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SUMMARY
The assembly of the neuronal and other major cell type programs occurred early in animal evolution. We can
reconstruct this process by studying non-bilaterians like placozoans. These small disc-shaped animals not
only have ninemorphologically described cell types and no neurons but also show coordinated behaviors trig-
gered by peptide-secreting cells. We investigated possible neuronal affinities of these peptidergic cells using
phylogenetics, chromatin profiling, and comparative single-cell genomics in four placozoans. We found
conserved cell type expression programs across placozoans, including populations of transdifferentiating
and cycling cells, suggestiveof active cell typehomeostasis.Wealsouncovered fourteenpeptidergic cell types
expressing neuronal-associated components like the pre-synaptic scaffold that derive from progenitor cells
with neurogenesis signatures. In contrast, earlier-branching animals like sponges and ctenophores lacked
this conserved expression. Our findings indicate that key neuronal developmental and effector gene modules
evolved before the advent of cnidarian/bilaterian neurons in the context of paracrine cell signaling.
INTRODUCTION

The division of functions betwen cell types is a hallmark of an-

imal multicellularity.1–3 Specialized cell states result from the

differential co-regulation of functional gene modules, such

as actomyosin contractility, ciliary, or pre-synaptic scaffold

components.3,4 Through comparative genomics, we have a

detailed understanding of the evolutionary histories of the

constituents of these modules, with many key animal genes

predating multicellularity.2,5 In contrast, we lack a detailed un-

derstanding of when these genes assembled into co-regulated

modules, how they are deployed in different cell types, and

what their evolutionary dynamics are. The comparative study

of cell diversity and genome regulation in early-branching,

non-bilaterian animals (sponges, cnidarians, ctenophores,

and placozoans) offers the opportunity to address these funda-

mental questions and reconstruct the evolutionary emergence

of major cell type programs.

Placozoans are millimeter-sized, flat animals that employ

ciliary beating and mucus secretion to glide over surfaces.6–9
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These marine animals feed on algae and other microbial eukary-

otes by extracellular lysis of prey, phagocytosis, and intracellular

digestion.10 Placozoans emerged 750–800 mya11,12 and their

known diversity is small, with four described species and a

dozen additional known mitochondrial haplotypes, some of

which likely represent additional species.7,12,13 Placozoan ge-

nomes are compact (87–105 Mb), but they encode a conserved

repertoire of genes involved in signaling and regulatory func-

tions, shared with cnidarians and bilaterians.14 Unlike in other

animals, gene regulation in placozoans is controlled by proximal

promoter elements, with no distal enhancers.15

The placozoan body plan consists of two cell layers and six to

nine major somatic cell types. The lower epithelium features

gland cells that producemucus and contain secretory granules16

and lipophil cells involved in algal digestion that contain large

lipophilic granules.10 Gland and lipophil cells are embedded be-

tween narrow ciliated cells responsible for animal gliding and

food absorption.10,16 The upper epithelium is also ciliated, but

cells are flat and large,17 and some contain auto-fluorescent

shiny spheres involved in predator defense.18 Connecting
blished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. A multi-species placozoan whole-body cell atlas

(A) Consensus phylogenetic tree obtained with Bayesian inference under the CAT + GTR + G4 mixture model on the Metazoa-only 209-markers concatenated

aminoacid matrix recoded into 4 categories (SR4). Bayesian posterior probabilities are indicated as supports in key nodes. The cladogram to the right depicts the

phylogenetic relationships among placozoans, highlighting the four species here studied.

(B) Summary of the statistical support for alternative phylogenetic positions of Placozoa in the different datasets analyzed: (1) only metazoans (63 species) versus

metazoans and choanoflagellates as outgroup (81 species); (2) high-information markers (filtered for tree-likeness score with MARE �d 2 parameter) markers

filtered for compositional homogeneity (denoted as CH; markers failing the compositional heterogeneity based on simulated alignments using the LG +G4model

in p4, at p > 0.01); and (3) original aminoacid multiple sequence alignments versus recoded alignments with three different schemes (SR4, SR6, and Dayhoff6).

(C) 2D projection of metacells for each species sampled in this study and pie charts indicating the relative proportion of cells in each broad cell type category,

based on a force-directed layout of themetacell co-clustering graph (see STARMethods). Right, a broad cell type clustering tree of all four species obtained using

the UPGMA average algorithm on Log-Det distance matrices, based on binary ortholog activity in each cell type (fold change R 2).

(D) Normalized expression of top variable genes (rows, fold changeR 2 with a maximum of 15 genes per metacell) across metacells (columns). Broad cell types

are color-coded in the x axis and red squares highlight the peptidergic progenitor metacells.

(legend continued on next page)
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between these two epithelial layers are amoeboid-shaped fiber

cells with long filopodia that are responsible for contractility

and, possibly, phagocytosis.19 The collective behavior of placo-

zoan cells is controlled by paracrine signaling,20 via small neuro-

peptides (NPs) secreted by low-abundance peptidergic cells

that lack cellular projections and synapses. Examples of such

behaviors are contractility and detachment induced by SIFGa-

mide and PWN peptides,21 as well as ciliary beating in the lower

epithelial layer controlled by ELPE and FFNPamide.21,22

Because of the presence of these peptidergic cells and NP-

driven behaviors, the study of placozoans can provide insights

into early steps in neuronal evolution. Thus, we decided to

dissect the molecular diversity of placozoans cell types and

compare them with other species.

To understand the cellular diversity in placozoans, here we

used single-cell transcriptomics to characterize cell type gene

expression and cell differentiation dynamics across four species.

We combined these expression maps with genome-wide

profiling of cis-regulatory elements (REs) to decode regulatory

programs in placozoans. Finally, we conducted cross-species

comparative analyses to reconstruct the evolution of placozoan

gene modules and, ultimately, the emergence of the neuronal

gene expression program.

RESULTS

Placozoa phylogenomics
The phylogenetic position of placozoans is currently debated.

Most analyses place Placozoa as the sister outgroup to

Cnidaria and Bilateria.12,14,23,24 However, a recent study chal-

lenged this tree topology, instead suggesting that Placozoa

might be a sister to Cnidaria.25 Defining the branching position

of placozoans in the animal tree is essential to our evolutionary

reconstruction, we thus conducted extensive phylogenomic an-

alyses with a sampling of 81 species, including 7 placozoans

(Figures 1A and S1A; Table S1). We employed and evaluated

16 datasets (62–209 markers, 17,199–93,453 aminoacid posi-

tions) implementing different strategies to minimize composi-

tional heterogeneity across sites and across taxa, such as ami-

noacid recoding and marker gene filtering with compositional

tests (Figures 1B and S1B). These are aimed at ameliorating

associated artifacts such as long-branch attraction.23,25 Using

PhyloBayes,26 we tested the goodness of fit of the CAT + GTR

model to these different datasets, concluding that the model

adequacy to the data was optimal for datasets excluding choa-

noflagellates as outgroup and using SR6 or SR4 aminoacid re-

cordings (Figures S1C–S1G). In all these cases, phylogenetic

trees consistently supported Placozoa as the outgroup of Planu-

lozoa (Cnidaria + Bilateria) (Figures 1B and S1B). Summary tree

and maximum likelihood analyses using both partitioned and

unpartitioned mixture models supported the same topology
(E) Fluorescent HCR-ISH of Trichoplax sp. H2 specimens showing the expression

gene for the unknown cell type (b-secretase, bottom). Images correspond to the

lines indicate the sections used for the extended orthogonal views (45 slices). Arro

the bottom image show the detail of cells localized in the rim of the animal. Cells

indicated with a square. Expression of the marker genes is shown to the left of e

See also Figures S1, S2, and S3.
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(Figures 1B and S1), whereas the analysis of shared ancient

chromosomal linkage groups did not find support for Cnidaria +

Placozoa27 (Figure S1I). In summary, our analyses suggest that

placozoans diverged before the split between cnidarians and

bilaterians, and thus, they have a key phylogenetic position to

reconstruct early animal evolution.

A multi-species placozoan whole-body cell atlas
To systematically characterize and compare placozoan cell types,

we sampled over 65,000 single-cell transcriptomes from four

different placozoans, representing three of the four described

genera12 (Figures 1C and 1D): Trichoplax adhaerens (strain H1,

13,151 cells), Trichoplax sp. (H2, 15,704 cells),Hoilungia hongkon-

gensis (H13, 18,523 cells), and Cladtertia collaboinventa (H23,

17,252 cells). Briefly, specimens were collected, dissociated,

and fixed with a modified ACME protocol.28 Cells were fluores-

cence-activated cell sorting (FACS)-sorted to remove doublets,

debris, and ambient RNA, before encapsulation and transcrip-

tome capture using 103 Genomics 30 end single-cell RNA

sequencing (scRNA-seq) technology. We sequenced libraries

to an average depth of 68,433 reads/cell (mean mappability

64.9%) and obtained a median of 1,759 unique molecular

identifiers (UMIs)/cell (Figures S2A–S2C).

Weapplied theMetacell algorithm29 togroupcells into transcrip-

tionally coherent clusters (metacells), which constitute our basic

unit for downstream analysis. We obtained 189–255 metacells in

different placozoans, eachmetacell containing amedian of 70 sin-

glecells (FiguresS2D–S2F).Basedongraph-based2Dprojections

(Figure1C) andgeneexpressionpatterns (Figure1D),we identified

28, 29, 32, and27cell types/states inH1,H2,H13, andH23strains,

respectively. We further grouped them into nine broad cell types

that show relatively similar proportions across the four placozoans

(Figure 1C) and that we named according to literature and known

markers (Table S2). Of note, we found a cell type exclusive to

Trichoplax sp. H2 that we termed epithelia upper-like and whose

shape and distribution resembles the ‘‘concave disks’’ previously

described,30 as revealed by hybridization chain reaction fluores-

cent in situ hybridization (HCR-ISH) against calpain-9 (Figure 1E),

selected because of its high and specific expression in this cell

type. In addition, we applied HCR-ISH against a highly specific

b-secretase gene to characterize an unknown type of putatively

secretory cells, absent from T. adhaerens H1, which localize in

the lower part and rim of the animals (Figure 1E).

To compare cell type transcriptomes across species, we

applied the iterative comparison of co-expression (ICC) algorithm

between metacell expression matrices.31 Using this method, we

defined an expression conservation (EC) score between homolo-

gous genes without the need to manually define matching condi-

tions (in this case metacells). This allowed us to select both high

ECscore orthologs and paralogs across species (Figure S3). In to-

tal, we defined a set of 7,389 genes shared across all four
of an upper epithelia-like marker (calpain-9, top) and the expression of amarker

maximum projection of 183 and 70 optical sections, respectively. The dotted

wheads in the orthogonal views indicate the upper part of the animals. Insets in

highlighted in the insets were imaged at higher magnification in the portions

ach panel. Scale bars are 50 mm for the general views and 5 mm for the insets.



A B C

D FE

Figure 2. Intermediate cell states in Placozoa

(A) Summary of observed intermediate cells between broad cell types. Arrow thickness indicates the number of placozoan species in which we observed the

intermediate state.

(B) Classification of single cells according to the expression of lipophil-specific genemarkers (x axis) and gland- or fiber-specific genemarkers (y axis), measured

as the fraction of the total UMIs in those cells corresponding to each gene marker list (see all intermediate single-cell profiles in Figure S4C).

(C) Expression of fiber (angiotensin I-converting enzyme), lipophil (fatty acid-binding protein 4) and gland (chymotrypsin) genemarkers used for HCR-ISH analysis

across the four placozoan species.

(D) Fluorescent HCR-ISH of Trichoplax sp. H2 showing the expression of lipophil (fatty acid-binding protein 4, red) and gland-specific (chymotrypsin, yellow)

markers. Images correspond to the maximum projection of 21 (Di) and 55 (Dii) optical sections. Image (Dii) was acquired at higher magnification in the portion

indicated with a square in image (Di). Images (Diii) and (Div) show the detail of two cells co-expressing both lipophil and gland-specific markers. Scale bars are

100 mm for the general view (Di), 10 mm for the intermediate view (Dii), and 1 mm for the high magnification images (Diii and Div).

(E) Same as (D) for the expression of lipophil (fatty acid-binding protein 4, yellow) and fiber-specific (angiotensin I-converting enzyme, red) markers. Images

correspond to the maximum projection of 56 (Ei) and 50 (Eii) optical sections. Images (Eiii), (Eiv), and (Ev) show the detail of three cells co-expressing both lipophil

and fiber-specific markers. Scale bars are the same as in (D).

(F) Percentage of cells in eachmajor cell type inferred to be in active cell cycle, based on the high expression of S-phase or G2-phase cell cycle genemodules (see

Figure 3).

See also Figure S4.
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placozoans. A broad cell type transcriptome clustering based on

these genes revealed strong similarities between the four placo-

zoan species (Figure 1C). Overall, our multi-species single-cell

transcriptional atlas represents a comprehensive inventory of the

diversity of cell typesandcell states in thephylumPlacozoa. These

atlases can be explored and compared in an interactive database:

https://sebelab.crg.eu/placozoa_cell_atlas/

Intermediate cell states in placozoans
Upon examination of metacell gene expression maps and confu-

sion matrices (Figure S2D), we detected the presence of meta-

cells with transversal expression profiles between cell types,

which we termed ‘‘intermediate’’ cells (Figures 2A, 2B, and S4).

Intermediate cells appeared in all four species, and statistical

tests showed that intermediate cell occurrence cannot be ex-

plainedby cell doublets arising fromstochastic co-encapsulation

(Figure S4A); for example, peptidergic cells are seldom involved

in intermediate metacells. Intermediate cells lack specific gene

markers, and they only expressed a small subset of the genes ex-

pressed in each of the terminal cell types, for example, T. adhae-

rens H1 lipophil-gland intermediate cells express 33% of lipophil
markers and 10%of gland cellmarkers (mean of 33%and 13% in

other species). Moreover, this subset of expressed genes was

not random, instead showing a degree of conservation across

species similar to that observed between terminal cell types (Fig-

ure S4B). Using HCR-ISH, we could confirm the presence of

cells co-expressing both lipophil- and gland-specific markers

(Figures 2C and S4D): fatty acid-binding protein 4 and chymo-

trypsin, respectively (Figures 2D and S4D). Similarly, we could

identify cells co-expressing the same lipophil-specific marker

and the fiber-specific marker angiotensin I-converting enzyme

(Figures 2C, 2E, and S4D). Finally, we observed that 4%–14%

of the terminally differentiated cells in placozoans expressed

cell cycle genes—againwith the notable exception of peptidergic

cells (Figure 2F). The presence of dividing and potentially trans-

differentiating adult cell types adds to similar evidence in other

non-bilaterians like sponges32 and suggests that plastic cell fates

might have been common in early animal evolution.

Placozoan functional gene modules
To understand the structure and evolution of placozoan gene

expression programs, we clustered genes into modules based
Cell 186, 4676–4693, October 12, 2023 4679
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Figure 3. Placozoan gene expression programs

(A) Multi-species clustering of gene modules across placozoans. Each node represents a gene module (group of genes co-expressed across metacells; see

Figures S4E–S4G), and each node is color-coded according to the species. Edges link modules sharing orthologs across species, and their width reflects the

Jaccard index of ortholog overlap between modules (only edges with Jaccard R0.125 are shown). We curated 34 multi-species modules, the majority of which

are composed of modules from four species (pie plot). Most modules are specific to individual cell types (bar plot), with the exception of cross-cell type modules

that include genes related to pan-peptidergic cells, cell cycle (S-phase and G2-phase), meiosis, and the ciliary apparatus.

(B) Gene ontology enrichments in selected gene modules (left), and expression of transcription factor (TF) regulators and associated enriched motifs (right).

(legend continued on next page)
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on metacell co-expression in each of the species. These gene

modules recapitulated cell-type-specific expression programs,

but we also identified cross-cell type functional modules

(Figures S4E–S4G). Comparative analysis revealed 34 highly

conserved gene modules across species (Figures 3A–3C;

Table S3), including two cell cycle modules (representing

S-phase and G2-phase), a meiosis/gametogenesis module, a

ciliary module, a pan-peptidergic module, and gene modules

associated to the major somatic cell types (upper and lower

epithelial cells, gland cells, lipophil cells, and fiber cells). For

example, the fiber cell module includes genes involved in acto-

myosin contractility, integrin cell adhesion, and lamellipodia for-

mation, as well as bacterial response genes and the immune

transcription factor (TF) nuclear factor (NF)-kB (Figures 3B and

S4H). This is in linewith a potential role for fiber cells in placozoan

immunity.19 The lipophil cell modules includes genes involved in

fatty acid and cholesterol metabolism, as well as in aminoacid

catabolism associated with energy production (Figure 3B), while

the gland cell module is characterized by protein, lipid, and

carbohydrate degradation processes (Figure 3B).

To further dissect the regulation of these modules, we

generated assay for transposase-accessible chromatin with

sequencing (ATAC-seq) and H3K4me2/me3 chromatin immuno-

precipitation sequencing (ChIP-seq) data to annotate cis-REs

genome-wide in each species (Figures S5A–S5C). We identified

19,286–25,164 REs genome-wide in the four placozoans, mostly

located proximally to the promoter and in the first introns

(Figures S5D–S5F). Using these RE maps, we then surveyed

the TF-binding motifs enriched in REs associated with the genes

from eachmodule. First, we performed de novomotif enrichment

and then combined its results with the known, experimentally

determined motifs, based on sequence similarity, to create a

consensus set of motif archetypes. Enrichment analysis using

these motif archetypes revealed that the regulatory signatures

linked to the different gene modules (Figures 3B and S6), with

frequent cases of coinciding expression and motif enrichment

for a particular TF. These analyses revealed the lexicon of motifs

associated with placozoan cell identities.

Genetic basis of placozoan cell type evolution
Our multi-placozoan cell atlas and chromatin maps offer the op-

portunity to study the genetic determinants of cell identity and

their evolutionary dynamics within an entire animal phylum: from

genome sequence through RE usage to the observed gene

expression phenotype. To this end, we classified RE sequence

conservation at two levels (Figure 4A): (1) across-species conser-

vation (ancestral/novel) based on whole-genome alignments and

(2) intra-species sequence dynamics (slow-evolving/neutral/

accelerated) according to phyloP scores33 calculated using

4-fold degenerate codon sites as a background model.

Reconstruction of RE evolutionary dynamics across Placozoa

reveals nearly 9,000 ancestrally conserved REs and thousands
(C) Left, multi-species clustering of non-peptidergic (top) and peptidergic cell type

selected TFs specific to various cell type clades. Right, heatmap depicting the frac

Modules have been color-coded according to their cell type specificity, with the

(D) Number of TFs, GPCRs, and neuropeptides (NPs) expressed (fold change R

See also Figures S4, S5, and S6.
of gains in the H1 + H2 (5,564 REs) and H13 + H23 (3,125 REs) an-

cestors, followed by rathermodest gains in each of the extant pla-

cozoans (Figure 4B). As expected, among the taxon-specific REs,

we detect an over-representation of REs with signatures of accel-

erated evolution. Reciprocally, among ancestral REs, there is an

over-representation of slow-evolving elements with signatures of

stabilizing selection (Figure 4B). When stratified by cell type, we

observe that some cells like lipophil and fiber show slower rates

of RE gains and losses (Figure 4C, top) and lower proportion of

REs under accelerated evolution (Figure 4C, bottom), a trend

that is mirrored by the rates of gene gains and losses (Figure 4C).

We then interrogated the impact of RE sequence dynamics on

gene expression evolution (Figure 4D), using T. adhaerens H1 as

a viewpoint. In all comparisons, the presence of an ancestrally

conserved RE between a pair of homologs was associated

with significantly higher EC. Also, the presence of a RE with a

signature of accelerated sequence evolution was linked to lower

EC between genes (Figure 4D). A similar pattern was observed

for the conservation of TF-binding motifs (Figure 4E).

Finally, we examined the degree of conservation of different

genetic determinants of cell identity between matched cell

types at different phylogenetic distances. Specifically, we

measured the fraction of genes, REs, and TF-binding motifs

shared between one reference species (T. adhaerens H1) and

other placozoans, including reconstructed ancestors (Fig-

ure 4F). TF usage was the most conserved feature across cell

types, followed by effector gene usage. The REs linked to these

shared genes show a lower degree of conservation, particularly

non-promoter elements. Finally, TF-binding motif usage was

the most rapidly diverging of all features (Figure 4F). The rela-

tive conservation of gene expression (higher) and motif enrich-

ments (lower) was also apparent when measured using Pear-

son correlation coefficients in extant species, again from the

H1 viewpoint (Figure 4G). The evolutionary conservation of

these cell identity characters across placozoans is similar to

the estimated conservation between mammals and between

insects.34,35

Diversity of peptidergic cell types
In all four cell atlases, we identified a high diversity of peptidergic

cells. The cross-species analysis allowed us to group them into

fourteen types (Figures 3C, S3C, and S3D), which we denote

with Greek letters (alpha to omicron). These types represented

two-thirds of the somatic cell types in spite of being only 11%–

17% of the single cells sampled in each taxon. All peptidergic

cells expressed a high number of specific TFs (median 34,

compared with 6 in others; fold change [FC] R 2) (Figure 3D)

and in unique combinations (Figure 5A) that always included a

distinct homeobox TF (Figure 5A). Similarly, peptidergic cell

types expressed a high number of G protein-coupled receptors

(GPCRs,median 25, compared with 2 in others) in unique combi-

nations (Figures 3D and 5D). These GPCRs largely represent a
s (bottom). The cell type tree has been obtained as in Figure 1C. Gray boxes list

tion of orthologous genes from each genemodule expressed across cell types.

cross-cell type modules highlighted with asterisks.

2) in each cell type.

Cell 186, 4676–4693, October 12, 2023 4681
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Figure 4. Genetic basis of cell type evolution in Placozoa

(A) Aligned genomic region exemplifying different categories of regulatory element (RE) conservation. Each RE is classified according to two criteria: across-

species conservation (ancestral/novel) and intra-species sequence dynamics (conserved/neutral/accelerated).

(B) Ancestral reconstruction of RE evolution across Placozoa. In extant nodes, REs are classified according to their sequence conservation/acceleration status.

(C) Rates of evolution in the transcriptional and regulatory profiles of matched cell types across all four placozoans. For each cell type, we recorded the fraction of

specificmarkers (genes expressed at FCR 1.5) that were gained or lost at least once along the placozoan phylogeny (y axis) and compared them (x axis) with the

rate of active RE gain + loss along the same branches (top) or to the fraction of active REs that exhibited signatures of accelerated evolution (x axis, bottom, at

phyloP < 0.001) in extant species (bottom).

(D) The impact of RE sequence dynamics in gene expression conservation, comparing Trichoplax adhaerens H1 to the other three placozoans. Left, boxplot

comparing the expression conservation score of orthologous genes with shared ancestral REs to those of genes with novel REs. Right, boxplot comparing the

expression conservation of orthologs with slow-evolving REs to orthologs with one or more accelerated RE. We used one-sided Wilcoxon rank sum tests to test

for significant differences in the EC score distributions (p values below each pair of boxplots).

(E) Same as (D) but comparing TF-binding motif usage similarity (Spearman correlation of gene-wise maximum motif alignment score).

(F) Evolutionary dynamics of various genetic determinants of cell identity at increasing evolutionary distances. The boxplot represents the fraction of shared

features for each matched cell type and from the perspective of T. adhaerens H1. Compared features include: conserved genes (genes expressed in a given

T. adhaerens cell type with an ortholog in the genome of the other species or reconstructed ancestor), conserved REs (likewise, using sequence conservation of

orthologous REs), active genes (genes expressed in a given cell type in both T. adhaerensH1 and the other species), active REs (REs linked to genes expressed in

a given cell type in both T. adhaerens H1 and the other species), and usedmotifs (TF-binding motifs enriched in both T. adhaerens H1 and the other species). The

cladogram shows the time-calibrated distances.12

(G) Distribution of the correlations in gene expression and TF-bindingmotifs across cell types (bothmeasured as fold-change enrichments) between T. adhaerens

H1 and the three other placozoans.
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placozoan-specific expansion, with no orthologs in other animal

phyla (Figure 5D; Table S4).

Peptidergic cells share a common gene module that includes

the TFs Pax2/5/8, Jun, and Fos (Figure 5A); the four enzymes

involved in NP-processing steps (prohormone convertase, two

carboxypeptidases, peptidylglycine alpha-amidating monooxy-

genase, and glutaminyl peptide cyclotransferase) (Figures 5B
4682 Cell 186, 4676–4693, October 12, 2023
andS7A); the proton-based glucose transporter Slc45; the gluta-

mate transporter Slc17a; the RNA-binding protein Cpeb, which

regulates RNA polyadenylation in bilaterian neurons; and the

Rho guanine exchange factor Kalirin, involved in neuronal

morphogenesis in bilaterians. In addition, peptidergic cells ex-

pressed the most known genes conforming to the pre-synaptic

scaffold in cnidarian and bilaterian neurons36 (Figures 5B
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Figure 5. Diversity of peptidergic cell types in placozoans

(A) Combinatorial expression of TFs across four placozoans. Dots indicate that a given TF has been inferred to be specifically expressed (FC R 1.5) in a given

peptidergic type at the last common ancestor of placozoans (based on Dollo parsimony).

(B) Schematic representation of the pre-synaptic scaffold components expressed in placozoan peptidergic cells. Individual gene expression plots for the four

species are shown in Figure S7.

(C) Identification of Trichoplax sp. H2 small peptides. Scatter plot shows the maximum expression of the propeptide gene in any peptidergic cell type (x axis)

compared with the abundance of themost common peptide per propeptide asmeasured bymass spectrometry (y axis). Dot sizes indicate the number of spectra

identified for the most common peptide per propeptide. The color code indicates homology of the propeptide and dot border lines indicate the identification of

peptide post-translational modifications. Motifs represent aminoacid frequencies around peptides.

(D) Combinatorial expression of neuropeptides (NPs) and their putative receptor gene families (GPCRs and amiloride-sensitive channels [ASCs]) in peptidergic

cell types across four placozoans. In the NP map, known peptides (green) or new, hypothetical peptides with homology to previously described NPs (blue) are

indicated. In the GPCR map, genes with no orthologs in other animal phyla (i.e., Placozoa-specific families) are indicated (orange), whereas known families are

indicated by name.

(E) Network of hypothetical interactions between cell-type-specific small peptides and receptors (GPCRs and ASCs). Gray nodes indicate small peptides with an

indication of the aminoacid sequence and of peptidergic cell type expressing their propeptide. The colored nodes represent receptors (GPCRs as circles and

(legend continued on next page)
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and S7B). These include proteins involved in neurosecretory

vesicles (Syntaxin, Synaphin, Snap25, Unc13, and Tomosyn),

active zone proteins (Rims and Caskin), and specific calcium

voltage-gated channels and auxiliary subunits that mediate

vesicle release. In contrast, we did not detect any co-expression

of known components of the post-synaptic scaffold in peptider-

gic or any other cell type (Figure S7C).

Next, we sought to determine the repertoire of secreted pep-

tides expressed in the fourteen identified peptidergic cell types.

To this end, we performed mass spectrometry-based peptide

identification for Trichoplax sp. H2 and for H. hongkongensis

H13 (Figures 5C and S7D; Table S5). We identified 60 small pep-

tides corresponding to 53 peptide precursor genes, expanding

the repertoire of previously predicted peptides21,22,37 (Figure 5C).

Half of the identified peptides showed evidence of N-terminal py-

roglutamination and/or C-terminal amidation (Figure 5C), two

post-translational modifications typically associated with NPs in

other species.38 The genes encoding for these peptides are highly

expressed (Figure5C) in specificpeptidergic cell types (Figure5D).

Next, we predicted the hypothetical receptors of these experi-

mentally identified peptides. Most animal NPs bind to GPCRs39

and a few also to amiloride-sensitive channels (ASCs).40 Thus,

we selected Trichoplax sp. H2 expressed GPCRs and ASCs

(196 and 11 in total, respectively), and we used AlphaFold241,42

to jointly model the structure of each of these candidate receptors

with each of the peptides.43 High-scoring structural models were

selected and we further measured docking between the peptide

and the receptor using two independent metrics. This analysis

identified 30 receptor-peptide pairs with high docking scores

and specificity (of the 21 significant receptors, 17 have only one

specific peptide) (Figures 5E andS7E). Combinedwith the expres-

sion pattern of the peptide precursors (emitting cells) and the

expression of receptors in other cells, we inferred a hypothetical

peptidergic cell signaling network in Trichoplax sp. H2 (Figure 5F).

Overall, the diversity of peptidergic cell types and NPs we identi-

fied indicate the potential for highly complex paracrine signaling in

placozoans.

Peptidergic cell progenitors with neurogenesis
signatures
We also identified in all four species a population of peptidergic

progenitors that shared some transcriptional similarities with

lower epithelial cells (Figure 6A) and showed no gene expres-

sion signatures of cell division (Figure 2F). These lower epithe-

lial cells, as well as gland cells, broadly expressed Notch re-

ceptors and their downstream repressor TFs (Hes and Hey)

(Figures 6B and 6E). In contrast, the peptidergic progenitors ex-

pressed both Notch and Delta receptors (Figures 6B and 6E). In
ASCs as triangles), and are color-coded according to their cell type specificity.

ceptors based on the joint three-dimensional modeling of the docked peptides for

high docking scores (pDockQ > 0.23) and a positive change in DDG values betwe

STARMethods for details and Table S5 and Figure S7E for a complete list of all pos

including its AlphaFold prediction (receptor residues colored according to themod

(F) Schematic hypothetical network of cell type signaling interactions based on t

predicted affinities between a partial set of NPs and only a subset of all hypothe

leaving certain cell types unconnected (e.g., fiber and lipophil).

See also Figure S7.
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different species, Delta-Notch lateral inhibition within an epithe-

lium distinguishes one cell type from another, particularly

neuronal from non-neuronal cells.47 Thus, this might represent

the induction signal for lower epithelial cells to differentiate

into peptidergic cells. To further explore this hypothesis, we

treated Trichoplax sp. H2 animals with two chemical Notch an-

tagonists (DAPT48 and LY41157549) and one agonist (Yhhu-

379250), and together with a control sample, we jointly profiled

them in a scRNA-seq experiment (Figures 6A and S7F). These

antagonists have been shown to cause an increase in neuro-

genesis and a downregulation of Hes in the cnidarian Nematos-

tella vectensis51–53 and other species.54,55 Both Notch antago-

nists produced a significant increase in the frequency of

peptidergic progenitor cells in Trichoplax sp. H2 (Figure 6C),

whereas the agonist did not cause any effect. Moreover, the

Notch antagonists caused a significant decrease in the expres-

sion of the TFs Hes and Hey in the Notch receptor-expressing

cells (Figure 6D). We also observed in epithelial and gland cells

(which both show signatures of cell division, see Figure 2F) a

decrease in the expression of the cell proliferation-associated

TF Myc. A link between Notch signaling and proliferation has

been also suggested in other species.55,56 The effect of the

Notch antagonist LY411575 increasing the frequency of pepti-

dergic progenitor cells was also observed in another placozoan

species, C. collaboinventa H23, using HCR-ISH against an un-

known protein coding gene HoiH23_PIH23_008135 (Figure 6G),

selected because its high and specific expression in progenitor

cells (Figure 6E).

We then examined the expression of specific markers in pepti-

dergic progenitor cells. This included chromatin remodelers and

modifiers (Hdac1, Smarca1, Brd1, and Cecr2), diverse RNA-bind-

ing proteins (e.g., Elav, Nanos, and Cpeb), and the TFs Ptf1a,57–59

Sox1/2/3 (SoxB), Sox4/11/12 (SoxC), Klf13,60,61 and Hbp162,63

(Figures 6E and 6F). Coinciding with the expression of Sox1/2/3

and Sox4/11/12, Sox TF-bindingmotifs are also strongly enriched

in the cis-regulatory regions of genes expressed in progenitor cells

(Figure S6). To characterize the location and morphology

of peptidergic progenitor cells, we performed multiplexed

HCR-ISH against Klf13 together with HoiH23_PIH23_008135 in

C. collaboinventa H23 (Figure 6G) or Klf13 and the Delta receptor

in Trichoplax sp. H2 (Figure 6G). Peptidergic progenitors localized

at the rim of the animals and their elongated morphology resem-

bles that of columnar epithelial cells. Finally, when examining

developmental scRNA-seq from other species (Figures 6H and

S7G; Table S3), we detected conserved expression of some of

these peptidergic progenitor markers in neuronal/neurosecretory

precursors, including RNA-binding proteins (RBPs) and TFs like

Sox1/2/3 and Sox4/11/12 (Figure 6H). Overall, the molecular
Arrows represent hypothetical compatible interactions between NPs and re-

all NP-receptor combinations. In brief, we have considered all interactions with

en the wild-type and a mutated version of the NP (FoldX DDG > 0 kcal/mol; see

itive interactions). An examplemodel of a positive docking is shown at the right,

el accuracy using the predicted local distance difference test or pLDDT score).

he inferred NP-receptor pairs from (E). This is a hypothetical model based on

tical receptors (cell-type-specific GPCRs and ASCs), and is therefore partial,
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Figure 6. Molecular signatures of neurogenesis in placozoans peptidergic cell progenitors

(A) 2D projection of metacells of a Trichoplax sp. H2 single-cell pooled transcriptome of individuals grown under four conditions: treatment with the Notch

antagonists DAPT (3,453 cells) and LY411575 (4,666 cells), the Notch signaling agonist Yhhu3792 (5,114 cells), and an untreated control (4,765 cells). Metacells

have been color-coded by broad cell type based on comparison to the reference Trichoplax sp. H2 dataset (Figure 1C).

(B) Normalized expression of Delta, Notch, Hes, and Hey in the 2D projection of Trichoplax sp. H2 metacells.

(C) Pie plot with cell type proportions among the control cells (top) and fold-change enrichment in cell type fractions for each drug treatment (bottom). p values

from a two-sided Fisher’s exact test of cell type counts relative to the control.

(D) Differential expression of the Hes, Hey, and Myc TFs in lower epithelial and gland cells (two cell types with broad Notch expression), measured using the

difference in UMIs/104 between treatment and control. p values indicate significant differential expression based on a two-sided Fisher’s exact test on UMI

counts.

(E) Expression of selected marker genes related to peptidergic progenitor specification across all four placozoans, including markers used for HCR-ISH ex-

periments. p values from an FDR-adjusted two-sided Fisher’s exact test of UMI counts in a given cell type, relative to the control.

(F) Sox TF maximum likelihood phylogenetic analysis supporting the orthology of placozoan Sox1/2/3 and Sox4/11/12.

(G) Left, fluorescent HCR-ISH of C. collaboinventa H23 showing the expression of the peptidergic progenitor-specific marker HoiH23_PlH23_008135 (NN

peptide, red) in animals with (Gii) andwithout (Gi) treatment with 10 mMLY411575 for 24 h. Images aremaximumprojections of 50 (Gi) and 40 (Gii) optical sections.

The dotted lines indicate the sections used for the extended orthogonal views (40 slices). Arrowheads in the orthogonal projections indicate the upper part of the

animals. Middle, fluorescent HCR-ISH of C. collaboinventa H23 (Giii and Gvi) showing the expression of the peptidergic progenitor-specific markers

(legend continued on next page)
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signatures identified in peptidergic progenitors are intriguingly

similar to those in neuronal progenitors in cnidarians and

bilaterians.45,47,64,65

Evolutionary assembly of the neuronal program
We finally asked how conserved the expressed gene repertoires

of placozoan cell types are compared with those of other animal

phyla. To this end, we compared placozoan cell type transcrip-

tomes with those of five other species from published whole-

body cell atlases15,66–72 (Figure S3E). Using the same ICC-based

strategy described above, we selected pairs of homologs with

conserved expression across species. The comparison of cell

type transcriptomes across species revealed global transcrip-

tional similarities between placozoan peptidergic cells and

cnidarian and bilaterian neurons (Figures 7A and S3E; Table S3).

To understand the evolutionary roots of neuronal gene

expression programs, we reconstructed the patterns of gene

expression gains and losses in neuronal/neuronal-like cells

across early animal phylogeny (Figure 7B). Starting with cteno-

phore neurons15,73 and the recently proposed sponge neuroid

cells,68 we identify only 46 genes with conserved expression

between either of these lineages and Parahoxozoa (Placozoa,

Cnidaria, and Bilateria). These genes are not particularly

enriched in neuronal functions. In contrast, 162 genes are

conserved in neuronal and peptidergic cells in the last common

ancestor (LCA) of Parahoxozoa. These gained genes are

involved in pre-synaptic membrane functions, including compo-

nents of the synaptic vesicles and regulators of neurotransmitter

release (Figure 7C). We reconstructed a neuronal gene expres-

sion program in the Planulozoa (Cnidaria + Bilateria) LCA

involving 55 gene gains related to three key neuronal functions:

post-synaptic scaffold components, neuronal cellular projec-

tions (axons, dendrites), and voltage-gated and ligand-gated

ion channels (Figure 7C). Finally, the Bilateria LCA neuronal

expression program gained 48 genes and was further enriched

in specialized synaptic components and ion channels, particu-

larly those related to GABAergic signaling, and microtubule

cytoskeleton organization (Figure 7C). Overall, our results recon-

struct the stepwise gain of neuronal functional modules in animal

evolution, starting from a peptidergic secretory cell signaling

system in the common ancestor of placozoans, cnidarians,

and bilaterians (Figure 7D).

DISCUSSION

Our study presents a comprehensive panorama of the evolution

of cell type programs across the placozoan lineage and in
HoiH23_PlH23_008135 (NN peptide, red) and Klf13 (yellow). Image (Giii) is a maxim

three individual cells expressing both markers and correspond to the squared sec

Gviii) showing the expression of the peptidergic progenitor-specific markers Klf1

optical sections. Inset (Gviii) highlights the detail of a cell expressing bothmarkers.

(green). Scale bars correspond to 100 mm in i and ii, 10 mm in (Giii) and (Gviii), an

(H) Expression of selected TFs, RNA-binding proteins and chromatin factors spe

trajectories described in scRNA-seq experiments in M. musculus (gastrula to p

generating adult46). Genes with expression FC R 1.25 in any cell type of a give

pressed genes with FC > 1 and < 1.25 in stages intermediate between two other st

also indicate the number of orthologous TFs and RBPs shared with each placoz

See also Figure S7.
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early animal evolution. The nine major placozoan somatic cell

types are connected by intermediate transcriptional states.

These states might represent transdifferentiating cell types, as

observed in other early-branching metazoans like sponges.32

In addition, we identified groups of cells with transcriptional sig-

natures of cell proliferation in each of these somatic cell types.

Together, these observations suggest that placozoan cell type

composition might be actively maintained by a combination of

direct conversion and proliferation of differentiated cells. This

is in sharp contrast with the fourteen peptidergic cell types.

These cells not only do not show signatures of cell cycle and in-

termediate states with other somatic cells, but appear to derive

from a distinct progenitor cell population with multiple molecular

signatures typically associated with neurogenesis in cnidarians

and bilaterians.64,65

Peptidergic cells share other similarities with cnidarian/bi-

laterian neurons. For example, they express large numbers

of GPCRs (although very few ion channels) and unique combi-

nations of post-translationally modified NPs, as well as an

almost complete pre-synaptic gene module and NP-process-

ing enzymes—albeit no post-synaptic module. Peptidergic

cell types are defined by large TF modules, including a spe-

cific homeobox TF code reminiscent of that observed in nem-

atode neuronal specification.74 Together, these observations

suggest that complex neurosecretory signaling networks con-

trolling collective cell behaviors are in place in placozoans,

perhaps even akin to the peptidergic nerve nets observed in

other animals.75 Systematic GPCR deorphanization76 will be

necessary to define specific connections of this paracrine

network. Related questions are which environmental cues

trigger these networks (e.g., light,77 pH,78 population density,

or glycine from food sources79) and also whether all or only

some peptidergic cell types are sensory. The latter would

involve some degree of receptor-effector cell specialization

and two-cell neuronal-like circuits, a possibility that fits with

our in silico peptidergic cell signaling network based on NP-

GPCR structural predictions.

In terms of the evolutionary emergence of nervous systems,

our findings indicate that key neuronal functional and ontoge-

netic gene modules originated in the context of non-neuronal

secretory cell type networks, as proposed by the chemical brain

hypothesis.80 These gene modules were combined with addi-

tional modules (the post-synaptic scaffold, genes involved in

dendrite/axon formation, and ion channels generating fast elec-

trical signals) in neuronal cells with synapses and projections.

How ctenophore neurons fit in this scenario remains a major

question as, despite having a largely peptidergic nervous
um projection of 22 optical sections. Images (Giv) to (Gvi) highlight the detail of

tions of image (Giii). Right, fluorescent HCR-ISH of Trichoplax sp. H2 (Gvii and

3 (red) and Delta receptor (yellow). Image (Gvii) is a maximum projection of 16

Dotted line depicts the shape of the cell as delineated by themembranemarker

d 1 mm for (Giv)–(Gvi) and (Gviii).

cific to placozoan peptidergic progenitors (E) along the neural developmental

haryngula stage44), N. vectensis (gastrula to adult45), and Hydra vulgaris (re-

n developmental trajectory are indicated as colored squares in each (overex-

ages are indicated with a white asterisk). For each developmental trajectory, we

oan species (barplots to the right).
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Figure 7. Stepwise evolutionary emergence of the neuronal gene expression program

(A) Network summarizing pairwise similarities (weighted Pearson correlation) between neurons from cnidarians and bilaterians (middle) with placozoan cell types

(top and bottom). Only similarities above 0.2 are shown. All pairwise cell type similarities across phyla are shown in Figure S3E.

(B) Left, ancestral state reconstruction of neuronal gene expression programs across Metazoa. Pie charts indicate presence, gains and losses at each extant or

ancestral node. Ancestral nodes are inferred using Dollo parsimony. Neuronal genes in each species are selected from single-cell atlases as having a FCR 2 in at

least 25% of the metacells annotated as neurons/neuron-like cells. Right, number of GPCRs and ion channels expressed in neuronal/neuronal-like metacells

(threshold FC R 2) versus non-neuronal metacells.

(C) Gene ontology enrichments of gene gains in ancestral gene expression programs, based on annotations of the mouse orthologs.

(D) Schematic representation of the major functional gains in the neuronal gene expression programs in early animal evolution.

See also Figure S3.
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system,73 they lack the conserved expression of the specific

neuronal machinery and neurogenic program we report here

for placozoans.

Finally, our study exemplifies how dense phylogenetic sam-

pling of cell atlases will enable ever-more detailed reconstruction

of ancestral cell states and cellular innovations.81 Beyond that,

combined with cis-RE maps and genome sequence analysis,

this multi-species atlas makes it possible to link regulatory

sequence changes with the evolution of cell type transcriptional

phenotypes.82 In the future, this systematic genotype-cellular

phenotype mapping should help us better understand how cell

type programs originate and evolve.
Limitations of the study
Our study uncovers the diversity and evolution of placozoan cell

types. There are several observations reported here that will

deserve follow-up study to extend our understanding of placozo-

ans cellular and molecular biology. Among these, we want to

highlight: (1) the process by which transcriptional cell states in-

termediate to some of the terminal cell types are generated

and whether this represents a case of bona fide transdifferentia-

tion, (2) the role of specific NPs in placozoan collective cell be-

haviors and a systematic validation/discovery of their receptor

targets via deorphanization experiments, (3) a further dissection

of the molecular mechanisms underlying the specification of
Cell 186, 4676–4693, October 12, 2023 4687
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peptidergic precursors from lower epithelial cells and the differ-

entiation of terminal peptidergic cell types, and (4) the spatial or-

ganization of the reported cell type diversity in placozoans.

Finally, the phylogenetic position of placozoans among animals

should be further explored in the future, as new genomes and

phylogenetic methods become available.
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90. Grau-Bové, X., and Sebé-Pedrós, A. (2021). Orthology clusters from

gene trees with Possvm. Mol. Biol. Evol. 38, 5204–5208. https://doi.

org/10.1093/molbev/msab234.
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122. Levy, S., Elek, A., Grau-Bové, X., Menéndez-Bravo, S., Iglesias, M., Ta-
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-H3K4me2 Abcam Cat#ab32356; RRID:AB_732924)

anti-H3K4me3 Millipore Cat#07-473; RRID:AB_1977252

Biological samples

Trichoplax adhaerens H1 Schierwater lab N/A

Trichoplax sp. H2 Gruber-Vodicka lab N/A

Hoilungia honkongensis H13 Schierwater lab N/A

Cladtertia collaboinventa H23 Schierwater lab N/A

Chemicals, peptides, and recombinant proteins

TCO-PEG4-TFP Ester Click Chemistry Tools Cat#1398-2

Methyltetrazine-NHS Ester Click Chemistry Tools Cat#1128-25

Methyltetrazine-DBCO Click Chemistry Tools Cat#1022-10

DRAQ5 Thermo Scientific Cat#62251

DAPT Abcam Cat#ab120633

LY411575 SelleckChem Cat#S2714

Yhhu3792 Tocris Cat#6599

Membrite-Fix 488/515 Biotum Cat#30093-T

Proteinase-K New England BioLabs Cat#P8107S

EM-grade Paraformaldehyde Electron Microscopy Sciences Cat#15710

SPRI beads Beckman Coulter Cat#A63881

Critical commercial assays

HCR v3 RNA FISH bundle for whole-mount Molecular Instruments N/A

HCR v3 RNA FISH bundle for cells in suspension Molecular Instruments N/A

Chromium Next GEM Single Cell 3’ Kit v3.1 10x Genomics Cat#1000269

Chromium Next GEM Chip G Single Cell Kit 10x Genomics Cat#1000127

NEBNext Ultra II DNA Library Prep Kit New England BioLabs Cat#E7645L

UltraMicroSpin� C18 columns The Nest Group Cat#SUM-SS18V

Deposited data

Proteomics data for this project PRIDE repository PXD042821

Sequencing data for this project GEO repository GSE234601

Processed and reference data Mendeley Data repository https://doi.org/10.17632/bbpkbx968s.2

Code for this project Github https://github.com/xgrau/placozoa-

cell-type-evolution-code

Experimental models: Organisms/strains

Trichoplax adhaerens H1 Schierwater lab N/A

Trichoplax sp. H2 Gruber-Vodicka lab N/A

Hoilungia hongkongensis H13 Schierwater lab N/A

Cladtertia collaboinventa H23 Schierwater lab N/A

Oligonucleotides

Clicktag barcoding primers for

scRNA-seq samples multiplexing

Gehring et al.83 N/A

Software and algorithms

IQ-TREE 2.1 Minh et al.84 http://www.iqtree.org/
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REAGENT or RESOURCE SOURCE IDENTIFIER

MAFFT 7.475 Katoh and Standley85 https://mafft.cbrc.jp/alignment/server/

HMMER 3.3.2 Mistry et al.86 http://hmmer.org/

Metacell 0.37 Baran et al.29 https://rdrr.io/github/tanaylab/metacell/

STAR 2.7.9a Dobin et al.87 https://github.com/alexdobin/STAR

MACS2 2.2.7.1 Zhang et al.88 https://github.com/macs3-project/MACS

CellRanger 6.1.1 v6.1.1 10X Genomics https://support.10xgenomics.com/

cloud-analysis/release-notes

BWA 0.7.17 Li and Durbin89 https://github.com/lh3/bwa

Possvm Grau-Bové and Sebé-Pedrós90 https://github.com/xgrau/possvm-orthology/

deeptools 3.5.1 Ramı́rez et al.91 https://github.com/deeptools/deepTools

p4 1.5 Foster92 https://github.com/pgfoster/p4-phylogenetics

PhylobayesMPI 1.9 Lartillot et al.26 https://github.com/bayesiancook/pbmpi

ASTRAL 1.15.2.3 Zhang and Mirarab93 https://github.com/smirarab/ASTRAL

Seurat 4.1.1 Hao et al.94 https://satijalab.org/seurat/

clipkit 1.1.3 Steenwyk et al.95 https://github.com/JLSteenwyk/ClipKIT

MCL v4.137 Enright et al.96 https://micans.org/mcl/

MARE 1.0 Misof et al.97 https://bonn.leibniz-lib.de/en/research/research-

centres-and-groups/mare

UFBS Hoang et al.98 http://www.iqtree.org/

ModelFinder Kalyaanamoorthy et al.99 http://www.iqtree.org/

diamond 2.0.14.152 Buchfink et al.100 https://github.com/bbuchfink/diamond

AUCell 1.16.0 van den Oord et al.101 https://github.com/aertslab/AUCell

TMHMM 2.0 Krogh et al.102 https://services.healthtech.dtu.dk/

services/TMHMM-2.0/

SignalP 5.0b Almagro Armenteros et al.103 https://services.healthtech.dtu.dk/

services/SignalP-5.0/

SAMap 1.0.2 Tarashansky et al.104 https://github.com/atarashansky/SAMap

Iterative comparison of

co-expression algorithm (ICC)

Tirosh and Barkai31 https://doi.org/10.1186/gb-2007-8-4-r50

WGCNA 1.71 Langfelder and Horvath105 https://horvath.genetics.ucla.edu/html/

CoexpressionNetwork/Rpackages/WGCNA/

Broccoli 1.2 Derelle et al.106 https://github.com/rderelle/Broccoli

Proteome Discoverer 2.5 v2.5, Thermo Fisher Scientific https://knowledge1.thermofisher.com/Software_

and_Downloads/Chromatography_and_Mass_

Spectrometry_Software/Proteome_Discoverer

Mascot 2.6 Perkins et al.107 https://www.matrixscience.com/mascot_

support_v2_6.html

DeepNovo algorithm Ntranos et al.108 https://github.com/nh2tran/DeepNovo
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Arnau

Sebé-Pedrós (arnau.sebe@crg.eu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Raw DNA and RNA sequencing data is available in GEO repository under accession number GEO: GSE234601. Mass spec-

trometry proteomics data is available in ProteomeXchange Consortium via PRIDE: PXD042821. Processed data and annota-
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tion tables can be downloaded inMendeley Data: 10.17632/bbpkbx968s.2 and interactively explored in https://sebelab.crg.eu/

placozoa_cell_atlas/.

d All code to generate the single cell atlases, perform cross-species comparisons and analyze gene modules is available in Gi-

tHub: https://github.com/xgrau/placozoa-cell-type-evolution-code. Unless otherwise specified, scripts are based onR version

4.1.2 and Python version 3.9.12.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animal culture
Specimens of Trichoplax adhaerens H1,109 Hoilungia hongkongensis H137 and Cladtertia collaboinventa H2312 were obtained

from stable cultures at the Schierwater laboratory. Trichoplax sp. H2110 specimens were obtained from stable cultures at the

Gruber-Vodicka laboratory. The four placozoan species were maintained in 200 mm x 50 mm glass Petri dishes (Karl Hecht) with

35 & artificial seawater (ASW; Red Sea Salt, Red Sea), which was changed (50% of the volume) every 15 days. Animals were fed

ad libidum, on a weekly basis, with a suspension of the red alga Pyrenomonas salina (Wis1ouch). Under this regime, animals divide

asexually by fission. All individuals used for the different experiments were adult animals of diverse sizes. Algae were obtained from

the University of Gottingen algae culture collection (SAG 28.87), and cultured in 250 ml flasks using Prov50 medium (NCMA). Animal

and algal cultures were maintained at 23 �C with a 16:8 h light:dark regime.

Specimen dissociation and cell fixation
Around 200 adult animals were collected at a time and placed in a 2ml Protein LoBind tube (Eppendorf), previously filledwith 500 ml of

ASW. Animals were pelleted by gentle centrifugation at 100 xg for 15 seconds in a tabletop centrifuge, and washed twice with 1 ml of

calcium and magnesium-free artificial sea water (CMFSW: 10 mM Tris$HCl pH 8, 2.1427 mM NaHCO3, 10.7309 mM KCl,

426.0123mMNaCl, 7.0403mMNa2SO4). After washing, animals were suspended in 1ml CMFSWplus 10mMethylenediaminetetra-

acetic acid (EDTA) and immediately placed on ice. Dissociation was performed by gently pipetting every 2 min for a total time of

10-12 min, until most of the sample was dissociated. After taking a 9 ml aliquot from the cell suspension to measure cell viability,

the cell suspension was transferred to a 5 ml protein LoBind tube (Eppendorf), and immediately fixed. Cells’ viability was estimated

by staining the cells with 1:10 of Acridine Orange/Propidium Iodide stain (Logos Biosystems #F23001), and observing using a Neu-

bauer chamber on a Leica DMI6000 B fluorescence microscope with green and red filters. To fix the dissociated cells, we used a

modified version of the ACME maceration protocol,28 that we called here ACMEsorb. Basically, cells were fixed by the addition of

3 ml of a fixative premix composed by 950 ml 1.2 M sorbitol, 300 ml glycerol, 300 ml glacial acetic acid and 450 ml methanol. Cells

were fixed for 40 min at room temperature on a rotator set at 25 rpm. Fixed cells were collected by centrifugation at 2500 xg for

5 min at 4 �C using a swinging bucket rotor, suspended with 1ml of freshly prepared ACMEsorb and filtered through a 40 mmstrainer.

An aliquot of the filtered cells was stained with 1:1000 40,6-diamidino-2-phenylindole (DAPI) and counted on a Neubauer chamber.

Sample volume was adjusted with ACMEsorb to get a concentration of 4 x106 cells/ml and distributed into n aliquots of �400,000

cells in a volume of 100 ml.

METHOD DETAILS

Single-cell RNA-seq methods
Sample Clicktag barcoding for scRNA-seq

Fixed cells were barcoded using a modified version of ClickTag.83 To optimize the labeling reaction in ACMEsorb fixative, we re-

placed the amine-reactive cross-linker TCO-NHS ([(4E)-cyclooct-4-en-1-yl] (2,5-dioxopyrrolidin-1-yl) carbonate) used in Gehring

et al.83 by TCO-PEG4-TFP ((2,5-dioxopyrrolidin-1-yl) 3-[2-[2-[2-[2-[[(4Z)-cyclooct-4-en-1-yl]oxycarbonylamino]ethoxy]ethoxy]

ethoxy]ethoxy]propanoate) (Click Chemistry Tools), which provides better stability towards hydrolysis in aqueous media. Barcoding

DNA oligonucleotides (Clicktags) with a 50-aminomodifier (Integrated DNA Technologies) were activated by derivatization with meth-

yltetrazine-NHS ester (MTZ-NHS) (Click Chemistry Tools), as originally described.83 For cell tagging, we used combinations of two

different MTZ-derivatised oligonucleotides per sample. Fixed cells were pre-incubated for 5 min in the dark by addition of 4.5 ml of

1 mM TCO-PEG4-TFP. After pre-incubation, 12 ml of pre-mixed 100 mM Clicktags were added and mixed thoroughly by gentle vor-

texing. Cell labelling proceeded for 30 min at room temperature, protected from light, on a rotatory platform set at 25 rpm. Reactions

were quenched by adding Tris$HCl pH 7 to a final concentration of 10 mM andmethyltetrazine-DBCO (MTZ-DBCO) (Click Chemistry

Tools) to 50 mM. After 5 min quenching, barcoded cells were pooled in a 2 ml protein LoBind tube (Eppendorf), according to the

desired combination of Clicktags. Two volumes of Resuspension Buffer 1 (RB1; 1X PBS, 1% BSA, 0.8 M sorbitol, 80 U/ml Ribolock)

were added to each pool of cells and gently mixed by inverting the tube three times. Cells were pelleted by centrifugation at 2000 xg

for 5 min at 4 �C in a swinging bucket rotor, and washed once with 2 ml of RB1. After pelleting, cells were finally suspended in 900 ml

RB1 plus 100 ml DMSO and kept at -80 �C until further processing.
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Cell sorting and single-cell RNA-seq

Single-cell transcriptomeswere obtained using the ChromiumSingle Cell 30 Gene Expression kit v.3.1 (10xGenomics). For single-cell

isolation, frozen samples were thawed on ice, and cells collected by centrifugation at 2000 xg for 5 min at 4 �C. Cells were washed

once with 2 ml of Resuspension Buffer 2 (RB2; 1X PBS, 0.5%BSA, 80 U/ml Ribolock), pelleted again and finally suspended in 1 ml of

RB2. Cell nuclei were stained with 1:300 DRAQ5 (Thermo #62251). Either 8,000 or 40,000 cells (for multiplexed experiments) were

sorted into a well of a 96-well plate using a FACSAria II SORP cell sorter following the recommendations by 10x Genomics. Non-

cellular particles were discriminated by selecting only DRAQ5-positive cells and doublets/multiplets were excluded using forward

scatter width (FCS-W) versus forward scatter height (FCS-H). Cells were encapsulated immediately after sorting and barcoded

cDNA and sequencing libraries were obtained following the recommendations by 10x Genomics. For Clicktags library preparation,

Clicktags cDNA were separated from cellular cDNA after the cDNA amplification step, using differential size-selection purification

with AMPure XP beads (Beckman Coulter). Clicktag sequencing libraries were prepared as previously described.83 Size distribution

and concentration of the final libraries were calculated using TapeStation (Agilent) andQubit (Invitrogen). Libraries were sequenced in

an Illumina NextSeq 500 sequencer and high-output 75 cycles V2 kits (Illumina).

Notch signaling inhibition/activation experiments

About 500 animals (Trichoplax sp. H2) were incubated at room temperature and protected for light for 24 h in 10 cm plastic Petri

dishes containing 20 ml of 35 & ASW supplemented with either 50 mM DAPT, 10 mM LY411575 (both from 10 mM stock solutions

in DMSO), 5 mMYhhu3792 (from a 1 mM stock solution in DMSO), or 0.5% DMSO as the control condition. After incubation, animals

were dissociated and used in a multiplexed scRNA-seq experiment using Clicktags as described above.

Hybridization Chain Reaction RNA FISH
Whole-mount Hybridization Chain Reaction RNA FISH and imaging

For whole-mount in situ HCR, animals were transferred to 22x22 mm glass coverslips with 150 ml of ASW and allowed to settle for at

least 30minutes. After removingmost of the ASW, the coverslips were plunged into 4%paraformaldehyde in 1.5X PHEMbuffer,111 at

room temperature (RT) in a 3 cm plastic Petri dish. Fixation proceeded for 10minutes at RT and overnight at 4 �C. Fixed animals were

transferred to 1.5 ml protein LoBind tubes (Eppendorf), rinsed 3 times with ice-cold 1X PBS and dehydrated by rinsing 4 times during

10 minutes with ice-cold methanol and finally stored in methanol at -20 �C. Samples were rehydrated by successive transfers into

75% methanol – 25% PBS-T (1X PBS, 0.1% Tween-20), 50% methanol – 50% PBS-T, 25% methanol – 75% PBS-T and 100%

PBS-T at RT. After rehydration, specimens were permeabilized with 0.01 mg/ml proteinase K (#P8107S, New England BioLabs),

for 10 min at 37 �C. Hybridizations were performed with probes and reagents from Molecular Instruments (Los Ángeles, CA, USA)

according to published protocols for whole-mount in situ HCR v.3.112 For membrane staining, animals were incubated in ASW

with 1X MemBrite� Fix Pre-Staining Solution for 20 minutes at room temperature and then stained for 1 h with 1X Membrite Fix

488/515 (#30093-T, Biotum). After incubation, animals were rinsed twice with ASW and fixed as described above. Custom probes

were designed for the following genes: TrH2_TrispH2_003088 (chymotrypsin), TrH2_TrispH2_010947 (fatty acid binding protein

4), TrH2_TrispH2_001718 (angiotensin I converting enzyme), TrH2_TrispH2_001704 (b-secretase 2), TrH2_TrispH2_007903 (calpain

9), TrH2_TrispH2_007301 (Klf13), TrH2_TrispH2_000422 (Delta receptor), HoiH23_PlH23_008135 (unknown protein), HoiH23_

PlH23_003047 (Klf13). Samples were mounted either in glass bottom 8-well chamber slides (#80807, Ibidi) or SuperfrostPlus�
Gold Adhesion microscope slides (#K5800AMNZ72, Epredia), with mounting medium (#50001, Ibidi).

Images for calpain 9 localization were acquired in a Leica SP5 confocal microscope equippedwith a 405 diode andDPSS 561 laser

lines, using an HCX PL APOCS 20x 0.7 NADry objective. Scanner speedwas set at 600Hz and bidirectional mode. 3D volume stacks

were taken sequentially (in a frame-by-frame acquisitionmode), with a 0.4 mmstep size and 1024x1024 pixels image format, resulting

in 505 nm pixel size. The rest of images were acquired in a Leica Stellaris 5 confocal microscope equipped with a 405 diode laser and

a White Light laser, WLL (485–685nm) with a 80MHz repetition rate. A HC PL APO 20x 0.75 NA multi-immersion (glycerol) and a HC

PLAN APO 63x 1.3 NA Gly CS2 objectives were used. Scanner speed was set to 600Hz, bidirectional. 3D volume stacks were taken

sequentially (in a frame-by-frame acquisition mode) using 405nm (DAPI), 490nm (Alexa 488), 557nm (Alexa 546) and 633 nm (Alexa

647) excitation lines with three independent hybrid detectors (HyDs). Laser power and detector gains were set in each case, using

control samples as reference. 3D volumes covering the whole specimens were taken with the 20x 0.75 NA objective, with a 1 to 2

micron Z -step size and 1024x1024 pixels image format. 3D volumes taken with the 63x 1.3 NA Gly objective were acquired with

0.3 micron Z -step and with 2048x2048 pixels image format, resulting in 90 nm pixel size. Images were analyzed with ImageJ

v1.52 and Imaris Viewer x64 v9.9.1.

Hybridization Chain Reaction RNA FISH of cells in suspension and flow cytometry

For in situ HCR of cells in suspension, around 500 animals were collected and placed in a 2 ml protein LoBind Eppendorf tube with

500 ml of ASW. Animals were gently pelleted by centrifugation at 100xg during 15 seconds in a tabletop centrifuge and washed twice

with 1 ml CMFSW. For dissociation, animals were suspended in 1 ml CMFSW-10 mM EDTA and placed on ice. Dissociation was

performed by gentle pipetting during 10 min, after which cells were fixed by the addition of 1 ml of 2X fixative solution (8% parafor-

maldehyde in 3X PHEM buffer). Fixation proceeded for 2 hours at 4 �C. Fixed cells were collected by centrifugation at 180xg during

5min at 4 �C in a swinging bucket rotor. Cells were washed four times with 2ml PBS-T, centrifuging as before between washes. Cells

were resuspended in 2 ml ice-cold 70% ethanol and permeabilized overnight at 4 �C. Cells were counted an aliquoted into five al-

iquots of�3x105 cells. Hybridizations were performed with probes and reagents fromMolecular Instruments (Los Ángeles, CA, USA)
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according to published protocols for in situ HCR v.3 for cells in suspension.112 Three samples were hybridized with a probe set

against one of the following marker genes: TrH2_TrispH2_003088 (chymotrypsin), TrH2_TrispH2_010947 (fatty acid binding protein

4) or TrH2_TrispH2_001718 (angiotensin I converting enzyme). A fourth samplewas hybridized in amultiplexed reactionwith the three

different probes sets, and the fifth one was subjected to the whole HCR procedure without any probe addition and was used as the

unstained control. Flow cytometry sample acquisition was performed using a Cytek Aurora� 4 laser (V, B, YG, and R configuration)

full spectrum cytometer (Cytek� Biosciences Inc., Fremont, California). Acquisition, spectral unmixing, and autofluorescence sub-

traction were performed using Cytek SpectroFlo� V3.1.0. software. Data analysis was performed using Cytek SpectroFlo� v3.1.0.

software (Cytek� Biosciences Inc., Fremont, California) and FlowJo� v10.9.0. software (BD Life Sciences).

Small peptide identification and analysis
Small peptide mass-spectrometry experiment

Protein extracts were prepared basically as described in Hayakawa et al.38 Samples were prepared by duplicate for each species,

using about 1,000 animals per replica for Trichoplax sp. H2 and 500 animals for H. honkongensis H13 samples. Animals were

collected in a 2 ml protein LoBind tube (Eppendorf) containing 500 ml ASW. Animals were pelleted by centrifugation at 100xg for

15 seconds at room temperature in a tabletop centrifuge. Immediately after removing supernatant, animals were mixed with 1 ml

of acidified methanol solution (90% methanol, 9% ultrapure water, and 1% formic acid), together with �50 ml of glass beads

(425-600 mm; #G8772, Sigma), and immediately subjected to 3 cycles of homogenization in a Mini-beadbeater 24 (dD Biolab) set

at 3,000 rpm for 30 seconds at 4 �C with a 30 seconds pause between cycles. Homogenized samples were centrifuged at

13,000xg for 20 min at 4 to remove debris. Cleared supernatants were dried under vacuum and resuspended in 500 ml of 1% meth-

anol with 0.5% formic acid. Solid phase extraction was performed with UltraMicroSpinTM C18 columns (3-30 mg capacity; The Nest

Group), previously activated with 1x 400 ml methanol and 2x 300 ml 0.1% formic acid. Samples were eluted twice with 300 ml of 50%

acetonitrile, 0.1% formic acid, vacuum dried and stored at -80 �C until their analysis.

Samples were analyzed using an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific, San Jose, USA) coupled to

an EASY-nLC 1200 (Thermo Fisher Scientific, San Jose, USA) using a data dependent acquisition (DDA) method. Peptides were

loaded directly onto the analytical column and were separated by reversed-phase chromatography using a 50-cm column with an

inner diameter of 75 mm, packed with 2 mm C18 particles spectrometer (Thermo Scientific, San Jose, USA) with a 90 min chromato-

graphic gradient. The mass spectrometer was operated in positive ionization mode in DDA, with acquisition in MS1 and MS2 level in

Orbitrap mass analyzers. The method was driven by the ‘‘Top Speed’’ acquisition algorithm, which determined the number of

selected precursor ions for fragmentation.

Digested bovine serum albumin (NEB, #P8108S) was analyzed between each sample to avoid sample carryover and to assure sta-

bility of the instrument. QCloud113 was used to control instrument longitudinal performance during the project.

Chromatin profiling experiments
ATAC-seq experiments

For the ATAC-seq experiments we basically followed the Omni-ATAC protocol.114 Animals were dissociated in CMFSW-10 mM

EDTA as described in the previous section, cells were pelleted at 800 xg for 5 min at 4 �C and washed with 1 ml of CMFSW. All centri-

fugation steps were performed using a swinging bucket rotor. After resuspension in CMFSW, cells were filtered through a 40 mm

strainer and counted on a Neubauer chamber using Acridine Orange/Propidium Iodide staining (Logos Biosystems #F23001) to es-

timate cell viability. Aliquots of different number of cells ranging from 50,000 to 500,000 were distributed into 1.5 ml protein LoBind

tubes (Eppendorf) and pelleted at 800 xg for 5 min at 4 �C. After carefully removing supernatant, cells were suspended in 50 ml ice-

cold lysis buffer and incubated on ice for 3 min. Nuclei were pelleted by centrifugation at 850 xg for 10 min at 4 �C, resuspended in

50 ml of tagmentationmix containing 2.5 ml of custom Tn5 transposase. Tagmentation proceeded for 35min at 37 �C in a thermomixer

with agitation at 1000 rpm. Tagmented DNAwas purified with a DNAClean &Concentrator-5 kit (ZymoResearch). Libraries were pre-

amplified by PCR using the NEBNext PCRmix (New England Biolabs) and quantified by qPCR. Size distribution and concentration of

the final libraries were calculated using TapeStation (Agilent) and Qubit (Invitrogen). Sequencing was performed in an Illumina

NextSeq 500 sequencer and mid-output 75 cycles V2 kits (Illumina).

ChIP-seq experiments

For each species, 200-350 individuals were crosslinked in 1% formaldehyde for 10 min at room temperature (RT) under vacuum.

Crosslinking was quenchedwith 0.75MTris$HCl pH 7.5 for 5min at RT under vacuum. Animals werewashedwith PBS, resuspended

in 500 mL of Cell Lysis buffer (20 mMHEPES pH 7.5, 10 mMNaCl, 0.2% IGEPAL CA-630, 5 mM EDTA supplemented with a protease

inhibitors cocktail), and incubated on ice for 10 min. Samples were centrifuged at max speed for 10 min at 4oC, and the resulting

pellets were resuspended in Bead Beating buffer (20 mM HEPES pH 7.5, 10 mM NaCl, 5 mM EDTA supplemented with a protease

inhibitors cocktail) and transferred to 0.2 mL tubes containing acid-washed glass beads (G8772, Sigma-Aldrich). Cells were lysed by

vortexing 5 x 30 sec. The supernatants were transferred to a 1.5 ml sonication tube, SDS was added to 0.6% and samples were

sonicated 3 cycles of 30 sec ‘‘on’’, 30 sec ‘‘off’’ in a Bioruptor Pico (Diagenode, Seraing, Belgium) in order to generate 200-

300 bp fragments. Chromatin was diluted with 5 volumes of Dilution buffer (20 mM HEPES pH 7.5, 140 mM NaCl), centrifuged at

max for 10 min at 4oC, and stored at �80oC before use.
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ChIP-seq was performed as previously described15 with small modifications. Briefly, an amount of chromatin equivalent to 100 ng

of DNA per species was used per ChIP. Chromatin was incubated for 16 hours at 4 oC with anti-H3K4me2 (#ab32356, Abcam) and

anti-H3K4me3 (#07-473, Millipore) and recovered using a 1:1mix of Protein A (16-661, Sigma-Aldrich) and Protein Gmagnetic beads

(16-662, Sigma-Aldrich). Immuno-precipitated complexes were washed, reverse crosslinked for 3 hours at 68 oC and treated with

proteinase K. Immuno-precipitated DNA was eluted and purified using SPRI beads (A63881, Beckman Coulter). Libraries were

prepared using the NEBNext Ultra II DNA Library Prep Kit (New England BioLabs) according to the manufacturer’s protocol.

QUANTIFICATION AND STATISTICAL ANALYSIS

Orthology inference
Genome-wide orthology assignment

For the four placozoan genomes, we used Broccoli 1.2106 to identify clusters of orthologous genes (step 3 in the Broccoli procedure)

and pairs of orthologous genes (step 4), using the maximum-likelihood gene tree inference algorithm (based on IQ-TREE84) and a k-

mer length of 10,000 to avoid the removal of paralogous sequences from the analysis. The input for this analysis were the protein

sequences of the longest isoform per gene.

Gene family-specific phylogenetic analyses

We ran gene phylogenies to further refine the orthology assignments for selected gene families, including transcription factors. In this

case, we collected a wider taxon sampling consisting of the translated peptide sequences from 37 metazoans (longest isoforms per

gene; Table S4), whichwere queried using HMMprofiles representing the DNA-binding regions of various transcription factor families

(listed in Table S4) using hmmsearch from the HMMER 3.3.2 toolkit.86 For each gene family, the collection of homologous proteins

was aligned in an all-to-all fashion using diamond v0.9.36100 (using the high sensitivity mode in blastp and up to 100 alignments per

query) and divided into one or more low-granularity homology groups using theMarkov Cluster AlgorithmMCL v14.13796 (ABCmode

using alignment bit-scores as weights, and a gene family-specific inflation parameter; see Table S4). Each of the resulting homology

groups was then aligned using mafft 7.47585 (E-INS-i mode with up to 10,000 iterations), alignments were cleaned using clipkit

v1.1.395 (in kpic-gappy mode and a gap threshold = 0.7), and a gene phylogenetic tree was built using IQ-TREE v2.1.0.84 We ran

each tree for up to 10,000 iterations until convergence threshold of 0.999 is met for 200 generations; the best-fitting substitution

model was selected with ModelFinder99 among the commonly used LG, WAG and JTT models; statistical supports were obtained

using the UFBoot procedure with 1,000 iterations.98 For each tree, the presence of outlier sequences was assessed using treeshrink

v1.3.3115 (ran in a gene-wise manner and using the centroid rooting algorithm, and setting the a/b scaling factors to 10 and 1, respec-

tively); if any outliers were identified, they were removed and the alignments and trees were recalculated. Orthology groups and or-

tholog pairs were then parsed from the final gene trees usingPossvm 1.1,90 using the iterative gene tree rooting procedure for up to 10

steps. Human gene names were used to label the resulting orthogroups.

Phylogenomic analyses
Identification of single-copy orthologs to build a phylogenomic supermatrix

In order to build a phylogenomics dataset, we collected 81 animal and choanoflagellate genomes and transcriptomes (Table S1) and

usedBroccoli106 to obtain clusters of orthologous genes (henceforth, ‘‘orthogroups’’) using themaximum-likelihoodmode and keep-

ing up to six homologs from each species in the gene tree reconstruction step. Broccoli identified 9,292 orthogroups, which were

filtered to keep those which contained at least 75% of the species in the dataset and had a Broccoli clustering coefficient >0.9, re-

sulting in a subset of 2,823 orthogroups. In parallel, we also repeated this procedure using only the 63 metazoans in the dataset,

resulting in 29,665 and 5,453 orthogroups before and after filtering, respectively. At this step, orthogroups still retained internal pa-

ralogous sequences and were not amenable to build a phylogenomic matrix based on single-copy orthologs. In order to further refine

the dataset, we built gene trees for each of these orthogroups (using themafft and IQ-TREE-based procedure described in the pre-

vious section), and identified cases of internal paralogy using Possvm (rooting the trees with a two-step iterative rooting procedure).

Each gene tree was then cleaned to obtain single-copy gene sets, using the following criteria: (i) we identified internal orthogroups

within each gene tree usingPossvm and, if we identifiedmore than one orthogroup per tree, the largest onewas retained; (ii) within the

largest orthogroup, misplaced ‘outlier’ geneswere identified, defined as genes with an infrequent nearest neighbor species in the rest

of the single gene tree collection (the nearest neighbor species were defined using k = 1 closest neighbors in terms of phylogenetic

distance, and outliers were determined with a frequency threshold < 1%); and (iii) within the largest orthogroup, recent duplications

(e.g. species-specific) were collapsed and only the paralogwith the longest protein sequencewas retained (or, if tied, the onewith the

shortest phylogenetic distance to the root). This reduced the number of orthogroups to 2,794 single-copy gene sets for the Meta-

zoa+Choanoflagellata dataset and 5,397 for the Metazoa-only dataset, which were then realigned using mafft, and a final set of

gene trees produced with IQ-TREE (these individual trees were used for marker filtering, see below).

Concatenation, filtering and recoding of the supermatrix

These two sets of single-gene alignments (Metazoa-only and Metazoa+Choanoflagellata) were concatenated to produce two phy-

logenomic supermatrices. In the concatenation step, the list of orthogroups was filtered again to retain the most phylogenetically

informative ones based on the following criteria: (i) they contained at least 3 genes from each of the main animal or outgroup clades

of interest (Bilateria, Cnidaria, Placozoa, Porifera, Ctenophora, and, if relevant, Choanoflagellata); (ii) they contained at least 70% of
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the species in the dataset; (iii) in the corresponding gene-tree, the bilaterian, cnidarian and placozoan sequences formed a mono-

phyletic clade (note that this criterion is agnostic to the internal topology of these clades); (iv) the alignment contained at least 50

aminoacid positions. This resulted in a 722 and 559 markers being selected for the Metazoa-only and Metazoa+Choanoflagellata

supermatrices, respectively, containing 359,512 and 292,648 aminoacid positions each.

These matrices were further refined to retain markers with high phylogenetic information, using the MARE algorithm97 (weight

parameter a = 2 and taxon weight = 100), resulting in 209 markers (93,453 positions) and 121 markers (57,774 positions) being re-

tained for the Metazoa-only and Metazoa+Choanoflagellata supermatrices, respectively.

We also filtered the alignment supermatrices to retain compositionally homogeneous markers, as determined using the compo-

TestUsingSimulations function in the p4 1.4 toolkit.92 Specifically, we tested the compositional heterogeneity of each single-gene

alignment using its respective gene tree as a reference (branch lengths were optimized in p4 using the LG evolutionary model

with four G rate categories, as this was the most common best-fitting model identified by ModelFinder), using 1,000 simulations

to obtain a null distribution. Compositional homogeneity was determined for each marker using a p > 0.01 threshold. For the Meta-

zoa-only and Metazoa+Choanoflagellata supermatrices, 140 markers (46,803 positions) and 62 markers (17,199 positions) were re-

tained, respectively.

Each of the supermatrices described above was recoded using the Dayhoff6,116 SR4117 and SR6117 aminoacid recoding schemes.

Thesewere specified as follows. In Dayhoff6, 0 = AGPST, 1 =DENQ, 2 =HKR, 3 = ILMV, 4 = FWY, and 5 =C. In SR4, A = AGNPST, C =

CHWY, G = DEKQR, and T = FILMV. In SR6, 0 = APST, 1 = DENG, 2 = QKR, 3 = MIVL, 4 = WC, and 5 = FYH.

Phylogenetic analyses of the supermatrix

Webuilt species trees from each of the two versions the supermatrix (Metazoa-only andMetazoa+Choanoflagellata) with andwithout

the compositional homogeneity filters (in the unfiltered set, we used theMARE-reduced version), as well as their unrecoded (amino-

acid) and recoded versions (Dayhoff6, SR4 and SR6). This resulted in a total of 20 dataset combinations, to be analyzed with two

phylogenetic inference methods: maximum-likelihood with IQ-TREE 2.184 and Bayesian inference with Phylobayes MPI 1.9.26

For each dataset, we used the following models. For the unrecoded aminoacid supermatrices, we built trees using the LG substi-

tution model118 with four G rate categories, empirical state frequencies observed from the data, and a CAT mixture model.119 In the

Bayesian analyses, we used the full CAT model implemented in PhylobayesMPI.26 In the maximum-likelihood analyses, the C60

mixture model implemented in IQ-TREE118 was used instead. For the recoded matrices, an empirical GTR substitution matrix was

used in combination with CAT profile mixture models (C60 in maximum-likelihood analyses). The DNA GTR model was used for

the SR4 recoding (as each aminoacid group is mapped to the A, T, G and C nucleotides), and data-derived morphological GTR

models were used for the other recoding schemes (which map aminoacid groups to states 0 through 5).

In all maximum-likelihood analyses, the IQ-TREE tree search step ran for up to 1,000 iterations until convergence threshold of 0.999

was met for at least 100 generations (which in all cases occurred within the first 200 iterations). Node supports were calculated using

1,000 UFboot iterations,98 which were individually recorded (-wbt flag in IQ-TREE).

In all Bayesian inference analyses, PhylobayesMPIwas run for 3,000 generations in four parallel chains and using the CAT + GTR +

G4 model. bpcomp function was used to generate posterior consensus trees and check for chain convergence, removing the first

2,000 generations as burn-in. The final species tree results from the pair of chains with the lowest maximum bipartition discrepancy

(maxdiff) and, in all cases, we requested maxdiff <0.1 to consider the chains have converged. If no pair of chains showed conver-

gence after 3,000 generations, we ran additional 4 chains and extended all of them to 5,000 generations. In all cases, this resulted

in convergence (maxdiff<0.1) for at least a pair of chains (in this cases, using 4,000 generations as burn-in).

To check the adequacy of the model to the different datasets, we used PhylobayesMPI to perform tests of compositional hetero-

geneity on all chains and using the same burn-in values (2,000/4,000 generations). We performed both posterior predictive tests of

aminoacid diversity (readpb_mpi -div) and of compositional homogeneity across taxa (readpb_mpi -comp). For all tests, we use

z-scores to summarize and report the outcome of the tests. These z-scores represent the deviation between the observed value

and the mean of the null distribution and, therefore, a small absolute z-score indicates better adequacy of the model to the data.

Using this criterion, we identified the metazoan-only (excluding choanoflagellates that show consistently high compositional hetero-

geneity) dataset without compositionally heterogeneous sites and with SR4/SR6 recordings as the ones with the best model fit.

In addition, we reanalyzed the MARE-filtered AA supermatrices using three possible partition schemes, using IQ-TREE:

(i) gene-level partitions with partition-specific mixture models (optimizing the LG model + C20 in each partition, including +I, +F

and +G4 parameters if appropriate according to ModelTest); (ii) gene-level partitions without mixture models (only LG and +I, +F

and +G4 parameters if appropriate); and (iii) a heterotachy-aware edge-unlinked mixture model consisting of four site classes (i.e.

the Heterogeneous evolution On a Single Topology model implemented in IQ-TREE).120

Finally, we selected six datasets for further analysis using fast-evolving site removal. Specifically, we selected the following super-

matrices, for both the Metazoa andMetazoa+Choanoflagellata datasets: (i) AAMARE-filtered, (ii) AA compositionally homogeneous,

and (iii) SR4-recoded MARE-filtered supermatrices. These datasets exhibited imperfect support for either of the the main phyloge-

netic hypotheses (Placozoa sister to Cnidaria and Placozoa sister to Cnidaria+Bilateria; Figure S1B), and we aimed to ascertain

whether support for each topology would decrease after removing fast-evolving sites — a possible indication that the non-reduced

dataset is affected by long-branch attraction. For example, the SR4MARE-filtered Metazoan dataset exhibited had only 89% for the

Placozoa sister to Cnidaria+Bilateria topology, but removal of fast-evolving sites increased this support to 100% (Figure S1H).
e7 Cell 186, 4676–4693.e1–e15, October 12, 2023



ll
OPEN ACCESSArticle
Phylogenetic analyses using supertrees

We used the collection of gene trees used to generate the Metazoa and Metazoa+Choanoflagellata supermatrices to create

phylogenomic supertrees. First, we used the gene trees with one ortholog per species (prior to MARE filtering) to create a edge-

and support-weighted supertrees with ASTRAL v1.15.2.3 in hybrid mode93 and assessed statistical supports for each branch

with local posterior probabilities. Second, we used the paralogy-aware ASTRAL-pro algorithm121 to produce summary supertrees

using the same collections of markers without removing intra-species duplicates (see above).

Single-cell RNA-seq data analysis
Transcriptome mapping and Clicktag deconvolution

WeusedCell Ranger 6.1.1 (10XGenomics) tomap reads and count uniquemolecular identifiers (UMIs) per gene per cell. We used the

–force-cells flat to set a constant number of 20,000 per experiment (well in excess of the expected number cells for each case, as we

intended to remove non-cells from the dataset using our own procedure; see below). We used whole gene bodies to guide the map-

ping of reads to the genome (–transcriptome flag). We also extended gene ranges to include proximal scRNA-seq peaks located

downstream of each gene (in the region 5 kbp downstream of each gene, or less if another gene was closer to that peak). The exten-

sion of the 30 regions of each gene was done to compensate for the low-quality annotation of UTRs in non-model species such as

placozoans, as previously reported.122 To identify scRNA-seq peaks for the extension procedure, we mapped each scRNA-seq

library to its respective genomewith STAR 2.7.9a87 (tolerating up to 3mismatching positions per read and 5multi-mapping positions)

and usedMACS2 2.2.7.188 to call peaks separately for reads mapping on each strand, with the callpeak utility and the following op-

tions: (i) an effective genome size equal to the ungapped genome length of each species (i.e. removing uncalled N bases), (ii) keeping

up to 20 duplicates from different libraries (–keep-dup 20); (iii) retaining peaks with a false discovery rate threshold% 0.01; (iv) retain-

ing peaks of at least 30 bps (–min-length 30); (v) extending the read mapping region by 20 bp (–extsize 20); and (vi) disabling the

modeling of peak extension for ChIP-seq libraries (–nomodel flag).

We discarded all cell barcodeswith less than 100UMIs/cell, upon examination of the distribution of UMIs per cell in each placozoan

(Figure S2A). The scRNA-seq UMI matrices of all the bona fide cells was then converted to MetaCell 0.37 format29 for further pro-

cessing in R.

Furthermore, our experiments included five Clicktag-multiplexed scRNA-seq libraries (namely: H1H13_1_ACME_CT_10x_10kc,

H1H23_5_ACME_10x_10kc, H2H23_4_ACME_10x_10kc, Plac01_H1_H13_10XscRNAseq_10kc. and Plac02_H2_H23_10XscRNA-

seq_10kc), which included batches of cells from various pairs of species (e.g. T. adhaerens H1 and H. hongkongensis H13 for the

first library). In these cases, we leveraged Clicktag counts to remove potential doublets, removing all cells that failed any of the

following criteria, which were devised according to themethodology described by Chari et al.123 The results from these filtering steps

are reported in Figures S3B and S3C.

First, we only kept cells with a Clicktag count >20 UMIs (to remove cells with not enough Clicktag counts to be reliably assigned to

either species; these represented 6.5% of cells across all Clicktag datasets). Clicktag counts were determined as described by Chari

et al.123: we mapped the reads to the Clicktag barcodes (8 bp barcodes + constant CAG sequences at the end) using kallisto

0.46.2,124 specifying the 10x v3 chemistry and tolerating one substitution per barcode; and used bustools 0.41.0108 to correct,

sort and count the reads per cell, and obtain a final Clicktag UMI matrix.

Second, we compared the number of Clicktag counts for the most abundant barcode to the third most abundant barcode for each

cell (given that we had used two barcodes per experimental batch, the abundance of the third most abundant barcode should be

lower than the first and second ones, and correspond to a different batch of cells); and we kept cells where the first-to-third ratio

of normalized Clicktag UMI counts was > 1.5. Likewise, we flagged as possible doublets all cells where the first and second most

abundant Clicktag barcodes corresponded to different batches. Cells failing these criteria were flagged as potential doublets, and

further classified as intra- or inter-species doublets depending on whether the two most abundant Clicktag barcodes corresponded

to barcode pairs from the same/different species, respectively.

Third, we leveraged the fact that each of our Clicktag experiments corresponded to mixtures of different species to further remove

cells that had similar scRNA-seq UMI counts in one species and the other. Specifically, we calculated the UMIs/cell against each of

the two genomes, assigned each cell to the species where it had the highest UMIs/cell value, and discarded cells with similar UMIs/

cell as potential doublets (threshold: relative UMI/cell ratio < 1.25 in either direction).

Fourth, we used Seurat 4.1.194 to produce high-granularity Louvain clusters of cells based on their Clicktag count matrix, and

removed all cells that fell within clusters that contained a high fraction (>70%) of cells flagged as potential doublets according to

either of the previous criteria. These Seurat clusters were generated as follows: we used scaled and log-normalized counts with a

scaling factor of 10,000 (NormalizeData function); selected variable features using default parameters (FindVariableFeatures func-

tion); ran a PCA and identified the 50 nearest neighbors of each cell (RunPCA and FindNeighbors functions with k = 50); and used

this distance matrix to identify Louvain clusters (FindClusters function, with resolution = 1).

In summary, we only kept cells from Clicktag experiments that fulfilled these criteria: (i) had sufficient Clicktag counts to be confi-

dently assigned to one experimental batch; (ii) had a strong enrichment of Clicktag counts from concordant pairs of barcodes, i.e. the

most abundant barcodes corresponded to the same species and batch; (iii) had a strong enrichment in scRNA-seq counts for one of

the pooled species over the other; and (iv) we used Louvain clustering to further identify cells which whose Clicktag count patterns

were incompatible with these criteria.
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Single cell transcriptome clustering

We used Metacell 0.3729 to select gene features and construct cell clusters (termed metacells). We selected feature genes using

normalized size correlation29,66 threshold of -0.05 and normalized niche score29 threshold of 0.01, additionally filtering for genes

with > 1 UMI in at least three cells and a total gene UMI count > 100 molecules (mcell_gset_iter_multi function in Metacell). For

this step, we excluded (i) ribosomal proteins and histones based on their annotated Pfam domains, and (ii) batch-correlated genes,

defined as genes for which their metacell-level expression fold change values were highly correlated with with the frequency of cells

from certain experimental batches (samples) in that metacell (genes with Spearman correlation coefficient r > 0.5 were thus dis-

carded). In total, we used 1,421 markers for Trichoplax adhaerens H1, 1,238 for Trichoplax sp. H2, 1,363 for Holiungia honkongensis

H13 and 1,423 for Cladtertia collaboinventa H23. For K-nearest neighbours graph building we used K = 100 target number of edges

per cell (mcell_add_cgraph_from_mat_bknn function), and for metacell construction we used K = 30,minimummodule size of 10, and

1,000 iterations of bootstrapping with resampling 75% of the cells, and threshold a = 2 to filter edges by their co-clustering weight

(mcell_coclust_from_graph_resamp andmcell_mc_from_coclust_balanced functions). This way we obtained an estimate of co-clus-

tering frequency between all pairs of single cells and identified robust clusters of single or grouped metacells. For downstream

analyses, we represent gene expression by computing a regularized geometric meanwithin eachmetacell (or cell type, where appro-

priate) and dividing this value by the median across metacells, as implemented in Metacell. We refer to these normalized gene

expression values as fold change (FC) across the manuscript.

After defining the initial metacell set, we filtered out low-quality metacells using the following criteria: (i) the total number of UMIs

per metacell was less than the p < 0.01 fraction of a standardized distribution of log10-transformed UMI counts; (ii) the median

number of UMIs per cell in that metacell was less than the p < 0.01 fraction of a standardized distribution of log10-transformed

UMI counts; (iii) the metacell had less than 10 genes with a fold change R 1.5; (iv) the metacell did not have any transcription

factor (defined based on Pfam domains) with a fold change R1.5; and (v) metacells in which too many cells originated from an

overloaded Clicktag sample, which could result in intra-species doublets, were also removed (namely, metacells where the me-

dian first-to-third Clicktag count ratio was > 10, >50% of cells came from Clicktag samples, and >90% of cells came from the

same Clicktag sample). This resulted in 12 metacells being removed in H1 (totaling 871 cells), 4 in H2 (265 cells), 5 in H13

(376 cells), and 9 in H23 (602 metacells). After excluding these cells, a new metacell clustering was calculated and expression

FC values recalculated. Clusters of metacells, which we termed cell types (Table S2) were curated after inspection of the confusion

matrix (calculated from the K = 100 nearest neighbors of each metacell) and its associated dendrogram (using a hierarchical

agglomerative clustering approach125).

Two-dimensional projections of the metacells were produced using a force-directed layout based on the metacell co-clustering

graph (mcell_mc2d_force_knn function in Metacell), using K = 20 nearest neighbors and a maximum confusion degree = 5.

Gene expression profiles across single-cells and metacells were visualized as heatmaps with the ComplexHeatmap 2.10.0126 R

library. Unless otherwise stated, the cell type/metacell ordering was fixed according to the curated cell type tables described above;

and gene order in the expression heatmaps was determined based on the highest fold change value per metacell. Genes were

selected based on minimum differential expression per metacell/cell type, with a maximum number of markers per metacell/cell

type selected in each case (the actual thresholds used in each heatmap are specified in the corresponding figure legend).

Characterization of transcriptomic signatures in intermediate cells

We validated our annotation of intermediate metacells with the AUCell 1.16.0101 R library, which was used to evaluate whether

intermediate metacells exhibited higher-than-expected expression levels for gene markers specific to both of their (putatively)

corresponding terminal cell types. First, we ranked each gene according to its fold change value in each metacell with the AUCell_

buildRankings function. Second, we selected lists of cell type-specific genes for each pair of terminal cell types with a matching in-

termediate cell type, defined as having metacell expression FC R 2.0 in that cell type (e.g., to evaluate the transcriptomic signal of

intermediate lipophil-gland metacells, we selected genes specific to lipophil and gland terminal metacells). Third, we used the

AUCell_calcAUC function to calculate the area under the curve (AUC) score of each metacell, for each of the terminal cell types.

We expected intermediate metacells to exhibit relatively high AUC scores for both their terminal cell types.

We evaluated whether intermediate cells exhibited a conserved gene program comparable to that of other cell types. Specifically,

for the intermediate cell types that could be identified across multiple species, we also evaluated whether their corresponding gene

sets were conserved across species at a similar rate than those of their respective terminal cell types. To this end, for each interme-

diate cell type, we compared the fraction of intermediate markers shared across species (selecting orthology groups with a cell type-

level FC R 2.0 in each species) with the same fraction calculated from their corresponding terminal cell types, using a one-tailed

exact binomial test. If intermediate cells shared a lesser number of markers across species, this could indicate that their transcrip-

tional program could be more stochastic than that of terminal cell types.

Finally, we also evaluated the possibility that intermediate cells were doublets of two or more terminal cells. To that end, we tested

whether the number of intermediate cells from each typewas significantly different from the number of doublet cells onewould obtain

from random collisions (resulting from stochastic co-encapsulation) between terminal cell types, considering their relative

abundance. We performed a two-tailed exact binomial test for each intermediate cell type, using the product of the fraction of

both terminal cell types as the null probability. Significant deviations from this null probability in either direction would indicate

that the number of cells from a particular intermediate cell type is not dependent on experimental conditions.
e9 Cell 186, 4676–4693.e1–e15, October 12, 2023



ll
OPEN ACCESSArticle
Characterisation of transcriptomic signatures in peptidergic cells

We counted the number of ion channels and GPCRs overexpressed in each metacell (FCR 1.5). The ion channel category includes

genes annotated with the following Pfam domains: ASC, Ion_trans, IRK, Lig_chan, Na_Ca_ex, Neur_chan_memb, P2X_receptor,

PKD_channel, SK_channel, and VGCC_alpha2. The GPCR category includes the following Pfam domains: 7tm_1, 7tm_2, and 7tm_3.

The expression profile of the genes belonging to the pre-synaptic scaffold (pan-peptidergic, specific to certain peptidergic, other

cell types, or not expressed, or not conserved) were manually recorded. The placozoan orthologs were obtained from the Broccoli

database of orthologs used in the trans-phyletic analyses (see above), using well-characterised M. musculus and D. melanogaster

sequences as queries. Specifically, the following genes were included: Synaphin/Complexin, Syntaxin Stx1a/1b/2/3/4, Snap25, Syn-

aptotagmin Syt1/2/5/8, Synaptotagmin Syt7, Synaptotagmin Syt15, Ptpn5/Ptpn7/Ptprr, Ptprn/Ptprn2, Ptpdc1, Cacnb, Cacna2d,

Cacn3, Cacna1A, Slc24a1, TrpA1, Kcnc, Kcnb/f/g/s, Kcnh1, Gucy2d, Munc13/Baiap3, Tomosyn, Rimbp, Rims, Cast/Erc, Spectrin,

Caskin, Cask, Mint, Liprin, CamKII, Synaptophysin, Synaptogyrin-1, Synaptogyrin-2, Ncam, any homolog of the synaptic vesicle

glycoprotein SV2, and any Cadherin domain-containing gene in placozoans (Table S4).

We also recorded the expression profile of neuropeptides homologs. First, we retrieved previously described sequences from

T. adhaerens,37,39 and identified the relevant orthologs in other species based on the four-placozoan Broccoli orthology database

(see above). Furthermore, we complemented this list with additional candidate genes, selected based on a sequence-based criteria,

their neuropeptide-like expression pattern, and their conservation status in multiple placozoan species. Specifically, we selected

groups of orthologs that fulfilled the following criteria: (i) homologs from at least two placozoans exhibited high expression specificity

in peptidergic metacells (fold changeR 50 in at least onemetacell); (ii) lack of transmembrane domains in all homologs, defined using

TMHMM2.0102; (iii) presence of a signal peptide (identifiable in at least one of the homologs), annotatedwith SignalP 5.0b103; (iv) none

of the homologs contained any annotated Pfam domain; (v) we recorded the presence of neuropeptide-like signatures defined as

follows: stretches of 3 to 10 residues flanked by one pair of lysines or arginines at the N-terminus and a pair composed of glycine

and arginine or lysine at the C-terminus, as previously defined.39 We also assessed the homology of these candidates based on their

similarity to previously published collections of invertebrate neuropeptides,39,127 assessed by local alignment with high-sensitivity

diamond blastp searches. We used this homology search to add hypothetical names to the list of candidate neuropeptides, on a

manual basis.

Characterization of cell cycle transcriptomic signatures

For each dataset, we identified individual cells with active cell cycle based on the expression of genes associated with the gene cycle

modules (see below). Specifically, we retrieved all orthologous genes identified as part of the cell cycle modules in at least two spe-

cies and calculated the fraction of UMIs per cell corresponding to this gene sets. We considered a cell to be in active cell cycle if it fell

within the p R 0.95 fraction of a standardized distribution of log10-transformed UMI counts, within each individual species.

Selection of gene pairs for cross-species transcriptome comparisons

We implemented the ‘iterative comparison of coexpression’ (ICC) algorithm in the followingmanner (Figures S3A and S3B). First, for a

pair of species a and b, we retrieved gene expression matrices consisting of the metacell-level expression of matched one-to-one

orthologs (defined using Broccoli, see above), representing using n genes across ma and mb conditions. Second, we calculated the

Pearson correlation matrix of these two expression matrices, resulting in a n 3 n matrix where the diagonal represents a vector of

correlation values between orthologous gene pairs. Third, the n-length correlation vector (range: �1 to +1) is used to obtain a vector

of weights (range: 0 to +1; negative values are set to 0), which quantify the expression conservation of that pair of orthologous genes

between species a and b, or EC0. Fourth, the EC0 vector is used to recalculate the n3 nmatrix using weighted Pearson correlation, a

new weight vector EC1 is derived from its diagonal. This step is repeated for up to I iterations until the new weight vector equals the

previous one (i.e. convergence is achieved), according to the following criterion:
P

(ECi � ECi-1)
2 < 0.05.

At this point, the ECi vector represents the expression conservation values between each pair of one-to-one orthologous gene

pairs. However, sets of genes with one-to-many or many-to-many paralogy relationships also may exist between species a and

b. For each set of paralogous genes (e.g. gene a1 in species a with three paralogs b1, b2 and b3 in species b), we can select the

most conserved paralogs (in terms of expression similarity) by selecting the gene pair with the highest EC value. To that end, the

above procedure is repeated for each set of paralogous gene pairs between species a and b, adding all the possible paralog pairs

at the end of the matched expression matrix (which implies including duplicated rows to accommodate all possible paralog pairs in

that set, e.g. in the example above, a1 would need to be included three times in the matrix to match the three possible pairs with its

three species b paralogs). In this context, orthologous gene pairs act as a reference set of co-expression values. For each set of pa-

ralogs, the pair with the highest ECi value is then retained. In order to accelerate calculations, only 1,000 randomly selected pairs of

orthologous genes are used in each of the paralog set-specific ECi recalculations.

Cross-species cell type transcriptome comparisons

Pairwise comparisons between the gene expression profile of two species were performed using weighted Pearson correlation (as

implemented in the WGCNA 1.71 R library105) of quantile-normalized gene normalized expression values (FC). Gene pairs were

selected using the ICC procedure outlined above, including one-to-one orthologs and best paralog pairs; and the expression con-

servation values (EC score) between each pair were used as weights for the Pearson correlation. This procedure was applied to the

following comparisons: cell type-level comparisons between the four placozoan species (Figure 3C), and broad cell type-level

comparisons between the four placozoans and selected transcriptomes of poriferans (Spongilla lacustris), ctenophores (Mnemiopsis

leidyi), cnidarians (Nematostella vectensis,66 Stylophora pistillata,122 and Hydra vulgaris46), and bilaterians (Mus musculus70,72 and
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Drosophila melanogaster69) (Figure S3). Single-cell clusterings and cell type annotations in cnidarians were obtained from Levy

et al.122

In addition, we also used SAMap 1.0.2104 to calculate cell type mapping scores between all four placozoan species (Figure S3D).

First, we created a database of pairwise protein alignments with blastp 2.5.0. Then, we used the cell-level UMI counts of each gene to

calculate the SAMapmapping scores for each pair of cell types andmetacells, using all cells within each cluster for score calculation.

Multi-species cell type clusteringwas performed using theUPGMAaverage algorithm implemented in phangorn 2.9.0,128 based on

a Log-Det distance matrix obtained from the binarized gene expression of shared orthologs across cell types of different species (1 if

gene is differentially expressed in that cell type with a minimum fold change; 0 if otherwise). Gene pairs were selected using the ICC

procedure, using the shared pairs across all species in each comparison. Node supports were obtained from 1,000 iterations of Fel-

senstein’s bootstrap procedure129 as implemented in phangorn. This approach was followed to create cell type trees (using a fold

change threshold R 2.0 and retaining markers expressed in R 70% of the cell types), at the level of broad (Figure 2E) and detailed

cell types, with specific clustering of peptidergic cell types (Figure 4C). Cell type clusterings in cnidarians were obtained from Levy

et al.122 Pairwise cell type similarities were visualized as heatmaps with the ComplexHeatmap 2.10.0126 R library or (ii) as weighted

using the igraph R package,130 with nodes representing cell types and edge widths representing pairwise similarities, and using the

Fruchterman andReingold force-directed layout algorithm. Cell type clustering treeswere visualized using the ape 5.6.2131 and phan-

gorn 2.9.0128 R libraries.

Gene module analysis in placozoans

We used the metacell normalized gene expression fold change (FC) of each placozoan species to obtain gene modules using the

WGCNA105 algorithm. First, we selected variable genes with a FC R 1.25 in at least one metacell. Second, we calculated the

gene co-expression matrix by calculating the Pearson correlation coefficient of each gene based on their metacell fold changes,

and using the average hierarchical clustering algorithm and a soft power parameter = 7 (determined independently for each species

using theWGCNA pickSoftThreshold function). Third, we used the hierarchical clustering dendrogram to define gene modules using

the cutreeHybrid function in the dynamicTreeCut R library,132 maximizing granularity with a split parameter = 4 and ignoring clusters

containing less than 10 genes; assigned each gene to one module with a correlation thresholdR 0.7; and we calculated the module

Eigen vectors of each of the resulting modules in eachmetacell, using themoduleEigengenesWGCNA function. This resulted in 55 to

60 modules being identified in each species, containing between 6,341 and 8,474 genes (Figure S4).

Then, we grouped themodules across species based on the presence of shared orthologs to obtainmulti-speciesmodule clusters,

using a graph-based approach. Specifically, we calculated the Jaccard index between each pair of modules from different species

using the list of orthogroups assigned to each module, and retained pairwise connections with a Jaccard index R 0.1. Then, we

identified cross-species module clusters using the components function in the igraph library, which was also used for visualization

(Figure 4A). Finally, we refined the final module clusters, and manually annotated them according to their expression pattern across

species as determined by inspection of the constituent single-species modules’ Eigen vectors across metacells (Figure S4) and the

functional annotations of their constituent genes. This resulted in 34 cross-speciesmodule clusters, 30 of which represented bymod-

ules from three or more species. Out of these, 30 modules could be unambiguously assigned to specific cell types or functionally

coherent groups of cell types (e.g. a module specific to a-peptidergic cells, or a general pan-peptidergic module); while the four re-

maining modules exhibited a cross-cell type expression profiles reflecting intermediate functions, such as cell cycle, ciliary genes,

and meiosis genes.

The activity of eachmulti-speciesmodule cluster was scored across cell types by recording the fraction of genes belonging to each

module that were differentially active in the cell types of individual species (defining active genes with a cell type-level expression FC

R 1.5).

Pan-metazoan neuronal gene module

Wedefined a pan-metazoanmodule of neuron/neuron-like associated genes, based on single-cell transcriptomic profiles from seven

additional metazoan species, namely the cnidarians Nematostella vectensis,66 Stylophora pistillata,122 and Hydra vulgaris,46 the bi-

lateriansMusmusculus70,72 and Drosophila melanogaster,69 the ctenophoreMnemiopsis leidyi,15 and the poriferan Spongilla lacust-

ris.68 Specifically, we selected genes that were differentially expressed (expression FC R 2.0) in at least 10% of the metacells an-

notated as neurons (or, in the case of Spongilla lacustris, the neuroids68). We also selected peptidergic cell-associated genes

from each of the four placozoans using the same criterion. Then, we inferred the orthology relationship between these genes using

Broccoli (same parameters as in the placozoan-specific analysis, see above; for this analysis, we also included Amphimedon

queenslandica as a reference demosponge to compensate for the incompleteness of the S. lacustris de novo transcriptome), and

mapped their genetic and transcriptomic evolutionary histories (ortholog gain/loss and expression gain/loss) on the metazoan

tree of life using the Dollo parsimony procedure implemented in Possvm.90 According to this method, characters can be gained

only once, and they are lost as many times as needed to explain their extant phylogenetic distribution. The number of gains/losses

over species were visualized using the ape 5.6.2 R library.131

Comparison of peptidergic progenitors with neural developmental datasets

We characterized the transcriptomic similarities between placozoan peptidergic cells and developmental sc-RNAseq datasets from

three query species: M. musculus (gastrula to pharyngula stage44), N. vectensis (gastrula to adult45,66), and Hydra vulgaris (regener-

ating adult46). For each of these species, we calculated normalized expression fold change values for each cell type and stage. Then,

we grouped the cell types along neural developmental trajectories based on reported cross-stage similarities in the relevant studies.
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Specifically, we defined (i) five branching trajectories in mouse: neural crest (including the following cell types from the original anno-

tation: Neural crest PNS glia, Neural crest PNS neurons, Olfactory sensory neurons, and Neural crest), forebrain/midbrain + devel-

oping neurons (Mesencephalon/MHB, Di/telencephalon, Retinal neurons, Retinal pigment cells, Retinal primordium, Forebrain/

midbrain, Noradrenergic neurons, Motor neurons, Inhibitory interneurons, Di/mesencephalon inhibitory neurons, Spinal cord inhib-

itory neurons, Di/mesencephalon excitatory neurons, and Spinal cord excitatory neurons), neuron progenitors (Neuron progenitor

cells and Intermediate progenitor cells), hindbrain + roof + anterior floor plates (Hindbrain, Roof plate, and Anterior floor plate)

and spinal cord + posterior floor plate (Posterior floor plate, Spinal cord, Spinal cord dorsal and Spinal cord ventral); (ii) a four cell

types continuously arising from neurosecretory precursors in N. vectensis (neurosecretory precursors, differentiated neuron cell

types, cnidocytes, and gland cells); and (iii) two trajectories in H. vulgaris (neurosecretory precursors giving rise to neuron and gland

cells, and nematocytes).

Then, we recorded whether selected markers of placozoan progenitor cells (Sox1/2/3, Sox4/11/12, Klf13, Insm1/2, Elav, Cpeb,

Cecr2, Nanos1, and Hdac1) were overexpressed in any cell type from a given trajectory or stage in the query species (at expression

FCR 1.25). Furthermore, we recorded the number of TF and RNA-binding protein orthogroups shared between placozoan peptider-

gic progenitors from each species (at expression FCR 1.5) and each query neural developmental trajectory as awhole (for branching

trajectories, e.g. neural crest in mouse, we only considered the non-common part of the trajectory).

Functional enrichments in gene modules

We calculated functional enrichments of Gene Ontology (GO) terms using the topGO 1.0 R library.133 Specifically, we computed the

functional enrichments based on the counts of genes belonging to each gene module relative to all annotated genes, using Fisher’s

exact test and the elim algorithm for GO graph weighting. Functional enrichment tests of Pfam domain annotations were performed

using hypergeometric tests as implemented in the R stats library, comparing the frequencies of presence of Pfam domains in each

module to the same frequencies in the whole gene set (using unique domains per gene). For the multi-species placozoan modules,

annotations for all four species were considered jointly. For the pan-metazoan neural module, annotations for theMus musculus or-

thologs were used. Gene Ontology annotations were obtained from the November 2022 release of the Mouse Genome Database134

and mapped to the corresponding orthologs in other species using the Broccolimetazoan orthology set. Pfam annotations for each

species were obtained with Pfamscan, using version 33.1 of the most regrettably decommissioned Pfam database.135

Neuropeptide data analysis
Mass-spectrometry data analysis

Data was analyzed using the Proteome Discoverer software suite (v 2.5, Thermo Fisher Scientific), and PEAKS software (v11,

Bioinformatics solutions). For the Proteome Discoverer analysis, the Mascot107 search engine (v2.6, Matrix Science) was used for

peptide identification. Data were searched against the predicted proteome of each species (Trichoplax sp. H2 and

H. hongkongensis H13) plus the most common contaminants. The search was done considering amidated C-terminal, pyro-Glu

for N-terminal glutamine or glutamic acid and oxidation of Methionine as variable modifications and the enzyme specificity was

set as ‘‘None’’. Precursor ion mass tolerance of 7 ppm at the MS1 and a fragment mass tolerance of 20 mmu at the MS2 level

was used. False discovery rate (FDR) in peptide identification was set to a maximum of 1%. For the PEAKS analysis, the

DeepNovo algorithm, that combines de novo sequencing and database search, was used. The database, the variable modifications,

enzime specificity and FDR cutoff were the same as the ones used in the Proteome Discoverer analysis.

Then, we concatenated the lists of peptides detected using DeepNovo and database-based approaches, and ranked the peptides

mapped to each candidate protein gene by their relative abundance in each search (percentiles of abundance as measured by the

area under the peptide peak by each algorithm). For each peptide, we also recorded (i) the presence of pyro-Glu and amide post-

translational modifications, (ii) its number of peptide spectra, and (iii) the number of matches in local alignments against their corre-

sponding protein gene (with 1 mismatch). Finally, we recorded the following information for each of the protein genes of origin of the

small peptides: (i) orthology group and conservation status across placozoans; (ii) expression level in the top three peptidergic cells in

the relevant species (ranked by expression FC); (iii) presence of transmembrane domains using TMHMM 2.0102; (iv) presence of a

signal peptide annotated with SignalP 5.0b103; (v) presence of neuropeptide-like signatures defined as follows: stretches of 3 to

10 residues flanked by one pair of lysines or arginines at the N-terminus and a pair composed of glycine and arginine or lysine at

the C-terminus, as previously defined39; and (vi) possible homology to previously identified neuropeptides using local alignment

with high-sensitivity diamond blastp searches against a database of previously described invertebrate neuropeptides.39,127 The com-

plete list and sequences of the small peptides identified in each species (400 from 53 genes in H2, and 333 from 52 genes in H13), with

all the above-mentioned metadata, is available in the Table S5.

Peptide-receptor complex modeling and docking analysis

With the aim of understanding the possible interactions between small peptides and their putative receptors (GPCRs and ASCs), we

used a structural modeling approach to ascertain candidate docking pairs. To this end, we used Trichoplax sp. H2 as a model

species. Given the extremely computational cost of these modeling analyses (it has 923 GPCRs, 11 ASCs and 400 small peptides,

resulting in more than 300,000 possible combinations), we had to select a short list of candidate receptors and peptides for down-

stream analysis. The manual curation of the peptide list was based on the following criteria: (i) previously described placozoan neu-

ropeptides21,22,37; (ii) for peptides detected in our proteomics experiment, their relative abundance; (iii) the presence amide or pyro-

Glu of post-translational modifications in proteomics; (iv) high cell type-specificity of the protein gene of origin of the peptide (i.e. the
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propeptide); and (v) the conservation status of the peptide across species (prioritizing conserved peptides). In certain cases, we

included peptides detected in H. hongkongensis H13 that could be aligned to H2 propeptide genes, with the assumption that

they would be conserved (Table S5). In the case of GPCRs, we selected genes with (i) complete 7tm_1 or 7tm_2 Pfam domains

(>90% length of the relevant HMM model); and (ii) high cell type-specificity, in order to prioritize GPCRs that would resolve cell

type interactions (FC R 5 in at least one peptidergic cell type, or 2 for non-peptidergic cell types). In the case of ASCs, we selected

all geneswith >90%complete HMMmodels (ASCPfamdomain). In total, we selected 60 small peptides and 207 candidate receptors

(196 GPCRs and 11 ASCs), resulting in 12,420 possible combinations for further analysis.

Complexes between peptides and potential receptors (GPCRs and Amiloride Sensitive Channels) were modeled using a locally

installed version of ColabFold - v1.5.2 (https://github.com/YoshitakaMo/localcolabfold), derived from the original ColabFold41 using

the state of the art complex modeling tool Alphafold-multimer.136 The tool was used by following the joint GPCR-peptide modeling

approach described by Lee et al.43 Each complex was generated by executing the "colabfold_batch" executable with the following

ColabFold parameters: "templates," "amber," "num-recycle 20," "num-models 5," "model-type alphafold2_multimer_v3," "random-

seed 16," and "use-gpu-relax". The model with the highest plDDT42 score was selected for each combination and then binding reli-

ability was assessed using two different metrics: (i) the pDockQ function137 was used to distinguish acceptable from incorrect

models; (ii) we used FoldX BuildModel138 to assess the quality of each binding interaction by mutating peptide residues to alanine

in silico and evaluating the change in DG between the mutated and wild-type versions of the peptide. The rationale behind this anal-

ysis was that, in a realistic complex, mutating peptide residues to alanine should destabilize the binding and decreaseDG values. The

DDG was measured using FoldX AnalyzeComplex (https://foldxsuite.crg.eu/). We selected receptor-peptide pairs for which models

exhibited pDockQ scores higher than 0.23137 and FoldX DDG values exceeding 0 kcal/mol (i.e. implying that the predicted docking is

energetically favorable). The modeled complexes were visualized using ChimeraX 1.6.1.139

ATAC-seq and ChIP-seq data analysis
ATAC-seq and ChIP-seq data processing

The ATAC-seq libraries from each species were mapped to their respective genomes with bwa 0.7.17, using the mem algorithm.89

The resulting BAM files were filtered using the alignmentSieve utility from the deeptools 3.5.1 package,91 in order to filter out weak

alignments (with minimummapping quality or MAPQ = 30) and shifting the left and right ends of reads according to usual ATAC spec-

ifications (+4/�5 bp in the positive and negative strands, activated with the—ATACshift flag in deeptools). Duplicated reads were

removed using biobambam2 2.0.87,140 and the resulting alignments were coordinate-sorted with the same tool. Then, we concat-

enated all the ATAC-seq libraries for each species.

The ChIP-seq libraries corresponding to H3K4me2 and H3K4me3 were mapped to their corresponding species with bwa mem,

using the same procedure (except for the adjustment of read end coordinates specific to ATAC libraries).

Then we used MACS2 2.2.7.188 to call ATAC peaks using the concatenated libraries for each species. Specifically, we used the

callpeak utility to identify peaks from the filtered BAM files, with the following options: (i) an effective genome size equal to the un-

gapped genome length of each species (i.e. removing uncalled N bases), (ii) keeping duplicates from different libraries (–keep-

dup all flag), (iii) retaining peaks with a false discovery rate % 0.01, (iv) enabling multiple summit detection (–call-summits flag),

and (v) disabling themodeling of peak extension for ChIP-seq libraries (–nomodel flag). The same procedure was also used to identify

peaks of ChIP-seq H3K4me2 and H3K4me3 signal.

We evaluated the quality of our ATAC-seq and peak calling procedures by measuring the mapping rates of each species-specific

library with the flagstat utility in the samtools 1.11 package,141 and the insert size distribution and fraction of reads in peaks using the

plotEnrichment and bamPEFragmentSize utilities in deeptools. We also measured the strength of ATAC-seq, H3K4me2 and

H3K4me3 signal around transcription start site regions (+/� 5 kbp, in 50 bp bins), using the computeMatrix and plotProfile utilities

in deeptools.

Identification of regulatory elements and assignment to genes

For each species, we built collections of putative regulatory elements (REs) by combining the set of ATAC peaks (selecting MACS2

peaks with q-value < 1310�6 and homogenizing their length to 250 bp around the peak summit), and the promoter regions defined

from the coordinates of each gene, defined as 200 bp upstream and 50 bp downstream of the transcription start site (TSS). This re-

sulted in 19,286–25,164 REs per species. Then, we assigned each regulatory region to one or more genes based on their distance to

TSS regions. Specifically, a given peak would be assigned to a particular gene if it lied within 2 kbp from its TSS. Peaks overlapping

the promoter region of a particular gene were not assigned to any other gene. For this step, the TSS-defined promoter regions were

supplemented with H3K4me3 ChIP-seq peaks assigned to their proximal genes. For the purpose of gene-regulatory element assign-

ment, the peak sets were reduced to non-overlapping sets to avoid redundant regions. This resulted in 16,818-19,310 REs being

assigned to 12,012-13,317 genes in each species (of which 9,908-11,119 were expressed). The above-mentioned genome coordi-

nate operations were performed using the GenomicRanges 1.46 and IRanges 2.28 packages in R.142

Finally, we sorted the sets of REs according to the expression patterns of their associated genes in order to produce RE collections

deemed to be active in specific cell types or genemodules. For the RE-cell type assignment step, we selected all regulatory elements

associated with differentially overexpressed genes in each cell type, defined as having FC R 2.0 in at least 25% of the metacells in

that cell type. This procedure was performed three times: at the level of individual metacells, cell types, and broad cell types. For the

RE-gene module assignments, we simply collected REs associated with genes belonging to each gene module.
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Motif discovery and motif enrichment analysis

We used HOMER 4.11143 to identify novel motifs enriched in the regulatory of genes belonging to each multi-species gene module

(calculated with WGCNA, see above). Specifically, we used the de novo motif finding tool findMotifsGenome.pl, with the following

options: (i) the foreground consisted of the REs assigned to each cell type; (ii) the background consisted of REs that were not as-

signed to any of the metacells in that cell type; (iii) a constant peak size of 250 bp (equal to the RE size defined in the peak-gene

assignment step, see above); (iv) attempting to identify motifs of lengths 8, 10 and 12 bp; (v) tolerating up to 2 mismatches in the

global optimization step; (vi) and also trying to identify motifs from a known library with the -mknown flag. These sets of foreground

and background sequences were built for each multi-species module, concatenating the regulatory regions of all four placozoans.

The library of knownmotifs was compiled by concatenating the following publicly available resources: HOMER internal database,143

HOCOMOCO 10,144 The Human Transcription Factors database 1.01,145 and CisBP 2.0.146

The sets of de novo and knownmotifs identified by HOMER in each individual module were then concatenated into a single, multi-

species motif library. This highly redundant motif collection was filtered and clustered as follows: (i) we removed motifs with HOMER

enrichment p-values < 0.01; (ii) we only kept motifs with high contiguous information content (IC), defined as having IC R 0.5 for at

least four consecutive bases or IC R 0.5 for two or more blocks of at least three bases; (iii) we only kept motifs that were identified

by HOMER in at least five foreground sites; (iv) for each of the remaining motifs, we measured their pairwise sequence similarity by

calculating the weighted Pearson correlation coefficient of the IC matrices of each motif, using themerge_similar function in the uni-

versalmotif 1.12.4147 R library with a similarity threshold = 0.80 for the hierarchical clustering and a minimum overlap of 6 bp between

twomotifs in the motif alignment step; and (v) a general motif archetype was defined from each cluster of similar motifs, based on the

average of the position probability matrices of its aligned constituent motifs. This resulted in a single, multi-species collection of 2,009

motif archetypes. Each motif archetype was annotated with the names of its constituent motifs from known databases, which were

also used to infer the putative structural class of its associated transcription factors.

Then, we aligned each motif archetype against the genomes of the four placozoan species using the findMotifHits function in the

monaLisa 1.0 package.148 We retained motif alignments in regulatory elements that had an alignment score higher than the 98th

percentile of its own background genome-wide distribution (obtained from scoring each motif against a random subset of 250 bp

drawn from the whole genome, sub-sampled at 10%).

Finally, we calculated motif enrichment in the REs associated with specific gene modules. Specifically, we calculated the enrich-

ment fold change from the frequency of occurrences of each motif in the set of foreground peaks for each gene module relative to its

background, and assessed the significance of each positive enrichment using a hypergeometric test, correcting the resulting

p-values with an empirical false discovery rate.

Themotif enrichment profiles were visualized as heatmaps with theComplexHeatmap 2.10.0126R library. Motif order in these heat-

maps was determined based on the highest enrichment value per genemodule. Motifs were selected based onminimum enrichment

per module (fold change R 1.5, p-value < 0.1), with up to 20 motifs selected in each case.

All the necessary motif format conversions were performed using the convert_type function in universalmotif.147 Genomic

sequence and coordinate manipulations in R were performed with the Biostrings 3.16149 and GenomicRanges libraries.142

Whole-genome alignments and regulatory sequence conservation analysis
We aligned the genome sequences of the four placozoan species using Cactus v2.1.1150 with default parameters, and converted the

resulting multi-species alignment to four sets of alignments in MAF format with the hal2maf utility,151 each of them using each of the

four placozoan genomes as the focal reference. Then, we processed these alignments to identify conserved regions using the rphast

implementation of the Phast suite.152 Specifically, we used the phyloFit utility to initialize a null model of neutral change based on the

four-fold degenerate codon positions of each genome’s coding regions, using a general reversible nucleotide transition matrix (REV)

and a pre-defined species tree. Then, we used phastCons to optimize this model based on the expectation-maximization procedure,

re-estimating the transition probabilities and tree parameters at each step. Thismodel was generated based on the largest scaffold in

the dataset (scaffold 1 from T. adhaerens, length = 13.2Mb), and then applied to all the smaller scaffolds in order to calculate (i) base-

wise conservation/acceleration p-values based on the neutral model described above using the likelihood ratio test implemented in

phyloP33; (ii) and, again with phyloP, conservation/acceleration p-values calculated for each regulatory element identified in each

species (including TSS-based promoter regions; see ‘‘ATAC-seq and ChIP-seq data analysis’’ section).

Finally, we used the whole-genome alignment information to characterize the conservation status of the non-coding regulatory re-

gions across andwithin species. Specifically, the regulatory regions from a given species were considered to be conserved in another

one if (i) their coordinates could be lifted across genomes using the halLiftover tool151 (peaks closer than 10bpwere considered jointly

for the purpose of coordinate lifting); (ii) they fell within a well-aligned region of >20 bp in the reference and query genomes. Pairs of

regions regions fulfilling these criteria were recorded as edges in an homology graph, and grouped into clusters of homologous

regulatory elements using the components utility in igraph. The presence/absence status of each cluster of homologous regulatory

elements in the four extant species was then used to reconstruct their gain/loss pattern over the four-species tree using the Dollo

parsimony procedure as implemented in Possvm. According to this method, characters can be gained only once, and they are

lost as many times as needed to explain their extant phylogenetic distribution. We have applied this procedure to the following data-

sets: (i) presence/absence of groups of orthologous genes in each genome; (ii) presence/absence of homologous regulatory ele-

ments across genomes; (iii) activity of orthologous genes in conserved cell types; (iv) activity of homologous regulatory regions
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across cell types; (v) presence of transcription factor bindingmotifs in genes expressed across cell types. The number of gains/losses

over species were visualized using the ape 5.6.2 R library.131

Within each species, the each regulatory region was further classified as accelerated, neutral or slow-evolving based on their

regional phyloP scores33 and p-values (slow-evolving: score > 0 and p < 0.001; acceleration: score < 0 and p < 0.001; neutral

otherwise).

Additional resources

The dataset can be interactively explored (and data downloaded) in https://sebelab.crg.eu/placozoa_cell_atlas/. We show there

detailed 2D projections and gene expression maps for all four placozoan species. Additional interactive functionalities include in-

specting the expression of individual genes or groups of genes, and retrieving specifically expressed genes in metacells or cell types,

using user-defined thresholds. Finally, pairwise species cell types similarities can be explored using different distance metrics and

varying sets of orthologs, and it is also possible to inspect genes supporting each cell type similarity.
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Figure S1. Additional phylogenomic analyses, related to Figure 1

(A) Occupancy matrices for the Metazoa-only (top) and Metazoa + Choanoflagellata datasets (bottom), indicating whether an individual marker (rows) is present

or absent in a given species (columns). For each marker, we indicate whether it has been included in the compositionally homogeneous and high-information

content subsets. The Venn diagram (bottom) indicates the number of overlapping and exclusive animal genes in both datasets.

(B) Summary table of all phylogenetic analyses performed in this study, specifying the topology supported in each analysis (BC, Placozoa sister to Cnidaria and

Bilateria; PC, Placozoa sister to Cnidaria) and their statistical support (for ML analyses, fraction of ultrafast bootstrap supports; for Bayesian analyses, Bayesian

posterior probabilities or BPP; for super-tree analyses, ASTRAL posterior probabilities).

(C) Consensus phylogenetic tree obtained with Bayesian inference under the CAT + GTR + G4 mixture model on the Metazoa-only concatenated matrix of high-

information content markers (n = 209) recoded into 4 categories (SR4). At each node, we indicate Bayesian posterior probabilities and ultrafast bootstrap

supports from a ML analysis (C60 + GTR + G4 mixture model) on the same dataset, with an asterisk denoting full support (100%).

(D) Boxplots representing Z score values of across-taxa compositional homogeneity tests for individual species, grouped into different clades and under different

recoding strategies. We evaluated whether placozoans had higher Z score values than other clades with one-sidedWilcoxon tests (p values for each clade above

their corresponding boxplots, in orange).

(E) Bayesian inference tree obtained using CAT + GTR + G4 mixture model on the Metazoa + Choanoflagellata concatenated matrix of high-information content

markers (n = 121), recoded into 4 categories (SR4). Bayesian posterior probabilities or ultrafast bootstrap supports are indicated at each node, with an asterisk

denoting full support (1.0% or 100%, respectively).

(F) Same as (C) for the dataset including choanoflagellates as outgroup. Notice in all cases that choanoflagellate Z score values are higher than those of other

clades, indicating that choanoflagellate empirical aminoacid frequencies strongly deviated from the null posterior predictive distribution.

(G) PhyloBayes posterior predictive tests for model adequacy. Left, barplots representingmean Z score values of per-site aminoacid diversity tests (PhyloBayes-

MPI readpb_mpi—div option) for each of the separate chain run. Right, barplots representing mean Z score values of across-taxa compositional homogeneity

tests (PhyloBayes-MPI readpb_mpi—comp option) for each of the separate chain run. Numbers indicate mean ± standard deviation of all chains for each dataset.

In all cases, the defined burn-ins are the same as for the consensus summary trees (the last 2,000 generations of each chain are employed).

(H) Effect of fast-site removal on the support of two phylogenetic hypotheses for Placozoan evolution (sister to Cnidaria and sister to Cnidaria + Bilateria), using

the Metazoa and Metazoa + Choanoflagellata datasets. In each case, we removed fast-evolving sites from the high-information markers and reconstructed ML

phylogenies with the C20 mixture model. Fast-evolving sites were determined based on their evolutionary rates in the original dataset (per-site rates from IQ-

TREE). In all cases, we also display the support for a control, non-controversial node (monophyly of Placozoa, Bilateria and Cnidaria).

(I) Ancestral metazoan linkage group signatures along the 9 longest T. adhaerens assembly scaffolds (the placozoan with a most-contiguous genome assembly).

Using three non-placozoan species with chormosome-scale assemblies as reference (the cnidarian N. vectensis, the bilaterian Asteria rubens and the sponge

Ephydatia muelleri), we identified ancestral linkage groups (ALGs) as unique combinations of co-ocurring gene homologs using the same approach as Simakov

et al.27 Then, we scored the presence of homologs from each ALG along running windows (200 homologous genes, with a 10% steps) in the T. adhaerens

scaffolds. We find that T. adhaerens scaffold 5 contains a partially unmixed fusion of ALGs Eb, F, K, and Q, whereas Eb and F ALGs are fully mixed in cnidarians

(N. vectensis, Rhopilema esculentum, H. vulgaris, and Acropora millepora), according to c-square tests of homolog counts for these two ALGs along n non-

overlapping windows per chromosome.
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Figure S2. scRNA-seq summary statistics, related to Figure 1
(A) Distribution of total RNA molecules per cell in each placozoan sampled.

(B) Clicktag (CT) sample demultiplexing statistics for an example experiment mixing T. adhaerens H1 and C. collaboinventa H23. Top left: distribution of relative

sizes (in UMI/cell) of each cell when their transcriptome is mapped to each of the multiplexed species (T. adhaerens H1 and C. collaboinventa H23). Top right:

UMIs/cell of each cell, classified according to whether its UMI counts are higher in one species or the other, intermediate (doublets), or non-cells (empty droplets).

Middle left: fraction of normalized CT counts associated with the most common pair of CT barcodes for each cell, classifying cells in two categories: (1)

determined cells, where the first and secondmost abundant CT barcodes are concordant (from the same sample in the experimental design) but the first and third

ones are discordant (from different samples), which represent bona fide cells from a single species; or (2) whether the first and second most abundant CTs are

discordant (from different samples), which represent possible doublets. Middle right: distribution of CT counts/cell, classified according to whether its CT counts

are concordant for one species or the other (determined cells in the left histogram), intra-species doublets (the discordant first and second barcodes come from

different samples of the same species), inter-species doublets (the discordant first and second barcodes come from samples of different species), or unclassified

(low CT counts). Bottom left: single-cell uniform manifold approximation and projection (UMAP) projection based on normalized CT counts. We removed cells

belonging to Louvain clusters with a high fraction of cells classified as doublets in either the cross-species UMI- or CT-based doublet detection procedures

(clusters highlighted in blue). Bottom right, heatmap showing the normalized CT counts per single cell (each sample was labeled with two different barcodes, e.g.,

BC53 + BC54).

(C) Summary of the doublet calls for the five CT datasets. Notice the consistency between cross-species UMI- and CT-based doublet calls (which in addition

allow us to identify intra-species doublets).

(D) Metacell confusion matrices that represent metacell pairwise similarities derived from the K-nn graph connectivity between all cells in each pair of metacells.

Colors indicate the broad cell type classification of metacells.

(E) Cell type sample composition.

(F) Metacell summary statistics. Barplots indicate the number of cells per metacell. Boxplots indicate the number of transcripts/UMIs per single cell grouped into

metacells. Colors indicate the broad cell type classification of metacells.
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Figure S3. Cell type comparisons across Placozoa, related to Figures 1 and 7

(A) Schematic representation of the main steps in the ICC algorithm applied to metacells.

(B) Distribution of ICC-derived expression conservation (EC) scores for each pair of species and for paralog versus ortholog gene pairs.

(C) Heatmaps indicating the EC-weighted Pearson correlation between cell types across placozoans.

(D) Same as (C) but showing SAMap scores.

(E) Force-directed network of cell type similarity across species, using the weighted Fruchterman-Reingold algorithm. Nodes represent cell types (larger nodes

correspond to placozoans, smaller ones correspond to other species), and edges represent pairwise similarities asweighted Pearson correlation coefficients. For

each cell type, only the top edges are shown (standardized quantile scores above 0.99). Placozoan nodes are color-coded by cell type. Othermetazoan nodes are

custom color-coded based on similarity to placozoan cell types.

(F) Heatmaps representing the transcriptomic similarity between pairs of cell types of the four placozoan species (rows) compared to seven species from other

lineages (columns; including three cnidarians, two bilaterians, one sponge, and one ctenophore). Heatmap color reflects the Pearson correlation score between

the expression of genes in each cell type (weighting each gene pair with their expression conservation score in that pair of species, using the ICC procedure).
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Figure S4. Characterization of intermediate metacells and gene modules, related to Figures 2 and 3
(A) Barplots representing the number of cells classified in each intermediate category (gray) compared with the number of cells doublets in each category (green)

that would be expected given the relative frequency of the terminal cell types in each case. We used two-tailed exact binomial tests to determine whether the

observed number of intermediate cells significantly differed from the expectation (p values next to each set of bars).

(B) Top, barplots representing the number of genes shared in intermediate metacells between the placozoan species where each cell type is found (gray)

compared with the number of genes shared by the respective terminal cell types (green). We used one-tailed exact binomial tests to determine whether the

number of genes shared across species was higher for terminal than for intermediate cell types (p values shown for each cell type). Notice that in most cases the

difference is small and non-significant, indicating that the genes expressed in intermediate cells are conserved across species and not a stochastic sampling of

genes expressed in the respective terminal cell types. Bottom, Venn diagrams detailing the number of shared genes across species for lipophil-1/gland inter-

mediate cells (gray) compared with the shared genes by lipophil-1 and gland cell types (green).

(C) Intermediate cells exhibit intermediate transcriptional signatures between their terminal cell types. For each pair of cell type in each species, we show the sum

of the fraction of UMIs (per 1,000 UMIs) of the topmarkers (FCR 2). Panels are arranged to indicate the detection of specific intermediate cell types (rows) in each

of the species (columns).

(D) Flow cytometry scatterplots of Trichoplax sp. H2 cells labeled by HCR-ISH against markers specific for lipophil (fatty acid-binding protein 4, Alexa Fluor-647),

gland (chymotrypsin, Alexa Fluor-546) and fiber (angiotensin I-converting enzyme, Alexa Fluor-488) cells. Selected areas in each panel denote the percentage of

cells with single or double label, which would correspond to intermediate cells.

(E) Heatmaps representing the eigengenes across metacells of gene modules calculated using WGCNA in each placozoan. x axis colors indicate the broad cell

type classification of metacells. Module colors (y axis) are arbitrary.

(F) Left, gene-gene expression correlation matrix, grouping genes into the same modules as in (E). Right, normalized expression across metacells of genes

grouped into modules. Transcription factors are highlighted with a dot to the right of the heatmap. Notice the presence of ‘‘lateral’’ gene modules expressed in

individual metacells across cell types. These include, for example, the cell cycle and ciliary apparatus modules.

(G) Top 10 gene ontology terms enriched in each multi-species gene module. x axis colors indicate the cell type where each module is most active (manual

curation).

(H) Fold-change expression of selected genes with immune-related functions across cell types of all four placozoans.
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Figure S5. Placozoa chromatin landscapes, related to Figure 3

(A) Summary statistics of ATAC experiments. From left to right: number of reads, fraction of reads mapped in the genome, fraction of duplicated reads (based on

mapping coordinates of read pairs), fraction of nucleosome-free reads (that are used for cis-regulatory element/peak calling), and fraction of reads in peaks.

(B) ATAC-seq fragment size distribution. The line indicates the cutoff used to define nucleosome-free reads.

(C) Transcription start site (TSS) metaplots for ATAC-seq nucleosome-free reads (NFRs) and H3K4me2/H3K4me3 ChIP-seq signal.

(D) Frequency of regulatory elements (REs) around the TSS.

(E) Distribution of number of REs per gene (left), and the average number of REs in various gene categories (right; values indicated a mean ± standard deviation).

(F) Association of ATAC-seq peaks and H3K4me3 ChIP-seq peaks with different genome-wide features.
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Figure S6. Transcription factor binding motif analysis, related to Figure 3

Motif archetype enrichment in the REs associated to genes belonging to each of the 34 multi-species gene modules. Dot color indicates the intensity of the

enrichment fold change between the counts of eachmotif in that genemodule’s genes (including only motifs with an alignment score higher than the 98th quantile

of their genome-wide alignment score distribution), and using genes associated to other modules as background; dot size indicates the p value of a hyper-

geometric enrichment test, adjusted using a false discovery rate. Up to 20 marker archetypes with FCR 1.5 are shown per module. The structural class of each

motif archetype, as inferred from known motifs similar to it, is shown next to each motif (colored squares). Selected motif archetypes (scaled to information

content) are shown next to the heatmap. The motifs labeled with gene names (Neurod1/2/4/6, Olig1/2/3, NF-kB, FoxC/L1/S1, Pou3, Hhex, E2F1–6, and E2F7/8)

correspond to genes shown in Figure 3B.
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Figure S7. Peptidergic cell transcriptional profiles, related to Figures 5 and 6
(A) Expression fold change (FC) of neuropeptide-processing enzymes across species and cell types. Cell types are grouped in four categories, from right to left:

peptidergic (light blue), peptidergic progenitors (dark blue), epithelial, and others. Species are indicated with different shapes.

(B) Same as (A) for pre-synaptic scaffold genes.

(C) Same as (A), for post-synaptic scaffold genes.

(D) Identification ofH. hongkongensisH13 small peptides. Scatterplot shows the maximum expression of the propeptide gene in any peptidergic cell type (x axis)

compared to the abundance of the most common peptide per propeptide as measured by mass spectrometry (y axis). Dot sizes indicate the number of spectra

identified for the most common peptide per propeptide. The color code indicates homology of the propeptide and dot border lines indicate the identification of

peptide post-translational modifications.

(E) Scatterplots showing the two docking scoring metrics (see STAR Methods) for positive docking peptide receptor pairs shown in Figure 5E. Barplots on the

right show the expression pattern for the corresponding receptor (only for cell types with FC R 1.5).

(F) Comparison of global gene expression levels for the three Trichoplax sp. H2 Notch signaling drug treatments (plus DMSO control sample) compared with the

reference Trichoplax sp. H2. Scatterplots show the normalized UMI counts per gene in each sample. The Spearman correlation for each comparison is indicated.

(G) Expression similarity between placozoan peptidergic progenitor cells (H2 pooled dataset) and cell types assigned to various developmental trajectories in

other species (mouse, N. vectensis and H. vulgaris), measured as weighted Pearson correlation coefficients of cell type-level FC values. Gene markers were

selected from ICC-defined ortholog pairs belonging to predicted transcriptional regulator gene families (transcription factors, chromatin regulators, and RNA-

binding proteins), and we restricted the analysis to genes with variable expression in both datasets (FC R 1.25 in at least one cell type in both the placozoan

reference and the query dataset, totaling 73–207 genes in mouse, 172–367 inN. vectensis, and 318 inH. vulgaris). For each developmental trajectory (the various

neuroectodermal lineages shown in Figure 6H, plus endoderm, mesoderm, non-neural ectoderm, and endo/mesoderm), we report the the correlation with the

most similar cell type in each combination of developmental stage and lineage.
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