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Cortical depth profiles in primary visual
cortex for illusory and imaginary
experiences

Johanna Bergmann 1,2,3 , Lucy S. Petro1,2, Clement Abbatecola 1,2,
Min S. Li2,4, A. Tyler Morgan1,2,5 & Lars Muckli 1,2

Visual illusions and mental imagery are non-physical sensory experiences that
involve cortical feedback processing in the primary visual cortex. Using lami-
nar functional magnetic resonance imaging (fMRI) in two studies, we investi-
gate if information about these internal experiences is visible in the activation
patterns of different layers of primary visual cortex (V1). We find that imagery
content is decodable mainly from deep layers of V1, whereas seemingly ‘real’
illusory content is decodable mainly from superficial layers. Furthermore,
illusory content shares information with perceptual content, whilst imagery
content does not generalise to illusory or perceptual information. Together,
our results suggest that illusions and imagery, which differ immensely in their
subjective experiences, also involve partially distinct early visualmicrocircuits.
However, overlapping microcircuit recruitment might emerge based on the
nuanced nature of subjective conscious experience.

During visual illusions, wemight: (1) see an object that is not physically
present1; (2) not see anobject that is physically present2; or (3) perceive
an object’s physical properties to bedifferent to how they actually are3.
Such illusions are attributed to low-level processes, such as cortical
feedback fromother visual areas4 or lateral interactionswithin primary
visual cortex3,5. For example, during the Kanizsa or the neon colour-
spreading illusions, we see illusory contours of a (coloured) shape that
is physically not present. This experience might arise because higher-
order visual areas with larger receptive fields integrate input from
larger portions of the visual field and assume the presence of a
shape based on the alignment of other shapes in the visual field6,7.
Such hypotheses about the global characteristics of individual objects
are fed back to lower-order areas, speeding up and facilitating
perception8, but sometimes leading to striking misperceptions.

Illusions, like hallucinations, seem ‘real’, and our volitional control
of their experience is limited. They appear embedded within the
external environment, indistinguishable from physical reality. By

contrast, everyday mental imagery feels segregated from reality and
can influence perception and vice versa9,10. In addition, we frequently
engage in imagery and perception simultaneously, freely forming
visual thoughts that guide our actions and decisions, while simulta-
neously processing perceptual input from our senses. Evidence sug-
gests a widely distributed network of brain areas is involved in
imagery, including recruitment of early visual cortex by high-level
frontoparietal regions for the sensory representation of a mental
stimulus11. We can therefore make predictions based on cortical anat-
omy about the local connectivity of such top-down input in sensory
areas. Most feedforward sensory input from the eyes arrives in the
middle layers of the primary visual cortex, whereas most feedback
input from other brain areas arrives in the deep and superficial
layers12,13. On this basis, we hypothesised that information about non-
physical visual experiences, like imagery and illusions, should be pre-
dominant in the layers that receive feedback from other brain
areas. Specifically, cortical models in rodents and monkeys show that
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long-distance feedback projections from distant brain regions travel
through deep layers, with some bifurcations from far-away areas also
targeting superficial layers. In contrast, short-range feedback axons
that connect to nearby regions are located in and target mostly
superficial layers, with some bifurcations also arriving in deep
layers12,14–17. In light of this, the Dual Counterstream Architecture
hypothesis has posited that feedback signals in superficial and deep
layers may serve distinct roles in information processing17. Therefore,
we investigated superficial and deep layers separately to explore how
the content of low-level visual illusions, which arise from feedback
processing within the visual cortex, and mental imagery, which
involves feedback processing from a widely distributed network, is
present in these layers.

Results and discussion
Experiment 1
We used high-resolution laminar fMRI (0.8mm3) at 7 Tesla in human
participants (N = 16) to explore how the content of illusory perception
and visual imagery is decodable from different depths of V1. It has
been suggested that the source of the fMRI signal originates to a
considerable extent from the energy consumption during pre- and
post-synaptic dendritic activities, and to a lesser amount from the
spiking output at the soma18. This means that even when the soma of a
pyramidal neuron is located in layer 5, energy consumption may
occur elsewhere, for example, in the apical dendrites, which are loca-
ted in the superficial layers. Using high-resolution laminar fMRI to
examine signals at different cortical depths hence holds the potential
to provide insights into processes that occur at those specific depths.
During the fMRImeasurement, participantsfixatedwhilewepresented
five conditions (Fig. 1A, B and ‘Methods’): three conditions measured
activity patterns during mental imagery, perception, and illusory per-
ception; two conditions acted as controls for the illusory perception
condition. During the mental imagery task, we instructed participants
to imagine a central red or green disc. In the perceptual condition,
participants viewed a central red- or green-coloured disc. During the
illusory perception condition, participants viewed the neon colour-
spreading illusion, in which four pacman-like ring stimuli induced the
illusion that a red or green square shape sits between them (Fig. 1A). In
the first control of the illusory perception condition, we presented
participants with an ‘amodal’ version of the stimulus, in which we
placed a white contour in the area between the pacman-like rings. This
contour breaks or attenuates the illusory experience or can be per-
ceived as overlaying the (illusory) shape behind it. The second control
consisted of a mock version of the illusion, in which the coloured
quarter of the rings were rotated outwards, such that no illusory shape
arises.

Individuals vary in their ability to formmental images. To increase
the probability of finding imagery-related signals in V1, we focused on
individuals with good imagery abilities. We pre-screened participants
with a behavioural task that determines individual imagery strength by
measuring its impact on subsequent perception10 (‘Methods’ and
Supplementary Fig. 1).Only individualswith imagery scores ator above
an a priori-defined threshold were invited to participate in the fMRI
session.

In experiment 1, we were interested in cortical processes cor-
responding to two areas of the visual field: (1) the central area around
the fixation cross, i.e., the central portion of the area where the
participants imagined a coloured disc in the mental imagery task;
and (2) four portions in the visual periphery, where the illusory
contours of the illusion are located (dashed white lines in Fig. 1C). To
identify the V1 portions that process input from these visual field
areas, we estimated each voxel’s population-receptive field from
visual field mapping stimulation19, and used this approach to define
regions of interest (ROI) for further analysis (Supplementary Figs. 2
and 3; ‘Methods’). We then segmented the identified V1 regions into

six cortical depth layers (Fig. 1D). For each cortical depth, we used
multivariate pattern analysis to determine whether we can detect
information about illusory or imagined content. We trained a sup-
port vector machine (SVM) classifier to distinguish the red versus
green colour of the (illusory/imagined/physical) stimuli in each of the
five conditions.

As mental imagery is a cognitive function that involves a dis-
tributed cortical network and high-level feedback processing, but no
corresponding feedforward input from the eye, mental imagery-
related information should be predominant at cortical depths that
contain such feedback processing. As participants were instructed to
imagine a stimulus centrally, we expected decoding to be above-
chance level in foveal V1. This was indeed the case: our SVM classifier
was able to decode the imagined colour only in the central ROI; this
information was available at the deepest depth (μ̂ =0.60, Padj = 0.02,
90% CI [0.54, 0.67], bootstrapped and FDR-corrected; Fig. 2A) but not
at any other depth (all Padj > 0.05). Therewasno significant decoding in
any of the depth layers in the peripheral V1 region (all Padj > 0.05;
Fig. 2B), which was at the fringes of the location of imagery.

Perceptual illusions like the neon colour-spreading illusion are
thought to arise because higher-order visual areas with larger recep-
tive fields assume the presence of a shape. Feedback signals from
nearby visual areas arrive in superficial layers12. Previous fMRI research
has indeed shown that information about the contextual surround can
only be decoded in the superficial layers20. However, another study
found an increase in fMRI activity levels during illusoryperception that
was limited to the deeper layers7. We only found significant decoding
at the second most superficial depth (μ̂ =0.59, Padj = 0.007, 90% CI
[0.54, 0.64], Fig. 2B); this relationship was confined to the V1 regions
representing the areas along the illusory contours, where the illusion is
most vivid.

Perception is mediated by both feedforward and feedback
processes, and should be decodable across all layers20. This was
indeed what we found: the physical colour was decodable across all
layers in the V1 region that represented the central visual field
(all Padj < 0.02, Fig. 2A). The same was found for the V1 region that
represented the peripheral areas at the fringes of the coloured disc (all
Padj < 0.01, Fig. 2B).

In the ‘amodal’ version of the neon colour-spreading illusion,
where the illusion is attenuated by a superimposed white contour, we
did not find any significant above-chance decoding in either of the
ROIs (all Padj > 0.23), nor for themock version of this illusion, where no
illusion should arise (all Padj > 0.3, Fig. 2A, B, right).

The pattern of significant decoding for experiment 1 seems to
reflect the conscious visual experience in space: we could decode
imagery only in deep layers in the centre, where our participants
imagined the colour. In contrast, illusory colour was not decodable
here. However, it was decodable in the superficial layers in the per-
iphery, where the illusory boundaries were located.

Experiment 2
Our results suggest that cortical feedback related to both low-level
illusory perception and high-level mental imagery can be decoded in
the layers of V1: mental imagery was decodable in the deep layers of
the foveal region, where subjects imagined the colour, and illusory
colour was decodable in the superficial layers of the peripheral
region, where the illusory boundaries were located. However, a more
stringent test would be to examine the decoding of illusory and
imaginary feedback signals in the same region of V1. To test this idea
and further probe the robustness of our results, we conducted a
second fMRI study (N = 10). The design was identical except for one
important difference: we shifted the Pacman-like ring stimuli of the
illusory perception condition and its ‘amodal’ and mock version
sideways, such that one of the illusory boundaries would be located
centrally, just like the perceptual and mental imagery stimulus
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(Fig. 1C). With this modification, the colours of the illusory contour
and the imagined colours of the mental imagery condition should
now both be decodable from the same region-of-interest. This
was indeed the case: Mental imagery was again decodable from
deep cortical depths (μ̂ = 0.6, Padj <0.001, 90% CI [0.55, 0.65] at the
deepest depth and μ̂ = 0.6, Padj = 0.03, 90% CI [0.53, 0.67] at the
second deepest depth; Fig. 2C). In contrast, illusory perception only

showed significant above-chance decoding in the second most
superficial depth layer (μ̂ = 0.59, Padj = 0.03, 90% CI [0.53, 0.66],
Fig. 2C). At the more foveal ROI, the ‘amodal’ condition now showed
above chance decoding in the most superficial layer (μ̂ = 0.56,
Padj = 0.03, 90% CI [0.52, 0.60]). In separate experiments, we have
observed that occluded natural scene information is found in
superficial layers20.
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Second-level analysis across both experiments
In a second-level statistical analysis across the two experiments, we
defined a linear mixed effects model parameterised across cortical
depth to more directly compare mental imagery and illusory percep-
tion decoding at the different cortical depths, and to examine any
statistical differences between the two experiments. To do so, we
pooled themental imagery decoding data from the central ROI and the
perceptual illusory decoding data from the peripheral ROI from the
first experiment with the mental imagery and illusory perception
decoding data from the central ROI of the second experiment (Fig. 3).
We found a significant interaction between condition and depth
(t(283) = 3.70, P <0.001, beta = 0.34, 95% CI [0.16, 0.52]). This was true
while controlling for the effect of experiment 1 vs. 2, as well as random
effects over participants. There was a significant main effect of depth
(t(283) = −2.13, P = 0.034, beta = −0.16, 95% CI [−0.32, −0.01]) and of
condition (t(283) = −5.10, P <0.001, beta = −0.19, 95% CI [−0.26,
−0.12]), as well as a significant interaction effect between experiment
and condition (more accuracy for mental imagery in the second
experiment, t(283) = 3.22, P = 0.001, beta = 0.19, 95% CI [0.07, 0.31]).
There was no significant main effect of experiment (t(283) = −1.35,
P =0.178, beta = -0.07, 95% CI [−0.17, 0.03]) and no significant inter-
actions between experiment and depth (t(283) = 1.47, P =0.143, beta =
0.14, 95% CI [−0.05, 0.33]), or between experiment, condition and
depth (t(283) = −1.43, P =0.155, beta = −0.17, 95% CI [−0.40, 0.06]),
together indicating that the experiment did not significantly affect the
slope. In conclusion, the interaction between condition and cortical
depth indicates that decoding significantly differed between the cri-
tical experimental conditions (mental imageryand illusoryperception)
at the different cortical depths. This analysis complements the first-
level bootstrapping analyses showing that illusory content is sig-
nificantly decoded only in the superficial cortical depths, while
imagery content is significantly decoded only at deeper cortical
depths.However, the absence of significant decoding of imagery in the
superficial layers is not evidence for no decoding in superficial layers.
Note that we did see some individual participants with decoding of
imagery content in the superficial layers (especially in experiment 2,
but also in some participants in experiment 1, Supplementary Figs. 10
and 12). Further investigations might be able to link decoding
fluctuations to the subjective strength of imagery experienced (see
discussion below).

Additional decoding and cross-classification analyses
Although this superficial layer multivariate decoding effect for illusory
perception contradicts earlier laminar fMRI findings using univariate
approaches7, it aligns well with results on edge perception between
figure and ground from electrophysiology research in mice21 and
primates22, and the finding that superficial V1 layers in mice respond
to illusory contours in the Kanizsa illusion23. It should be noted that
we use colour stimuli, whereas the earlier laminar fMRI findings
used orientation stimuli7. Whether and how this may have influenced
the results remains an open question. Neurons responding to orien-
tation may be distributed throughout the column. However, colour
processing, too, appears to involve many layers. Colour blobs are
present in upper layers, while feedforward and feedback signals that

carry red-green colour information are also processed in mid and
deep layers24.

Additional analyses provide further support to our finding that
superficial layers carry illusory stimulus information: when decoding
the illusory stimulus against its mock version, consistent significant
above-chance level decoding was only present at superficial depths
(Supplementary Fig. 4 and ‘Methods’). The modified design of the
second experiment also allowed us to conduct another analysis: as the
illusory boundaries of the illusory perception condition were now
located in the same portion of the visual field as the imagined and the
perceptual stimuli, we could conduct a cross-classification analysis: we
trained the SVM classifier on the two colours of one condition and
tested it on another. Interestingly, when training the classifier on illu-
sory colour and testing it on perceptual colour, we found that sig-
nificant above-chance decoding was again only present in superficial
layers, suggesting that information between illusory and actual per-
ception is shared at these depths (Supplementary Fig. 5). In contrast,
we could neither cross-classify between mental imagery and illusory
perception, nor between mental imagery and perception, irrespective
of whether we trained on mental imagery and tested on (illusory)
perception or vice versa. This suggests that V1 feedback information of
mental imagery may be more distinct. However, it has been shown
previously that a classifier trained on response patterns when partici-
pants saw oriented gratings could be successfully tested on response
patterns when participants were mentally rotating the gratings25. This
discrepancy requires follow-up investigations but could plausibly
relate to the fact that the processing of static imagery, as in our
experiment, might be different to the mental rotation task used pre-
viously. Evidence in support of this hypothesis comes from congenital
aphantasia where participants who are unable to form visual mental
images perform with similar accuracy as controls in mental rotation
tasks26.

Laminar decoding accuracy and BOLD amplitude appear
uncorrelated
Due to larger blood vessels at the pial surface of the cortex, the signal
of gradient-echo fMRI imaging is stronger in superficial depths27. This
effect was also present in both of our data sets (Supplementary
Fig. 6–9). One could argue that SVM classification performance could
be influenced by this, in the way that decoding accuracy could be
higher when the overall signal—and hence the signal-to-noise ratio—is
enhanced. Alternatively, the fMRI signal might also be more spatially
specific when the point spread of the blood-oxygen-level-dependent
(BOLD) signal is smaller due to smaller vessels at deeper depths28. This,
in turn, could lead to better decoding at deeper depths. The pattern of
our results, however, does not suggest that SVM classification is dic-
tated by overall BOLD activity levels at different cortical depths: we
found that imagery was only decodable in the deep layers, where the
signal strength was the lowest; conversely, illusory perception was
only decodable in the superficial layers, where the signal was highest;
and the perception of physical stimuli was decodable at all depths,
regardless of different signal strengths. Decoding accuracy and
amplitude hence appear uncorrelated from one another, which is
consistent with previous findings20.

Fig. 1 | Experimental stimulation and procedure, visual areas of interest and
cortical depth-layer segmentation. A Five experimental conditions were used.
The stimuli were in red or green to enable colour to be decoded within each
condition.B Stimuliwere presented in a randomised order. Duringmental imagery,
a faint grey circle indicated the locationofwhere to imagine the colour. A letter cue
preceding the imagery phase indicated which colour to imagine. It was shown at
random locations outside of the field of imagery, with the distance to the fixation
cross held constant. C V1 regions of interest (ROI) were based on the visual field
portions they represented (dashed white lines). Note that the pacman-like rings of
the illusory perception condition and the central colour disc were never presented

at the same time and are only displayed here together for illustrative purposes. In
the second experiment, the stimuli of the illusory perception condition and its
‘amodal’ and mock version were shifted sideways. This way, one illusory boundary
was located centrally, thereby overlapping with the (internal) stimuli in the per-
ception and mental imagery condition. D In each V1 ROI, the grey matter was
segmented into 6 cortical depth layers, which are partially overlapping and equally
spaced, and therefore do not represent anatomical layers that are unequally dis-
tributed; neighbouring layers may hence partly share the same voxels. Shown here
are the right hemisphere portions of the ROIs.
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Fig. 2 | SVMdecoding results.Results for experiment 1 (n = 16) are shown in (A,B);
experiment 2 (n = 10) results are shown in (C). The white dashed lines in the images
on the right depict the visualfield areas thatwereused to define theROIs in V1 from
which we decoded. The black dashed lines in the plots represent chance level;
asterisks denote significant above-chance decoding (Padj < 0.05, one-sided boot-
strapping of the mean, multiple-comparison corrected); error bars represent ±
SEM. The left column denotes our main conditions of interest: perception (black),
illusory perception (blue) and imagery (pink). The right column denotes our illu-
sory control conditions: amodal (cyan) and mock (grey), benchmarked against
illusory perception (blue). See Supplementary Figs. 10–12 for individual subject
plots. When participants imagined a central disc, colour was decodable only at
deepdepths in both experiments. Importantly, these findingswere restricted to the
ROIs that represented the visual area where participants imagined the stimuli
(A,C, left); no significant decodingwas found in the peripheral ROI of experiment 1

(B, left), which lay at the fringes of the imageryfield. Conversely, illusory colourwas
only decodable in the second superficial layers of the peripheral ROI of experiment
1 (B), which represented areas along the illusory boundaries of the neon colour-
spreading stimulus. However, when the illusory contour was shifted to a central
location in experiment 2, the illusory colour was also decodable in the second
superficial layer of the foveal ROI (C). Hence, experiment 2 shows that the deep-
layer effect for imagery and the superficial-layer effect for illusory perception were
detectable within the same ROI. In the perceptual condition, we could significantly
decode colour at all depths and in all ROIs of the two experiments. The two control
conditions of the illusory stimulus showed no significant decoding in either of the
two ROIs in experiment 1. In experiment 2, the ‘amodal’, i.e., occluded version of
the illusory stimulus showed significant decoding in the most superficial layer
(μ̂ =0.56, Padj = 0.03, 90% CI [0.52, 0.60]). Source data are provided as a Source
Data file.
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The functional roles of superficial and deep cortical layers
Laminar fMRI provides new ways of identifying processing character-
istics in overlapping cognitive and perceptual functions at a level of
precision that has been unattainable with conventional fMRI. Infor-
mation in deep and superficial layers may be indicative of different
sources of feedback in the brain, with far-distant sources sending the
majority of their input to deep layers, and nearby sources sending
most of their signals to superficial layers of V112,14,17. In this context, an
intriguing series of questions arise: how do different types of laminar
feedback shape our conscious experience? Is low-level feedback to
superficial layers linked to high-precision perceptual or (almost)
perception-like experiences? Does feedback to deep layers serve the
formation of a more malleable ‘inner’ sensory world that we can keep
separate from our ongoing perception? Does feedback information in
superficial layers reflect a negative prediction error related to the
expectation of a contour when in fact no contour is present? Inter-
estingly, although overall decoding of mental imagery remained non-
significant in superficial layers, there were some individuals in our
experiments who showed above-chance decoding here too, whereas
others did not (Supplementary Figs. 10 and 12). It is possible that inter-
(and intra-) individual differences in the laminar information profile of
mental imagery might account for how strong or ‘real’ it might be
experienced: that is, a mental imagery experience might appear
stronger, more precise ormore ‘real’when a larger portion of imagery-
related signals reach not only deep, but also superficial layers via the
longer/slower path through the visual cortex hierarchy, or through
bifurcations from the deep layers. On the other hand, one study found
that visual expectations—possibly arising from feedback from the
hippocampus—only led to activity increases in deep layers29. As strong
visual expectations or predictions are also thought to be the basis of
hallucinatory experiences, this would speak against the idea that the
‘realness’ of experiences is necessarily linked to superficial layer
feedback signals. We only used a sample of subjects with high imagery
ability, so future research is needed to compare variability in imagery
strength and its correlations with brain data.

In this work, we find that imagery content is decodable mainly
from deep layers of V1, whereas seemingly ‘real’ illusory content is
decodable mainly from V1 superficial layers. More research is neces-
sary to disentangle whether our ability to exert volitional control over
conscious sensory experiences and our perception of ‘realness’ are
linked, or independent of each other. A recent study proposed that
internal stimulation can be perceived as real once it passes a reality
threshold30. Our finding that unlike perception, mental imagery is only
significantly decodable in certain V1 layers, and that illusory percep-
tion and perception share information in V1, whereas mental imagery
does not, will further help us to refine theories that mental imagery is
‘perception-like’ in nature11. This important difference in layer-wise
processing had been missed with conventional fMRI technology,
which lacks the precision to look at brain signals at different cortical
depths.

Methods
Participants
fMRI data were collected from 18 healthy participants in Experiment 1
(19–36 years, M = 23.3, SD = 4.96; 14 females and 4 males), and 12
healthy participants in Experiment 2 (19–31 years,M = 23.2, SD = 4.02; 8
females and 4 males;). All had normal or corrected-to-normal vision.
The participants were recruited from a larger samplewho underwent a
behavioural pre-test designed to quantify individual imagery strength.
This pre-test sample consisted of 55 individuals in Experiment 1
(18–36 years; 20 males, 35 females) and 52 individuals in Experiment 2
(18–33 years, M = 23.1, SD = 3.76, 18 males, 34 females). Four of the
participants of Experiment 2 had already participated in Experiment 1,
and therefore did not do the pre-test again. Of the pre-sample of
Experiment 1, 21 participants had an imagery strength score that met
or surpassed anapriori-defined threshold andwere invited to takepart
in the main fMRI experiment. In total, 18 of these completed the fMRI
experiment. For Experiment 2, 11 participants surpassed the a priori-
defined threshold (plus the 4 participants who had already taken part
in Experiment 1, i.e., 15 in total). In all, 12 of them completed the fMRI
experiment. Due to bad inter-run alignment in two data sets in
Experiment 1 and two data sets in Experiment 2 (see functional GE-EPI
data pre-processing), analyses were conducted with the data sets of 16
participants (Experiment 1), and 10 participants (Experiment 2). Parti-
cipants were recruited from the participant pool of the Institute of
Neuroscience and Psychology, University of Glasgow. Preceding the
study, fMRI piloting sessions were conducted with 3 participants at
the Maastricht Brain Imaging Centre, Netherlands. All subjects gave
informed consent and were paid for their participation. The study was
approved by the ethics committee of the College of Science and
Engineering and theCollegeofMedical, Veterinary and Life Sciences of
the University of Glasgow.

Behavioural pre-test to quantify individual imagery strength
The ability to imagine visual content varies greatly between
individuals31–34. Furthermore, an individual’s ability to form a mental
image is associated with enhanced decoding accuracy of fMRI activity
patterns in early visual cortex35. This suggests a link between mental
imagery ability and the precision of imagery-related visual cortex sig-
nals measured by fMRI. To increase the probability of finding mean-
ingful imagery-related V1 activity patterns and thereby increase the
statistical power of the study36, we ran behavioural pre-screenings to
identify individuals with good visual imagery abilities. We used a
behavioural paradigm that quantifies individual imagery strength by
measuring its impact on subsequent conscious perception of a bino-
cular rivalry display10,32–34. Binocular rivalry occurs when the two eyes
see two different images, one to each eye. This setup results in the
phenomenon that perception alternates between the two images, with
one image reaching conscious awareness while the other one is
suppressed37,38. Importantly, previous work has shown that preceding
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Fig. 3 | Second-level analysis of the two critical stimulus conditions. In a second-
level analysis across both experiments, we fitted a linear mixed model to predict
decoding accuracywith depth, experiment and the two critical stimulus conditions
(mental imagery and illusory perception). Model predictions for both conditions
(across experiments; thicker lines) are plotted alongside the experimental data
(thinner lines). For separate model predictions for the individual experiments, see
Supplementary Fig. 13. Source data are provided as a Source Data file.
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imagery can bias brief subsequent binocular rivalry perception, with
the previously imagined stimulus having a higher chance to gain
dominance. This bias is further increased with longer periods of
imagery10, and when the stimulus is imagined more vividly in a given
trial34,39. In addition, individual imagery ability quantified by this
paradigm is linked to individual visual working memory storage32,33,
and is highly stableover time34. Taken together, evidence suggests that
determining individual imagery ability by quantifying its impact on
subsequent binocular rivalry perception might be a valid and reliable
method with which to identify individuals with good imagery ability.

In the behavioural pre-test session, participants sat in a darkened
room at a distance of 60 cm from a computer screen (ASUS PG278Q,
27”), their heads stabilised using a chin rest. They wore crystallised
shutter glasses (NVIDIA 3D VISION 2), which allows different images to
be projected separately to each eye, thereby making it possible to
induce binocular rivalry. Experimental stimulation was controlled
using MATLAB R2016a, in combination with the Psychtoolbox v3.0.13
extension40, running on a DELL Precision T3500 computer with an
Intel® Xeon® CPU processor and anNVIDIA GeForce GTX970 graphics
card. Participants were instructed to maintain fixation on the central
fixation cross throughout the experiment. Apart from the white fixa-
tion cross, the screen remained black. Participants completed two
tasks. Prior to the imagery strength task, participants did an eye
dominance task designed to adjust the luminance of the two stimuli to
each individual’s eye dominance. Individual differences in eye dom-
inancewould otherwise affect binocular rivalryperception, resulting in
a bias for the image that is viewed with the more dominant eye. The
procedure has been described previously10,34; in short, it applies an
adaptive testing procedure designed to individually adjust the lumi-
nance of the two colours such that it is equally likely for each to gain
perceptual dominance. Following the eyedominance task, participants
completed two training trials of the imagery test to familiarise them-
selves with the task. If necessary, further adjustments of the luminance
values were done before the main imagery task.

At the beginning of each trial of the imagery strength task (Sup-
plementary Fig. 1A), a grey letter ‘R’ or ‘G’ (1.3 cm in size, i.e., 1.2° visual
angle) appeared in the central lower part of the screen, at a distance of
4.9 cm (4.7°) from the fixation cross. The letter cued the participants as
to which of the two colours they should imagine in the given trial—‘R’
for red, ‘G’ for green. The cue was shown for 1 s, and was followed by a
1 s break, during which only the fixation cross was visible. Following
this phase, a faint grey circle (radius of 3.65 cm; 3.5°) was presented for
7 s, centred on the fixation cross. During these 7 s, participants were
asked to imagine the colour as vividly as possible andwithin the frames
of the faint grey circle on the screen. Following this 7-s imagery phase,
the circle disappeared, and the word ‘vividness?’ appeared in the
central lower part of the screen (at a distance of 4.9 cm/4.7° from
the fixation cross), instructing participants to rate how vivid their
mental image of the colour had been (scale ranging from 1 to 4where 1
represented the lowest and 4 the highest level of vividness). After
responding with a key press, the binocular rivalry display appeared for
0.75 s, showing circular Gaussian-windowed green and red colour sti-
muli, one shown to each eye. When the binocular rivalry display dis-
appeared, participants were instructed to indicate via a key press
whichof the twocolours hadbeendominant (‘1’ for red, ‘2’green, ‘3’ for
mixed). 10% of the trials were catch trials, where a mixture of both
colours was presented to each eye; in these trials, participants should
give a ‘mixed’ response; the failure to do so is an indicator of decision
bias. Each participant completed one run with n = 100 trials, with one
break after completing half of the trials. Individual imagery strength
was defined as the individual bias with which the imagined stimulus
gained perceptual dominance during subsequent binocular rivalry:
imagery strength (%primed) = nprimed/(n–nmock – nmixed), with nprimed

being the number of (non-catch) trials in which the imagined colour
matched the colour that was subsequently dominant during binocular

rivalry, n the total number of trials, nmock the number of catch trials,
and nmixed the number of (non-catch) trials in which participants
reported a mixed percept. An arbitrary, a priori-defined threshold of
60% priming was set as a threshold to identify individuals with good
enough imagery ability (Supplementary Fig. 1B). Individuals that
scored priming values at or above the threshold level were invited to
participate in the fMRI study. The subjective vividness ratings that
participants gave were not used as a criterion for participation in the
fMRI sessions but were used in further analyses to check the validity of
the pre-test (Supplementary Fig. 1C, D).

fMRI experimental procedure and design
Unless otherwise stated, fMRI experimental procedure, design, data
collection, pre-processing and analysis was done analogously in
Experiment 1 and2. In a 7 TMRI scanner, participants completed6 runs
of task-related experimental stimulation, and 2 retinotopic mapping
runs. 2 participants of Experiment 2 completed the retinotopic maps
on another day. Throughout the experiment, participants were asked
tomaintain fixation on the white central fixation cross on an otherwise
black screen. Fixation was monitored using an eye tracker (EyeLink
1000 Plus, SR Research). However, the eye tracker was often not able
to track the eyes accurately throughout the runs because the head coil
limited the camera’s field of view. This issue rendered the data unu-
sable for most participants; the data of those participants in which eye
tracking was possible throughout all runs suggest that they were able
to maintain strong fixation and that eye gaze position correlates very
highly across conditions and colours (Supplementary Fig. 14). The
screen was attached to the top end of the scanning table and viewed
through a mirror attached to the head coil, at a viewing distance of
~96 cm. The task consisted of five conditions, in which participants
were asked to view or imagine coloured shapes that were either red or
green (Fig. 1A). Each condition was shown in blocks of 8 s, interleaved
by inter-stimulus intervals (ISIs) thatwere jittered between 7 and 8 s. In
each run, each condition was shown 6 times, i.e., three times with red
stimuli, and three times with green stimuli. The luminance of the sti-
muli was kept the same for all participants. In the perception condi-
tion, participants viewed auniformly redor greendisk presented at the
centre (radius of 3.1°; in 4participants, the radiuswas3.7°),flashing at a
frequency of 4Hz. In the imagery condition, participants were asked to
imagine that same red or green disc, with the area of imagery indicated
by a faint grey circle around the fixation cross. The letter ‘R’ or ‘G’ cued
participants as to which colour to imagine (red or green). It was pre-
sented for 1 s, 2 s prior to the presentation of the faint grey circle,
which signalled the onset of the imagery task. Importantly, the cuewas
presented in the periphery outside of the grey circle presented sub-
sequently, and its location on the screen was randomised but kept at a
stable distance of 4.3° to the central fixation cross (5.1° in 4 partici-
pants). Since some participants had difficulty seeing the lower central
part of the screen due to the head coil, this part of the screen was
spared (i.e., the cue never appeared here). In the illusory perception
condition of Experiment 1, participants viewed a visual illusion, known
as neon colour spreading, in which 4 peripheral Pacman-shaped sti-
muli elicit the illusion of a coloured (red or green) square, with illusory
coloured boundaries continuing beyond the edges of the coloured
Pacman shapes in the periphery. The four pacman-shaped stimuli were
eachpresented inoneof the four quadrants of the screen, respectively,
with the centres of the stimuli located at a distance of 6.24° to the
central fixation cross (7° in 4 participants). Each consisted of five
concentric rings of increasing radii, the distance between radii
remaining constant. The outermost (and largest) ring’s closest dis-
tance to the central fixation cross was 3.94° (4.71° in 4 participants).
The inwardly directed quarter of the rings was either red or green,
thereby leading to the illusion of a coloured square. The remaining
three-quarters of the ring were white. In the third condition, we pre-
sented an ‘amodal’ version of this illusion, inwhichawhite contourwas
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placed in the area between the Pacman-like rings, thereby attenuating
the illusion (the contour’s closest distance to the central fixation cross
being 3.86°; 4.61° in four participants). In the mock version of the
illusory perception condition, the pacmen were rotated outwards,
such that no illusion of a coloured shape should arise. In Experiment 2,
which presented a conceptual replication of Experiment 1, we used the
same five conditions. However, in contrast to Experiment 1, the
Pacman-like stimuli of the illusory, amodal and mock condition were
shifted sideways, such that the illusory contour of the right (illusory)
edgewould fall in the central visualfield. This way, the illusory contour
should also be represented by the foveal region of V1, as in the per-
ception and mental imagery conditions (which remained the same as
in Experiment 1). The outermost (and largest) ring’s closest distance of
the Pacman-like rings in the lower and upper central region to the
central fixation cross was 2.2°. Before starting the experiment, we
ensured that each subject was able to see the illusion-inducing per-
ipheral stimuli. Our experience with Experiment 1 showed that some
participants had difficulty seeing the lower central part of the screen
due to the head coil (in Experiment 1, there were no stimuli shown
here). Therefore, in Experiment 2, we ensured that participants’ heads
were positioned in the head coil in such a way that they would see the
lower and upper central parts of the screen, where two of the Pacmen
of the shifted stimulus conditionswerenow located. At the endof each
run in both experiments, we also presented contrast-inverting (4Hz)
chequerboard patterns. In Experiment 1, one was a disc in the central
target region with a radius of 2.1° (2.6° in 4 participants) from the
central fixation cross, and one was ring-shaped, surrounding the cen-
tral target region (spanning an area from a radius of 2.1° to 4.4° from
central fixation; 2.6° to 4.9° in 4 participants). In Experiment 2, the
chequerboard target stimulus had the shape of a semi-circle, located
along the illusory contour that passed through the central region of
the visual field. The area of the semi-circle encompassed the central
fixation cross; its straight edge had a total length of 3.6° (i.e., 1.8°
upwards and downwards from the horizontal meridian), and passed
the central fixation cross to the right at a distance of 0.7° at its closest
point. The surround was mapped with a circle-shaped chequerboard
that spared the portion of the semi-circle target region. The target >
surround contrast was used tomap the central target region in V1, and
to compare this region with the central target region identified by
population-receptive field (pRF) mapping to visually cross-check the
validity of the pRF mapping (see below). The ROI definition was then
made on the basis of pRFmapping. Note that this central target region
identified by the target vs. surround contrast and by the pRFmapping
was smaller than the area in which the stimulus was viewed or ima-
gined in the perception and imagery condition. We did this for two
reasons: first, to ensure that evenwith small shifts of the centre of gaze
due to unavoidable saccades, the coloured disc would still be repre-
sented by foveal V1 neurons. Second, it limited the risk that despite
small gaze shifts, the peripheral pacman stimuli of the illusory and
control conditionswould fall within the receptive fields of the foveal V1
region thatwe decoded from, as the pacmen contained actual (and not
just illusory) colour. Following the six task runs, we also acquired Polar
Angle and Eccentricity maps. These data were used: (1) to map V1
retinotopically on the cortical surface41,42; and (2) to compute pRF
maps, to determine which portions of V1 represent which portions of
the visual field19. In the polar anglemapping run, participants viewed a
contrast-inverting (5Hz) black and white chequerboard wedge rotat-
ing anti-clockwise around the central fixation cross. The wedge had an
angle of 22.5° and rotated at a constant angular speed around the
fixation cross 12 times, each cycle lasting 64 s. In the Eccentricity
mapping run, participants viewed a contrast-inverting black and white
chequerboard ring, slowly expanding from the centre of gaze to the
periphery. An expansion cycle lasted 64 s and was repeated 8 times.
The Polar Angle and Eccentricity measurement induces phase-
encoded neural activity that allows us to estimate the boundaries

between early visual areas (Polar Angle) and to match the different
expansion radii of the visual stimulus to the eccentricity radii on the
cortical surface (Eccentricity mapping). Both wedge and ring stimuli
were presented in front of a grey background with a target spanning
the screen, centred on the fixation cross. Before and after the pre-
sentation of the wedge or the ring, there was a baseline phase of 12 s,
during which only the background and fixation cross were presented.
In both polar angle and eccentricity runs, the participants’ task was to
maintain fixation on the central fixation cross.

fMRI data acquisition
fMRI data were acquired in a Siemens 7-Tesla Terra Magnetom MRI
scanner with a 32-channel head coil located at the Imaging Centre of
Excellence of theUniversity ofGlasgow. Eachof the six task-related runs
consisted of 272 T2*-weighted gradient-echo echoplanar (EPI) images
using the CMRR MB sequence with an MB factor of 1 (voxel resolution:
0.8 ×0.8 ×0.8mm3 isotropic resolution, distance factor: 0%, 27 slices,
FoV=148mm, TR= 2000ms, TE = 26.4ms, flip angle: 70°, slice timing:
interleaved, bandwidth = 1034Hz/px, phase-encoding direction: head
to foot). The EPI slab was positioned along the calcarine sulcus of
occipital cortex, whereV1 is located.Weused the same sequence for the
retinotopic mapping runs, acquiring 396 volumes for the Polar Angle
and 268 volumes for the Eccentricity mappings. In order to identify
susceptibility-induced distortions, which can distort the functional EPI
images andmake it hard to align them to the anatomical images,wealso
recorded five volumes of the same EPI sequence with the phase-
encoding direction inverted. This way, it is possible to estimate field
distortions and correct for them using FSL’s topup tool43,44. Note,
however, that distortion correction can introduce blurring, and thus
introduce the risk that the true laminar activity (pattern) profile remains
concealed45. It should therefore be used with caution and only if
necessary. In addition, whole-brain, high-resolution T1-weighted
MP2RAGE images were acquired (voxel resolution: 0.63 ×0.63 ×
0.63mm3 isotropic resolution, 256 sagittal slices, TR= 4680ms, TE =
2.09ms, TI1 = 840ms, TI2 = 2370ms, flip angle1 = 5°, flip angle2 = 6°,
bandwidth = 250Hz/px, acceleration factor = 3 in primary phase-
encoding direction, FOV= 240mm). In order to scale the applied vol-
tage to achieve accurate flip angles for the scanning session, we also ran
a 3DREAM B1 mapping sequence in Experiment 1 beforehand46 (voxel
resolution: 4.5 × 4.5 × 4.5mm3 isotropic resolution, 44 slices, FOV=
288mm, TR= 5000ms, TE1 =0.9ms, TE2 = 1.54ms, flip angle1: 60°, flip
angle2: 8°).

functional GE-EPI data pre-processing
Functional imaging data were analysed using BrainVoyager 20.647,48.
Functional image pre-processing involved 3D-motion correction, slice
time correction, high-pass filtering, and coregistration to the T1-
weighted anatomical images using boundary-based registration. To
ensure the functional runs were excellently aligned to each other,
which is imperative for meaningful multivariate pattern analyses with
high-resolution voxels, we computed inter-run spatial cross-
correlations of the signal intensities of the functional volumes.
Where necessary, BrainVoyager’s VTC-VTC grid search alignment and
spatial transformation tools with sinc interpolation were used to
improve inter-run alignment until it was at least r >0.9 on average, and
showed good alignment visually. Further, functional-anatomical
alignments were checked visually to ensure that the functional scans
were well aligned to the anatomical image at the location of and
around the ROI (Supplementary Fig. 15). Due to the relatively small
ROIs, no susceptibility-induceddistortion correctionusing FSL’s topup
tool was necessary, thereby avoiding the previously mentioned con-
founds that distortion correction can cause45. However, the data of 2 of
the 18 participants in Experiment 1 showed very bad inter-run align-
ment (r = 0.13 and r =0.38, respectively), and after several failed
attempts to improve the alignment, the two data sets were removed
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from further analysis. Similarly, in Experiment 2, 2 of the 12 partici-
pants showed below-threshold inter-run alignment, and one of these
two also showed no discernible retinotopic maps in either of the two
hemispheres. Although the initial alignment was not as low as that of
the two participants in Experiment 1 (r =0.72 and r = 0.85), multiple
attempts to improve alignment enough to pass the a priori-defined
threshold of r > 0.9 failed, and therefore the two data sets were
removed from further analysis.

T1-weighted anatomical data pre-processing
We first processed the anatomical imaging data with a range of brain
imaging software, before converting them to BrainVoyager format to
continue processing. We used FSL to upsample the anatomical data to
0.4mm3 (FMRIB’s Software Library49, www.fmrib.ox.ac.uk/fsl). For a
preliminary white matter-grey matter segmentation, we then pro-
cessed anatomical imaging data using a custom-written pipeline
described previously50,51. The pipeline uses R52, AFNI53, and nighres54.
Where necessary, we corrected the results of the automatic segmen-
tationmanually using ITK-SNAP55. Our focus of themanual corrections
was on V1, and we took great care to ensure that the grey matter
segmentation result did not contain any parts from the sinus or skull.
The corrected segmentationwas thenused tomask theoriginal images
using FSL. We then converted themasked anatomical image, as well as
thewhitemattermask, to BrainVoyager format to continue processing
in BrainVoyager. After a rigid-body transformation of the anatomical
images into ACPC space, the white matter mask was drawn onto the
anatomical image in a first step, before using BrainVoyager’s advanced
segmentation tool for the GM-CSF segmentation. From the segmented
white matter-grey matter boundary, we reconstructed the surface of
the occipital lobe. The retinotopic mapping-based estimation of V1
boundaries and the definition of the ROIs within V1 was then done on
the inflated cortical surface (see below). This process was done indi-
vidually for every dataset.

Retinotopic mapping of V1 boundaries
We estimated the boundaries of V1 using the fMRI data recorded
during thepreviously described retinotopicmapping scans. Inorder to
estimate V1 functionally, a Fourier transform was applied to each
voxel’s fMRI time series of the polar angle and eccentricity mapping
run in order to compute amplitude and phase at stimulation
frequency41,42. The different phase angles were then colour-encoded
and mapped onto the inflated cortical surface. Each colour repre-
sented an F-ratio of the squared amplitude divided by the average
squared amplitudes at all other frequencies. On the basis of the colour
encoding, the boundary segregating V1 from V2 was then estimated
manually on the cortical surface for each individual subject. Due to the
small slab of the functional volume, only V1 could be estimated. In 2 of
the 16 participants, the colour encoding did not reveal a retinotopic
map in one of the hemispheres (left hemisphere in S12 and right
hemisphere in S13), and therefore V1 could only be estimated in the
other hemisphere.

Regions of interest definition in V1 using population-receptive
field mapping (pRFs)
Following the retinotopic mapping-based estimation of V1, we identi-
fied our regions of interest in V1 using an approach informed by pRF
mapping (Supplementary Fig. 2). Using visual field mapping stimula-
tion, population-receptive field mapping allows to estimate which
portion of the visual field an fMRI voxel is most responsive to19. To
compute pRFs, we first createdmodel time courses that predicted how
a voxel’s time course responsive to a certain portion of the visual field
would look during eccentricity and polar angle mapping stimulation.
We assumed a standard isotropic Gaussian model; we first created a
Gaussian window for every portion of the visual field, defined by its
spatial coordinates x and y, as well as by its size (i.e., standarddeviation

in the Gaussian model). Models of 24 different sizes (i.e., standard
deviations) were estimated, with the centre of each Gaussian window
being one standard deviation apart from the next. Then, we estimated
for each of thesemodels how a voxel’s response to the polar angle and
eccentricity stimulation should look over time, if it was responsive to
that visual portion. In a next step, we computed the correlations
between every V1 voxel’s actual time course, and the predicted time
courses for all portions of the visual field. For every voxel, we then
determined which visual portion it was most responsive to, based on
which model explained most of the variance of the voxel’s responses
(r2) over time.

Using this approach, we identified preliminary ROIs by deter-
mining those fMRI voxels whose population-receptive fields (with a
spread of 1 standard deviation) fell within those portions of the visual
field thatwewere interested in (Fig. 1C). To shield fromexcessive levels
of noise in our models, we thresholded r2, such that only those voxels
whose best model’s fit exceeded the threshold were included. We
chose an r2-value that was as high as possible, while at the same time
ensuring that there were still enough voxels above the threshold in
each subject. In Experiment 1, this thresholdwas r2 = 0.2. In Experiment
2, where the visual area of interest was smaller, we had to lower the
threshold to 0.1, as there were a number of participants in which no or
too few voxels (≤10 across both hemispheres) exceeded the threshold
of 0.2, making an estimate of the ROI impossible otherwise. This
thresholding procedure is very conservative and protects against
noise. However, it also has the consequence that it mostly identifies
voxels in the superficial portions of grey matter (see Supplementary
Fig. 3 for an illustration of the effect of different r2 thresholds). This is
likely because GE-EPI data generally yield stronger responses in the
superficial depths compared to voxels in deeper portions27. To ensure
that all cortical depth layers were represented in the ROI without any
biases towards superficial voxels, and to correct for the fragmented
nature of voxel identification, we used the following procedure. First,
we projected the functional voxels in question onto the inflated cor-
tical surface. Second, we manually drew boundaries around the pat-
ches and labelled them. Last, we projected these patches from the two
hemispheres back into volume space, where we combined them into
one ROI and proceeded with the cortical depth-layer segmentation. It
is known that neurons are organised in hypercolumns56, which means
that neurons in the deeper layers represent the same visual portion as
those ‘stacked’ on top of them in the more-superficial layers. As a
consequence, it is neuroanatomically justified to include voxels from
all layers for a portion on the cortical surface thathasbeen identified as
aROI. Further, the retinotopic structureof the cortex along the cortical
surface is known to be smooth and change only gradually41; the frag-
mented nature of the rawROIs derived frompopulation-receptive field
mapping is thus thought to be mostly due to noise. Overlaid retino-
topic maps and the ROI’s anatomical position on the cortical surface
were also used for additional validation of our approach. As another
sanity check, we also compared the location of the pRF-defined ROI
with the region identified when using a target area vs. surround area
contrast (this contrast could be obtained from the chequerboard sti-
muli shown at the end of each run). Furthermore, we conducted cross-
checks using lower thresholds for r2 to confirm that our approach was
adequate. As shown in Supplementary Fig. 3, the pRF-defined regions
grew into the deeper grey matter portions in question when the r2-
threshold was lowered.

In each individual of Experiment 1, we identified 2 ROIs: first, a
foveal ROI to examine the information content of the V1 portion that
represents the central visual field. This ROI was computed from the
same visual portion that was mapped using the target vs. surround
contrast from the task-related experimental runs. It spanned a radius
of 2.1° from central fixation (2.6° in 4 participants). As a “sanity check”,
we visually cross-checked the location of the central ROI mapped by
pRFs with the one estimated by the target vs. surround contrast.
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Second, we determined a peripheral ROI, located at the four illusory
boundaries of the illusory square. The visual portions presented four
semi-circles, with the straight edge positioned along the illusory
boundary (at a distance of 4.2° to the centralfixation cross; 4.7° in four
participants). Due to the head coil in the fMRI scanner, which limited
visibility of the lower (and, sometimes, upper) central part of the
screen in most participants, the majority of the identified voxels had
their pRF in the right or left semi-circles, and fewer were located in the
lower and upper ones.

In Experiment 2, we identified one foveal ROI that represented the
semi-circle-shaped visual area along the centrally located illusory
contour. Similar to Experiment 1, this ROI was computed from the
same visual portion that was mapped using the target vs. surround
contrast from the task-related experimental runs. It encompassed the
central fixation cross; the straight edge of the semi-circle had a total
length of 3.58°, passing the central fixation cross at a distance of 0.68°
at its closest point. Again, like in Experiment 1, we visually cross-
checked the location of the central ROI mapped by pRFs with the one
estimated by the target vs. surround contrast as a “sanity check”. To
ensure that differences in voxel numbers between layers do not
explain our results, we ran a linear mixed effects analysis testing voxel
number by depth and ROI (voxel number ~ depth + roi + roi:depth,
random factor: ~1 + depth + ROI+ depth:ROI | subject). The model
confirms that the effect of depth is non-significant (beta = 24.58, 95%CI
[-120.84, 170.00], t(225) = 0.33,P = 0.739). Therewasalsono significant
interaction between depth and ROI (P >0.33, Supplementary Fig. 16).

Cortical depth-layer segmentation
After creating a cortical thicknessmap, BrainVoyager’s high-resolution
cortex depth grid sampling tool was used to segment the grey matter
of the ROIs into 6 equidistant cortical depth layers (at 0.1, 0.26, 0.42,
0.58, 0.74, and 0.9 depth). This was done on the T1-weighted anato-
mical image, to which the functional images had been aligned. Note
that with the coarse resolution of high-resolution MRI compared to
histological methods, cortical depth sampling based on equidistant
sampling results in only slight differences compared to equivolume
sampling57. The comparatively coarse resolution also has the con-
sequence that grids at specifieddepth levels partly use the samevoxels
as the neighbouring grids, which means that they are not fully inde-
pendent. For example, some voxels that were included in the grid at
0.9 depth may also have been part of the grid at 0.74 depth.

Univariate and multivariate analyses of ROI activity
To investigate univariate differences across the 6 cortical depth layers
of the ROIs in the different conditions, we computed a GLM analysis,
modelling each condition with canonical (i.e., two-gamma) hemody-
namic response functions (HRF), time-locked to the presentation of
the stimuli in the experimental runs. The default settings of the Neu-
roElf toolbox were used (time to response peak: 5 s, time to under-
shoot peak: 15 s, positive-to-negative-ratio: 6, onset delay: 0 s, no
derivatives). The two colours in each condition were modelled sepa-
rately, resulting in a total of 10 factors of interest. The target and
surround mapping block at the end of the experimental runs were
regressed out as additional factors.

For the multivariate pattern analysis, a linear SVM classification
with default parameters was computed (LIBSVM toolbox58, v2.86).
Voxels whose raw mean BOLD signal intensities were below 100 were
removed prior to the analysis. Beta weights for every trial were then
estimated in a GLM analysis. Before entering the data into the SVM
classifier, the beta weights were normalised by rescaling the values
between −1 and 1. Classification models for the different depths were
trained using the C-SVM method (cost parameter = 1) with a linear
kernel, implemented in the LIBSVM toolbox, v2.8658. Tolerance for
termination was 0.001 (default setting) and cost parameters were
equal across classes (i.e., no appliedweighting scheme for thedifferent

conditions). Cross-validation was performed in a leave-one-run-out
manner. The reported SVM accuracies were averaged across cross-
validation folds.

Both the univariate and multivariate analyses were conducted
using custom-written scripts in MATLAB R2015b & R2016 in connec-
tion with BVQX v0.8b /NeuroElf v0.9c toolboxes.

Illusory perception vs. mock illusion decoding and visual
projections
Previous work has found that illusory contours involve a selective
activation of deep V1 layers7. In contrast, in our multivariate pattern
analysis, we can only decode illusory colour at superficial depths in our
study. However, differences in the analyses of these two studies could
have contributed to these differences in findings. In our study, we
decoded two illusory colours against each other, whereas Kok et al.
looked at (univariate) activity differences between the condition when
an illusory figure was present and when it was not. For better com-
parability with Kok et al.’s results, we ran an additional SVM classifi-
cation analysis, where we decoded the illusory perception condition
against the mock version of the illusion. As the stimuli in our study
were presented in two different colours, we could compute SVM
classification accuracies across the6 cortical depths twice, once for the
red stimuli, and once for the green stimuli. This also allowed us to
assess the reliability of the analysis. See Supplementary Fig. 4A, B and
Supplementary Note 1 for results. In addition to computing SVM
classification accuracies, we also projected voxel influence on SVM
classification59 from the different cortical layers into visual space using
a weighted average method based on voxel pRF models60 (see Sup-
plementary Fig. 4C). Instead of displaying voxel influence in cortical
space, this approach thus translates voxel influence into visual space,
giving an idea ofwhich visual field portions (or pixels) contributemost
to SVM classification. Here, we were interested in which sub-portions
of the visual field areas represented in the peripheral V1 ROI were
particularly influential for SVM classification. The method takes the
following form:

yi =
ΣjðwijxjÞ
Σjwij

where yi is the activity at a visual field pixel i, and x is a vector of SVM
weights converted to voxel activity. Note that the term activity here
does not refer to BOLD activity, but to the influence that different
portions of the visual field have on SVM classification analyses. w is a
matrix of vectorised pRF functions for the voxels in x, with columns j
representing voxels, and rows i representing how much a particular
visual field pixel is represented by a particular voxel. yi can become
arbitrarily inflated when Σjwij is extremely small, as is the case in areas
of the visual field without sufficient pRF coverage. We therefore
truncated each pRF function to have only weights within 2σ of its
centre and defined yi = 0 for pixels with Σjwij =0.

Statistical testing
Our study aimed to explore the question in which cortical depth
layers of our regions-of-interest perceptual/imaginary/illusory sti-
mulus information was decodable. To answer this question, we tes-
ted the mean SVM classification accuracy across subjects for each
stimulus condition at each cortical depth against chance level (50%),
using bootstrapping of the mean with 10,000 samples. Such a non-
parametric approach instead of standard parametric tests is recom-
mended for comparing classification accuracies in low sample sizes,
as distributions tend to be skewed61. The statistical significance level
of α = 0.05 (one-sided) was corrected formultiple comparisons using
false discovery rate (FDR; 60 comparisons across all six layers, five
conditions, and two regions of interest in Experiment 1; 30 com-
parisons across all six layers and five conditions in Experiment 2). As
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statistical significance was assessed in a one-sided fashion to com-
pare mean decoding accuracy against chance level in the boot-
strapping analysis, we provide the 90% confidence intervals (instead
of the 95% confidence intervals) which indicate the 5% and 95%
brackets of the distribution of bootstrapped means. Paired t tests
were conducted to compare classification accuracies for imagery and
illusory perception at deep and superficial depths at which imagery
and illusory perception showed significant above-chance decoding
(t tests could be used as the classification differences did not violate
the normality assumption).

In a second-level analysis, we then fitted a linear mixed model
(estimated using REML and nlminb optimizer) to predict decoding
accuracy with depth, experiment and stimulus condition using R and
the lme function of R’s nlme package. This was done to compare the
two critical conditions—mental imagery and illusory perception—
more directly at the different cortical depths. Computing a linear
mixed model has the advantage of avoiding the multiplication of
tests and therefore multiple comparisons by using parameterisation
across layers and between experiments62. This enables us to harvest
the power of accumulating evidence. The parametrization across
cortical depth was possible because the number of cortical depths
we define is arbitrary, these depths are partially overlapping, and
they only have a statistical correspondence with histology. The
second-level analysis approach also allowed us to examine any sta-
tistical differences between the two experiments. To compute the
model, we first pooled the data of the critical conditions from the
two experiments—i.e., mental imagery decoding in the central ROI
and illusory perception decoding in the peripheral ROI from
experiment 1, and mental imagery and illusory perception decoding
in the central ROI from experiment 2. We included as predictors an
intercept, depth, experiment, stimulus condition, the interaction
between experiment and depth, between stimulus condition and
depth, between experiment, stimulus condition and depth. As ran-
dom effects across participants, we included intercept, depth and
the interaction between stimulus condition and depth.

Further, using R with rstatix, 2 (foveal vs peripheral ROI) x 10 (sti-
mulus condition in each of the two colours) x 6 (cortical depth) repe-
atedmeasures ANOVAwas used to examine the results of the univariate
analysis (with 10 stimulus conditions insteadof 5 todistinguish between
red and green colour; Supplementary Fig. 6). Prior to computing the
repeated measures ANOVA, we used bestNormalize59 to transform the
data to obtain normal distribution of the response variable. Post-hoc
pairwise t tests to directly compare illusory perception condition
against the mock and amodal condition at different depths were cor-
rected for multiple comparisons using the false discovery rate (FDR).

To analyse the relationship between imagery strength and sub-
jective vividness in thebehaviouralpre-testdata,weusedSpearman rank
correlation for the between-subject analysis (Supplementary Fig. 1C), as
thenormality assumption for the imagery strength valueswas violated in
Experiment 1 (Shapiro–Wilknormality test:W=0.90,P<0.001). Further,
to examine the trial-by-trial relationship between imagery-induced
priming and vividness, we computed a linear mixed effects model with
a 2 (group) × 4 (vividness rating) design (Supplementary Fig. 1D). As a
random effect, intercepts for subjects weremodelled. We inspected the
plots of the residuals visually and computed Shapiro–Wilk tests to
ensure they did not show deviations from homoscedasticity and nor-
mality. As the residuals were not normally distributed (Experiment 1:
W=0.956, P<0.001, Experiment 2: W=0.961, P<0.001), an ordered
quantile normalisation was applied to transform the data before com-
puting the model using bestNormalize63. The analysis of the pre-sample
data of Experiment 2 was conducted analogously.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in the EBRAINS
Knowledge Graph, https://kg.ebrains.eu/search/instances/Dataset/
de7a6c44-8167-44a8-9cf4-435a3dab61ed. Access to this resource
requires free user registration at https://www.ebrains.eu/page/sign-up.
The source data presented in the figures are provided with this paper
and is available at https://gitlab.com/joebee/7t-imagery-illusory-in-v1-
layers. Source data are provided with this paper.

Code availability
The code of this study is available at https://gitlab.com/joebee/7t-
imagery-illusory-in-v1-layers.
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