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Abstract: The 2023 International Virus Bioinformatics Meeting was held in Valencia, Spain, from
24–26 May 2023, attracting approximately 180 participants worldwide. The primary objective of the
conference was to establish a dynamic scientific environment conducive to discussion, collaboration,
and the generation of novel research ideas. As the first in-person event following the SARS-CoV-2
pandemic, the meeting facilitated highly interactive exchanges among attendees. It served as a
pivotal gathering for gaining insights into the current status of virus bioinformatics research and
engaging with leading researchers and emerging scientists. The event comprised eight invited
talks, 19 contributed talks, and 74 poster presentations across eleven sessions spanning three days.
Topics covered included machine learning, bacteriophages, virus discovery, virus classification,
virus visualization, viral infection, viromics, molecular epidemiology, phylodynamic analysis, RNA
viruses, viral sequence analysis, viral surveillance, and metagenomics. This report provides rewritten
abstracts of the presentations, a summary of the key research findings, and highlights shared during
the meeting.

Keywords: bioinformatics; tools; machine learning; bacteriophages; virus discovery; virus classification;
virus visualization; viral infection; viromics; molecular epidemiology; phylodynamic analysis; RNA
viruses; viral sequence analysis; viral surveillance; metagenomics

1. Introduction

The International Virus Bioinformatics Meeting (ViBioM) was the sixth edition of
the virus bioinformatics meeting organized by the European Virus Bioinformatics Cen-
ter (EVBC). The EVBC was founded in 2017 to bring together experts in virology and
virus bioinformatics in Europe [1,2]. The EVBC is constantly growing, having currently
276 members (∼12% increase since the last meeting in 2022 [3]) from 158 research institutes
distributed over 41 countries worldwide. ViBioM 2023 took place in Valencia, Spain from
24–26 May 2023. From all registered participants, ∼23% are EVBC members; thus, ViBioM
is attracting scientists far beyond the EVBC community. In contrary to 2022, the partici-
pants had a highly interactive scientific environment by face-to-face interactions. In total,
the meeting featured 8 invited and 19 selected talks in eleven sessions on three days, as well
as 74 posters, which were presented during three poster sessions.

2. Scientific Program

A number of high-quality presentations were given by leading experts and junior
scientists on several different topics in virus bioinformatics. From 61 submissions (a ∼17%
increase compared to 2022 [3]), we selected 21 talks (acceptance rate: ∼34%; two of them
have been merged, and one has been invited for a keynote). Due to the high amount of sub-
missions on SARS-CoV-2-related research, we decided to add an additional conference day.
On the first day, we were focusing on five topics in five sessions: Phages (see Section 2.1),
Virus discovery and classification (see Section 2.2), Virus visualization (see Section 2.3), Viral
infection (see Section 2.4), and Viromics (see Section 2.5). On day two, we aimed for three
sessions, namely: Molecular epidemiology and phylodynamic analyses (see Section 2.6),
RNA viruses: structure and evolution (see Section 2.7), and Viral sequence analysis (see
Section 2.8). Finally on the third day, we explored the fields of: Machine learning in viral
surveillance (see Section 2.9), Viral pathogenesis (see Section 2.10), and Metagenomics for
Identifying and Tracking Potential Zoonotic Viruses (see Section 2.11). Lara Fuhrmann
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(VILOCA: Sequencing quality-aware haplotype reconstruction and mutation calling for
short- and long-read data) was selected for Best ECR Talk Award. During three poster
sessions, 74 posters were presented. Two presenters were selected for the Best Poster
Award: Muriel Ritsch (Non-retroviral RNA viruses integrated into the human genome)
and Jordi Sevilla (Tracking intra host evolution of SARS-CoV-2).

2.1. Phages

Phages are relevant to all human beings due to their abundance, predation, disease
control potential, influence on the gut microbiome, biotechnological applications, and con-
tributions to genetic diversity and evolution. Their study and utilization hold great promise
for addressing challenges in healthcare, agriculture, and environmental sustainability. Be-
side an awe-inspiring and fantastic presentation by Robert Edwards, we recieved also a
brilliant presentation by Yasas Wijesekara, who is also the travel award winner for this year.
This session was chaired by EVBC member Anca Segall (San Diego State University, San
Diego, CA, USA).

Jaeger: A Deep Learning Approach for Predicting Bacteriophage Sequences in
Metagenomic Data (by Rajitha Yasas Wijesekara)

Microbial communities are complex admixtures containing vastly different organ-
isms representing the three domains of life and their viruses. Bacteriophages, the viruses
that infect bacteria, are ubiquitous in almost every environment and play a crucial role
in shaping the ecological and evolutionary processes of ecosystems by controlling bac-
terial abundances [4–7]. They also influence bacterial phenotype in the virocell state by
altering bacterial metabolism and drive global nutrient flow [8,9]. Detecting phages in
metagenomic datasets requires specialized bioinformatic tools. Wijesekara et al. presented
Jaeger https://github.com/Yasas1994/Jaeger, a novel artificial intelligence (AI) tool for
predicting bacteriophage sequences in metagenomic data that can be applied to individ-
ual reads (70% accuracy), assembled contigs (90% accuracy), and bins (93% accuracy).
Additionally, Jaeger can detect prophages (74% accuracy), and identify other sequence
categories such as eukaryotic, bacterial, and archaeal genomes. Jaeger utilizes a deep
learning model with dilated convolution and residual connections that learn feature rep-
resentations from nucleotide sequences, which are subsequently used for classification.
The authors demonstrate that their novel neural architecture performs better than other
available methods. Specifically, they compared the performance of Jaeger to PPRMeta,
DeepVirFinder, Seeker, and VirSorter2 on the phages in the IMGVR (v4) database and
real metagenomic datasets from three different biomes, showing 10–35% decrease in false
positive rate without compromising on sensitivity [10–15]. Together, Jaeger adds a new
AI-powered tool to the metagenomics toolbox that will help to understand the composition
of complex communities from metagenomic sequencing.

2.2. Virus Discovery and Classification

Virus discovery and classification are fundamental aspects of virology. Through
ongoing research and technological advancements, new viruses are continuously being
identified. Classification involves categorizing viruses based on their genetic material,
structure, and mode of replication. This knowledge aids in understanding viral evolution,
transmission, and the development of diagnostic tools and antiviral strategies. This session
was chaired by Justine Charon (University of Syndey, Australia).

2.2.1. Illuminating the RNA Virome through Ultra-Massive Sequence Analysis (by
Artem Babaian)

Transcriptomic/metatranscriptomic sequencing is revolutionizing the exploration of
Earth’s virome. Yet analysis methods are inefficient and don’t scale to the available data.
The global biology community has freely shared >30 petabases (3 ·1016 nt) of sequence data
from 10+ million biological samples [16,17]. Painstakingly collected over 15 years, public
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data encompass all continents, oceans, thousands of animals, plant, and fungal species,
and estimated [16,18] to be valued at $ 3.6–14.9 billion dollars in direct sequencing cost.

To uncover the total diversity of RNA viruses, Babaian et al. developed a cloud-based
sequence alignment platform called Serratus www.serratus.io, with which they analyzed
7.4 million public sequencing datasets for the RNA viral hallmark gene, RNA-dependent
RNA polymerase [19]. They identified the equivalent of >300,000 novel RNA viruses which
is over an order of magnitude increase of known virus diversity; including at least nine
new species of Coronaviruses (CoV).

Planetary-scale informatics provide unprecedented depth of insights with which to
describe virus evolution and ecology. Seven of the novel CoV identified are encoded on
segmented genomes (of monophyletic origin). The majority of novel nidoviruses were
identified in samples from aquatic vertebrates (axolotl, leopard frog, seahorse, fugu fish,
etc.) supporting that there is a vast uncharacterized reservoir of marine nidoviruses.
With a high-sensitivity search, Babaian et al. detect genome-fragments from >40 distinct
uncharacterized nidoviruses. For both novel and known nidoviruses, the authors expand
virus host-ranges, geographic distributions, ecological niches and identify potential hidden
reservoirs in an unbiased manner which at times, challenge the preconceptions about
nidovirales [19].

Explosive growth in data volumes and the breadth of Earth’s biodiversity captured
by global biological sequencing, see Figure 1, will change bioinformatics in the near fu-
ture. The next decade of virology will be illuminated by computational advances and
requires a shift in our conceptualization of virus discovery and it’s applications to pan-
demic surveillance. What can be learned today (with scalable methods) from Nidovirales
lays the foundation for how we will explore the 100+ million virus species we project to
discover by 2030.

Figure 1. Unlocking Earth’s Virome via public data. Petabases of total (public and dbGAP) sequencing
data in the Sequence Read Archive (SRA), collected over 15 years is growing exponentially (inlay)
and spans the globe. Data geo-coded from SRA [16] and associated BioSamples [17] meta-data.

2.2.2. RNA Virus Discovery Using HMM of Large-Scale RNA-Dependent RNA Polymerase
Sequence Data: NeoRdRp 2.0 (by Shoichi Sakaguchi)

RNA-dependent RNA polymerase (RdRp) is unique to RNA viruses and serves as a
critical marker in searching RNA viruses from RNA sequencing data. Since virus detec-
tion methods rely on sequence similarity, it is difficult to identify viruses whose similar
sequences are unavailable in the database. Therefore, Sakaguchi et al. developed an
analysis pipeline that leverages a hidden Markov model (HMM) to enhance the detec-
tion of RdRp sequences with low similarity. The authors utilized three reported RdRp
amino acid sequence datasets (hereafter called the ‘seed datasets’): the 4620 sequences by
Wolf et al. [20], the 14,680 sequences by Edgar et al. [19], and the 209,588 sequences by
Zayed et al. [21]. Additionally, Sakaguchi et al. used 18,790 sequences from RNA viruses

www.serratus.io
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registered in the NCBI Virus database as a ’bulk virus dataset’ and 565,928 sequences
registered in UniProtKB as a ‘test dataset’. The analysis pipeline began with clustering
based on sequence similarity within the seed datasets, followed by a multiple sequence
alignment for each cluster (see Figure 2). The authors defined a domain as a region where
at least 75% of the entire sequence was aligned and created an HMM profile for each
domain. They then applied the HMM profiles to the hmmsearch and detected RdRp se-
quences from the bulk virus dataset. Finally, they constructed the HMM profile NeoRdRp
https://github.com/shoichisakaguchi/NeoRdRp from the RdRp domain dataset obtained
from seed datasets and the RdRp domain sequences derived from the hmmsearch of the
bulk virus dataset. The NeoRdRp yielded 13,038 HMM profiles, which encompassed
known RdRp motifs. Sakaguchi et al. applied these HMM profiles to perform a hmmsearch
of the test dataset and successfully detected 832 out of 836 RdRp sequences. The accuracy
and specificity were 99.5% and 79.9%, respectively. It is planned to continually refine the
system by updating and searching RNA sequencing data, aiming to utilize the system to
detect novel RNA viruses. Version 1.1 has been reported in a paper [22].

Figure 2. This is an overview of the pipeline utilized in NeoRdRp [22]. The input amino acid data
and the resulting HMM profiles are shown in yellow and orange, respectively. First-round HMM
profiles are created using curated RdRp seed datasets. These HMM profiles are then used to search
for RdRp domain sequences using HMM search. Finally, second-round HMM profiles are created by
the seed RdRp datasets with the obtained RdRp domain data.

2.2.3. Automated Classification of Giant Virus Genomes Using Protein Family Barcodes (by
Anh Ha)

Large DNA viruses of the phylum Nucleocytoviricota, or ’giant viruses’, are ubiquitous
in the environments and play important roles in shaping the dynamics of global ecosystems.
Documented members of the phylum are highly diverse and can be partitioned into six
orders and up to 32 potential families [23]. Giant viruses are known to infect a broad
range of eukaryotic hosts and appear to have undergone multiple gene exchanges with
their hosts [24]. As a result, their genomes often carry diverse genes involved in various
cellular processes, such as the TCA cycle, translation, light sensing, and cytoskeletal
dynamics [25–27]. Due to the large phylogenetic breadth of this viral group and the
highly complex, chimeric nature of their genomes, taxonomic classification of giant viruses,
particularly incomplete metagenome-assembled genomes (MAGs) could be challenging.
Here Ha et al. utilized a machine learning approach to predict the taxonomic classification
of novel giant virus MAGs based on profiles of protein family content, which they refer to
as protein family barcodes. They applied random forests to a training set of 1503 quality-
checked, phylogenetically diverse Nucleocytoviricota genomes using a pre-selected set

https://github.com/shoichisakaguchi/NeoRdRp
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of giant virus orthologous groups (GVOGs). The classification model was predictive of
giant viruses’ taxonomic group with a cross-validation accuracy of 99.5% to the Order
level and 97% to the Family level. The authors observed that no individual GVOGs or
genome features were critical to the algorithm’s performance and the model’s predictions,
suggesting that classification predictions were based on a broad genomic signature, which
lessened the necessity of a fixed set of marker genes for taxonomic assigning purposes.
Their classification model was validated with an independent test set of 814 giant virus
genomes with varied genomic completeness and predicted taxonomy with 97.5% and
95% accuracy to the Order and Family level, respectively. The results provide a fast and
accurate method for the classification of giant viruses that could easily be adapted to other
viral groups.

2.2.4. Using gb2seq to Work with Unannotated Viral Genomes Based on a GenBank
Reference (by Terry Jones)

The talk by Jones et al. presented gb2seq https://github.com/VirologyCharite/gb2seq,
a Python library and associated command-line scripts that derive information regarding
unannotated viral genomes (e.g., a consensus called from a BAM file following alignment
with bwa or bowtie), based on annotations in a GenBank reference. The library provides for:
extraction of aligned features as nucleotide or amino acid sequences; retrieving information
about what is at a site (features, nucleotide, amino acid, codon, frame, etc); translation of
offsets between the reference and the unannotated genome with offsets that are absolute or
relative to a feature; detailed alignment information for features; use of different aligners
(MAFFT and edlib, currently); JSON annotations of the features of an unannotated genome;
and convenience methods for checking genomes for sets of expected nucleotide or amino
acid values. The command-line scripts provide a simple interface to the library functions,
e.g., to extract a translated feature from a set of genomes and check for how many expected
substitutions are present.

2.3. Virus Visualization

The integration of genomic information and imaging techniques offers valuable in-
sights into viral biology. By combining approaches such as Fluorescence In Situ Hybridiza-
tion (FISH), Genome-Wide Association Studies (GWAS), and multi-omics integration,
researchers can gain a deeper understanding of viruses at a spatial and molecular level.
Bioinformatics tools assist in automated analysis of imaging data, aiding in the identifica-
tion and quantification of viral structures. This integration enhances our understanding of
viral biology, mechanisms of viral pathogenesis, and facilitates the development of targeted
interventions and therapeutics. Manja Marz (FSU, Jena, Germany) has invited Christian
Eggeling to give a presentation on his research area with the aim to open a pathway for
research combining virus omics data and morphological features.

Advanced Optical Microscopy of Virus-Cell Interactions: Challenges and Potentials (by
Christian Eggeling)

Understanding virus infectivity also requires revealing molecular interaction details
during the virus-host interaction. For example, an increased mobility and subsequent
aggregation of envelope proteins during maturation of HIV-1 virions drives their potential
to dock host-cell receptors and thus infectivity, as revealed by optical microscopy [28,29].
Unfortunately, the direct and non-invasive observation of the interactions in the living
cell membrane is often impeded by principle limitations of conventional far-field optical
microscopes, for example with respect to limited spatio-temporal resolution. However,
the advent of super-resolution microscopy techniques has created unique opportunities of
investigating the organization and mobility of viral and cellular molecules at the required
small spatial scales [30,31]. Taking HIV-1 and SARS-CoV-2 as examples, Eggeling has
presented how such advanced optical microscopy approaches help highlighting novel
aspects of virus-membrane interactions (Figure 3) and what challenges one still faces.
An important issue will be, how these microscopy-based information can be correlated

https://github.com/VirologyCharite/gb2seq
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with bioinformatic data to boost information content. Presenting the potential of microscopy
to bioinformatics at the ViBiom 2023 has done a first step.

Figure 3. Conventional confocal (left) and super-resolution STED (right) microscopy images (side
x-z view) of a SARS-CoV-2 virus like-particle (green, GFP-labelled) with a supported lipid bilayer
(fire scale, DOPC lipids decorated with ACE-2, membranes labelled with fluorescent lipid analog),
highlighting the improved spatial resolution to investigate molecular details in such interaction. Data
taken by Ziliang Zhao (Jena).

2.4. Viral Infection

Viral infections are a significant public health concern, causing a wide range of dis-
eases in humans and animals. Understanding viral infections is crucial for developing
effective prevention strategies, diagnostics, and therapeutics. Bioinformatics plays a vital
role in the analysis of viral infections by integrating large-scale genomic, transcriptomic,
and proteomic data to identify viral genomes, study their evolution, and predict their
pathogenic potential. The session has been chaired by Anamarija Butkovic (Institut Pasteur,
Paris, France).

2.4.1. SARS-CoV-2-Host Interactions at the Single-Cell Level: A Dynamical Complex
Systems Approach (by Santiago F. Elena)

Elena et al. presented an analysis of the response of three different cell types during the
progression of SARS-CoV-2 infection [32]. To do so, they have performed a meta-analysis
of three publicly available single-cell RNA sequencing (scRNA-seq) datasets obtained from
in vitro inoculation studies of human bronchial epithelial cells [33], and colon and ileum
organoids [34]. ScRNA-seq has become a powerful technique to study the dynamic changes
in the transcriptome of a population of cell subjected to an external stimulus. Indeed,
different cells in the population are found at different stages of infection, as shown by the
differences in viral reads that they contain. Therefore, a bulk analysis is clearly inappropri-
ate to identify dynamical gene responses associated to infection. Instead, the authors have
classified cells according to their infection status using virus accumulation as a proxy to
time, see Figure 4. This approach has revealed that about 90% of genes exhibited a transcrip-
tional response characterized by a triphasic pattern comprising an early down-regulatory
phase at the beginning of infection, followed by a transient massive up-regulation and, fi-
nally, a final down-regulation as cells’ viability declines, see Figure 4. Focusing in the 10% of
genes that significantly deviate from this canonical triphasic behavior, Elena et al. found an
enrichment in genes related to immune responses, translation and mitochondrial oxidative
activities. Interestingly, their analyses have shown that the transcriptional profiles of genes
encoding for the main intracellular sensors that recognize double-stranded RNAs and
trigger the innate immune response upon infection, MDA-5 and RIG-I, do not deviate from
the majoritarian response. This observation suggests that the transcriptional shutdown of
the IFN response induced by MDA-5 and RIG-I is probably not specific, and results from a
more general mechanism affecting most genes in the infected cell. Additionally, a correla-
tion network analysis revealed a distinct correlated response of mitochondrially-encoded
genes and genes involved in translation. Finally, the authors proposed a mechanistic model
to explain this dynamic profiles. The key player in the model is viral protein Nsp1, that has
been shown to block the export of specific mRNAs from the nucleus [35,36]. Expression of
nsp1 acts like an off-switch for Nsp1-sensitive transcripts (e.g., interferon genes) that results
in their accumulation in the nucleus while Nsp1-insensitive transcripts can transit normally
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to the cytoplasm. The middle phase corresponds to the inactivation of the Nsp1-induced
blockage, which releases the stalled transcripts to the cytoplasm that results in the increased
transcription levels observed during the middle phase. Finally, the late phase corresponds
to a shutdown of transcription that also results in a global decrease in transcripts levels.
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Figure 4. Dynamics of virus accumulation and cellular responses along infection. (a) Virus accumula-
tion as a function of doubling times. Blue lines represent the number of viral transcripts in infected
cells. Red lines the baseline stablished for non-infected cells. (b) Triphasic pattern of gene expression
observed for 90% of cellular genes. (c) Clustering of gene expression profiles for each one of the three
cell types included in the study.

2.4.2. Metabolic Labeling, Time Series, and Single Cells: A Multifaceted Approach to
Studying Infection (by Lygeri Sakellaridi)

Viral infection is a dynamic biological process, facilitated by complex interactions
between host and viral genes. On a cellular level, infection may result in different out-
comes, e.g., lytic or latent. Elucidating the molecular mechanisms that determine the
infection outcome is a challenging problem. In order to tackle this problem, Sakellaridi et al.
proposed an approach that combines single cell RNA sequencing with metabolic RNA
labeling. Metabolic labeling utilizes 4-thiol-uridine (4sU) which is introduced into cells
and subsequently incorporated into newly transcribed RNA. Before sequencing, RNA
is subjected to chemical treatment that results in the conversion of 4sU into cytosine or
cytosine analogs [37–39]. This allows distinguishing between RNA that was synthesized
before and after the start of labeling based on the presence of T-C mismatches in the newly
transcribed reads. Accurate quantification of new and pre-existing reads is hindered by the
low incorporation rate of 4sU in cells [37], as well as the presence of naturally occuring mis-
matches in reads. To address these challenges, the authors’ lab developed GRAND-SLAM
https://github.com/erhard-lab [40]: a statistical approach that uses a binomial distribution
to provide unbiased estimates of the percentage of labeled RNA per gene, as well as its
posterior distribution that represents uncertainty of quantification. This output can be incor-
porated in downstream analyses, such as estimation of RNA kinetics and changes in gene
expression. To that end, Sakellaridi et al. developed grandR [41], a computational package
that facilitates such analyses while taking advantage of the uncertainty estimates. Metabolic
labeling of single cells makes it possible to acquire two snapshots of expression per cell in a
population, corresponding to the transcriptomic state before (past state) and after (current

https://github.com/erhard-lab


Viruses 2023, 15, 2031 9 of 27

state) the end of labeling. Heterogeneity in the past state can be used to make potentially
causal inferences in the current state: e.g., anti-correlation of expression of a given gene in
the past state against the total viral gene expression in the current state would indicate an
anti-viral gene. Extending this reasoning, time courses allow following the fate of cells over
extended periods of time. Sakellaridi et al. introduce a novel trajectory inference approach
for connecting cells from consecutive time points based on similarity between their past
and current transcriptomic profiles. The authors envision the data as a network where cells
are connected across time, and their changing expression trajectories ’flow’ through the
network. Mathematically, this is equivalent to the minimum cost-maximum flow problem
and can be solved by a well-established optimization algorithm [42]. Solving the network
results in expression trajectories that reflect the different paths a biological process may
follow across time. By constructing such trajectories in a population of infected cells, it
becomes possible to determine factors that influence the infection outcome.

2.5. Viromics

Viromics heavily relies on computational tools for the comprehensive analysis of
viral genomes and metagenomic data. These tools encompass a wide range of bioinfor-
matics algorithms and pipelines that aid in various stages of viromic analysis, including
sequence quality control, read assembly, viral genome binning, taxonomic classification,
and functional prediction. Computational approaches are essential for unraveling the
complexity of viromic datasets, extracting valuable insights about viral diversity, evolution,
and interactions within microbial communities. These tools enable the identification of
novel viral species, characterization of viral genes and functional elements, exploration
of viral-host interactions, and the potential discovery of new antiviral targets. Continu-
ous advancements in computational tools and techniques are crucial for enhancing our
understanding of the virosphere and its implications in diverse fields, from environmental
microbiology to human health. Our viromics session has been hosted by Spyros Lytras
(MRC, Glasgow, UK).

2.5.1. Ancient Virome Analyses Using Metagenomic Data from Ancient Individuals (by
Luca Nishimura)

Ancient DNAs have been discovered from various kinds of archeological samples such
as bones and mummified tissues. Those ancient samples contain ancient viral genomes
which existed in ancient organisms’ bodies [43]. Those ancient viral genomes are useful
to elucidate past pandemic events and long-term viral evolution. For instance, human
pathogenic viruses such as influenza A virus and hepatitis B virus have been analyzed
since 1997. However, the number of ancient viruses thus far identified is small; most are
human pathogenic viruses. Nishimura et al. analyzed ancient people’s whole genomic
sequencing (WGS) data to discover ancient viruses more comprehensively. They utilized
genomic data from 36 ancient individuals who dwelled in the Japanese archipelago and
also more than 300 publicly available data. Firstly, the authors conducted de novo assembly
of non-human reads to obtain longer contigs. Those contigs were used for homology search
against the modern viral reference genomes and other methods such as machine-learning
methods and bacterial immunological memories to find viral genomes. As a result, more
than 50,000 candidates of ancient viral contigs were detected, including about 200 high-
quality ancient viral genomes. To characterize ancient virome, Nishimura et al. analyzed
ORF components and phylogenetic relationships based on those contigs. For example,
they obtained the nearly complete sequence of the Siphovirus contig89 (CT89) existing in
the human oral environment [44]. The authors estimated the relationships between the
modern CT89 and the most recent common ancestor by phylogenetic analyses. They then
compared the viral components in each sample showing the differences between ancient
and modern samples which might reflect different dietary characteristics. Those results
suggest that the metagenomic data from ancient samples are useful for elucidating ancient
viral characteristics and long-term viral evolution.
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2.5.2. One’s Trash Is Another’s Treasure—Mining Viromics Datasets for Traces of EV
Mediated Horizontal Gene Transfer (by Dominik Lücking)

Marine environmental viral metagenomes, commonly referred to as ‘viromes’, are
typically generated by physically separating viral-like particles (VLPs) from the microbial
fraction based on their size and mass. However, most of the methods used to enrich
extracellular vesicles (EVs) and gene transfer agents (GTAs) simultaneously [45,46]. Conse-
quently, the sequence space traditionally referred to as a ’virome’ contains host-associated
sequences, transported via EVs or GTAs. Lücking et al. therefore propose to call the genetic
material, isolated from size-fractionated (0.22µm) and DNase treated samples, protected
environmental DNA (peDNA), Figure 5. This sequence space contains viral genomes, DNA
transduced by proviruses and DNA transported in EVs and GTAs. Since there is currently
no definitive genetic signature for EV-transported DNA, scientists rely on the successful re-
moval of contaminating remaining cellular and free DNA, when analyzing peDNA. Using
marine samples collected from the North Sea, the authors generated a thoroughly purified
peDNA dataset and developed a bioinformatic pipeline to determine the potential origin
of the purified DNA. This pipeline (https://github.com/dluecking/mviest) was applied
to their dataset as well as existing global marine ‘viromes’, enabling the identification of
known GTA and EV producers, and organisms with actively transducing proviruses as
the source of the peDNA, thus confirming the reliability of their approach. Additionally,
Lücking et al. identified novel and widespread EV producers and found quantitative
evidence suggesting that EV-mediated gene transfer plays a significant role in driving
horizontal gene transfer (HGT) in the world’s oceans.

(A) (B)

Figure 5. Conceptual composition of protected extracellular DNA. (A) Microbial entities present
in a water body: microbial cells, viruses containing viral and microbial genetic material, gene
transfer agents and extracellular vesicles containing host DNA. After size filtration (0.22µm) and
DNase treatment and, if applicable, purification via density gradients, microbial cells and free DNA
are removed. (B) The remaining DNA makes up the sequence space of protected extracellular
DNA, peDNA.

2.6. Molecular Epidemiology and Phylodynamic Analyses

Molecular epidemiology and phylodynamic analysis are two interconnected fields
that utilize computational tools to study the spread and evolution of infectious diseases.
Molecular epidemiology combines molecular biology and epidemiology to investigate
the transmission dynamics, source attribution, and genetic characteristics of pathogens.
Phylodynamic analysis involves the use of computational models and phylogenetic meth-
ods to infer the evolutionary history, population dynamics, and transmission patterns of
pathogens based on genetic data. Computational tools play a crucial role in processing large-
scale genomic datasets, reconstructing phylogenetic trees, estimating evolutionary rates,
detecting transmission clusters, and identifying key determinants of disease emergence
and spread. These tools enable researchers to gain insights into the factors driving disease

https://github.com/dluecking/mviest
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outbreaks, design effective control strategies, and contribute to global health surveillance
efforts. This session was hosted by Francesca Young (MRC, Glasgow, UK).

2.6.1. HIV-1 Transmission Studies Using Phylogenetics: Can Evolution Help Guide Public
Health Decisions? (by Ana Abecasis)

Since the 1990s, HIV-1 transmission chains reconstruction has been used for different
purposes. It’s first use for court cases of HIV-1 transmission has led to important conceptual
and ethical discussions [47]. Later on, HIV-1 transmission chains reconstruction combined
with socio-demographic and behavioral data has been used frequently in the context of pub-
lic health epidemiological studies [48]. By combining socio-demographic, behavioral and
clinical data, Abecasis et al. reconstructed transmission chains in different contexts to better
understand the most important determinants of transmission of HIV-1 infection in each
scenario. They addressed potential pitfalls and methodological constraints, and presented
the main challenges, implications and applicability to future studies. The authors’ results
indicate the importance of its use to complement classical epidemiological approaches,
indicating routes of transmission of HIV-1 infection in migrants living in Portugal [49] and
transmission routes more associated with transmission of antiretroviral drug resistance [50].

2.6.2. Molecular Epidemiological Approaches to Investigate the Dispersal Dynamic of
Viruses and the Environmental Factors Impacting It (by Simon Dellicour)

Recent advances in genomics, mathematical modelling and computational biology
have enabled molecular approaches to become key methods to investigate the spread of
viral infectious diseases. In the emerging field of molecular epidemiology, genetic analyses
of pathogens are used to complement traditional epidemiological methods in various ways.
For instance, genetic analyses offer the possibility to infer linkages between infections
that are not evident without analyzing viral genomes. In particular, the development of
phylogeographic methods has enabled to reconstruct dispersal history of epidemics in
a discretised or on a continuous space, using only a relatively limited number of viral
sequences sampled from known locations and times. At the Spatial Epidemiology Lab
(SpELL, ULB) https://github.com/sdellicour, Dellicour et al. develop and apply new ana-
lytical approaches exploiting such phylogeographic reconstructions to test epidemiological
hypotheses about the external and environmental factors impacting the dispersal history
and dynamic of viral epidemics [51–53].

2.6.3. Phylodynamic Analysis of A(H5N1) Highly Pathogenic Avian Influenza Viruses
Provides Insight into Movement Dynamics and Host Specificity (by Will Harvey)

Phylodynamic analyses, modelling approaches based on co-analysis of genetic se-
quences and associated metadata within a phylogenetic framework, can shed insight on the
characteristics and drivers of outbreaks of infectious diseases. Since 2021, highly pathogenic
avian influenza (HPAI) viruses of subtype A(H5N1) have caused a panzootic of unprece-
dented scale. This has affected both wild and domestic birds with high mortality outbreaks
in atypical host species such as shorebirds. Spill-overs in a diverse range of mammalian
species including die-offs involving thousands of pinnipeds have raised concerns over
zoonotic potential. These viruses can readily exchange genomic segments with local low
pathogenic avian influenza (LPAI) viruses via reassortment, a mechanism that can facilitate
dramatic phenotypic change. Observational data suggest changes in the seasonality of
recent HPAI A(H5N1) viruses and relaxation of host specificity, however virological or
ecological explanations remain elusive.

Using phylodynamic approaches, it is possible to reconstruct spatio-temporally re-
solved phylogenetic trees and examine trends relative to pre-panzootic A(H5N8) viruses.
Examination of patterns in the timing and locations of reassortment events shows variation
in the evolutionary trajectories of reassortant lineages. Exploration of possible changes in
host preference or specificity using tree-based metrics to estimate fitness in different host
types shows, for example, lineage adapted to spread in birds of the avian orders Charadri-
iformes, that acquired gene segments LPAI H13 viruses. This demonstrates phenotypic

https://github.com/sdellicour
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diversification among recent HPAI A(H5N1) viruses, see Figure 6. Phylogenetic discrete
trait modelling indicates this modification in host specificity coincides with changes in the
times and locations of virus movements such as those between Great Britain and conti-
nental Europe. Such diversification has consequences for spill-over opportunities at the
wildlife-domestic poultry interface. Furthermore, a relaxation of host tropism increases the
likelihood of further reassortment events increasing the potential for emergence of novel
genotypes with changed characteristics.

Figure 6. A phylogeny for HPAI H5N8 and descendant H5N1 viruses sampled in Europe since 2020
alongside schematic showing reassortment profile. Haemagglutinin phylogenetic tree generated
from stratified sample of haemagglutinin nucleotide sequences sampled in Europe. Sampling date is
indicated by tip node color according to the color key. To the right, a schematic shows clusters for each
genomic segment for viruses of the H5N1 subtype, while the absence of such information indicates
an H5N8 genome. For each segment/column, colors are assigned independently therefore the same
color in two different columns should not be interpreted as indicating a shared evolutionary history
between segments. Viruses with different combinations of colors across the 8 genomic segments are
interpreted as arising from reassortment events.

2.7. RNA Viruses: Structure and Evolution

RNA secondary structures play a crucial role in the function and replication of RNA
viruses, and computational tools are invaluable for their analysis. These tools employ
algorithms and predictive models to identify and predict RNA secondary structures based
on sequence information. They help in identifying conserved structural motifs, such as stem-
loops and pseudoknots, that are important for viral replication, translation, and packaging.
Computational tools also aid in studying RNA-RNA and RNA-protein interactions within
the context of viral infections. By analyzing RNA secondary structures, researchers can gain
insights into the mechanisms of viral pathogenesis, identify potential targets for antiviral
interventions, and design novel therapeutics. These computational approaches greatly
enhance our understanding of RNA virus biology and contribute to the development of
effective strategies to combat viral diseases. The session was hosted by Dmitrij Frishman
(TUM, Munich, Germany).
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2.7.1. Viral RNA Secondary Structures: Canonical and Beyond (by Kevin Lamkiewicz &
Sandra Triebel)

In recent years, RNA biology has evolved around identifying and annotating func-
tional (non-)coding RNAs in organisms from all domains of life. Especially for RNA viruses,
it is conceivable that genomic regions and transcripts serve additional functions essential
for viral replication induced by their RNA secondary structures. In the canonical RNA
structure model, base-pairing of complementary nucleotides will fold the RNA into local
and global structural elements, such as the prominent stem-loop hairpin structure.

Critical assessment of RNA secondary structures within viral genomes has led to
several molecular insights for viruses. For example, the internal ribosome entry site (IRES)
of the Hepatitis C virus (HCV) is an RNA structure within the 5′ UTR of the genome. It
mediates the cap-independent translation initiation of viral proteins [54]. The 3′ UTR in
flaviviruses exposes, among others, exoribonuclease resistant RNA structures (xrRNAs),
prolonging viral genomes within the hosts’ cytoplasm [55,56]. Another well-described
example is the UTRs of coronaviruses. Here, several stem-loops are seemingly crucial for
viral transcription, translation, and replication [57–59]. Despite well-characterized RNA
structures in untranslated regions of human-infecting RNA viruses, structures within cod-
ing sequences remain unclear. For example, it is hypothesized that RNA-RNA interactions
play an essential role in the discontinuous transcription mechanism of coronaviruses. For
Influenza A virus, one debated hypothesis is that the packaging of the eight segments is
mediated via RNA-RNA interactions [60–62].

Therefore, the determination and functional analysis of structural RNA elements
promises many novel insights into the viral life cycle and further new targets for thera-
peutic approaches and drugs. Bioinformatic models and tools are used to assess probable
and kinetically favorable RNA foldings to facilitate and increase our understanding of
RNA secondary structures in viral genomes. Multiple sequence alignments (MSAs) are
commonly used to confirm the importance of functional regions via evolutionary conser-
vation. Structural conservation indicated by compensatory mutations is considered with
structure-guided MSAs proposed by Sankoff (implemented in, e.g., LocARNA [63]). To
evaluate whether such tools directly apply to viral genomes and transcripts, Lamkiewicz
and Triebel used LocARNA on a prominent region within the genome of Filoviridae. The
transcription start site (TSS) is a conserved sequential motif upstream of each ORF in
Filoviridae. Additionally, to sequence conservation, it is further embedded in an RNA
structure which has been well-described in the literature [64,65].

The authors assessed the performance of an automated RNA secondary structure
prediction method. The structure-guided MSA calculated by LocARNA is shown in
Figure 7A. While structural conservation looks promising, the sequential motif is dis-
rupted for the representative Dianlovirus. However, careful manual curation reveals that
the TSS motif can be recovered, leading to less sequential diversity in alignment columns
involved in base pairings, see Figure 7B. While software development is going in the
right direction, the findings underscore the importance of critically evaluating the results
obtained from automated tools and highlight the significance of expert intervention in
refining and interpreting complex biological data.
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A              ......(((((((..((((((((.((..((((((.......))))))..)).)))))))).)))))))......
AF086833.2    AAAAGUGAUGAAGA-UUAA-GAAAAACCUACCUCGGCUGAGAGAGUG-UUUUUUCAUUAACCUUCAUCUUGUAA
MH464888.1    AAAAGUGAUGAAGA-UUAA-GAAAAACCUACCUCGGCUGAGAGAGUG-UUUUUUCAUUAACCUUCAUCUUGUAA
KR781609.1    AAAAAUGAUGAAGA-UUAA-GAAAAACCUACCUCGACUGAGAGAGUG-UUUUUUCAUUAACCUUCAUCUUGUAA
MH608008.1    AAAAAUGAUGAAGA-UUAA-GAAAAACCUACCUCGACUGAGAGAGUG-UUUUUUCAUUAACCUUCAUCUUGUAA
KU978803.1    AAAAGUGAUGAAGA-UUAA-GAAAAACCUACCUCGACUGAGAGAGUG-UUUUUUCAUUAACCUUCAUCUUGUAA
MF319185.1    GAAAAUGAUGAAG--AUUAAGAAAAAUAGCCUGUGAUACCCAGGAGCGAUUUUUCUUAAUUCUUCACUUGGUAU
MW056493.1    GAAAAUGAUGAAG--AUUAAGAAAAAUAGCCUGUGAUACCCAGGAGCGAUUUUUCUUAAUUCUUCACUUGGUAU
FJ217161.1    ACAAGUGAUGAAG--AUUAAGAAAAAGCAUCCUUUACUUGAGAGGAG-CUAAUUCUUUAUACUUCAUCUAAUCU
KC545394.1    ACAAGUGAUGAAG--AUUAAGAAAAAGCAUCCUUUACUUGAGAGGAG-CUAAUUCUUUAUACUUCAUCUAAUCU
FJ217162.1    AAGGGUGAUGAAG--AUUAAGAAAAAGCCUCCUUCAGUUGCAAGGAG-CUAAUUCUUAAAACUUCAUCUAGACU
MH121167.1    AAGGGUGAUGAAG--AUUAAGAAAAAGCCUCCUUCAGUUGCAAGGAG-CUAAUUCUUAAAACUUCAUCUAGACU
AY729654.1    A-AAUUGAUGAAGAUUAAGAAAAAGAGGGAUUUUCUCAGGAAAAAUC-UUU--UUUCUUACCUUCAUCUCAUUU
FJ968794.1    A-AAUUGAUGAAGAUUAAGAAAAAGAGGGAUUUUCUCAGGAAAAAUC-UUC--UUUCUUACCUUCAUCUUAUUU
AF522874.1    ACAAGUGAUGAAGAUUAAGAAAAACC--AGUCGGUAUUUUCCAGACU-UGGCAUUUCUUAUCUUCAUCUUCUAA
HC069219.1    ACAAGUGAUGAAGAUUAAGAAAAACC--AGUCGGUAUUUUCCAGACU-UGGCAUUUCUUAUCUUCAUCUUCUAA
JF828358.1    AAUACUGAAGAAUA--UUAAGAAAAAACACC-------------------UUGGCUUGACAGUUCAUAAGCGAC
MW775011.1    AAUCCUGAAGAAUA--UUAAGAAAAAACACC-------------------UUGGCUUGACAGUUCAUAAGCGAC
GQ433351.1    AACUAUGAAGAACA-UUAAGAAGA----------------------UCUUUCUCUCGUAGUGUUCUUUUACUGG
DQ447649.1    AACUAUGAAGAACA-UUAAGUGGA----------------------UUUUUCCUUCUUAGUGUUCUUUUACAAA
DQ217792.1    AACUAUGAAGAACA-UUAAGAAGA----------------------UCUUUCUUUCGUAGUGUUCUUUUACUGG
KX371887.2    GAAGAAUAUUAAGAAAAAGUUCGG----GUAUUAUUUUGUGUAAUACCGGUUUGGGCUAAGCAGGGUAUUCCUU

B

Genus
Marburgvirus
Dianlovirus

Ebolavirus
Cuevavirus

              ......(((((((.((((((((....((((((((.(((((.....)))))..)))))))).....)))).))))..))).))))...
AF086833.2    AAAAGUGAUGAAGAUUAAGAAAAAC-CUACCUC-------GGCU---------GAGAGAGUGUUUUUUCAUUAA-CCUU-CAUCUUG
MH464888.1    AAAAGUGAUGAAGAUUAAGAAAAAC-CUACCUC-------GGCU---------GAGAGAGUGUUUUUUCAUUAA-CCUU-CAUCUUG
KR781609.1    AAAAAUGAUGAAGAUUAAGAAAAAC-CUACCUC-------GACU---------GAGAGAGUGUUUUUUCAUUAA-CCUU-CAUCUUG
MH608008.1    AAAAAUGAUGAAGAUUAAGAAAAAC-CUACCUC-------GACU---------GAGAGAGUGUUUUUUCAUUAA-CCUU-CAUCUUG
KU978803.1    AAAAGUGAUGAAGAUUAAGAAAAAC-CUACCUC-------GACU---------GAGAGAGUGUUUUUUCAUUAA-CCUU-CAUCUUG
MF319185.1    GAAAAUGAUGAAGAUUAAGAAAAAU-AGCCUGUG------AUAC---------CCAGGAGCGAUUUUUC-UUAAUUCUU-CACUUGG
MW056493.1    GAAAAUGAUGAAGAUUAAGAAAAAU-AGCCUGUG------AUAC---------CCAGGAGCGAUUUUUC-UUAAUUCUU-CACUUGG
FJ217161.1    ACAAGUGAUGAAGAUUAAGAAAAAGCAUCCUUU-------ACUUG--------AGAGGA--GCUAAUUC-UUUAUACUU-CAUCUAA
KC545394.1    ACAAGUGAUGAAGAUUAAGAAAAAGCAUCCUUU-------ACUUG--------AGAGGA--GCUAAUUC-UUUAUACUU-CAUCUAA
FJ217162.1    AAGGGUGAUGAAGAUUAAGAAAAAGCCUCCUUC-------AGUU--------GCAAGGA--GCUAAUUC-UUAAAACUU-CAUCUAG
MH121167.1    AAGGGUGAUGAAGAUUAAGAAAAAGCCUCCUUC-------AGUU--------GCAAGGA--GCUAAUUC-UUAAAACUU-CAUCUAG
AY729654.1    AAAAUUGAUGAAGAUUAAGAAAAAGAGGGAUUUUC-----UCAG-------GAAAAAUC---UUUUUUC-UUA--CCUU-CAUCUCA
FJ968794.1    A-AAUUGAUGAAGAUUAAGAAAAAGAGGGAUUUUC-----UCAG-------GAAAAAUC---UUCUUUC-UUA--CCUU-CAUCUUA
AF522874.1    ACAAGUGAUGAAGAUUAAGAAAAAC-CAGUCGG-------UAUU---------UUCCAGACUUGGCAUUUCUUA-UCUU-CAUCUUC
HC069219.1    ACAAGUGAUGAAGAUUAAGAAAAAC-CAGUCGG-------UAUU---------UUCCAGACUUGGCAUUUCUUA-UCUU-CAUCUUC
JF828358.1    AAUACUGAAGAAUAUUAAGAAAAAA-CACCUUG-------GCUU---------GACAG-------------------UU-CAUAAGC
MW775011.1    AAUCCUGAAGAAUAUUAAGAAAAAA-CACCUUG-------GCUU---------GACAG-------------------UU-CAUAAGC
GQ433351.1    AACUAUGAAGAACAUUAAGAAGA-----------------UCUU-------------------UCUCUC-GUAGU-GUU-CUUUUAC
DQ447649.1    AACUAUGAAGAACAUUAAGUGGA-----------------UUUU-------------------UCCUUC-UUAGU-GUU-CUUUUAC
DQ217792.1    AACUAUGAAGAACAUUAAGAAGA-----------------UCUU-------------------UCUUUC-GUAGU-GUU-CUUUUAC
KX371887.2    AUUUGUGAAGAAUAUUAAGAAAAAGUUCGGGU---AUUAUUUUGUGUAAUACCGGUUUGG-GCUAAGCA--GGGU-AUUCCUUCUUU

Transcription start site (TSS) motif
in viral RNA 5' - 3'

Figure 7. Alignment-based RNA secondary structure prediction upstream of the VP40 gene in
Filoviridae. (A) The alignment calculated using LocARNA [63] reveals structural conservation with the
presence of compensatory mutations. Up to three different base pair types are observed, as indicated
by the color scheme (shown in the bottom right), within the non-coding region upstream of the VP40
gene. However, the alignment also shows disruption of the conserved transcription start site (TSS)
sequence motif (illustrated by the black box). (B) Through manual curation, both the sequence and
structure were preserved in the alignment, accurately representing the conserved elements. This
refinement process led to fewer compensatory mutations, as illustrated by the base pair color scheme.

2.7.2. Recombination and Modular Evolution of Positive-Strand RNA Viruses: Similar,
but Not the Same (by Yulia Vakulenko)

Recombination is very common in positive-strand RNA viruses. Along with a
high mutation rate, it is one of the major forces generating genetic diversity [66]. Vaku-
lenko et al. systematically analyzed patterns of natural recombination in four (+)RNA virus
families–Astroviridae, Caliciviridae, Picornaviridae and Coronaviridae, using both classical
recombination detection methods [67,68] and by comparing correspondence of genetic
distances in different genome regions [69]. The authors developed an R package, recDplot
https://github.com/v-julia/recDplot, for visualizing recombination in viral sequences. A
common (and generally known) feature of these virus families was frequent recombina-
tion between genome regions encoding nonstructural and structural proteins [67,70–72].
However, the recombination profiles within these genome regions were contrasting. In pi-
cornaviruses, there was frequent recombination within the nonstructural genome region
with no prominent hotspots and almost absent recombination within the structural genome
region. Caliciviruses routinely exchanged full structural and nonstructural blocks of the
genome, but had few, if any, recombination events within these regions [73]. In astroviruses,
moderate recombination was observed within both structural and nonstructural genomic
regions. In coronaviruses, the spike gene, but not other structural proteins genes (E, M, N),
was most commonly exchanged between coronaviruses. Recombination within the spike
gene occurred more frequently than within the nonstructural region, and more commonly
involved the entire domains of the spike protein [69]. Therefore, these (+)RNA viruses
with very different genome organization and realization had a common general recombi-
nation pattern, which could effectively provide independent evolutionary trajectories for
structural and non-structural proteins. Protein(s) function was the major factor defining
their relative mobility by recombination. The authors speculate that this recombination
profile may reflect the suggestive distinct evolutionary origin of these virus components
billions of years ago. On the other hand, viruses of close families could have contrasting
recombination patterns within these major genome blocks.

https://github.com/v-julia/recDplot
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2.7.3. RNAswarm: A Modular Pipeline for Differential RRI Analysis in Influenza a Virus
(by Gabriel Lencioni Lovate)

RNA proximity ligation methodologies such as PARIS, SPLASH, and 2CIMPL have
offered experimental ways to detect RNA-RNA interactions (RRIs) on a large-scale [74–76].
However, an established bioinformatics pipeline for statistically comparing the frequency
of RRIs across different strains or experimental conditions with high throughput has
yet to be realized. To fill this gap, Lencioni Lovate et al. have developed RNAswarm
https://github.com/gabriellovate/RNAswarm, a modular, reproducible Nextflow pipeline
specifically designed for high-throughput differential RRI analysis. RNAswarm is openly
accessible and is presently under active development. This tool has been successfully
utilized in the analysis of SPLASH datasets of influenza A virus (IAV), a substantial global
health threat due to its severe morbidity and mortality impacts. Through this application,
RNAswarm has revealed differentially structured regions within IAV’s segmented RNA
genome, as described in a recent publication [62].

With RNAswarm, the authors have been able to identify strain-specific RRI sites in
various IAV strains, thus validating previous findings [60] and quantifying variations in
prevalence of RRIs across strains [62]. The pipeline, see Figure 8, initiates by processing
raw reads from RNA proximity ligation experiments, then identifies RRIs, and finally
utilizes DEseq2 to sumarize differential RRI representation across distinct IAV strains
or experimental conditions [77]. Additionally, a module for de novo annotation of discrete
interactions—by generating pairwise matrices of chimeric reads and fitting Gaussian Mixture
Models to identify normally distributed potential interactions is currently under development.

Figure 8. RNAswarm is a reproducible nextflow pipeline that analyzes datasets from RNA proximity
ligation experiments. RNAswarm first pre-processes raw reads from RNA proximity ligation experi-
ments, maps them to reference genomes, then identifies RRIs, and finally analyzes differential RRI
representation across different strains or experimental conditions.

https://github.com/gabriellovate/RNAswarm
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RNAswarm has proven successful in identifying key RRIs across replicates and in
detecting highly conserved or flexible interaction sites. It offers a reliable and automated
approach for prioritizing and comparing RRIs across diverse conditions or organisms.
With the potential to uncover new RNA-RNA interactions in viruses and other organ-
isms, the modularity and reproducibility of RNAswarm render it an invaluable tool for
researchers investigating RNA-RNA interactions in various contexts.

2.8. Viral Sequence Analysis

Viral sequence analysis plays a pivotal role in understanding viral evolution, diversity,
and functional characteristics. Computational tools are essential for analyzing viral se-
quences and extracting valuable insights. These tools encompass a range of bioinformatics
algorithms and pipelines that aid in tasks such as sequence alignment, variant calling,
phylogenetic reconstruction, and functional annotation. Computational approaches enable
researchers to identify conserved regions, detect genetic variations, predict protein struc-
tures and functions, and explore viral-host interactions. Additionally, these tools facilitate
the development of diagnostic assays, antiviral drugs, and vaccines by identifying viral
targets and epitopes. Viral sequence analysis, powered by computational tools, accelerates
our understanding of viral biology and informs strategies for disease surveillance, out-
break control, and therapeutic interventions. This session was hosted by Anne Kupczok
(Wageningen University, The Netherlands).

2.8.1. Embedding Segmented Viral Genomes for Visualisation, Search, and Clustering (by
Udo Gieraths)

Important human and animal pathogens like influenza and rotaviruses have seg-
mented genomes. Such viruses can reassort during co-infection of a cell with different
viral strains, in which case a new viral genome is created via the exchange of segments.
In such cases, the evolutionary history, and therefore the phylogenetic trees of each seg-
ment, may differ considerably. This property hinders classical phylogenetic analysis and
simple searches for similar genomes. Gieraths et al. presented an approach to embed seg-
mented viral genomes in a mathematical space that allows efficient search and clustering.
In the context of clustering, outliers that do not fit into any cluster are easily identified.
These outliers represent rare reassortment events of particular interest, as reassortant viral
genomes can give rise to highly pathogenic variants. Using the example of the influenza A
virus, the authors show various applications of our developed segmented viral genome
embedding in the context of search, clustering, and outlier detection.

2.8.2. Hyper-EINS: A Tool for Automated Identification of Insertions in the Hepatitis E
Virus Hypervariable Region (by Maximilian Nocke)

Hepatitis E virus (HEV) infections are usually asymptomatic and self-limiting, while
in immunocompromised or other risk group patients may develop chronic courses [78].
The hypervariable region (HVR) within HEV’s first open reading frame is known to
integrate sequence snippets of human and viral origin. Some insertions are associated with
replication fitness in vitro and chronicity in vivo [79–82]. The off-label drug ribavirin is
commonly used to treat chronically infected patients, but presents a high rate of treatment
failures [83].

With their tool Hyper-EINS, Nocke et al. aim to provide a time efficient bioinformatics
pipeline tool that automates identification and validation of insertions in high-throughput
sequencing (HTS) data, while offering an easy to use graphical user interface (GUI) to
simplify accessibility. Their tool will allow early identification of insertions possibly linked
to treatment failure.

During Hyper-EINS development, the authors used, implemented and tested a broad
variety of informatics tools and languages to increase efficiency of run time and storage usage.

A first command line only version of the analysis tool was written in Python 3 Python
3.10.12 and established the general workflow. Combined use of Cutadapt [84] and Trim-
momatic [85] was applied to trim reads in an automated manner. To make read assign-
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ment sensitive to unexpected insertions, blastn was integrated, accessing NCBI nucleotide
database remotely [86,87]. Identified insertions were exclusively of humane origin. Due
to this, blastn was replaced with MMSeqs2 [88]. Furthermore, introduction of MMSeqs2
to Hyper-EINS reduces false positive discovery rate by evading poorly annotated data
from the NCBI nucleotide database. Computation of full insertion sequences is achieved
by calling the de novo assembler Trinity [89].

To speed up analysis processes, Hyper-EINS was reimplemented in Julia. Furthermore,
exchanging blastn with MMSeqs2 reduced run time drastically and eliminated the need
to access an online database, by providing a local database containing HEV and human
reference genome. The tool’s Julia version features a Gtk based prototype GUI.

Hyper-EINS was validated by monitoring dynamic rearrangements in the HVR of a
chronically HEV infected patient. Nocke et al. identified novel insertions of critical impact
for viral fitness as proven in a subgenomic replicon system in vitro. Interestingly, content
and distribution of insertions in the viral population were very dynamic in this patient,
underlining an important role in HEV chronicity and treatment failure.

In conclusion, Hyper-EINS has been designed as a user-friendly tool for detecting
insertions of human or viral origin in the HVR of HEV from HTS data using computers with
limited RAM and processing power. The graphical user interface visualizes the pipeline’s
output to make data interpretation and validation easier for the user. Early identification
of HVR rearrangements in HEV infected patients can guide treatment decisions in a
personalized medicine approach, based on both amplicon sequencing data specifically of
the HVR or more spanned genomic regions covering the HVR. Hyper-EINS is written in
Julia and will be publicly available in the future.

2.8.3. Magnipore: Predicting Differential Single Nucleotide Changes in Oxford Nanopore
Technologies Sequencing Signal in SARS-CoV-2 (by Jannes Spangenberg)

Oxford Nanopore Technologies (ONT) revolutionizes the field of RNA analysis by
enabling direct sequencing of ribonucleic acids (RNA) and facilitating the detection of RNA
modifications. RNA modifications play a crucial role in cellular processes, including gene
expression regulation, RNA stability, and protein synthesis [90]. They also have a significant
impact on viral infection, replication, and even the host antiviral innate immunity [91–95].

However, existing methods and basecallers have limitations in directly detecting
and characterizing RNA modifications comprehensively. As an alternative approach,
Spangenberg et al. introduced Magnipore https://github.com/JannesSP/Magnipore, see
Figure 9 a novel tool designed to identify significant signal shifts in ONT data obtained
from samples of closely related or similar species. By comparing the ONT signals of two
samples, Magnipore aims to uncover potential differential RNA modifications, providing
insights into their occurrence and distribution.
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Figure 9. By analysing the raw signals of samples signal differences can be detected. Magnipore
can read these differences and discriminate between mutations differences and possible differential
RNA modifications.
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In their study, the authors applied Magnipore to analyze 16 SARS-CoV-2 samples
derived from human patients and cultivated in vero cells. These samples represent a
diverse range of lineages, including the early 2020s Pango lineages (n = 6), B.1.1.7 (n = 2,
Alpha), B.1.617.2 (n = 1, Delta), and B.1.1.529 (n = 7, Omicron). Through the utilization
of position-wise Gaussian distribution models and employing a significance threshold,
Magnipore effectively identifies differential ONT signals associated with mutations between
the samples and potential RNA modifications.

Notably, when investigating the Alpha and Delta variants, Magnipore detects 55 mu-
tations and identifies 15 sites that suggest the presence of differential modifications. Across
all comparisons, Magnipore achieved a mutation detection rate of 89.1%. Furthermore,
Magnipore unveiled promising potential differential modifications specific to virus variants
and variant groups.

In summary, Magnipore represents an advancement in the analysis of RNA modifica-
tions within the context of viruses and viral variants. By utilizing Magnipore, researchers
can uncover differential RNA modifications, providing critical insights into their role in
cellular processes and their potential involvement in disease development.

2.9. Machine Learning in Viral Surveillance

Machine learning has emerged as a valuable tool in viral surveillance, enabling the
analysis of large-scale genomic and epidemiological data. Computational tools utilizing
machine learning algorithms can classify and predict viral strains, identify potential out-
breaks, and assess the risk of viral transmission. These tools aid in the early detection and
monitoring of viral diseases, enhancing public health surveillance efforts. Machine learning
also helps uncover hidden patterns and relationships in viral data, providing insights
into viral evolution, host tropism, and drug resistance. Leveraging machine learning in
viral surveillance empowers researchers and public health agencies to make informed
decisions for effective prevention and control strategies. The session was guided by Ingrida
Olendraite (Cambridge, UK).

2.9.1. From High-Throughput Testing to Genomic Surveillance and Public Health Data
Integration (by Bernhard Renard)

With its open-view approach and integration with high-throughput automation, ge-
nomic sequencing plays an increasing role in infectious disease diagnostics as well as in
public health surveillance programs. Facilitated by algorithmic and machine learning ap-
proaches for signal processing and information aggregation, rapid sequencing procedures
are arriving in clinical settings. Focus of the work of Renard et al. has been to facilitate data
analysis already during run time of second and third generation sequencers in order to
speed up diagnostics and decision making as well as enrichment of target sequences [96,97].

At the same time, the authors see an increase in genomic surveillance, which allows
early detection of outbreaks and prediction of spreading patterns. Thereby, it can com-
plement more traditional epidemiological approaches [98]. Renard et al. have introduced
platforms for genomic surveillance to learn and predict movement and spreading patterns
in population as well as for predicting genomic risk patterns [99–101]. In order to fur-
ther leverage learning, Graph Neural Network allow integration and prediction across
heterogeneous sources.

2.9.2. BLOODVIR: Virus Surveillance System for Plasma Pools Based on High-Throughput
Sequencing and Machine Learning (by Martin Machyna)

Novel and re-emerging viruses pose a threat to the general public [102]. Many of
these viruses are bloodborne and present an immediate risk to receivers of blood donations
or blood-derived products. It is therefore vital to establish surveillance systems that are
capable of detecting viruses in an unbiased manner before they can have a chance to
spread in human population. Machyna et al. reported their efforts on devolvement of
BLOODVIR—a virus detection system for continuous monitoring of infection risks in
blood plasma using high-throughput sequencing and machine learning. BLOODVIR uses a
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combination of host depletion (nuclease treatment [103]) and viral enrichment (VirCapSeq-
VERT [104]) to extract viral genomes and to create high-quality sequencing libraries from
human blood plasma pools. Sequencing reads are classified with MiCoP [105] against a
custom index created from a filtered Reference Viral Database (RVDB) [106] where genomes
with very similar sequences (Mash [107] score < 0.15) were removed to reduce redundancy.
The authors’ evaluation of metagenomic classification tools for virus detection identified
alignment-based classifiers as more suitable than k-mer-based. While k-mer approaches
tend to be faster and have higher sensitivity under normal conditions, alignment-based
methods such as MiCoP performed better under conditions when investigated sequences
differed significantly from reference genome due to naturally occurring mutations. In
order to improve their predictions of known and novel viruses from high-throughput
sequencing data, Machyna et al. performed hyperparameter tuning of DeepMicrobes [108]
deep neural network (DNN) model designed for metagenomic classification. They trained
the model with HIV-1 B-subtype genome fragments that were in silico generated using a
range of mutation rates. Evaluation with sequences generated from other HIV variants
(A, C-L, N, O, P and U) revealed a dramatic improvement in the ability to detect these
’unseen’ HIV variants by models trained with sequences created with ≥10% mutation rate
compared to model trained with non-mutated sequences. Machyna et al. tested BLOODVIR
on plasma samples containing decreasing concentration of various viral standards and
observed almost perfect linear relation between number of detected viral reads and virus
concentration (average correlation coefficient = 0.958). In addition, their results indicate
that BLOODVIR is capable of detecting as low as 100 viral genomes per mL of human
blood plasma thus proving its usability for plasma pools with low viral titers. In conclusion,
BLOODVIR surveillance system shows a great potential for monitoring of known and
emerging viruses in human population.

2.9.3. Modelling the Zoonotic Capabilities of Avian Influenza via Genomic Machine
Learning (by Liam Brierley)

Avian influenza is currently a high-risk threat in Europe. The 2021/22 outbreak was the
largest yet observed and several countries stringently controlled domestic birds in response.
Zoonotic capability has been observed for 14 subtypes, most recently H3N8 in 2021 [109].
Infections have so far been minimally transmissible between humans though continued
zoonotic transmission events (e.g., in the UK, Spain, and Russia [110]) have increased
concerns about the potential for new lineages to emerge that may spread more widely.

Several seminal modelling studies have demonstrated that machine learning algo-
rithms can be trained directly on genome sequence data to make adequate predictions about
which virus species may represent future zoonoses [101,111]. However, few models of
zoonotic potential have addressed the wide variation between influenza A virus subtypes.

Brierley et al. used NCBI GenBank and GISAID to source over 18,000 whole genome
sequences of avian influenza from 122 subtypes. To prevent over-fitting models to well-
sampled lineages, they used MMSeqs2’s Linclust algorithm [112] to collapse these to
3958 non-zoonotic clusters and 88 zoonotic clusters sharing ≥90% sequence identity across
≥80% mutual genome coverage. They selected random forest methods based on perfor-
mance in previous efforts to classify influenza sequences [113].

Taking 4046 cluster-representative sequences as the training set, Brierley et al. trained
random forests to distinguish zoonotic from non-zoonotic clusters based on genome compo-
sition of nucleotides, dinucleotides, and codons. Training procedures featured inner loops
of 10-fold cross-validation nested within an outer loop of hold-one-out cross-validation
applied to cluster representatives.

Random forest models distinguished zoonotic status with good separability (AUC = 0.95,
F1 = 0.99), albeit with low absolute probabilities for some zoonotic sequences. Performance
was sufficiently generalisable across subtypes, i.e., zoonotic cluster representatives pre-
dicted with the strongest confidence covered not only well-represented subtypes (e.g.,
H5N1, H7N9) but also poorly-represented subtypes (e.g., H10N8). The most informa-
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tive model features were primarily biases in dinucleotide usage, particularly GC, AC,
and CG dinucleotides.

Brierley et al. demonstrated genomic machine learning models can be tailored to
identify which lineages of circulating avian influenza have potential to become zoonotic
in future. These methods also have potential to highlighted weaker, unrecognised signals
of viral adaptation associated with human infectivity across whole genomes. If trained
appropriately, computational learning frameworks can inform more reactive strategies to
prevent zoonotic infection by suggesting key genomic sites to monitor viral evolution in
wildlife and generating risk estimates for newly identified viruses as soon as sequences are
available [114].

2.10. Viral Pathogenesis

Jenna Kelly (Bern, Switzerland) hosted the session about viral pathogenesis, which
refers to the mechanisms by which viruses cause disease in their hosts. Computational
tools play a significant role in understanding viral pathogenesis by enabling the analysis
of viral genomic data, protein structures, host-virus interactions, and immune responses.
These tools help identify viral virulence factors, study the molecular basis of pathogenesis,
and predict the impact of viral mutations on disease outcomes. Computational modeling
and simulation assist in unraveling the complex dynamics of viral infections and aid in the
development of targeted therapies and vaccines. The integration of computational tools
with experimental approaches accelerates our understanding of viral pathogenesis and
aids in effective disease management strategies.

Sex Differences in Respiratory Virus Infections (by Sebastian Beck)

Respiratory viruses, such as influenza A viruses or coronaviruses, remain the major
causative agents of acute respiratory distress syndrome (ARDS) that is associated with high
morbidity and mortality. Retrospective analyses of the SARS-CoV-2 pandemic revealed
old age, underlying comorbidies (e.g., obesity or diabetes) and in particular male sex as
high-risk factors for severe or even fatal COVID-19 [115]. Similarly, a male bias towards
severe infections was also observed for avian H7N9 influenza that emerged in China in
2013 [116]. Factors that mediate sex disparity upon respiratory virus infection may include
gender aspects (e.g., social behaviour), fixed genetic predispositions, or dynamic changes
in sex hormones, such as testosterone and estradiol. Beck et al. have recently shown
that H7N9 avian influenza hits the metabolic HPG (hypothalamic–pituitary–gonadal) axis
in men but not in women, leading to a significant reduction in circulating testosterone
levels, which is associated with fatal outcome, see Figure 10 [117]. Using a mouse model
for influenza infection, the authors further demonstrated a causal link between viral
infection and testosterone depletion. Interestingly, men suffering from severe COVID-19
disease also presented reduced testosterone levels, as reported by us and others [118].
Strikingly, long-term monitoring of COVID-19 patients who recovered from acute infection,
revealed that up to 30% still show low testosterone levels one year after recovery [119].
Collectively, these data highlight the need to further study the effect of respiratory virus
infections on the endocrine system in more detail. Herein, monitoring sex hormone levels
as novel biomarkers for disease severity may be crucial for individualized patient therapy
in the future.
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Figure 10. Low testosterone levels are a hallmark of severe and even fatal avian H7N9 influenza
infection in men. *—p < 0.05; ****—p < 0.0001. Modified from [117].

2.11. Metagenomics for Identifying and Tracking Potential Zoonotic Viruses

Metagenomics has emerged as a powerful tool for identifying and tracking poten-
tial zoonotic viruses, which can jump from animals to humans. By sequencing genetic
material from diverse environmental samples, such as animal reservoirs or their habitats,
metagenomics allows for the detection of viral sequences that may be novel or closely
related to known zoonotic viruses. This approach aids in surveillance efforts, enabling the
early detection of emerging viruses and facilitating proactive public health interventions to
mitigate potential zoonotic disease outbreaks. Metagenomics provides a comprehensive
and unbiased approach to monitor viral diversity and identify potential sources of zoonotic
transmission, ultimately contributing to global health security. Jelle Matthijnssens (Leuven,
Belgium) hosted this session.

Discovering and Tracking Potential Zoonotic Species from Metagenomic Samples with a
Capture-Based Oriented Pipeline (by Maria Tarradas-Alemany)

From the dawn of Next Generation Sequencing(NGS) technologies, those strategies
have become crucial in the study of microbial communities from environmental samples.
However, there are still some challenges to overcome, either from biological and compu-
tational perspectives, to characterize their virome composition. Viral metagenomics has
to deal with low quality sequences, possible sample biases (due to chemical inhibitors,
degradation, etc.), challenging data analysis, and more specifically the lack of standard-
ized regions for classification, the arduous purification of enough biomass for sequencing,
and the limited completeness of the available virus databases. In addition, most of the viral
particles found in environmental samples correspond to bacteriophages, which further
complicates the detection of specific viral families and species [120].

The proposed approach to overcome some of those issues focuses on the use of cap-
ture probes specifically designed to hybridate a set of species of interest, with the aim to
enrich the sample with their genomic sequences and similar ones [104]. For a specialized
bioinformatic analysis of these datasets, Tarradas-Alemany et al. introduced CAPTVRED
https://github.com/MarTarAl (Capture-based metagenomics Analysis Pipeline for track-
ing ViRal species from Environmental Datasets), a NextFlow [121] automated pipeline
purposely designed to provide comprehensive results of capture-based metagenomics
datasets. The pipeline includes a pre-filtering stage to discard non-viral sequences, tak-
ing advantage of a curated viral database, which also excludes phage viral sequences,
as reference. Unlike other available protocols, CAPTVRED offers the flexibility to adjust
almost any parameter at each step, making it adaptable to the unique characteristics of
viral metagenomic datasets.

The virome present in a set of samples retrieved from sewage and bat guano have
been already analyzed with this pipeline; moreover, sequences obtained by whole-genome
shotgun and probe-based viral capture approaches have been also considered, in order to
assess the performance of the capture kit, as well as for the pipeline. The results show an
increased number of assigned viral contigs in the capture approach (using RVDB database),

https://github.com/MarTarAl
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which also recalls higher coverage and similarity with respect to reference sequences of
potentially zoonotic viruses.

The paper’s highlights include a strong emphasis on bioinformatics methods specif-
ically designed for viurses. Most contributions of the conference address challenges in
ultra-massive data analysis and an increasingly prominent role of artificial intelligence
(AI) in the field. Nevertheless, the tools introduced in this publication underscore the
pressing demand for further development of virus-specific bioinformatics tools, a need
that has not been prominently addressed at other bioinformatics conferences. Conversely,
the viruses featured in this conference have been thoroughly analyzed using specially
tailored bioinformatic tools, reflecting a unique and vital synergy that does not typically
find expression in virus-focused conferences.
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