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Unsubstituted aromatic hydrocarbons (UAHs) are recalcitrant molecules abundant 
in crude oil, which is accumulated in subsurface reservoirs and occasionally enters 
the marine environment through natural seepage or human-caused spillage. The 
challenging anaerobic degradation of UAHs by microorganisms, in particular under 
thermophilic conditions, is poorly understood. Here, we  established benzene- 
and naphthalene-degrading cultures under sulfate-reducing conditions at 50°C 
and 70°C from Guaymas Basin sediments. We investigated the microorganisms 
in the enrichment cultures and their potential for UAH oxidation through short-
read metagenome sequencing and analysis. Dependent on the combination 
of UAH and temperature, different microorganisms became enriched. A 
Thermoplasmatota archaeon was abundant in the benzene-degrading culture at 
50°C, but catabolic pathways remained elusive, because the archaeon lacked most 
known genes for benzene degradation. Two novel species of Desulfatiglandales 
bacteria were strongly enriched in the benzene-degrading culture at 70°C and 
in the naphthalene-degrading culture at 50°C. Both bacteria encode almost 
complete pathways for UAH degradation and for downstream degradation. They 
likely activate benzene via methylation, and naphthalene via direct carboxylation, 
respectively. The two species constitute the first thermophilic UAH degraders of 
the Desulfatiglandales. In the naphthalene-degrading culture incubated at 70°C, a 
Dehalococcoidia bacterium became enriched, which encoded a partial pathway 
for UAH degradation. Comparison of enriched bacteria with related genomes 
from environmental samples indicated that pathways for benzene degradation 
are widely distributed, while thermophily and capacity for naphthalene activation 
are rare. Our study highlights the capacities of uncultured thermophilic microbes 
for UAH degradation in petroleum reservoirs and in contaminated environments.
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Introduction

Aromatic hydrocarbons (AHs) are a naturally abundant group 
of hydrocarbons. They are highly hydrophobic and extremely stable 
molecules because of their planar conformation consisting of one or 
more six-carbon ring systems stabilized by delocalized π electrons 
(Aihara, 1992). AHs constitute a major part (20–60%) of petroleum 
and fossil fuel, and are thus naturally abundant in subsurface 
petroleum reservoirs (Gibson, 1975; Pevneva et al., 2017). On Earth’s 
surface, AHs originate mainly from incomplete combustion of fossil 
fuel (Blumer, 1976; Lima et al., 2005), from natural seepage on the 
ocean floor, and from accidental spillage during oil reservoir 
exploration or transport (Kawka and Simoneit, 1990; Wang 
et al., 1999).

The study of AH biodegradation is of high interest, because AHs 
are highly toxic and thus their release into the environment is 
associated with health hazards (WHO Regional Office for Europe, 
2000). Moreover, it is important to understand dynamics of 
hydrocarbon degradation in deeply buried petroleum reservoirs. 
While AHs are toxic to various more complex life forms (Patel et al., 
2020; Xu et al., 2020), microorganisms have developed metabolic 
pathways to degrade these compounds. Microbial degradation is the 
main mechanism of AH removal from the environment. AH 
degradation pathways differ fundamentally in the presence and 
absence of molecular oxygen (Alexander, 1981; Parales et al., 2002; 
Parales and Haddock, 2004; Fuchs et  al., 2011). Under oxic 
conditions, many bacteria and some halophilic archaea degrade AHs 
rapidly after activation via oxygenases (Bugg, 2003; Fahy et al., 2006; 
Tapilatu et al., 2010; Erdogˇmuş et al., 2013). After ring cleavage, 
products converge as central intermediates like acetate, pyruvate, and 
succinate, which are shuttled into biomass production or enter 
central metabolic pathways (Fuchs, 1999). Anaerobic AH degradation 
yields less energy and sustains slower growth rates, therefore 
cultivation of the respective organisms is challenging. Still, successful 
enrichment or pure cultures have been obtained, which have allowed 
insights into the mechanisms of anaerobic AH degradation. 
Unsubstituted AHs (UAHs), i.e., AHs without functional groups, are 
especially challenging to degrade and the rate-limiting step is the 
initial activation of the very stable aromatic ring system 
(Heider, 2007).

Under anoxic conditions, benzene, the smallest UAH, is oxidized 
by mesophilic bacteria under sulfate-, nitrate-, iron-, and manganese-
reducing and in syntrophic consortia with methanogenic archaea 
(Musat and Widdel, 2008; Villatoro-Monzón et al., 2008; Zhang et al., 
2012; Atashgahi et al., 2018; Toth et al., 2021). While methylation to 
toluene and hydroxylation to phenol have been proposed as activation 
mechanisms, carboxylation to benzoate has become the favored 
pathway (Ulrich et al., 2005; Abu Laban et al., 2009; Zhang et al., 2013; 
Eziuzor et al., 2022). Enzymes for direct methylation or hydroxylation 
of benzene are currently unknown, but an anaerobic benzene 
carboxylase (AbcAD) belonging to the UbiD/UbiX-type carboxylases 
was identified in iron-reducing enrichment cultures of Peptococcaceae 
bacteria (Abu Laban et  al., 2010; Luo et  al., 2014). All activation 
pathways converge in the central intermediate benzoyl-CoA (BCoA; 
Porter and Young, 2014). Then, the aromatic ring system becomes 
dearomatized by ATP-dependent Class I  benzoyl-CoA reductase 
(BCR) or ATP-independent class II BCR (Boll et al., 1997, 2000; Song 
and Ward, 2005; Wischgoll et  al., 2005; Porter and Young, 2014; 

Huwiler et al., 2019). Subsequent ring fissure occurs via Thauera type 
or Rhodopseudomonas type ring hydrolysis (Harwood et al., 1998; 
Carmona et al., 2009; Porter and Young, 2014). A modified β-oxidation 
pathway, the lower BCoA pathway, yields acetyl-CoA (Carmona et al., 
2009), which is shuttled into biomass production or completely 
oxidized to CO2 via the Wood-Ljungdahl (WL) or tricarboxylic acid 
(TCA) pathways (Krebs, 1954; Ragsdale, 1997).

Naphthalene, the next largest UAH, consists of two fused benzene 
rings. Several anaerobic bacteria oxidize naphthalene under sulfate-
reducing (Galushko et  al., 1999), iron-reducing (Kleemann and 
Meckenstock, 2011), and methanogenic (Christensen et al., 2004) 
conditions. The best-studied cultures are the pure culture of 
Desulfatiglandaceae bacterium NaphS2 and a highly enriched culture 
dominated (abundance >95%) by Desulfobacterium strain N47 
(Galushko et al., 1999; Meckenstock et al., 2000; DiDonato et al., 
2010; Selesi et al., 2010; Bergmann F. et al., 2011). Like for benzene, 
direct carboxylation is the likely activation mechanism for 
naphthalene in most cultures (Galushko et al., 1999; Musat et al., 
2009; DiDonato et  al., 2010; Kleemann and Meckenstock, 2011; 
Mouttaki et al., 2012; Kümmel et al., 2015). A gene cluster encoding 
a putative naphthalene carboxylase complex, including UbiD-like 
carboxylases similar to AbcA, has been described (Kümmel et al., 
2015; Koelschbach et  al., 2019; Heker et  al., 2023). Subsequent 
degradation occurs via conversion to 2-naphthoyl-CoA (Bergmann 
F. D. et al., 2011; Meckenstock et al., 2016; Heker et al., 2023) and a 
three-step reductive dearomatization (Eberlein et  al., 2013a,b; 
Estelmann et  al., 2015; Meckenstock et  al., 2016). A stepwise 
oxidation, which includes ring cleavage and removal of branched 
alkyl chains, produces acetyl-CoA, presumably by enzymes encoded 
in the thn operon which is found in NaphS2 and N47 (Meckenstock 
et al., 2016).

Temperature is an important factor for the rate of petroleum 
hydrocarbon degradation (Das and Chandran, 2011). While 
hydrocarbon biodegradation in petroleum reservoirs is assumed to take 
place up to 80–90°C (Wilhelms et al., 2001), most cultured anaerobic 
UAH degraders grow at around 30°C. The knowledge on thermophilic 
to hyperthermophilic UAH degraders is scarce. The combination of 
UAH degradation with sulfate reduction is of particular interest, 
because sulfate is an important electron acceptor introduced artificially 
into reservoirs during secondary oil recovery, thereby stimulating 
hydrocarbon degradation and reservoir souring (Marietou, 2021).

Here, we aimed to enrich UAH oxidizers operating under the least 
studied conditions: anaerobic metabolism, UAH degradation, and 
high temperatures. We used sediment from the hydrothermal vent site 
Guaymas Basin (GB) located in the Gulf of California (Mexico) for 
this endeavor. In the GB, petroleum-range hydrocarbons, including 
AHs, are naturally abundant (Bazylinski et  al., 1988; Kawka and 
Simoneit, 1990). These hydrocarbons fuel microbial communities in 
anoxic upper sediment layers, which are characterized by steep 
thermal gradients that can reach ≥100°C at 30 cm depth (McKay et al., 
2012, 2016; Teske et al., 2014). The conditions prevalent in the GB are 
rare in the accessible seafloor and resemble those of heated subsurface 
petroleum reservoirs (Pannekens et al., 2019). Therewith, the GB can 
be considered a surface analogue for petroleum reservoirs, which is 
well suited to study microbial processes like anaerobic AH degradation 
at high temperatures. In this study, we  incubated hydrothermally 
heated GB sediment with different UAHs as electron donor and sulfate 
as electron acceptor at 50°C and 70°C.
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Materials and methods

Anoxic cultivation

The push cores 4991-13 and 4991-14 used for anoxic cultivations 
were collected at the “Cathedral Hill” hydrothermal vent site with 
submersible Alvin during RV Atlantis cruise AT42-05 to the GB 
during dive 4,991 (27° 00′ 41.1″ N, 111° 24′ 16.3″ W, 2,013 m water 
depth, November 17, 2018). On the ship, the push cores were 
transferred to glass bottles, which were sealed with rubber stoppers, 
purged with argon and stored at 4°C. In the home laboratory, the 
cores were combined and mixed with anoxic sulfate-reducer medium 
(SRM; Laso-Pérez et al., 2018) in a ratio of 1:10 (v:v). The sediment 
slurry was distributed into autoclaved serum bottles in 100 mL 
aliquots. The bottles were sealed with butyl rubber stoppers. Benzene, 
naphthalene, phenanthrene, and pyrene were provided as sole 
electron and carbon donors. The UAHs were dissolved in silicone oil, 
which is non-biodegradable and was previously shown to decrease 
AH toxicity and aid in transport of AHs to microbial cells (Ye et al., 
2019). 5 mL of the silicone oil-UAH mixture were added to the 
slurries, supplying a final UAH concentration of 10 mM. A negative 
control contained 5 mL silicone oil without substrate. The headspaces 
were filled with 2 atm N2:CO2 (90:10). Two temperature treatments, 
50°C and 70°C, were applied, and bottles were incubated at gentle 
shaking (40 rpm) in the dark. For each substrate and each 
temperature, three replicates were prepared.

Sulfide production was assessed in bi-weekly intervals via a 
copper sulfate assay (Cord-Ruwisch, 1985) using increased sulfate 
reduction compared to the negative control as indicator for AH 
oxidation. Cultures were diluted 1:4 (v:v) in fresh SRM and supplied 
with fresh substrate when sulfide concentrations exceeded ~10 mM. To 
determine the doubling times of active microorganisms in the 
cultures, the sulfide production rates of cultures after the first dilution 
were used as a proxy, excluding dilutions with only two sulfide 
measuring points. Produced sulfide was displayed on a logarithmic 
(base 2) y-axis, and doubling times were calculated from the 
inclination m  of exponential regression lines y = ∗n emx  with 
the equation:

  
Doubling time

m
d( ) = ( )ln 2

DNA extraction

After around 600 days of cultivation, cultures were sampled and 
DNA was extracted for metagenome sequencing. By this time, the 
active cultures had been diluted eight (benzene 50°C-B50), seven 
(benzene 70°C-B70), ten (naphthalene 50°C-N50), and two 
(naphthalene 70°C-N70) times. Of each culture, 40 mL were sampled, 
centrifuged (10 min, 3,100 ×g, 4°C) and the culture medium was 
discarded. DNA was extracted from the pellets using a modified 
SDS-protocol (Natarajan et al., 2016). DNA was also extracted in the 
same way from a 1 g pellet of dried sediment slurry (dry weight 
202 mg mL−1) that was produced from the combined cores 4991-13 
and 4991-14. The final DNA concentrations were determined in a 
fluorometric assay. DNA yields were 0.2 μg (B50), 3.4 μg (N50), 4.0 μg 

(B70), 0.6 μg (N70), and 0.7 μg (original sediment). Libraries were 
sequenced as 2 × 150 bp paired-end reads on an Illumina HiSeq3000 
platform at the Max-Planck-Genome-Centre (Cologne, Germany). 
Between 4,142,459 (B70) and 4,247,237 (N70) raw reads 
were obtained.

Short-read DNA analysis

Raw reads were quality-trimmed with BBDuk (included in 
BBMap version 38.79;1 minimum quality value: 20, minimum read 
length: 50; Bushnell, 2014). For the sediment slurry sample, the 
microbial community was estimated based on reconstructed small 
subunit (SSU) ribosomal RNA (rRNA) gene sequences mapped 
against the SILVA SSU reference database (version 138.1; Quast et al., 
2013) with phyloFlash2 (Gruber-Vodicka et al., 2022). The trimmed 
reads of the culture samples were co-assembled with SPAdes (version 
3.15.0;3 Bankevich et al., 2012). The output scaffolds were reformatted 
with anvi’o (version 7.1;4 Eren et al., 2015), simplifying names and 
excluding contigs <2,500 bp. The trimmed reads were then mapped to 
the reformatted scaffolds fasta using Bowtie 2 with local read 
alignment setting (version 2.4.2;5 Langmead and Salzberg, 2012). The 
output sequence alignment map (SAM) files were converted to binary 
alignment map (BAM) files with SAMtools (version 1.11;6 Danecek 
et al., 2021), which were indexed with anvi’o. A contigs database was 
created from the reformatted scaffolds file and profile databases were 
created for all samples with anvi’o. Open-reading frames (ORFs) of the 
contigs database, which anvi’o automatically identified using Prodigal 
(version 2.6.3;7 Hyatt et al., 2010), were annotated with the anvi’o-
integrated databases NCBI clusters of orthologous genes (COGs; 
Tatusov et al., 1997), Kyoto Encyclopedia of Genes and Genomes 
(KEGG; Kanehisa et al., 2017), Protein Families (Pfams; Mistry et al., 
2021), and KEGG orthologues HMMs (KOfams; Aramaki et  al., 
2020). Hidden Markov Model (HMM) searches for archaeal and 
bacterial single-copy core genes (SCGs) and genes encoding the 
dissimilatory sulfate reduction (DSR) pathway, which includes the 
three proteins sulfate adenylyltransferase (Sat), adenylylsulfate 
reductase (AprAB), and dissimilatory sulfite reductase (DsrAB), were 
run. Taxonomies were predicted for ORFs predicted for the contigs 
database with the Centrifuge classifier (version 1.0.2-beta;8 Kim et al., 
2016). The profile databases were merged, enforcing hierarchical 
clustering. Metagenome-assembled genomes (MAGs) were created in 
the anvi’o interactive interface through manual binning. For this 
purpose, branches of the hierarchically clustered dendrogram were 
followed systematically in a counterclockwise direction, generating 
bins via clicking and observing the real-time statistics on completion 
and redundancy based on single-copy core genes (SCGs) were 
observed. All MAGs were then refined manually with anvi’o, using GC 

1 https://sourceforge.net/projects/bbmap/

2 https://github.com/HRGV/phyloFlash

3 https://github.com/ablab/spades

4 https://github.com/merenlab/anvi’o/releases

5 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

6 http://samtools.sourceforge.net

7 https://github.com/hyattpd/Prodigal

8 https://ccb.jhu.edu/software/centrifuge
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content, mean coverage in all samples, and gene taxonomy as guides. 
The quality of the final MAGs was determined with CheckM (version 
1.1.3;9 Parks et al., 2015). Only MAGs with completion >50% and 
redundancy <10% after refinement were included in downstream 
analyses. Next, taxonomies were assigned to the MAGs using the 
GTDB toolkit GTDB-Tk (version 2.1.1;10 Chaumeil et al., 2020) and 
relative abundances of the MAGs in the samples were calculated with 
CoverM (version 0.6.1),11 which was run in genome mode. Prevalence 
of the MAGs in the original sediment was also estimated with CoverM 
using the trimmed read of the sediment slurry as input to map to the 
MAGs. The optimal growth temperature (OGT) was predicted for 
MAGs of interest with the OGT_prediction tool (version 1.0.3;12 Sauer 
and Wang, 2019) using the included regression models for Archaea 
and Bacteria which exclude genome size and 16S rRNA gene data. 
Average nucleotide identities (ANIs) between MAGs were determined 
with fastANI (version 1.33;13 Jain et al., 2018).

Genome annotation

The COG, KEGG, Pfam, and KOfam annotations were exported 
for MAGs of interest with anvi’o. In addition, protein sequences of 
ORFs were extracted from these MAG with anvi’o. Amino acid 
sequences of genes involved in AH degradation, sulfate reduction 
and related genes (electron transfer, carbon fixation, cell appendage 
formation) from the domains Archaea and Bacteria were acquired 
from the National Center for Biotechnology Information (NCBI) 
Protein and the UniProtKB databases. For putative anaerobic 
benzene carboxylase (AbcAD), protein sequences were collected 
from recent publications (Abu Laban et al., 2010; Holmes et al., 
2011; Luo et  al., 2014). The nucleotide sequences presumably 
coding for AbcA and AbcD from Abu Laban et al. (2010) (GenBank 
accessions GU357992 and GU357991, respectively) were translated 
to amino acid sequences using the ExPASy translate tool.14 
Additional amino acid sequences for subunits of class I  BCRs 
(bcrACD/bzdNQ) amplified via PCR in the study by Song and Ward 
(2005), which have been deposited under GenBank accession 
numbers AY956841 to AY956907, were also acquired. Sequences for 
3-hydroxypimeloyl-CoA dehydrogenase (pimE) and acetyl-CoA 
acyltransferase (pimB) were acquired from Atashgahi et al. (2018) 
(locus tags contig-100_24_2 and Contig-100_24_7, respectively). 
For each protein file, short sequences were removed with Seqtk 
(version 1.3).15 Local databases were created for the protein files 
with BLAST (version 2.10.1;16 Altschul et al., 1990). Amino acid 
sequences of the MAGs were compared to the local databases with 
BLASTp. BLASTp output was filtered with BLAST-QC (version 

9 https://ecogenomics.github.io/CheckM

10 https://github.com/Ecogenomics/GTDBTk

11 https://github.com/wwood/CoverM

12 https://github.com/DavidBSauer/OGT_prediction/

13 https://github.com/ParBLiSS/FastANI

14 https://web.expasy.org/translate/

15 https://github.com/lh3/seqtk

16 https://www.ncbi.nlm.nih.gov/books/NBK279690/

0.1;17 Torkian et al., 2020). Cutoff values for the identification of a 
given protein where: e-value <1e-10, identity ≥40%, and aligned 
length ≥ 80%. Proteins containing the heme-binding amino acid 
motif CxxCH (Bertini et al., 2006) were identified with a bash script 
in selected MAGs.

Phylogenomic and genomic analysis of 
bacterial groups associated with enriched 
organisms

Two phylogenomic trees were constructed from concatenated 
alignments of single-copy core genes (SCGs). For the first tree, all 135 
publicly available MAGs classified as order Desulfatiglandales in the 
Genome Taxonomy Database (GTDB) taxonomy tree18 (Parks et al., 
2022) were downloaded from NCBI including metadata 
(Supplementary Table S1). Due to the high number of genomes, the 
Desulfatiglandales MAGs were dereplicated at species level (ANI 
≥95%) prior to tree reconstruction with anvi’o, which uses fastANI, 
picking the MAG with highest similarity to all other MAGs of a species 
cluster as a representative. The phylogenomic tree was constructed with 
the 76 representative MAGs (Supplementary Table S2), the six 
Desulfatiglandales MAGs (5, 9, 34, 36, 46, 47) from this study, and five 
MAGs of the Desulfobulbia, a sister group of Desulfatiglandales, as 
outgroup. The second tree included all 26 publicly available MAGs 
assigned as order SZUA-161 of the class Dehalococcoidia in the GTDB 
taxonomy tree (Supplementary Table S3) downloaded from NCBI, 
including metadata, plus the SZUA-161 MAG of this study (MAG 33) 
and 10 MAGs of a sister order of SZUA-161 within Dehalococcoidia, 
UBA6952, as outgroup. For tree reconstruction, the selected MAGs 
were reformatted and a contigs database was created for each MAG 
with anvi’o (version 7.1). The anvi’o-integrated HMM collection was 
run on all contigs databases to identify bacterial SCGs, which were 
then aligned in a concatenated manner via anvi’o, which uses the 
multiple sequence alignment tool MUSCLE (version 5.1;19 Edgar, 
2004). Trees were calculated with 30 SCGs using IQ-TREE (version 
1.6.12;20 Nguyen et al., 2015). IQ-TREE was run using standard model 
selection followed by tree inference with 100 bootstrap iterations. Two 
MAGs (GCA_020351915.1 and GCA_020349865.1) and one MAG 
(GCA_020351795.1) were automatically excluded from the 
Desulfatiglandales and the SZUA-161 trees, respectively by IQ-TREE 
because they did not contain sufficient SCGs to infer meaningful 
phylogenies. Final trees were visualized with the Interactive Tree of Life 
(iTOL) online tool (version 6;21 Letunic and Bork, 2011). MAGs were 
compared via calculation of ANI with fastANI and amino acid identity 
(AAI) with the aai_wf workflow, which is part of the CompareM 
package (version 0.1.2).22

The optimal growth temperature (OGT) was predicted for the 
publicly available MAGs with the OGT_prediction tool (version 
1.0.3). Key genes for anaerobic UAH/AH oxidation and downstream 

17 https://github.com/torkian/blast-QC

18 https://gtdb.ecogenomic.org/tree

19 https://github.com/rcedgar/muscle

20 http://www.iqtree.org/

21 https://itol.embl.de/

22 https://github.com/donovan-h-parks/CompareM
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degradation were identified in Desulfatiglandales and SZUA-161 
MAGs by running the previously built protein databases on the amino 
acid sequences of the MAGs in the same way and with the same 
selection criteria as described in the section “Genome annotation.”

Data availability

The raw reads of short-read metagenome sequencing of the 
original sediment slurry and the four enrichment cultures have been 
deposited in the NCBI Sequence Read Archive (SRA) under 
BioProject PRJNA1013425 (accessions SRR25925499-SRR25925503).

Code availability

The bash script used for the identification of CxxCH motifs in 
protein sequences of the MAGs is available under https://github.com/
zehanna/UAH_oxidation.

Results

Thermophilic microorganisms from the GB 
degrade one- to two-ringed UAHs

We incubated triplicate batches of an oil-rich sediment slurry 
from the GB (Figure  1A) with UAHs ranging from one to four 
aromatic rings at 50°C and 70°C (benzene, naphthalene, 
phenanthrene, and pyrene, increasing in size). Cultures supplied with 
phenanthrene and pyrene did not produce more sulfide than a 
substrate-free control at either incubation temperature, indicating that 
UAH oxidation did not take place. In contrast, cultures supplied with 
benzene and naphthalene incubated at 50°C and 70°C started to 
produce sulfide shortly after the incubation start and first reached 
sulfide levels >10 mM after 40 (B50 culture) to 120 days (N70). 
Sequential dilutions strongly reduced the sediment content in the B50, 
B70, and N50 cultures (Figure 1B). The average doubling time based 
on sulfide production was 20 days in the N50, 25 days in the B70,  
and 37 days in the B50 cultures, respectively (Figures  1C–E; 
Supplementary Table S4). In the N70 cultures, dilutions resulted in 
decreasing sulfide production rates (Figure  1F) accompanied by  
long doubling times (>200 days) after the second dilution 
(Supplementary Table S4).

Community compositions in the 
enrichment cultures

After more than 1.5 years of cultivation, we retrieved short-read 
metagenomes from the original sediment used for incubations and 
from the four active cultures B50, B70, N50, and N70.

From the co-assembled metagenomes, we reconstructed 47 MAGs 
with completeness >50% and redundancy <10%. Cultures that showed 
high sulfate-dependent substrate turnover (B50, B70, and N50) were 
more enriched in specific taxa, whereas the microbial community of 
the less active N70 culture remained more diverse (Figures 2A,B; 
Supplementary Table S5). Previous studies observed high 

archaea:bacteria ratios in heated GB sediments, which increase further 
with temperature (McKay et al., 2016; Ramírez et al., 2021). In our 
case, the B50 culture had a higher archaea:bacteria ratio than the B70 
culture, contrasting this hypothesis. In the N50 culture, archaea  
were completely absent, but made up around 50% of the  
community in the N70 culture, coinciding with literature (Figure 2B; 
Supplementary Table S5).

In the B50 culture, the most abundant MAG (MAG 53, relative 
abundance 31%) was classified as species VBQP01 sp008297795 of the 
archaeal phylum Thermoplasmatota (Figure 2C; Table 1). This MAG 
belongs to the same species (ANI = 98.9%) as a MAG reconstructed 
from an environmental metagenome from the GB, M8_bin1702 
(GCA_008297795.1). A recent study discussed the potential of this 
organism to degrade aromatic compound degradation via the 
phenylacetic acid (PAA) pathway (Liu et al., 2020). The B70 and N50 
cultures were dominated by a single bacterial MAG with relative 
abundance >50%: MAG 9 in the B70 culture and MAG 34 in the N50 
culture. Both MAGs were classified as Desulfatiglandales (Table 1). 
MAG 34 was classified up to species-level and belongs to the genus 
B111-G9, the representative of which was previously reconstructed 
from GB sediments (Dombrowski et  al., 2018). MAG 9 was only 
classified at order level. In the N70 culture, MAG 33 affiliated with the 
bacterial family SpSt-899 of the Dehalococcoidia order SZUA-161 was 
the most abundant (relative abundance 12%), closely followed by 
archaeal MAGs of the genus Archaeoglobus (MAG 31, 8%), and the 
family WUQV01 (class Bathyarchaeia; MAG 32, 5.3%), and a bacterial 
MAG (MAG 16, 5%) of the Bipolaricaulaceae. The communities of the 
cultures differed strongly from the ANME-1 dominated sediment 
slurry, where the enriched MAGs were only present at very low 
abundances (0.0–0.1%; Supplementary Table S6).

UAH degradation pathways in abundant 
MAGs

In the B50 culture, the most abundant MAG, MAG 53 
(Thermoplasmatota), encodes only very few proteins of known 
pathways for the activation and oxidation of benzene, among others 
benzoylsuccinyl-CoA thiolase (BbsAB) of the methylation pathway, 
and benzoate-CoA ligase (BamY) of the carboxylation pathway 
(Figure 3A). We also searched for genes encoding the PAA pathway 
recently discussed by Liu et al. (2020). MAG 53 encodes only three of 
thirteen proteins of the pathway, among others the key enzyme 
phenylacetate-CoA ligase (PaaK; Jiao et al., 2022). The second most 
abundant MAG, MAG 37 (Patescibacteria), contains even fewer genes 
for anaerobic benzene oxidation, and is thus a less likely candidate for 
benzene oxidation. Further, MAG 53 encodes only one (Sat) of three 
proteins of the DSR pathway. In MAG 37, all genes encoding the DSR 
pathway are absent. Thus, neither of those two MAGs seems capable 
of sulfate reduction. We searched for the relevant pathway genes in 
less abundant MAGs with relative abundances of 3–5% (MAGs 48, 49, 
47, 46, and 35; Supplementary Figure S1; Supplementary Table S8). 
MAGs 46 and 47, affiliated with Desulfatiglandales, encode a majority 
of the genes for benzene degradation after methylation. In addition, 
MAG 47 encodes a partial hydroxylation pathway. While neither 
MAG encodes homologues of Abc, both contain bamY and complete 
or near complete pathways for reductive dearomatization (RD), ring 
hydrolysis (RH), lower BCoA pathway, CO-Dehydrogenase/
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Acetyl-CoA Synthase complex (ACDS), and the H4F methyl branch 
of the Wood-Ljungdahl (H4F WL) pathway. In addition, both MAGs 
encode complete DSR pathways. Thus, both organisms could 
be capable of benzene degradation and can perform DSR. However, 
because of their low abundance, it is questionable whether they are 
the main benzene oxidizers in the culture. It is possible that the highly 
abundant MAG 53 uses a yet unknown mechanism for benzene 
oxidation. In that case, this archaeon would require partner 
organisms, potentially the Desulfatiglandales bacteria represented by 
MAGs 46 and 47, for shuttling electrons into sulfate reduction. This 
would imply syntrophic interactions within this culture. All three 
MAGs 46, 47, and 53 encode membrane-bound [NiFe] hydrogenases, 

which would enable electron exchange via hydrogen. In addition, 
MAGs 46 and 47 encode archaeal type (FlaB) and bacterial type 
(PilA) cell appendages (Supplementary Figure S1), and all three 
MAGs encode multi-heme cytochromes, which could facilitate direct 
interspecies electron transfer (DIET). In this hypothetical scenario, 
the role of the MAGs that are more abundant than MAGs 46 and 47, 
but less abundant than MAG 53, i.e., the MAGs 37, 48, and 49, can 
be  speculated upon. MAG 37 (8.6%) affiliates with the phylum 
Patescibacteria, previously called Candidate Phyla Radiation (Parks 
et al., 2018). Based on their small cell and genome size and their 
limited metabolic potential, symbiotic interactions were previously 
proposed for members of this phylum (Kantor et al., 2013; Tian et al., 

FIGURE 1

Thermophilic microorganisms from Guaymas Basin sediment oxidize aromatic hydrocarbons. (A) Sampling site of petroleum hydrocarbon-rich push 
cores in the Guaymas Basin. Push cores used for anoxic incubations are indicated by white arrow heads. (B) Sequential dilution of sulfide-producing 
anoxic slurries strongly reduced sediment content (from left to right: original slurry, first dilution, second dilution). (C–F) Sulfide production in anoxic 
cultures supplied with benzene (C,E) and naphthalene (D,F) incubated at 50°C (yellow filling) and 70°C (red filling). Gaps in sulfide profiles indicate 
dilution events.
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2020; Kuroda et al., 2022). In accordance with this, MAG 37 consists 
of only ~0.9 Mbp. Some Patescibacteria attach specifically to cells of 
methanogens of the genus Methanothrix in anaerobic wastewater 
treatment sludge (Kuroda et al., 2022). The infected Methanothrix 
cells exhibited decreased ribosomal activities and physical 
deformations. Therefore, the authors concluded that the 
Patescibacteria are likely parasites of the methanogens (Kuroda et al., 
2022). Thus, in our culture the Patescibacteria might grow as parasites 
of the abundant Thermoplasmatota. MAG 48 (4.4%) affiliates with the 
phylum Caldisericota. This bacterial group was originally referred to 
as candidate phylum OP5 (Mori et al., 2009). Members of OP5 were 
present in a methanogenic enrichment culture degrading the 
monoaromatic compound terephthalate (Lykidis et al., 2011). The 
authors speculated that the OP5 populations within the culture might 
remove the final terephthalate oxidation product CO2 by shuttling it 
into butyrate and potentially acetate production (Lykidis et al., 2011). 
The Caldisericota in our culture may have a similar function. While 
the H4F WL pathway for CO2 fixation is only 50% complete in MAG 
48, it encodes both phosphate butyryltransferase and butyrate kinase 
for butyrate synthesis, plus acetate kinase for acetate synthesis. The 
produced butyrate and/or acetate may then fuel other microbial 
groups which could oxidize butyrate through the β-oxidation pathway 
and/or convert acetate to acetyl-CoA for various purposes. MAG 49 
(3.7%), which also affiliates with Thermoplasmatota, lacks acetate 
kinase for conversion of acetate to acetyl-CoA, but encodes a 
β-oxidation pathway for utilization of butyrate. In conclusion, 
multiple symbiotic interactions might co-exist in this culture. More 

studies are required to elucidate the mechanisms in this complex but 
highly active culture.

In the B70 culture, MAG 9 (Desulfatiglandales) encodes an almost 
complete pathway for benzene activation via methylation, and an 
almost complete class II BCR for RD (Figure 3B). Because abcAD is 
absent from this MAG, and only a single enzyme (HbaA/HcrL) of the 
hydroxylation pathway is encoded, substrate activation most likely 
occurs via methylation. MAG 9 encodes a Thauera type RH pathway 
including BamR, BamQ, and BamA, and an almost complete 
Rhodopseudomonas type RH pathway. In addition, MAG 9 encodes a 
major part of the lower BCoA pathway and CODH/ACS complex, and 
a complete H4F WL pathway for a complete oxidation of benzene to 
CO2. Encoding a complete DSR pathway, this organism is able to 
combine benzene oxidation with sulfate reduction in a single cell. 
MAG 9 also encodes type IV pilin (PilA) and several chemotaxis 
genes, which could enable it to outcompete other potential benzene 
degraders and increase its efficiency for benzene degradation, as 
previously shown for the naphthalene-degrading bacterium 
Pseudomonas putida G7 (Law and Aitken, 2003). The estimated OGT 
of 65°C for this MAG supports the thermophilic character of this 
organism. Low-abundance MAGs in this culture, like MAG 16 
(Bipolaricaulales) and MAG 17 (Archaeoglobales), also encode 
proteins for anaerobic benzene degradation, such as BamY, some 
subunits of class II BCR, and in case of MAG 17 a complete DSR 
pathway. Notably, MAG 17 encodes one of two subunits of anaerobic 
benzene carboxylase (AbcA), which could enable it to degrade 
benzene via carboxylation. It is thus possible that the two organisms 

FIGURE 2

Microbial community compositions differ in anaerobic UAH-degrading cultures depending on substrate and incubation temperature. (A) Mean 
coverages of the 47 MAGs reconstructed from the co-assembly of metagenomes of benzene- and naphthalene-supplied cultures at 50°C and 70°C. 
(B) Relative abundances of MAGs assigned to the domains archaea or bacteria in the four metagenomes. (C) Relative abundances of the MAGs on 
order-level.
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contribute to a small degree to benzene oxidation and/or sulfate 
reduction, but considering abundances, we  expect the organism 
represented by MAG 9 to be the main active organism in the culture.

In the N50 culture (Figure 4A), MAG 34 (Desulfatiglandales) 
exhibits vast genomic capacities for anaerobic naphthalene oxidation. 
First, it encodes an almost complete pathway of the known enzymes 
of the methylation pathway. It is also capable of activation via direct 
carboxylation, encoding homologues of all eight genes of the 
naphthalene carboxylase complex. This complex consists of three 
UbiD-like carboxylases, two ParA-MiND ATPase-like-proteins, and 
three putative linker proteins (Koelschbach et al., 2019). Moreover, 
MAG 34 encodes four copies of naphthoyl-CoA ligase (NCL) highly 
homologous to the variants of NaphS2 and N47 (amino acid identity 
≥67%). NCL converts 2-naphthoate to 2-naphthoyl-CoA (Heker et al., 
2023). Further, it is capable of the three-step RD of naphthalene, 
encoding homologues of 2-naphtoyl-CoA reductase (NCR), 
5,6-dihydro-2-naphthoyl-CoA reductase (DHNCR), and both N47 
and NaphS2 type of 5,6,7,8-tetrahydro-2-naphthoyl-CoA reductase 
(THNCR). An almost complete thn operon and lower BCoA pathway 
facilitates RH and oxidation to acetyl-CoA, followed by complete 
oxidation to CO2 via the CODH/ACS complex and the remaining H4F 
WL pathway. MAG 34 encodes a complete DSR pathway, enabling the 
organism to shuttle electrons from naphthalene oxidation directly into 
sulfate reduction. The incubation temperature is very close to the 
estimated OGT of the organism of 55°C. Its high relative abundance 
and its extensive genomic capacity for naphthalene degradation 
suggest that the bacterium represented by MAG 34 is the dominant, 
maybe even the only naphthalene oxidizer in the culture.

In the N70 culture (Figure  4B), MAG 33 (Dehalococcoidia) 
encodes only one protein of the methylation pathway, and lacks 
naphthalene carboxylase, thus limiting its options for naphthalene 
activation. Yet, MAG 33 encodes NCL, two of the three reductases 
required for RD, and about two thirds of the thn operon for RH, 
among others the putative ring-cleaving hydrolase ThnL (Meckenstock 
et  al., 2016). Further, it encodes an almost complete lower BCoA 
pathway, plus a complete CODH/ACS and H4F WL pathway, which 
would enable it to oxidize naphthalene to CO2. MAG 33 is about 85% 
complete, thus it is possible that the missing 15% encode naphthalene-
activating UbiD-like carboxylases and DHNCR, which would enable 
it to degrade naphthalene. Because none of the other MAGs with 
relative abundances ≥5% in this culture encode numerous genes for 
activation, RD, or RH, MAG 33 is the most likely candidate for 
naphthalene oxidation. MAG 33 encodes only one of three proteins of 
the DSR pathway, sulfate adenylyltransferase (Sat), and is therefore 
probably incapable of sulfate reduction. The next most abundant 
MAG, MAG 31 (Archaeoglobales), encodes an almost complete DSR 
pathway, which lacks only the alpha subunit of Apr. Thus, it is possible 
that naphthalene oxidation in this culture occurs via syntrophic 
interactions. While membrane-bound hydrogenases are absent in 
MAG 33, both MAGs 33 and 31 encode formate dehydrogenases, 
which could facilitate electron transfer from MAG 33 to MAG 31 via 
formate. Direct transfer via DIET is also conceivable, because MAG 
31 encodes both FlaB and PilA, and both MAG 33 and MAG 31 
encode several multi-heme cytochromes.

We aimed to bring the results from our enrichment cultures into 
a wider ecological context and examined the distribution of AH 
degradation genes and pathways in the larger taxonomic groups of the 
microorganisms that we enriched in our study. We refrained from T
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examining the phylogeny of the Thermoplasmatota MAG 53 (M8_
bin1702), because the Thermoplasmatota phylogeny was well-resolved 
in the recent study by Liu et al. (2020). Thus, we  focused on two 
bacterial groups with which abundant MAGs from our cultures were 
affiliated: the order Desulfatiglandales (class DSM-4660) and the order 
SZUA-161 (class Dehalococcoidia).

Environmental distribution of 
Desulfatiglandales and SZUA-161

Desulfatiglandales currently comprise 135 publicly available 
MAGs on GDTB, while for SZUA-161 only 26 MAGs are available 
at the moment. Both Desulfatiglandales and Dehalococcoidia are 

FIGURE 3

Benzene degradation pathways in MAGs recovered from benzene-oxidizing cultures at 50°C (A) and 70°C (B). Genes were identified via BLASTp search 
against local databases of proteins of interest. For proteins and pathways encoded by several genes, completeness was calculated as percentage of 
present genes of total genes of the pathway/protein. For pathway genes and abbreviations see Supplementary Table S7.
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globally widespread members of marine sediment and subsurface 
communities (Inagaki et al., 2006; Parkes et al., 2014; Wasmund 
et al., 2014; Robador et al., 2016). Desulfatiglandales MAGs have 
been recovered mainly from or near the North American 
continent. Fewer MAGs originate from Eurasia, including the 
Black Sea, with only one MAG (GCA_024641835.1) stemming 
from the Southern Hemisphere (Figure 5A). The few available 
SZUA-161 MAGs have been reconstructed from continental 
samples from North America, Eurasia, Asia, and Africa, plus from 
marine samples from the Atlantic (Figure  5B). Both group 
distributions likely reflect sampling efforts rather than actual 
occurrence and/or abundance.

The MAGs of both orders originate from a wide array of 
environments, including lakes, springs, cold seeps, the seafloor and 
the subsurface. More than half of publicly available Desulfatiglandales 
MAGs (75 out of 135) originate from hydrothermal vent sediment, 
mainly from the GB (70 MAGs) and to a smaller degree (5 MAGs) 

from the Pescadero Basin, a recently described hydrothermal vent area 
(Paduan et al., 2018) located ~400 km southeast of the GB in the Gulf 
of California. Further MAGs include 17 MAGs from groundwater or 
aquifer samples, 9 MAGs from seawater samples from the Black Sea, 
the Pacific coast, and the Gulf of Mexico, and 7 MAGs from estuary 
sediment. For SZUA-161, hydrothermal vents are also the most 
common environment type, with 11 MAGs emanating from the Lost 
City hydrothermal field located at the Mid-Atlantic Ridge (Kelley 
et al., 2001). Considering the current data on both bacterial groups, it 
seems plausible that both are widely distributed and capable of 
inhabiting diverse environments, with a potential preference for 
hydrothermal vent areas.

Next, we  examined the phylogenomic placement of 
Desulfatiglandales MAGs and the SZUA-161 MAG from our study in 
their larger taxonomic groups, and investigated the genomic potential 
of environmental Desulfatiglandales and SZUA-161 MAGs for 
anaerobic UAH degradation.

FIGURE 4

Naphthalene degradation pathways in MAGs recovered from naphthalene-oxidizing cultures at 50°C (A) and 70°C (B). Genes were identified via 
BLASTp search against local databases of proteins of interest. For proteins and pathways encoded by several genes, completeness was calculated as 
percentage of present genes of total genes of the pathway/protein. For pathway genes and abbreviations see Supplementary Table S7.
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Genomic capacity for UAH degradation in 
Desulfatiglandales bacteria

According to GTDB (Parks et  al., 2022), Desulfatiglandales is 
currently the only order in the class DSM-4660, which in turn belongs 
to the phylum Desulfobacterota. Desulfatiglandales are defined as 
gram-negative, rod-shaped, strictly anaerobic, and mesophilic bacteria 
that utilize AH derivatives like phenol and benzoate as electron donors 
in combination with the reduction of sulfate and other inorganic sulfur 
compounds (Suzuki et  al., 2014; Waite et  al., 2020; Galushko and 
Kuever, 2021). Notable members of the order include NaphS2 
(Galushko et al., 1999; DiDonato et al., 2010), Desulfatiglans anilini, 
which degrades phenol and the aromatic amine aniline (Schnell et al., 
1989; Ahn et al., 2009; Suzuki et al., 2014), and the recently enriched 
phenanthrene-degrader candidate Desulfatiglans TRIP_1 (Himmelberg 
et al., 2018; Kraiselburd et al., 2019).

Desulfatiglandales include four families: Desulfatiglandaceae 
with the type genus Desulfatiglans (Waite et al., 2020), B25-G16, 
HGW-15, and JAIPEI01. The majority (77) of publicly available 
MAGs fall into the family Desulfatiglandaceae, with 34 MAGs 
classified as HGW-15, 26 MAGs as B25-G16, and only one MAG 
representing JAIPEI01. This phylogeny is well-resolved in our 

phylogenomic tree based on concatenated SCGs (Figure 6). The tree 
is divided into two large monophyletic groups: (1) the B25-G16 
family and (2) the three other families JAIPEI01, HGW-15, and 
Desulfatiglandaceae. All six MAGs from our study fall into one 
monophyletic clade within the family Desulfatiglandaceae, which 
indicates that MAGs 5 and 9 are part of this family, even though 
they were not assigned as such by GTDB-Tk. This clade contains 
four additional MAGs (GCA_021163815.1, GCA_019306325.1, 
GCA_003646995.1, and GCA_019309225.1), all from hydrothermal 
vent sediment in the GB and the Pescadero Basin. The clade splits 
into two groups: (1) MAGs 5, 9, and 46 and GCA_021163815.1 (2) 
GCA_019306325.1, GCA_003646995.1, MAGs 47, 34, 36, and 
GCA_019309225.1. Based on ANI, AAI and the tree structure 
(Figure 6; Supplementary Figures S2, S3; Supplementary Table S9), 
group one consists of two genera, one containing two  
species, represented each by MAGs 5 and 9 (ANI 78%, AAI 73%),  
and one containing one species represented by two MAGs, 
GCA_021163815.1 and MAG 46 (ANI 95%, AAI 96%; 
Konstantinidis et al., 2017; Jain et al., 2018). Notably, MAGs 5 and 
9 exhibit the highest estimated OGTs of all Desulfatiglandales 
MAGs (63°C and 66°C, respectively compared to an average OGT 
of 44°C of all publicly available MAGs; Supplementary Table S1). 

FIGURE 5

Environmental origin of bacterial MAGs of the Desulfobacterota order Desulfatiglandales (A) and of the Dehalococcoidia order SZUA-161 (B). 
Coordinates were acquired from metadata accompanying the MAGs deposited at NCBI.
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Therewith, we were able to reconstruct the MAGs of the, to this 
date, likely most thermophilic genus of the class, and enrich the 
currently most thermophilic organism and anaerobic AH degrader 
of the clade, represented by MAG 9, at temperatures slightly above 
its predicted OGT. Strikingly, the MAGs of the sister genus, MAG 
46 and GCA_021163815.1, likely grow at mesophilic temperatures 
about 20°C lower (OGT 44°C). According to the same criteria, the 
second group consists of four species of one genus: species (1) 
GCA_019306325.1; species (2) GCA_003646995.1 and MAG 47; 
species (3) MAG 34; and species (4) MAG 36 and GCA_019309225.1. 
Members of group two are predicted moderate thermophiles with 
OGTs around 50–55°C, which coincides with the enrichment of the 
MAG 34 bacterium at 50°C.

Genes coding for central enzymes for the anaerobic AH 
metabolism, e.g., bamY and bamA, are widely distributed within the 
order Desulfatiglandales, and do not appear to be  connected to 
specific clades. Most MAGs also encode PaaK, the key enzyme of the 
PAA pathway. CODH/ACS and bacterial-type H4F WL pathway are 
also ubiquitously present and should allow a downstream oxidation 
of aromatic compounds. The DSR pathway is strongly represented for 
coupling to sulfate reduction, even though the pathway is incomplete 
in about a third of the included MAGs. In some cases this may be a 

result of low completion, e.g., in MAGs GCA_015223015.1 and 
GCA_016776415.1.

About half of the MAGs encode the alpha subunit of 
benzylsuccinate synthase (BssA) of the methylation pathway of 
benzene and the alpha subunit of phenylphosphate synthase (PpsA) 
of the hydroxylation pathway. Interestingly, more than a third of the 
Desulfatiglandales MAGs encode AbcA. AbcA, in connection with 
BamY, could enable many yet uncultured Desulfatiglandales of 
degrading benzene via the carboxylation pathway. Regarding BCRs, 
the bcr type BCR I, isolated from Thauera aromatica and 
Rhododpseudomonas palustris (Song and Ward, 2005), is the least 
distributed version, with about a third of MAGs encoding the 
catalytic subunit BcrA. More than three quarters of MAGs encode 
BzdQ, the active subunit of bzd type BCR I  of Azoarcus evansii 
(Song and Ward, 2005). The BamB subunit of ATP-independent 
class II BCR is similarly as represented as BzdQ, thus both 
ATP-dependent and -independent BCRs seem to be  used 
by Desulfatiglandales.

Genes for the anaerobic activation of naphthalene are less frequent 
in Desulfatiglandales than genes for benzene activation. We did not 
detect genes encoding the alpha subunit of naphthyl-2-
methylsuccinate synthase (nmsA) for naphthalene degradation after 

FIGURE 6

Genomic capacities for anaerobic aromatic hydrocarbon degradation in genomes of the bacterial order Desulfatiglandales. MAGs recovered in this 
study are highlighted in bold, MAG 9 dominant in the benzene 70°C (B70) culture and MAG 34 dominant in the naphthalene 50°C (N50) culture are 
additionally highlighted in red and yellow, respectively. For pathway genes and abbreviations see Supplementary Table S7.
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methylation (Selesi et al., 2010), in any of the MAGs. Instead, about a 
quarter of MAGs encode one or more copies of the UbiD-carboxylases 
previously identified in the naphthalene carboxylase operon 
(Koelschbach et al., 2019). NCL-encoding genes are present in only 
eight MAGs, NCR-encoding genes in 15 MAGs, DHNCR-encoding 
genes in 8 MAGs, and the complete operon encoding THNCR in 12 
MAGs. The combined presence of all genes required for naphthalene 
degradation via carboxylation is rare. In fact, next to the known 
naphthalene-degrader NaphS2, MAG 34 from the N50 culture is the 
only MAG encoding the complete naphthalene degradation pathway. 
MAG 34 also contains key genes for the anaerobic activation of 
benzene, bssA and abcA. Thus this bacterium might also be capable of 
benzene and/or benzene derivate degradation.

Genomic capacity for UAH degradation in 
SZUA-161 bacteria

In GDTB, the order SZUA-161 falls into the class Dehalococcoidia 
and phylum Chloroflexota (Parks et al., 2022). While this specific 
order is not well-described yet, cultured Dehalococcoidia are known 
for the reductive dehalogenization of chlorinated and brominated 
compounds (Maymó-Gatell et al., 1997; Yan et al., 2009). Examples 
include Dehalococcoides mccartyi, which reduces chlorinated ethenes 
and chlorinated benzenes (Löffler et  al., 2013), and the 
Dehalogenimonas species D. lykanthroporepellens and D. alkenigignens, 
which reduce poylchlorinated aliphatic alkanes (Moe et  al., 2009; 
Bowman et al., 2013). Both genera fall into the order Dehalococcoidales 
and use hydrogen as electron donor. Recent studies suggest a potential 
for both aerobic and anaerobic aromatics degradation in the 
Dehalococcoidia. For instance, the phenol derivatives vanillin and 
syringic acid stimulated growth of aerobic bacteria of the 
Dehalococcoidia order Tepidiformales isolated from geothermal 
springs and thriving at 55–60°C (Palmer et  al., 2023). Further, 
Dehalococcoidia MAGs, one of which is part of the order SZUA-161 
(GCA_004376205.1), from petroleum seeps in the Gulf of Mexico 
contained proteins for the anaerobic hydroxylation of the alkylbenzene 
p-cymene and class I BCRs for RD (Dong et al., 2019). Another study 
enriched a Dehalococcoidia closely related to D. alkenigignens 
anaerobically on lignin, which encoded an almost complete benzoate 
degradation pathway (Yu et al., 2023). The study further showed that 
most Dehalococcoidia MAGs recovered from marine sediment 
encoded bcr-type BCRs, which were absent in Dehalococcoidia MAGs 
from groundwater or seawater.

The order SZUA-161 currently contains 26 MAGs of two 
families, SZUA-161 (9 MAGs) and SpSt-899 (17 MAGs). This 
phylogeny is well-resolved in our tree (Figure 7). MAG 33 from the 
N70 culture is situated at the root of the SpSt-899 family branch, 
which coincides with its taxonomic affiliation to this family. 
Notably, MAG 33 has a much higher estimated OGT (60°C) than 
all other MAGs of the order (average OGT 43°C). We therefore 
propose that SpSt-899 was originally more thermophilic, and later 
distributed into less heated environments. The closest relative  
to MAG 33 is the Dehalococcoidia bacterium LH_S1 
(GCA_023660035.1), which belongs to a different genus (AAI 59%; 
Supplementary Figures S4A,B; Supplementary Table S10).

The SZUA-161 family encodes several key pathway genes for 
benzene degradation. For instance, seven out of eight MAGs encode 

BssA, all MAGs encode BamY, and six MAGs encode 
BamA. Interestingly, SZUA-161 seem to rely on ATP-dependent 
BCRs, since all MAGs encode BzdQ, five MAGs encode BcrA, but 
only two MAGs encode BamB. Naphthalene activation genes, both for 
the methylation and carboxylation pathway, are not encoded by 
members of the SZUA-161 family. Yet, two MAGs encode NCR, three 
MAGs encode DHNCR, and all MAGs encode one or more subunits 
of the four-subunit THNCR. Thus, while SZUA-161 likely cannot 
activate naphthalene directly, they might be  able to dearomatize 
naphthyl-derivatives. All SZUA-161 family MAGs encode complete 
CODH/ACS complexes and partial or complete H4F WL pathways, 
which they could use for oxidation of dearomatized naphthyl-residues 
to CO2. Surprisingly, two MAGs of the SZUA-161 family encode 
complete DSR pathways, and the other six MAGs encode partial DSR 
pathways, insinuating that these organisms are capable of sulfate 
reduction, a metabolic trait that was previously not associated with 
members of the Dehalococcoidia.

In the SpSt-899 family, four members that are closer to the  
root of the clade, MAG 33, LH_S1 (GCA_023660035.1), 
GCA_018657655.1, and GCA_013203045.1, contain several genes for 
the anaerobic degradation of benzene or derivatives, e.g., bssA and 
bamY in two of the MAGs, and bamA in three of the MAGs. Those 
MAGs also encode several bcrA, bzdQ, and bamB subunits of BCRs, 
indicating a capacity for RD. MAG 33 is the only MAG of the  
group encoding a partial pathway for naphthalene degradation  
(NCL, NCR, and THNCR). Interestingly, one MAG of this group, 
GCA_013203045.1, encodes a complete and another MAG, 
GCA_018657655.1, an almost complete DSR pathway, indicating 
capacity for DSR in this group. In the remaining members of SpSt-
899, genes for both benzene and naphthalene degradation are scarce. 
Yet, several MAGs contain isolated genes for the degradation of 
benzene, i.e., bssA, bamY, bamB, and bamA. Curiously, one MAG 
(GCA_023271155.1) encodes abcA for direct carboxylation of 
benzene and a copy of UbiD-like naphthalene carboxylase, even 
though it lacks many genes of the downstream degradation pathway. 
Most SpSt-899 MAGs encode CODH/ACS and the H4F WL pathway, 
even though both components are incomplete in some MAGs. All in 
all, we propose that capacity for UAH/AH degradation is an ancestral 
trait of the SpSt-899 and was lost in more recent members. However, 
particularly in several closely related MAGs of the AH-958 group, to 
which GCA_023271155.1 also belongs, the analysis is impaired by 
low completeness (52–66%) of the MAGs (Supplementary Figure S4A; 
Supplementary Tables S2, S10). More high-quality MAGs are needed 
for more reliable predictions about UAH/AH degradation capacity in 
this family.

Discussion

Most previously established UAH-degrading cultures grow at 
mesophilic temperatures around 30°C (Galushko et  al., 1999; 
Meckenstock et al., 2000; Musat et al., 2009; Zhang et al., 2012; Dong 
et al., 2017). A noteworthy exception is the benzene-degrading iron-
reducing archaeon Ferroglobus placidus, which thrives at 85°C 
(Holmes et al., 2011). In this study, we aimed to enrich thermophilic 
UAH-degrading microorganisms in connection to the reduction of 
sulfate, one of the most abundant terminal electron acceptors in 
anoxic marine sediments, from GB sediment (Thamdrup, 2000; 
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Jørgensen and Kasten, 2006; Bowles et al., 2014). Previous cultivation 
efforts using GB sediment revealed UAH oxidation in mesophilic 
aerobic bacteria degrading naphthalene and phenanthrene 
(Bazylinski et al., 1989; Goetz and Jannasch, 1993), and anaerobic 
degradation of benzene by Desulfatiglans strains SB-21 and SB-30 at 
28–30°C (Phelps et al., 1998). Cultures of anaerobic thermophilic 
UAH-degraders have, to the best of our knowledge, not previously 
been established from GB sediment.

In this study, we  established benzene- and naphthalene-
degrading cultures at 50°C and 70°C. We found distinct communities 
in each culture, suggesting that sediments contain a large variety of 
specified archaea and bacteria that can be enriched with different 
substrates and temperature combinations. Surprisingly, we  found 
only few benzene degradation genes in the highly abundant 
Thermoplasmatota MAG in the B50 culture. This pathway has been 
previously detected mostly in bacteria. It is possible that archaeal 
homologues differ so much from the bacterial enzymes that they 
could not be detected due to the high stringency of the BLASTp 
search. The only known archaeal UAH degrader, F. placidus, uses a 
bacterial-type pathway for benzene degradation (Holmes et al., 2011). 
Alternatively, this Thermoplasmatota archaeon might employ a 
different, yet unknown mechanism. Recently, it was proposed that 
Thermoplasmatota archaea from the GB are able to degrade aromatics 
via the PAA pathway (Liu et al., 2020). Our MAG did include the key 
gene, paaK, but lacked most other genes of this pathway. Plus, this 
pathway also converges in BCoA, and BCR and the enzymes of the 
lower BCoA pathway are required for further oxidation, most of 
which are absent in MAG 53. Yet, the high relative abundance of this 
MAG suggests an important role in the culture. Whether and by 
which mechanism this archaeon degrades benzene requires 
further investigation.

Desulfatiglandales MAGs 9 and 34 were highly abundant in the 
B70 and N50 cultures, respectively, and encode plenty of genes for 
anaerobic UAH oxidation and a complete DSR pathway. Thus, they 
are most likely the UAH oxidizers in their respective cultures and 
combine UAH oxidation with sulfate reduction in a single cell. 

MAG 9 lacks AbcAD, the enzyme for direct carboxylation of 
benzene, which is currently the only confirmed activation 
mechanism (Abu Laban et al., 2010; Luo et al., 2014; Eziuzor et al., 
2022). Instead, it encodes genes for degrading benzene after 
methylation by a yet unknown enzyme. Further studies are needed 
to identify the enzyme responsible for the challenging direct 
methylation of benzene. Yet, our study indicates that carboxylation 
is not the only pathway used for benzene activation in anoxic 
sediments. MAG 34 encodes an almost complete operon for the 
anaerobic oxidation of naphthalene via carboxylation (Koelschbach 
et  al., 2019), and further enzymes for complete naphthalene 
oxidation. According to our analysis of naphthalene degradation 
genes in the order Desulfatiglandales, MAG 34 is only the second 
bacterium in the clade, together with NaphS2, capable of oxidizing 
naphthalene via direct carboxylation. Grown at 50°C, it is also the 
most thermophilic anaerobic naphthalene-degrader to date, to the 
best of our knowledge. With the enrichment of thermophilic 
species, especially MAG 9 thriving at 70°C, the general definition 
of Desulfatiglandales as mesophilic may be questioned (Galushko 
and Kuever, 2021). We  did not detect genes for processing of 
naphthalene (nmsA) after activation via direct methylation in the 
Desulfatiglandales. Thus, methylation does not seem to be  a 
frequent mechanism for naphthalene activation, which is in 
accordance with previous studies (Zhang and Young, 1997; Musat 
et al., 2009; DiDonato et al., 2010).

In the N70 culture, we identified MAG 33 of the Dehalococcoidia 
order SZUA-161 as the most likely naphthalene oxidizer. The 
genomic potential for anaerobic aromatics degradation was 
previously reported for the traditionally hydrogenotrophic 
organohalide-respiring Dehalococcoidia (Calvo-Martin et al., 2022; 
Palmer et  al., 2023). We  found such potential also in the order 
SZUA-161, particularly in the family SZUA-161, as evidenced by 
the presence of key genes. While a true confirmation of AH/UAH 
degradation activity of Dehalococcoidia requires further 
experimental evidence, e.g., transcriptomics and proteomics, it 
seems that this clade holds more versatile metabolisms than 

FIGURE 7

Genomic capacities for anaerobic aromatic hydrocarbon degradation in MAGs of the Dehalococcoidia order SZUA-161. The MAG recovered in this 
study from the naphthalene 70°C (N70) culture is highlighted in red. For pathway genes and abbreviations see Supplementary Table S7.
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previously believed. Whether Dehalococcidia may be  able to 
combine AH/UAH degradation to dehalogenation is an intriguing 
question for the future.

Because the GB exhibits similar characteristics to deeply-buried 
petroleum reservoirs, i.e., high temperatures, absence of oxygen and 
presence of UAHs in surface-near sediment layers, the microorganisms 
enriched in this study might thrive in such yet under-sampled 
reservoirs (Sierra-Garcia and Oliveira, 2013), where they could 
contribute to reservoir souring (Tanji et al., 2014). Particularly the 
Desulfatiglandales bacterium in the B70 culture operates close to the 
temperature limit of reservoir sterilization of 80–90°C (Wilhelms 
et al., 2001). Future studies using advanced sampling and sequencing 
techniques could reveal the presence and activity of these bacteria in 
such reservoirs.
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