in the right hemisphere. Mapped on the cortex, the secondary 
gradient differentiated cortical anterior from posterior regions, showed associations between the 
positive gradient apex and functional connectivity strength in the FPN and DMN, while generally 
displaying a relatively weak association to structural covariance.  

Based on TC white matter connectivity, our findings suggested a principal thalamic medial-to-lateral 
gradient. Decoding this axis by thalamic nuclei, using a well-established atlas (Saranathan et al., 2021), 
revealed a trend of medial portions capturing higher-order thalamic nuclei that are known to project to 
transmodal regions (i.e., AV, MD), while the lateral portions captured nuclei connected to sensorimotor 
regions (i.e. VLP, CM). This was consistent with the pattern that emerged when the principal axis was 
projected onto the cortex, which displayed a division between cortical limbic and somatomotor areas. 
Taken together, we derived that main variations in TC connectivity profiles map an axis differentiating 
unimodal regions and transmodal regions. Our observations broadly aligned with recent work using a 
joint analysis of TC structural connectivity and gene expression data (Oldham and Ball, 2023) that 
reported a similar medial-to-lateral axis, with the difference that in our case the medial apex tended to 
be more pronounced to the center of the thalamus. The hierarchical representation of projection patterns 
was also found in the mouse thalamus after computing an organizational axis based on tract tracing and 
gene expression data, spanning from somatosensory regions to lateral/frontal regions and may suggest 
the hypothesis that this axis is phylogenetically-conserved (Oldham and Ball, 2023). Further, the 
medial-to-lateral axis may originate from the spatiotemporal development of the brain. It has been 
shown that the formation of connectivity-based subdivisions of the human thalamus expanded from 
lateral to medial portions during the perinatal period (Zheng et al., 2023). Moreover, transcriptional 
profiling in mice revealed gradual patterns of gene expression that followed this thalamic axis and 
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reflected variations of cellular morphological and electrophysiological properties (Phillips et al., 2019). 
Next to a medial-to-lateral axis, we observed a second axis of organization with one apex located at the 
medial-anterior and posterior pole of the thalamus, and the opposite apex intersecting the thalamus from 
anterior-lateral to central-medial. This secondary gradient mainly segregated MGN, VPL, AV, Pulvinar, 
CM, and VLP from Hb, MD, MTT, VA, VLa regions on top of the differentiation observed in the first 
gradient. Reviewing animal studies (Roy et al., 2022), we suggest that the heterogeneity of thalamic 
organization does exceed distinct nuclei borders and can be described along gradual axes. In sum, our 
work revealed patterns of thalamic organization along more than one axis, with the principal axis 
capturing a distinction of transmodal and unimodal differences in projection patterns.  

Having established two axes of intrathalamic structural organization using structural connectivity that 
differentiate thalamic subareas, we further explored how these axes were associated with 

microstructure, as probed by qT1, a proxy for gray matter myelin. Indeed, we could show that the 
principal medial-to-lateral axis corresponded to variations of the intrathalamic myelin profile, where 
lateral and hence thalamic sensorimotor regions showed higher myelination compared to thalamic 
higher-order regions. This observation was in line with a recent finding suggesting a higher proportion 
of oligodendrocytes in the lateral portion of the thalamus (Oldham and Ball, 2023). The distribution of 
myelin could again touch on the spatiotemporal brain development during the perinatal phase. Zheng 
et al. (2023) reported a lateral-to-medial development of thalamic microstructure, where fiber integrity 
(measured by fractional anisotropy, fiber density, and diffusivity) in the lateral thalamus seemed to 
develop faster compared to medial thalamic portion. Further, our finding of higher myelination in lateral 
thalamic portions, which captured unimodal nuclei, resonated with observations of higher myelination 
of unimodal regions in the cerebral cortex (Glasser and Van Essen, 2011) and may be related to a higher 
conduction velocity in sensorimotor regions compared to transmodal regions (Demirtaş et al., 2019; 
Burt et al., 2018a). Second, in order to further investigate the relation to thalamic microstructure, we 
leveraged a map that indicates the weighting of core versus matrix cells in thalamic voxels that was 
created based on mRNA expression levels of the calcium-binding proteins Parvalbumin and Calbindin 
(Müller et al., 2020). We found the secondary axis, but not the principal axis, being correlated with the 
cell type distribution. This axis differentiated cortical anterior from posterior regions. Of note, due to 
the imbalanced donor distribution (6 donors of the left versus 2 of the right hemisphere), we only tested 
this association in the left hemisphere. Further work will be needed to more precisely map the 
distribution of core and matrix cells in the human thalamus using a larger sample size.  

We further observed a relation between the low dimensional organization of the principal structural and 
the principal functional TC connectivity gradient, and in one hemisphere, the secondary structural and 
secondary functional gradient. The functional connectivity pattern in part recapitulated observations of 
Yang et al. (2020) and together may point to multiple differential axes of organization within the 
thalamus. While demonstrating that there is an overlap of organizational principles across modalities, 
differences between patterns of structural and functional connectivity are expected due to method-
specificities (i.e., functional connectivity arising not only from direct but also indirect connections). 
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Indeed, also in parcellation approaches, it has been shown that DWI based clusters correspond higher 
with structural parcellations in larger nuclei, while parcellations based on resting-state functional MRI 
(rsfMRI) agree more with structural parcellation in smaller nuclei (Iglehart et al., 2020). Generally, the 
observation that different organizational dimensions within the thalamus correspond to different 
structural and functional features indicates that the thalamus and its subnuclei can be differentiated 
based on different neurobiological principles. It is possible that the divergence observed between the 
principal and secondary gradient relates to differentiable influences of activity-dependent plasticity and 
maturation (based on the association of the principal gradient with myelin-proxy profiles), whereas the 
secondary gradient reflects a different, yet related, organization of core and matrix cells that is 
scaffolding development but not malleable. However, further work is needed to understand and test the 
association between cell-level differentiation and possible maturation-related myelination profiles in 
the thalamus.  

Lastly, we aimed to explore how defined patterns of thalamic organization are interrelated with cortical 
patterns based on structural connectivity, functional connectivity and structural covariance. Evaluating 
the cortical projections of the principal structural connectivity gradient revealed a differentiation 
between limbic functional networks that were mostly associated with medial thalamic portions, and the 
somatomotor network that was related to the lateral thalamic portions. A comparable pattern was 
observed in functional connectivity. The overall distinction of cortical somatomotor and transmodal 
projections is in line with the pattern that was revealed by ordering the thalamic nuclei along the 
principal gradient demonstrating a trend from higher-order nuclei to sensorimotor nuclei. Of note, in 
the cortical projection patterns, we found the visual network closer at the gradient apex that was in our 
model assigned to transmodal regions and was therefore deviating from the sensorimotor-association 
functional hierarchy. This observation may arise due to the exclusion of the LGN from our thalamic 
mask (projects to primary visual cortex; Jones, 1985; Leh et al., 2008), and further may be driven by 
the projections of the Pulvinar encompassing higher-order areas and the visual system (Barron et al., 
2015). The distinction of sensorimotor and association areas based on structural and functional 
connectivity aligned with previous work in humans and animals (Jones, 1998; Mukherjee et al., 2020; 
Harris et al., 2019; Howell et al., 2023) that illustrated how the thalamus may be a key node in the brain 
coordinating both sensorimotor and abstract cognitive functions (Shine et al., 2023; Wolff et al., 2021). 
Moreover, the cortical projection pattern of the principle structural connectivity gradient echoed maps 
of laminar differentiation and sensory-transmodal axes, patterns possibly linked to cortical maturation 
during the first two decades of human development (Larsen et al., 2023; Sydnor et al., 2023; Burt et al., 
2018b; Margulies et al., 2016). Also, this cortical pattern aligned to some extent with notions describing 
a sensory-fugal gradient of cytoarchitectural complexity (Paquola et al., 2019; Mesulam, 1998), where 
sensory areas have koniocortical characteristics of a well-developed granular layer IV and fugal or 
paralimbic areas exhibit a dys/agranular cytoarchitecture. Aggregating our findings and the mentioned 
literature, the principal gradient derived from TC structural connectivity may in both the thalamus and 
the cortex be related to development, microstructure and functional hierarchies.  
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The cortical projection of the secondary structural connectivity gradient revealed a combination of 
cortical posterior regions (including somatomotor, DAN, limbic, and visual regions) with the negative 
thalamic apex (medial-anterior and posterior pole of the thalamus) and cortical anterior regions related 
to the positive thalamic apex (intersection from anterior-lateral to central-medial). Though less 
pronounced, the pattern was to some extent reflected in TC functional connectivity. The cortical 
projection of the secondary axis substantially resembled the cortical pattern reported in Müller et al. 
(2020) that represents the correlation between TC functional connectivity strength and the relative 
distribution of core and matrix cells, which was consistent with our observation that the secondary 
structural connectivity gradient is correlated with the relative difference of core and matrix cells in the 
thalamus. Thalamic regions that contain relatively higher proportions of core cells showed preferential 
functional coupling to somatosensory cortices, while regions with higher matrix cell proportions 
preferentially couple with transmodal cortical regions (Müller et al., 2020). Additionally, they found 
that matrix cell regions tend to couple to cortical areas with a lower intrinsic timescale (Müller et al., 
2020). Thus, overall both gradients pointed to a differentiation between sensorimotor and transmodal 
networks, mirroring observations in recent work of a sensorimotor and association ‘motif’ of thalamic 
cortical patterning (Howell et al., 2023). Extending this work, we illustrated how these motifs may be 
embedded within the intrinsic organization of the thalamus along two main structurally defined 
gradients. Moreover, we found high correspondence between cortical projections of the structural 
connectivity gradients and functional connectivity patterns.  

Throughout the course of development, the thalamus and cortex are closely interconnected. Therefore, 
we probed whether regions that share similarities in TC connectivity are associated with structural 
covariance which has been suggested to reflect shared maturation (Alexander-Bloch et al., 2013b). 
However, this analysis yielded less clear patterns. In the left hemisphere, we observed the medial part 
of the principal structural connectivity gradient being linked to the temporal pole and hence mostly 
limbic regions. Lateral thalamic portions were linked to a dispersed pattern of superior regions, while 
peaking in visual and dorsal attention networks. Noteworthy, the somatomotor network tended to not 
show a differential association between both anchors of the principal gradient, possibly suggesting more 
global and unspecific effects of covariance. Further, in contrast to structural and functional connectivity, 
we found that the pattern of structural covariance deviates between the left and right hemisphere which 
may be linked to asymmetries in microstructure across individuals. In the cortex, previous studies have 
shown that there is a strong association between structural covariance and connectivity between areas 
(Gong et al., 2012; Lerch et al., 2006; Segall et al., 2012). This observation can be associated with the 
framework of the ‘structural model’, stating that cortical areas with a similar microstructure, in 
particular laminar differentiation, are also more likely to be structurally and functionally linked (García-
Cabezas et al., 2019; Barbas, 2015, 1986; Beul et al., 2017). Extending on studies focusing on structural 
covariance in the cortex, structural covariance between the thalamus and cortex has been used to 
parcellate the thalamus in mice (Yee et al., 2024). This work suggested that thalamocortical regions that 
were connected tend to structurally covary. At the same time, not all structurally covarying regions were 
connected, possibly pointing to indirect pathways for maturation and connectivity (Yee et al., 2024). 
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Translating this approach to humans, in the current work, we also found that structural connectivity was 
not paralleled by structural covariance in all regions. One possibility for explaining structural 
covariance could be the coactivation of physically connected regions and thereby activity-induced 
synaptogenesis in a coordinated fashion (Evans, 2013). An alternative explanation might be that 
structural covariance arises from coordinated developmental processes (Alexander-Bloch et al., 2013b) 
associated with transcriptomic similarity (Yee et al., 2018). Of note, we found much stronger and 
differentiable patterns of structural covariance along the principal than the secondary gradient. Adding 
to the observation of our principal gradient resembling an axis shown to be related to genes that are 
relevant for thalamic development (Oldham and Ball, 2023) and transcriptional profiling in mice 
(Phillips et al., 2019), this supported the interpretation of the principal gradient being a more 
developmentally guided pattern.  

Limitations 

To study the organization and connectivity of the human thalamus, the current study was based on in 
vivo MRI. Compared to post-mortem studies this comes with the advantage of straightforward data 
collection of larger sample sizes but with the caveats of noise and lower spatial resolution. In contrast 
to tracer studies, we note that probabilistic tractography does not reflect connectivity at an axonal level 
but rather estimates larger fiber tracts and can lead to false positives. Inaccuracies can occur with sharply 
curved, closely neighboring, or poorly myelinated connections. Although, it has been reported that 
probabilistic tractography results correspond well to white matter anatomy (Dyrby et al., 2007). 
Furthermore, we note that in this study only TC connectivity is considered, however, it is well-known 
that the thalamus is also strongly connected with the subcortex. Notably, the LGN is not included in our 
thalamic mask due to its extreme posteroventral peripheral location. Furthermore, exploring gradual 
differences in thalamic organization does not preclude the existence of thalamic subnuclei which can 
be cytoarchitectonically and functionally delineated with sharp borders. However, we propose that 
clustering approaches might not account for all overlaps between connectivity profiles in the thalamus 
and investigating gradual variations could help to understand thalamic organization principles.  

In sum, in the current work, we illustrated how the intrinsic organization of the human thalamus, as 
defined by TC white matter connections derived from DWI, mirrors thalamic microstructure and 
functional connectivity, and aligns with distributed structural and functional projections shaping cortical 
organization. In particular, we could identify two axes of thalamic organization, which recapitulate 
differentiable thalamocortical structural and functional connections and may be rooted in differentiable 
neurobiological mechanisms of development and maturation. Future work using multimodal high-
resolution imaging as well as inclusion of cognitive tasks may help to understand how the anatomy of 
the thalamus matures and shapes cortical structure, intrinsic function, and ultimately cognitive 
functional processes. 
  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 2, 2024. ; https://doi.org/10.1101/2024.02.01.578366doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.01.578366
http://creativecommons.org/licenses/by-nc-nd/4.0/


 John et al.              18 

4.    Methods 

MRI Data Acquisition 

For this study, we used the openly available multimodal MRI dataset for Microstructure-Informed 
Connectomics (MICA-MICs; Royer et al., 2022). This dataset was acquired from 50 healthy adults (23 
women; 29.54 ± 5.62 years) and can be downloaded from the Canadian Open Neuroscience Platform’s 
data portal (https://portal.conp.ca). The complete cohort underwent a multimodal scanning protocol 
including high-resolution T1-weighted MRI (T1w), myelin-sensitive qT1 relaxometry, DWI, and 
rsfMRI at a field strength of 3T. Scanning was conducted at the Brain Imaging Centre of the Montreal 
Neurological Institute using a 3T Siemens Magnetom Prisma-Fit scanner equipped with a 64-channel 
head coil. The original study was approved by the ethics committee of the Montreal Neurological 
Institute and Hospital. Exact acquisition protocols are described elsewhere (Royer et al., 2022). In brief 
they contained the following:  

T1w: Using a 3D magnetization-prepared rapid gradient-echo sequence (MP-RAGE), two T1w images 
with identical parameters (0.8 mm isotropic voxels, matrix = 320 × 320, 224 sagittal slices, 
TR = 2300 ms, TE = 3.14 ms, TI = 900 ms, flip angle = 9°, iPAT = 2, partial Fourier = 6/8) were 
acquired.   

DWI: For the acquisition of the multi-shell DWI data a spin-echo echo-planar imaging sequence was 
used. This sequence consists of three shells with b-values 300, 700, and 2000s/mm2 and 10, 40, and 90 
diffusion weighting directions per shell, respectively (1.6 mm isotropic voxels, TR = 3500 ms, 
TE = 64.40 ms, flip angle = 90°, refocusing flip angle = 180°, FOV = 224 × 224 mm2, slice 
thickness = 1.6 mm, multi-band factor = 3, echo spacing = 0.76 ms, number of b0 images = 3). 
Additionally, b0 images in reverse phase encoding directions are provided for distortion correction of 
DWI scans.  

rsFMRI: Resting-state fMRI images were acquired during a 7 min scan session using multiband 
accelerated 2D-BOLD echo-planar imaging (3 mm isotropic voxels, TR = 600 ms, TE = 30 ms, flip 
angle = 52°, FOV = 240 × 240 mm2, slice thickness = 3 mm, mb factor = 6, echo spacing = 0.54 ms). 
For distortion correction of fMRI scans two spin-echo images with reverse phase encoding (3 mm 
isotropic voxels, TR = 4029 ms, TE = 48 ms, flip angle = 90°, FOV = 240 × 240 mm2, slice 
thickness = 3 mm, echo spacing = 0.54 ms, phase encoding = AP/PA, bandwidth = 2084 Hz/Px) were 
acquired. Participants HC001 to HC004 underwent slightly longer acquisition (800 time points) but for 
consistency, we use the same number of time points for all subjects (700 time points). 

qT1: The qT1 relaxometry data were acquired using a 3D magnetization prepared 2 rapid acquisition 
gradient echoes sequence (MP2RAGE; 0.8 mm isotropic voxels, 240 sagittal slices, TR = 5000 ms, 
TE = 2.9 ms, TI 1 = 940 ms, T1 2 = 2830 ms, flip angle 1 = 4°, flip angle 2 = 5°, iPAT = 3, 
bandwidth = 270 Hz/px, echo spacing = 7.2 ms, partial Fourier = 6/8). To reduce sensitivity to B1 
inhomogeneities and to optimize intra- and inter-subject reliability, two inversion images were 
combined for qT1 mapping. 
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Preprocessing 

For the preprocessing of MRI data, we used the specific modules of the containerized multimodal MRI 
processing tool micapipe (v. 0.1.2; Cruces et al., 2022) to ensure robustness and reproducibility. Details 
of the pipeline are described in Cruces et al. (2022). 

The below described modality-specific preprocessing steps depend on the output of the module for 
preprocessing T1w images including reorientation to LPI Orientation, linear alignment and averaging 
of T1w-scans, intensity nonuniformity correction (N4, Tustison et al., 2010), intensity normalization 
and a nonlinear registration to MNI152 using ANTS (Tustison and Avants, 2013). Building up on this, 
micapipe runs FreeSurfers’ recon-all pipeline to segment the cortical surface from native T1w scans 
(Fischl, 2012).  

DWI 

The used DWI preprocessing module comprises the alignment of multi-shell DWI scans via rigid-body 
registration, denoising using the Marchenko-Pastur PCA (MP-PCA) algorithm (Veraart et al., 2016), 
Gibbs ringing correction (Kellner et al., 2016), and the correction of susceptibility-induced geometric 
distortions, eddy current-induced distortions, and head movements (Andersson et al., 2003; Smith et 
al., 2004). Further, a non-uniformity bias field correction was performed (Tustison et al., 2010). 

rsfMRI 

The rsfMRI time series data were preprocessed using the adequate micapipe module. The first five 
volumes were dropped to guarantee magnetic field saturation. Images were reorientated (LPI), motion 
corrected by registering all time-point volumes to the mean volume, corrected for distortion using the 
main phase and reverse phase field maps, and denoised using an ICA-FIX classifier (Griffanti et al., 
2014; Salimi-Khorshidi et al., 2014). Further, motion spikes were removed using FSL and the average 
time series was used for registration to FreeSurfer space. The cortical time series were smoothed with 
a 10 mm Gaussian kernel and nodes are averaged defined by schaefer 200 parcellation scheme. For the 
time series extraction of thalamic voxels the preprocessed volumes in native space were warped to 
MNI152 standard space (isotropic resolution 2 mm) using the ANTS transformation parameters 
provided by micapipe. 

quantitative T1 (qT1) 

QT1 is a proxy for grey matter myelin and provides an index for microstructure. The parameter refers 
to the T1 relaxation time in milliseconds, which is lower in fatty tissue compared to aqueous tissue 
(Weiskopf et al., 2021). Accordingly, note that qT1 reflects the amount of grey matter myelin in an 
inverse relation. To map the individual qT1 scans to MNI152 2 mm standard space, for each subject the 
transformation between the uni_T1 map with removed background and the MNI152 1 mm reference 
image was computed using nonlinear registration. Next, the resulting transformation matrix was applied 
to the individual qT1 scan and data was downscaled to 2 mm isotropic resolution. The thalamic voxel-
wise qT1 values were then extracted using a thalamus mask.  
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The qT1 intensity profiles per cortical parcel are provided by micapipe. Therefore, the module performs 
a registration from the native qT1 volume to FreeSurfer native space, followed by the construction of 
14 equivolumetric surfaces from pial to white-matter boundary (Waehnert et al., 2014). Based on these 
surfaces, depth-dependent intracortical intensity profiles at each vertex of the native surface mesh are 
generated and averaged within each of the cortical parcels (schaefer 200 parcellation; Schaefer et al., 
2018). For each subject, this resulted in a matrix containing qT1 values and with the dimensions L x N, 
where L is the number of equivolumetric compartments and N the number of cortical parcels. Note that 
these equivolumetric compartments do not align with the anatomical cortex layers. For further analysis 
the pial and grey matter/white matter surface as well as the medial wall were excluded, resulting in a 
12 x 200 matrix per subject.  

Thalamic Mask 

The binary thalamic mask in MNI152 standard space (2 mm isotropic resolution) was created based on 
the Harvard-Oxford subcortical atlas (integrated in FSL; Frazier et al., 2005) for each hemisphere, 
respectively. To incorporate only thalamic voxels in the subsequent analysis and mitigate signal 
bleeding i.e., from the third ventricle, the thalamic masks underwent a refinement via manual 
thresholding (left: dilation of 19 %, right: dilation of 20 %).  

TC Structural Connectivity and Gradient Decomposition 

Voxel-Wise Distribution Estimates of Diffusion Parameters 

To estimate the voxel-wise distribution of fiber orientations in the preprocessed diffusion weighted 
images, we used FSL’s function bedpostX (Bayesian Estimation of Diffusion Parameters; Behrens et 
al., 2003b). The multi-shell extension of the ball- and sticks model was utilized, with a maximum 
estimate of three fiber orientations within each voxel (Jbabdi et al., 2012).  

TC Probabilistic Tractography 

On a subject level, probabilistic tractography between each voxel in the thalamic seed mask and each 
parcel of the cortical termination mask (schaefer 200 parcellation; Schaefer et al., 2018; Yeo et al., 
2011) was computed using FSL’s probtrackx2 (probabilistic tracking with crossing fiber). Tractography 
was computed in the left and right hemispheres independently, in line with previous studies and due to 
predominant ipsilateral projections (Oldham and Ball, 2023; Iglesias et al., 2018; Behrens et al., 2003a). 
Each seed voxel was sampled 5000 times with a curvature threshold of 0.2 and step length of 0.5 mm. 
The path probability maps were corrected for the length of the pathways (‑‑pd). Considering that seed- 
and target masks are provided in MNI152 standard space, it was additionally required to pass the 
transformation matrices between native diffusion and MNI standard space. For each subject, we 
constructed individualized transformations by within-subject registration of the brain extracted b0 
image to the native structural scans using FSL’s FLIRT (6 degrees of freedom) concatenated to the 
nonlinear between-subject registration of native structural scans to MNI standard template in 2 mm 
resolution using a combination of FLIRT and FNIRT (12 degrees of freedom).  
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TC Structural Connectivity Matrix Computation 

Using the output of probtrackx2, for both hemispheres a structural connectivity matrix (thalamic seed 
voxels x cortical parcels) was computed, containing the numbers of streamlines between seed and target 
per individual. We averaged the individual connectivity matrices across subjects to form a group-level 
structural connectivity matrix. The group-level structural connectivity matrix was normalized column-
wise by dividing all values of each column by the maximum of this column. 

TC Structural Connectivity Gradients 

To uncover the intrathalamic organization based on the TC structural connectome, we employed 
nonlinear dimensionality reduction. This results in gradient components representing low dimensionally 
the variation in the connectivity data in a gradual manner. To this end, several analysis steps were 
performed using the Python toolbox BrainSpace (v. 0.1.3; Vos de Wael et al., 2020). The input TC 
group-level structural connectivity matrix was thresholded at the 75th percentile, in line with previous 
work (Vos de Wael et al., 2021), and converted into a non-negative squared affinity matrix using a 
normalized angle similarity kernel. Next, we applied diffusion map embedding, a non-linear 
dimensionality reduction technique that belongs to the family of graph Laplacians (Coifman and Lafon, 
2006) to derive a low-dimensional embedding from the high-dimensional affinity matrix. In this 
manifold space are nodes with similar connectivity profiles embedded closer together, whereas nodes 
with distinct connectivity patterns are located further apart. The algorithm is controlled by the α 
parameter which determines the density of sampling points on a manifold (where 0 to 1 = maximal to 
no influence). Following recommendations based on previous work (Margulies et al., 2016; Paquola et 
al., 2019; Valk et al., 2022), we set α to 0.5 as that will preserve large scale relations between data points 
in the embedded space and has been suggested to be relatively robust to noise. After assessing the 
amount of explained variance for each gradient, we mapped the resulting principal (G1sc) and secondary 
gradient (G2sc) onto the thalamic mask.  

Contextualization with THOMAS Atlas  

To identify the relationship between discrete defined anatomical thalamic subnuclei and TC structural 
connectivity gradients, we used the parcellation of the THOMAS (Thalamus optimized multi atlas 
segmentation) atlas in MNI152 space including 11 nuclei (Su et al., 2019; Saranathan et al., 2021; 
https://doi.org/10.5281/zenodo.5499504). First, we spanned a 2D space framed by G1sc and G2sc and 
categorized the thalamic voxels according to the nucleus they are part of. Second, for G1sc and G2sc, we 
extracted per nucleus the corresponding gradient loadings and sorted the nuclei in an ascending order 
based on the median of the corresponding gradient loadings.  
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Multimodal Intrathalamic Spatial Organization 

Intrathalamic qT1 map 

By using the thalamic mask, we extracted the thalamic qT1 values at the subject level. Subsequently, 
we computed the voxel-wise qT1 average across subjects, resulting in a group-level qT1 map of the 
thalamus.  

Cell type map based on gene expression levels of Parvalbumin and Calbindin  

To approximate the spatial distribution of cell types in the thalamus, we used a relative difference map 
of core and matrix cells provided by Müller et al., 2020 and publicly available 
(https://github.com/macshine/corematrix). The map is derived from mRNA level estimates of genes 
that express the calcium-binding proteins Parvalbumin (PV) and Calbindin (CB1) supplied by the Allen 
Brain Human Brain Atlas (Hawrylycz et al., 2012). PV and CB1 have been shown as adequate markers 
for distinguishing between core- and matrix cells in the thalamus. Considering the sample size on which 
the data is grounded, we opted to exclusively use the map of the left hemisphere map (6 donors), while 
excluding the right hemisphere (2 donors). We determined the intersection of this map and our thalamic 
mask and refer to it as core-matrix map.  

Functional connectivity gradients 

For each subject, we correlated (Pearson) the intrahemispheric timeseries of thalamic voxels and 
cortical parcels to create a TC functional connectivity matrix per hemisphere (thalamic voxels x cortical 
parcels). Rows were Fisher z-transformed. By averaging across subjects, the group-level TC functional 
connectivity matrix was calculated. In line with previous work (Margulies et al., 2016; Valk et al., 
2022), this matrix was thresholded at the 90th percentile and used as input to estimate the functional 
connectivity gradients using diffusion map embedding, analog to gradient computation of structural 
connectivity described above. G1fc and G2fc were mapped onto the thalamic mask.  

Association between TC structural connectivity gradients and intrathalamic features 

Next, we explored the association between the spatial thalamic organization based on TC structural 
connectivity and (a) the distribution of thalamic qT1 that is used as a proxy for grey matter myelin, (b) 
the relative amount of core and matrix cells, and (c) functional connectivity gradients. Therefore, we 
spanned a 2D space framed by structural connectivity G1sc and G2sc and color-coded the data points 
based on (a) the group-level qT1 value, and (b) the relative difference between Calbindin and 
Parvalbumin levels, and (c) the principal and secondary functional connectivity gradient loadings. To 
further quantify the relationship, we calculated the Pearson correlation of the structural connectivity 
gradients with (a) the group-level qT1 map, and (b) the cell type map estimating the relative amount of 
core- and matrix cells, and (c) the principal and secondary functional connectivity gradients. All 
analyses were corrected for spatial autocorrelation (SA) using the variogram approach implemented in 

the brainsmash toolbox (Burt et al., 2020). 
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Multimodal TC Spatial Organization 

Mapping TC structural connectivity gradients on the cortex  

To project the low dimensional thalamic organization of TC structural connectivity onto the cortex, we 
calculated the Pearson correlation of the G1sc and G2sc with each column (representing the parcels) of 
the group-level TC structural connectivity matrix and projected the resulting Pearson correlation 
coefficient per parcel onto the cortex surface.  

Mapping the association between TC structural connectivity gradients and functional connectivity on 
the cortex 

To access the link between the thalamic organization based on TC structural connectivity and TC 
functional connectivity, we calculated the Pearson correlation of the G1sc and G2sc with each column 
(-representing the parcels) of the group-level TC functional connectivity matrix and projected the 
resulting Pearson correlation coefficient per parcel onto the cortex surface. 

TC structural covariance 

We further aimed to investigate whether the TC structural connectivity relates to TC structural 
covariance. First, we averaged the qT1 values of each cortical parcel across compartments. Second, we 
computed the intrahemispheric TC structural covariance matrix by Pearson correlating qT1 values of 
thalamic voxels with qT1 values of cortical parcels across subjects. This resulted in a TC structural 
covariance matrix per hemisphere (M thalamic voxels x N cortical parcels).  

Mapping the association between TC structural connectivity gradients and TC structural covariance 
on the cortex 

To probe the link between the thalamic organization based on structural connectivity and TC structural 
covariance, we computed for each parcel the Pearson correlation coefficient by correlating G1sc and 
G2sc with each column (-representing the parcels) of the group-level TC structural covariance matrix 
and projected the results onto the cortical surface. 

Decoding with functional networks 

For each modality, the cortical projection patterns were decoded using functional network communities 
(Visual, Somatomotor, Dorsal Attention, Ventral Attention, Limbic, Frontoparietal and Default-Mode 
network; Yeo et al., 2011).  

Supplementary Analysis 

Robustness of structural connectivity gradients computed with different thresholds 

To check robustness of the structural connectivity gradient patterns, we computed gradients by 
thresholding the input group-level structural connectivity matrix at different percentiles (0, 25, 50, 75, 
90).  
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Cross-check structural covariance 

Supplementary, we calculated the structural covariance between the left thalamus and the cortical 
parcels of both hemispheres and correlated the resulting structural covariance profiles parcel-wise with 
the left G1sc and G2sc. We did the same analysis steps for the right hemisphere, respectively.  

Projections based on THOMAS atlas 

Using the THOMAS atlas in MNI space, we calculated the mean projections of the nuclei AV, VPL, 
and MD for structural connections, functional connectivity, and structural covariance.  
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5.    Supplementaries 

 

Supplementary Figure 1: Robustness of Structural Connectivity Gradients. Gradients were derived from the group-level 
thalamocortical structural connectivity matrix thresholded at different percentiles (0, 25, 50, 75, 90). A Gradient loadings of 
component 1 (G1sc) were projected on the thalamus (axial plane). B Gradient loadings of component 2 (G2sc) were projected 
on the thalamus (axial plane).  
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Supplementary Figure 2: Thalamocortical Structural Connectivity Gradients (RH). A Gradient loadings of component 
1 (G1sc) projected on the thalamus (axial planes). The red lines in the glass brain indicate the position of each respective axial 
slice of the displayed thalamus. B Gradient loadings of component 2 (G2sc) projected on the thalamus. Slice positions are 
congruent to A. C (left) Decoding of G1sc and G2sc based on THOMAS atlas. 2D space framed by G1sc and G2sc, color-coded 
by thalamic subnuclei. (middle and right) Raincloud plots display the gradient loadings of G1sc and G2sc per nucleus and are 
ordered by median, respectively. Abbreviations in C: AV: Anterior ventral nucleus, VA: Ventral anterior nucleus, VLa: Ventral 
lateral anterior nucleus, VLP: Ventral lateral posterior nucleus, VPL: Ventral posterior lateral nucleus, Pul: Pulvinar nucleus, 
MGN: Medial geniculate nucleus, CM: Centromedian nucleus, MD: Mediodorsal nucleus, Hb: Habenular nucleus, MTT: 
Mammillothalamic tract  

 

 
 
Supplementary Figure 3: Thalamocortical Functional Connectivity Gradients (RH). Right hemisphere gradient loadings 
of component 1 (G1sc) and component 2 (G2sc) projected on the thalamus (axial slice). 
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Supplementary Figure 4: Cortical Projections of Structural Connectivity Gradients and their Association to Functional 
Connectivity and Structural Covariance (RH). A (left, top) Projection of r values resulting from parcel-wise correlation 
between sc profiles and G1sc onto cortex. Thus, negative values (blue) indicate relation with the medial part of thalamus, 
whereas positive values (red) indicate relation with lateral thalamic portions. (left, bottom) Decoding of cortical pattern 
leveraging functional communities (ordered along mean). (right) Analog parcel-wise correlation between sc profiles and G2sc, 
and decoding. B (left, top) Projection of r values resulting from parcel-wise correlation between functional connectivity profiles 
and G1sc onto cortex, and (left, bottom) decoding of cortical pattern leveraging functional communities (ordered along mean). 
(right) Analog parcel-wise correlation between functional connectivity profiles and G2sc, and decoding. C (left, top) Projection 
of r values resulting from parcel-wise correlation between structural covariance profiles and G1sc onto cortex, and (left, bottom) 
decoding of cortical pattern leveraging functional communities (ordered along mean). (right) Analog parcel-wise correlation 
between structural covariance profiles and G2sc, and decoding.  
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Supplementary Figure 5: Cross-Check of Structural Covariance Results. A Structural covariance was computed between 
left thalamic voxels to both cortex hemispheres. The resulting structural covariance profiles were parcel-wise correlated with 
the left G1sc and r values were projected onto the cortex. B Structural covariance was computed between right thalamic voxels 
to both cortex hemispheres. The resulting structural covariance profiles were parcel-wise correlated with the right G1sc and r 
values were projected onto the cortex. C Procedure analog to A but with G2sc. D Procedure analog to B but with G2sc.  
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Supplementary Figure 6: Projections Based on Thomas Nuclei. A Mean structural connectivity projections from AV, VPL, 
and MD projected onto the cortex. B Mean functional connectivity projections from AV, VPL, and MD projected onto the 
cortex. C Mean structural covariance projections from AV, VPL, and MD projected onto the cortex.  
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7.    Code and Data Availability  
The data used in this study is openly available and can be downloaded from: 
https://portal.conp.ca/dataset?id=projects/mica-mics. For data preprocessing we used the openly 
available processing pipeline micapipe (v. 0.1.2;   https://micapipe.readthedocs.io/) and FSL 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). The template of the THOMAS atlas can be requested here: 
https://doi.org/10.5281/zenodo.5499504. The core-matrix difference is available at: 
https://github.com/macshine/corematrix. Custom code generated for analysis and plotting is available 
at a Github repository (https://github.com/CNG-LAB/cngopen/tree/main/thalamic_gradients). Further, 
our code includes open software packages: The gradient computation was carried out using BrainSpace 
(v. 0.1.3; https://brainspace.readthedocs.io/en/latest/). For spatial autocorrelation correction, the 
brainsmash toolbox was used (v. 0.11.0; https://brainsmash.readthedocs.io/en/latest/).  
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