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Abstract—We present a time skewing algorithm that breaks
the memory wall for certain iterative stencil computations. A
stencil computation, even with constant weights, is a completely
memory-bound algorithm. For example, for a large 3D domain
of 5003 doubles and 100 iterations on a quad-core Xeon X5482
3.2GHz system, a hand-vectorized and parallelized naive 7-point
stencil implementation achieves only 1.4 GFLOPS because the
system memory bandwidth limits the performance. Although
many efforts have been undertaken to improve the performance
of such nested loops, for large data sets they still lag far behind
synthetic benchmark performance. The state-of-art automatic
locality optimizer PluTo [1] achieves 3.7 GFLOPS for the above
stencil, whereas a parallel benchmark executing the inner stencil
computation directly on registers performs at 25.1 GFLOPS. In
comparison, our algorithm achieves 13.0 GFLOPS (52% of the
stencil peak benchmark).

We present results for 2D and 3D domains in double precision
including problems with gigabyte large data sets. The results
are compared against hand-optimized naive schemes, PluTo, the
stencil peak benchmark and results from literature. For constant
stencils of slope one we break the dependence on the low system
bandwidth and achieve at least 50% of the stencil peak, thus
performing within a factor two of an ideal system with infinite
bandwidth (the benchmark runs on registers without memory
access). For large stencils and banded matrices the additional
data transfers let the limitations of the system bandwidth come
into play again, however, our algorithm still gains a large
improvement over the other schemes.

Keywords-memory wall, memory bound, stencil, banded ma-
trix, time skewing, temporal blocking, wavefront

I. INTRODUCTION

Stencil computations are ubiquitous in scientific computing
primarily because the action of discretized local differential
or integral operators can be expressed in this form. Solving
large partial differential equations (PDEs) in reasonable time
requires iterative solvers, thus stencil computations are per-
formed repeatedly for many iterations. Moreover, many PDEs
are discretized over time, so there is an additional outer loop
for every time iteration.

Most often a stencil computations is just a linear weighting
of a small neighborhood. In this case, the stencil computation
represents a matrix vector product with the stencil weights
forming the rows of the matrix, and the discrete values of
the domain forming the vector. The arithmetic intensity of
such an operation is very low, with just one multiplication and
addition for every vector and stencil component read. Even
if the stencil weights are constant and can be stored locally,
there are still just two operations for every value read, whereas
synthetic benchmarks on our Opteron 2218 and Xeon X5482

suggest that peak bandwidth and peak compute performance
would be balanced if 14.9 and 52.6 floating point operations
were performed for each access to a double value in the main
memory, respectively, see Table I. So only a non-linear stencil
computation with many operations could prevent it from being
memory bound.

This imbalance between the computation power and system
bandwidth is called the memory wall problem [2]. The costly
introduction of double, triple and quad-channel memory buses
has temporarily stopped the further deterioration of this prob-
lem, but in the long run we will see a growing discrepancy
again: The cost-efficient exponential growth in the number
of cores in CPUs cannot be matched by the expensive bus
widening or data rate doubling at the same pace. Intensive
research into alternative technologies, e.g., stacked memory
or optical connection, is underway but an economic solution
for the mass-market is not yet in sight [3].

A. Related Work

For small discrete vectors that fit into the processor’s caches,
the cache bandwidth is the decisive factor of performance, but
stencils in scientific computing typically operate on data much
bigger than the cache capacity. Substantial work has been
performed to optimize the data locality in such cases up to the
point where tight lower and upper bounds on the number of
data loads can be given [4]. Recent results show large benefits
in applying these techniques on multi-core architectures [5].
But no matter how efficiently we load the data into the caches,
for data exceeding the cache size, we still read every vector
component at least once per timestep from the main memory
and for repeated applications of the stencil, this is far too
much. To further reduce access to main memory, we need to
exploit the outer loops that repeat the stencil computations over
the same domain and make use of temporal locality. When
advancing certain parts of the domain several stencil iterations
ahead of the rest, we need to respect data dependencies
induced by the form of the stencil. So called time skewing
techniques have been described by Wolf [6], Song et al, [7]
and Wonnacott [8]. Thereby, the time axis corresponds to the
number of iterations that the stencil is applied to the entire
spatial domain, e.g., this can be the explicit time steps of a
PDE solver, or the iterations of an iterative solver for linear
equation systems.

With this additional time axis we can form the space-time
domain Ω × {0, . . . , T}, where the data at Ω × {0} is given
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and the task is to compute a value for all remaining points
in the space-time, see Fig. 1. Now, the general idea of time
skewing is to tile the space-time into space-time tiles that can
be executed with very few cache misses and ideally also in
parallel. These requirements lead to skewed tiles in the space-
time, see Fig. 2. The tile dimensions form a large optimiza-
tion space which can be explored empirically [9]–[11] and
systematically [12]–[14], whereby it makes a big difference if
the exploration targets mainly data locality, or parallelism, or
both equally. A third approach is to use a hierarchical tiling
that adapts automatically to the available cache size, which is
thus labelled cache oblivious [9], [15], [16]. A more general
approach for optimizing iterative stencil computations is to use
a loop transformation and parallelization framework [1], [17]–
[20]. We compare our results against one of them in detail,
namely PluTo [1], which is an easy-to-use fully automatic tool
and a good indicator of the performance that can be achieved
immediately on these nested loops without any further user
interaction.

B. Motivation and Contribution

Common to all of the above approaches in case of a multi-
dimensional domain, is a multi-dimensional tiling strategy: the
time and multiple (not necessarily all) spatial dimensions are
divided in order to form space-time tiles of approximately the
same diameter in all divided dimensions. This minimizes the
surface area to volume ratio of the space-time tiles and thus
reduces cache misses. It is the best general strategy to traverse
a space-time of unknown size [21]. However, knowing the
typical cache size of 128KiB–4MiB per core and domain sizes
(100–1000)d, d = 2, 3 we contribute an algorithm that does the
exact opposite: we tile only one spatial dimension (resulting in
enormous space-time tiles) and use the relatively large caches
of nowadays cores to reduce the 2D or 3D problem to a 1D
problem, where spatial tiling is not necessary and instead a
wavefront traversal can be used. Motivation: We obtain large
space-time tiles that can still be processed in a SIMD friendly
and cache efficient manner.

Another major difference is the treatment of the mem-
ory hierarchy. Previous approaches use a multi-level tiling
strategy: they hierarchically subdivide the space-time tiles
either explicitly or automatically with the idea that the basis
of the sub-tiles will fit into a deeper cache level (e.g. L1)
and thus the sub-tile will be processed faster. We agree in
general, however, considering the concrete bandwidth and
compute ratios, we explore the opposite direction of ignoring
the memory hierarchy and instead maximizing the wavefront
size in the last cache level (L2 in our case). Motivation:
Large wavefronts maximize the number of space-time points
that are processed on-chip in a highly regular fashion, while
processing data from the L2 cache is not a big limitation.
The stencil computation remains memory-bound but only by
a small factor: the balanced stencil intensity for L2 on our
Opteron 2218 is 2.2 and 3.1 on the Xeon X5482, see Table I,
i.e., 2 or 3 floating point operations on every double read from
L2 are sufficient to balance peak stencil computation and data
transport from L2.

The above numbers are derived from the performance of a
vectorized stencil kernel that executes on registers. Because
the numbers are small, we also use a vectorized kernel for the
actual computation otherwise the data processing could not
keep up with the bandwidth of the L2 cache and the memory-
bound stencil would become unnecessarily compute-bound. In
other words, the vectorization ensures that the kernel remains
memory-bound but cannot accelerate the execution beyond
that.

We keep the rest of the algorithm as simple as possible.
We use a single form for all tiles and choose a minimalist
parallelization approach: the threads are started once at the
beginning and are persistent throughout the computation;
furthermore the thread to tile assignment is known at compile-
time leading to simple synchronization. Motivation: When
striving for benchmark performance in applications, code
simplicity is of great benefit to the compiler and hardware.
Moreover, dynamic load-balancing is not necessary for tiles
of equal size, and replacing barrier synchronization by tile-to-
tile synchronization minimizes the idle time otherwise.

In summary, our algorithm (CATS) is based on the re-
duction of 2D and 3D problems to a one-dimensional, non-
hierarchical, all cache consuming wavefront traversal inside
the tiles. Our first version CATS1 in Section II-B is re-
lated to Wonnacott’s wavefront computations [8] and the
pipelined temporal blocking [11]. However, both are still
multi-dimensional tiling strategies, which CATS is not. More-
over, their parallelization is already different. CATS2 and the
general CATS scheme (Sections II-C and II-D) are novel
wavefront traversal techniques with an arbitrary wavefront di-
mensionality and shape: No previous scheme uses a wavefront
traversal in such radical fashion that reduces everything to a
1D problem. In view of theoretical results on the lower bound
of cache misses in stencil computations [21], it is surprising
that the much simpler CATS can compete against the usual
strategies of multi-dimensional tiling and multi-level tiling. In
fact, we do not claim better asymptotic behavior but rather
demonstrate high performance levels on large 2D and 3D
domains. We call the algorithm CATS (cache accurate time
skewing) because we accurately reuse the entire last level
cache with each single wavefront computation.

The rest of the paper is organized as follows, in Sec-
tion II we describe the family of cache accurate time skewing
schemes (CATS). Section III describes our empirical setup
and extensive comparisons of the execution times of the naive
scheme, the PluTo transformed code and the CATS schemes
in 2D and 3D. We draw conclusions in Section IV.

II. CACHE ACCURATE TIME SKEWING (CATS)

This section describes the cache accurate time skewing
schemes in comparison to the naive scheme. We first describe
some specific variants of CATS and then explain how they
combine to give the general CATS scheme.

On a discrete d-dimensional spatial domain
Ω:= {1, . . . ,W1} × . . . × {1, . . . ,Wd} with N := #Ω values
we want to apply a stencil S : Ω × {−s, . . . , +s}d → R
of slope s repeatedly to the entire domain T -times. In
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Alg. 1 The naive scheme for iterative stencil computations in 2D.
The spatial domain is cut along the y-dimension into tiles for parallel
execution and ystart(tid), yend(tid) are the tile bounds in dependence
on the thread ID tid.
naive 2D ()
{

for(t = 0; t < T; t++) {
for(y = ystart(tid); y < yend(tid); y++) { // parallelized
for(x = 0; x < WIDTH; x++) { // vectorized

apply 2D stencil at position (x,y,t);
}}//x,y
synchronize threads;

}//t
}

case of a constant stencil, S does not depend on Ω and
has a certain number of non-zero values NS := #S,
otherwise we assume that the stencil is position dependent,
S(x) : {−s, . . . , +s}d → R, x ∈ Ω and has the same number
of non-zero values NS for every position, and N ·NS values
overall.

Our space-time domain is given by Ω × {0, . . . , T} with
the initial values at Ω × {0} and boundary values at ∂Ω ×
{0, . . . , T}, ∂Ω:= {0, W1+1}×. . .×{0, Wd+1}. In the space-
time Ω×{0, . . . , T} there are TN values to be computed, and
each output value requires NS input values. So in case of a
constant stencil we perform TNNS reads and TN writes; in
case of a variable stencil (banded matrix) we perform 2TNNS

reads and TN writes.
If we access values from timestep t− 1 to compute values

at timestep t then, irrespective of the scheme, we need to store
two copies of Ω during the stencil application. Some stencil
computations like Gauss-Seidel, that use values from timestep
t− 1 and t while computing timestep t, can be performed in-
place with just one copy of Ω. If these one/two copies of Ω
fit into the cache, then all reads and writes will happen in the
cache no matter how large T is. The naive scheme performs
much better in this case, as can be seen for the 0.5 million
elements case in the Figs. 6 and 8.

A. No Skewing - NaiveSSE Scheme

The naive stencil implementation has no data reuse between
different iterations. The entire spatial domain advances one
timestep after another, see Fig. 1 and Alg. 1. The outermost
spatial loop is parallelized with multiple threads, whereby each
thread operates on one tile of the domain. The tiles are of
the same size so the threads can be synchronized with little
overhead after each timestep. The innermost spatial loop (unit
stride dimension) is hand-vectorized with SSE2 intrinsics.

B. Skewing One Dimension - CATS1 Scheme

The general idea behind time skewing schemes is to com-
pute multiple timesteps at once in certain parts of the domain
thus exploiting the temporal producer-consumer locality. For
this purpose we tile one spatial dimension. The plane formed
by the chosen spatial dimension and the time dimension is
divided into space-time tiles, see Fig. 2. The tiles are skewed
to respect the temporal data dependencies induced by the

Alg. 2 CATS1 for iterative stencil computations in 2D. The loop
bounds ystart(tid), yend(tid) represent the extent of the tile (parallel-
ogram) along the traversal dimension y. The loop bounds tstart(ts,y),
tend(ts,y) represent the extent of the wavefront along the dimension
t within the tile, see Fig.2.
CATS1 2D ()
{

compute height TZ from cache size (Eq. 1);
for(ts = 0; ts < T/TZ ; ts++) {

for(y = ystart(tid); y < yend(tid); y++) { // parallelized
if(y == ystart(tid+1)) {

wait for (tid+1) to finish its left tile border;
}
for(t = tstart(ts,y); t < tend(ts,y); t++) {

for(x = 0; x < WIDTH; x++) { // vectorized
apply 2D stencil at position (x,y-t,t);

}//x
}//t

}//y
synchronize threads;

}//ts
}

stencil. Processing within the space-time tile has high temporal
locality, while data at the tile borders, in general, has to be
reloaded from main memory. Skewed tile borders require more
data transfer than straight tile borders. The main decision is
on the form of the tiles, aiming for maximal temporal locality
and parallel processing of tiles. We use parallelogram tiles
with split-tiling and wavefront processing (Fig. 2).

These ideas have been described for multiple processors
instead of cores already at the onset of time skewing methods
by Wonnacott [8], but even in CATS1 we use them differently
for multi-dimensional domains. In particular, we show that
multi-dimensional tiling of multi-dimensional domains is not
necessary. Instead of diagonal wavefronts, we consider axis-
aligned wavefronts, and our tile placement is also different.
The pipelined temporal blocking by Wittmann et al. [11] and
Wellein et al. [22] can also be seen as a variant of space-time
wavefront processing. However, they use the term ’wavefront’
completely differently, describing the parallelization along the
time axis, which benefits from shared caches between multiple
threads. This type of ’wavefront’ does not exist in our scheme,
because we use a different parallelization approach that does
not rely on shared caches; instead we construct large space-
time wavefronts (using Wonnacott’s space-time notion of a
wavefront) for the purpose of the data locality maximization.

In wavefront processing we sweep with a skewed space-
time surface (the wavefront) through the tile along a designated
traversal dimension (see the arrows in Fig. 2), maintaining a
certain number of the most recent wavefronts in the cache.
The computation takes place at the wavefront reusing the data
from the previous wavefronts. New data must only be fetched
from main memory at the tile borders. For a stencil width of
2s + 1 in the traversal dimension, 2s wavefronts plus some
temporary variables must reside in an ideal cache for perfect
data reuse, but because of limited cache associativity and cache
line granularity, a certain value CS ∈ (2s, 2s + 1] is used in
practice, e.g., Wonnacott [8] uses the pessimistic CS := 3 for a
3-wide stencil, we conservatively choose CS := 2s + 0.8 after
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Fig. 1. Naive space-time traversal in parallel with three threads,
cf. Alg. 1. Regions of the same color are operated on in parallel,
synchronization takes place before starting a different color region.
The entire domain progresses one timestep after another in sync
in the direction of the arrows. X-dimension goes into the page.
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Fig. 2. Cache accurate time skewing with one skewing dimension
(CATS1) in parallel with three threads, cf. Alg. 2. Regions of
the same color are operated on in parallel, synchronization takes
place before starting a different color region. The fine lines show
the consecutive wavefront positions and the arrows the traversal
direction in each parallelogram. X-dimension goes into the page.

a cache miss analysis.
The main advantage of wavefront processing is that the

tiles can be much bigger than the cache, because only CS

wavefronts must reside in the cache for a perfect producer-
consumer locality within the tile. One driving idea behind
our cache accurate time skewing schemes is to radically
maximize the wavefront size at the expense of any other
locality optimizations. In case of one dimensional skewing,
CATS1 maximizes the wavefront size such that CS wavefronts
barely fit into the private L2 cache of one thread. Let Z be the
size of the private L2 cache and Wmax the size of the largest
domain dimension, the one to be traversed, then the size of
our wavefront is TZN/Wmax and we can compute the maximal
temporal extent of our tile TZ in dependence on Z as

TZ := bZWmax/ (CSN)c . (1)

Wonnacott [8] considers diagonal wavefronts {(x, y, t) ∈
Tile | x + y + t = const} in 2D and concludes that their
maximum size in dependence on the domain size makes
it impractical for large domains, so both dimensions must
be tiled. The validity of this argument depends on what
large means. For typical cache and domain sizes, we argue
in the opposite direction that a wavefront traversal actually
makes multi-dimensional tiling unnecessary. The maximum
size of our axis-aligned {(x, y, t) ∈ Tile | y + t = const}
wavefronts grows with the domain size in the same fashion,
the growth is proportional to N/Wmax, but in 2D this is
not a big problem even for a small cache of 128KiB, e.g.,
3 · 10 · 500 · 8B = 120KB < 128KiB, which means that
on a 5002 domain of doubles we could perform TZ = 10
consecutive timesteps in cache. The next section explains that
one-dimensional tiling is sufficient even in case of larger (e.g.
100002) domains in 2D and 3D. The reasons for choosing
axis-aligned over diagonal wavefronts are the much simpler
indexing and more favorable memory access pattern. Axis-
aligned refers to the spatial alignment, all wavefronts are

always skewed with respect to time.
The time dimension is tiled according to TZ and Alg. 2

shows the entire CATS1 algorithm in 2D. Fig. 2 (TZ = 10)
shows with thin lines the different positions of the wavefronts
and how they progress through the space-time tiles in the
direction of the arrows. In CATS1, the parallelization takes
place along the same dimension (y-loop in Alg. 2) as the wave-
front traversal. All threads can start computing concurrently
within their parallelograms, there is only a data dependency
at the right border of each parallelogram, and thread tid has to
wait for thread tid+1 if it reaches its right border faster than
tid+1 finished its computation there. For almost all domains
the width of the tile is much bigger than its height, so in
practice the thread tid does not have to wait. This type of
dependence resolution between parallelogram tiles is called
split-tiling [12]. After completing the wavefront traversal for
all tiles in [0, TZ) the threads are synchronized with little
overhead as the tiles are of equal size, and all tiles in [TZ , 2TZ)
are processed in the same fashion, cf. ts-loop in Alg. 2.

Wonnacott [8] and Krishnamoorthy et al. [12] deal with
multi-processor systems, so in order to reduce the communi-
cation, they align the base of the higher parallelogram with the
top of the lower one in the split-tiling scheme. However, this
causes load-balancing problems which we avoid by placing
the parallelograms simply axis-aligned on top of each other,
see Fig. 2. Because the CPU cores have access to the same
main memory, this has no negative effect for us. Irrespective of
the parallelogram placement strategy, there is basically no data
reuse at the tile borders, because the entire cache is constantly
overwritten by the traversing wavefronts.

In 2D and higher dimensions, the innermost loop in
CATS1 runs across the entire unit stride dimension (x-loop
in CATS1 2D() in Alg. 2) so its vectorized execution ensures
that the algorithm remains memory-bound when processing
data from the L2 cache. In 3D there are two loops with
fixed bounds that span the entire domain. However, these
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Alg. 3 CATS2 for iterative stencil computations in 2D. The loop
bounds 0, HEIGHT represent the extent of the tile (diamond tube)
along the traversal dimension y. The loop bounds tstart(dia,y),
tend(dia,y) and xstart(dia,y,t), xend(dia,y,t) represent the extent of
the wavefront along the t and x dimension within the tile (diamond
tube), see Fig.4.
CATS2 2D ()
{

compute diamond size from cache size (Eq. 2);
forall( diamond dia∈diamondSet(tid) ){ // parallelized

wait on the two diamonds below to finish;
for(y = 0; y < HEIGHT; y++) {

for(t = tstart(dia,y); t < tend(dia,y); t++) {
for(x = xstart(dia,y,t); x < xend(dia,y,t); x++) {

apply 2D stencil at position (x,y-t,t);//↑vectorized
}//x

}//t
}//y

}//dia
}

inner loops also mean that more data resides in the wave-
front, e.g., in 3D the wavefront extends in three dimensions
(x,y,t)∈[0,WIDTH)×[0,HEIGHT)×[0,TZ). So if WIDTH and
HEIGHT are large, the computed TZ will be smaller than
one and we fall back to the naive scheme. Apparently, multi-
dimensional tiling of the domain is required in 3D after all,
but we present a different solution in the next section.

C. Skewing Two Dimensions - CATS2 Scheme

CATS1 is a special case because it uses the same spatial
dimension for tiling and the wavefront traversal. CATS2 and
all higher schemes have a distinct traversal dimension and
tiling dimensions. For CATS2 one dimension is tiled, and a
second is traversed with the wavefronts. This way we reduce
the wavefront size in comparison to CATS1 without the need
for multi-dimensional tiling.

CATS2 requires two distinct dimensions so it can be applied
only in 2D and higher dimensional spatial domains. Fig. 3
shows the (x,t)-plane with the tiling dimension x in case of
CATS2 2D() in Alg. 3. In the (x,t)-plane, the space-time
tiles have the shape of diamonds. Together with the traversal
dimension (y in 2D), the diamond forms the corresponding
space-time tile, a diamond tube as depicted in Fig. 4. The
diamonds in Fig. 3 are the projections of the diamond tubes
onto the (x,t)-plane. The processing of a diamond tube is
similar to the traversal in CATS1: a wavefront sweeps through
it along the traversal dimension.

Fig. 4 visualizes the processing of a 2D spatial domain.
Therein the diamond tube is a 3D space-time tile, and the
wavefront a skewed 2D diamond. For a 3D spatial domain,
the diamond tube is 4D and the wavefront is 3D, therefore,
the problem is still reduced to a 1D traversal. The key insight is
that a wavefront traversal can be performed with a wavefront
of arbitrary dimensionality and arbitrary shape. Thus multi-
dimensional tiling is not necessary for generating temporal
locality and we can process much larger space-time tiles than
usual in a cache efficient manner. This is a new idea in
wavefront processing of multi-dimensional domains.

We use diamonds in the tiling dimension because of their
favorable surface area to volume ratio (cache miss reduction),
they are independent of each other when arranged side-by-side
(parallel execution), and require only one tile form to cover
the plane (simplicity). Orozco and Gao [23] give a quantitative
analysis for the first property, however, they use the diamond
shape only in 1D with a traditional bottom-up processing of
the tile in cache. The second property avoids the problem of
dependent tiles encountered by Liu and Li [24], where they
have to relax the numerical properties of the scheme in order
to gain better parallelization.

As in CATS1, we pursue the goal of maximizing the
wavefront size without reverting to multi-dimensional tiling.
Let Z be the private L2 cache size of each thread, Wmax be
the size of the largest domain dimension which is traversed,
and Wmax2 be the second largest which is tiled. Let BZ be the
width of the single-form diamond, then B2

Z/(2s) is its area,
and BZ can be computed as

BZ :=
⌊
(2sZWmaxWmax2/ (CSN))

1
2

⌋
. (2)

This value determines how many diamonds will fit side by side
along the tiling dimension. As we consider large domains,
we have sufficiently many independent diamonds to occupy
multiple threads. Should this not be the case because of a small
tiling dimension, then we can swap the traversal and tiling
dimensions or switch to CATS1 which will tile and traverse
the same dimension.

Orozco and Gao [23] process their diamonds in rows with a
global synchronization between rows, but this is not necessary
as Fig. 3 shows. Because the computation in each diamond
depends only on the two diamonds below it, the processing
can be easily parallelized irrespective of how many diamonds
reside in a row. Moreover, we do not need a global synchro-
nization among threads, instead every diamond simply waits
on the two diamonds below it before it starts processing, see
the dia-loop in Alg. 3. The a-priori thread to tile assignment
may still lead to some idle time, but this is much smaller
than Fig. 3 suggests at first, e.g., the thread that computes the
tiny triangle at the right border continues immediately with
the third diamond in the second row because the two green
diamonds below have already finished.

In the previous section, we have seen that CATS1 runs into
problems on large 3D domains. CATS2 has no problems in
3D because the size of the wavefront inside the diamond tube
that needs to reside in the cache is now further restricted by
BZ . Only on enormous 3D or higher dimensional domains,
that do not fit into a typical main memory size of 8 GiB, we
would need to switch to higher order CATS schemes that are
discussed next.

D. Multiple Skewing - General CATS Scheme

By adding more tiling dimensions we can define CATS3,
CATS4, etc. In these schemes we still have one traversal
dimension but multiple tiling dimensions. The additional com-
plexity in comparison to CATS2 is the more complicated form
of space-time tiles, which corresponds to more loops with
variable bounds in the algorithm. But even if enormous domain
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Fig. 3. Cache accurate time skewing with two skewing dimensions
(CATS2) in parallel with three threads, cf. Alg. 3. The colors
show the a-priori thread to tile assignment, but there is no global
synchronization, each diamond waits on the two below. This figure
shows the (x,t)-plane for CATS2 2D(), each of the diamonds
extends also in the y-dimension (which goes into the page) forming
a diamond tube, see Fig. 4.

Fig. 4. In CATS2 2D() (Alg. 3) each thread sweeps a diamond-
shaped wavefront through a diamond tube region of the space-time.
First all values within the current wavefront are computed then
the wavefront moves by 1 along the y-dimension. No unnecessary
cache misses occur inside the diamond tube although it is much
bigger than the cache.

sizes force us to tile multiple dimensions in CATS3 and higher,
in contrast to classical multi-dimensional tiling approaches,
we tile two dimensions less, one is reserved for the wavefront
traversal, the other for vectorization.

When tiling multiple dimensions, we can freely choose
which of them should also be parallelized. The tiled and
parallelized dimensions use the diamond shape, whereas the
tiled-only dimensions may also use space dependent tiles like
the parallelograms. On multi-core processors it is sufficient
to parallelize just one of the tiling dimensions. Only when
extracting hundredfold parallelism on many-core processors,
we would also parallelize more tiling dimensions.

In general, a d-dimensional domain admits the use of the
CATSk scheme with k = 1, . . . , d. The difference d − k
specifies how many dimensions have not been skewed and thus
how many inner loops with fixed bounds that scheme has. All
values traversed in these loops must reside in the cache, and
therefore this difference is usually 0, 1 or 2. If d − k = 0
then the cache size poses no problem at all, but the execution
of the innermost loop is less efficient because of the variable
loop bounds. For common cache sizes of 128KiB–4MiB per
core and domain sizes (100–1000)d, choosing CATS(d − 1)
for a d-dimensional spatial domain is a safe choice that gives
fixed loop bounds for the unit stride dimension. We define the
general CATS scheme to be this combination of the CATSk
schemes. We only deviate in two cases: for 1D problems
CATS0 is equivalent to the naive scheme so CATS1 is the
better choice; for very large dimension sizes, e.g., 100002

CATS1 would hold the values from the inner loop only for very
few timesteps simultaneously and then switching to CATS2
despite the variable loop bounds is better. As a rule of thumb,
we switch from CATS(k − 1) to CATSk when the wavefront

in CATS(k − 1) would extend over less than 10 timesteps.

III. RESULTS

We compare the performance of the following schemes on
iterative stencil computations:

• NaiveSSE: Our own hand-parallelized (pthreads) and
vectorized (SSE2) naive stencil scheme as described in
Section II-A.

• PluTo [1]: code transformed by the automatic parallelizer
and locality optimizer for multicores PluTo, version 0.4.2.

• Stencil peak: the stencil benchmark that executes directly
on registers without data transfers, see Table I.

• CATS: Our general cache accurate time skewing scheme
with the selection of individual schemes described in Sec-
tion II-D. The innermost loop uses a vectorized (SSE2)
kernel and parallelization uses pthreads.

Our hardware configuration is listed in Table I. As general
compiler options we use -O3 -funroll-loops and for the icpc
compiler also -xHOST -no-prec-div. The NaiveSSE scheme
does not require any parameters, it only needs a scalar and a
vectorized kernel that are called from the nested loops.

For PluTo-0.4.2 we use -tile -l2tile to tile the code for the
L1 and L2 cache, -multipipe to extract multiple degrees of
parallelism, -parallel to parallelize the code using OpenMP, -
unroll to automatically unroll up to two loops, and -nofuse to
separate all strongly-connected components in the dependence
graphs. The options -unroll -nonuse do not make a difference
in performance in our tests. In 3D we decided to omit the
option -l2tile as the transformation process was taking hours
and did not provide performance gains. We use the original
examples provided with PluTo and modify them from constant
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Table I Hardware configurations of our test machines. The machines
have been chosen such that one (Opteron) has a modest ratio between
measured system and cache bandwidth, while the other (Xeon) has
a high ratio. This ratio is the main source of acceleration of time
skewing against naive schemes.
The measured bandwidth numbers have been obtained with the
RAMspeed benchmarking tool and the double precision (DP) FLOPS
numbers come from our own SSE benchmarks. For the peak DP num-
ber we perform independent multiply-add operations on registers, for
the stencil DP number we run the inner stencil computation (products
and accumulation) on registers. This value is lower because of the
read-after-write dependencies in the computation. All benchmarks
show results for the entire machine achieved with 4 threads.

Brand AMD Intel
Processor Opteron 2218 Xeon X5482
Code-named Santa Rosa Harpertown
Frequency 2.6 GHz 3.2 GHz
Number of sockets 2 1
Cores per socket 2 4
L1 Cache per core 64 KiB 32 KiB
L2 Cache per core 1 MiB 3 MiB

Operating system Linux 64 bit Linux 64 bit
Parallelization 4 pthreads 4 pthreads
Vectorization SSE2 SSE2
Compiler g++ 4.3.2 icpc 11.1

Measured L1 Bandwidth 79.3 GB/s 194.6 GB/s
Measured L2 Bandwidth 40.6 GB/s 64.2 GB/s
Measured Sys. Bandwidth 11.2 GB/s 6.20 GB/s
Measured Peak DP FLOPS 20.8 G 40.8 G
Measured Stencil DP FLOPS 11.5 G 25.1 G

L2 Band./Sys. Bandwidth 3.6 10.4
Peak DP/(Sys. Band./8B) 14.9 52.6
Balanced arith. intensity for Sys.
Stencil DP/(Sys. Band./8B) 8.2 32.4
Balanced stencil intensity for Sys.
Stencil DP/(L2 Band./8B) 2.2 3.1
Balanced stencil intensity for L2

to variable stencil where necessary. It is not feasible to hand-
vectorize the transformed code because of the high number of
generated loops, e.g., 142 loops for the constant 7-point stencil
in 3D. However, we ensure the best possible performance by
retransforming and recompiling the examples every time with
compile-time known domain sizes and aggressive icpc auto-
vectorization, the compilation process alone takes about 15
minutes.

CATS takes as parameters the size of the last cache level
(L2 for us), the slope of the stencil s, the memory size of a
data type and optionally additional cache requirements, e.g.,
the matrix coefficients. CATS is implemented as a library
not a code generation framework. The kernel may perform
arbitrary index calculations and non-linear operations on the
data within the stencil region {−s, . . . , +s}d and on the
specified amount of additional values like matrix coefficients.
Beside the parameters, the user only provides a scalar and a
vectorized version of the kernel, the same kernels used by the
optimized naive scheme.

Our test applications comprise constant and variable stencils
in 2D and 3D with 0.5 to 128 million double precision
elements. In 2D, we have squares ranging from 7062 to 112822

elements and in 3D, cubes from 803 to 5003. In case of
constant stencils, this amounts to a memory consumption of
up to 2GiB for the two vectors, and in case of variable stencils
we use at most 32 million elements consuming 0.5GiB plus
1.75GiB for the matrix in 3D. We use a general 5-point stencil
in 2D (5 muls plus 4 adds equal 9 flops) and a 7-point in 3D
(7 muls plus 6 adds equal 13 flops). The number of iterations
is either T = 100 (solid graphs in the figures), or T = 10
(dashed graphs in the figures). The last stencil application is
the FDTD 2D example (11 flops) that comes with PluTo.

All figures show the execution time in seconds against
the number of elements in millions with both axes being
logarithmic. The number of elements doubles between two
consecutive graph points, but the doubling is not totally exact
because of the square or cubic root operations involved in
computing a square or cube with a predefined number of
elements.

A. Constant Stencil
In this section, we present results for constant stencils of

slope s = 1. Figs. 5, 6 show the execution times for 2D spatial
domains and Figs. 7, 8 for 3D. The graphs have many features
in common.

a) Large slowdown of the naive scheme on the Xeon
when transitioning from 0.5 to 1.0 million elements: The Xeon
has 12MiB of L2 cache (cf. Table I), so that two vectors
of 0.5 million elements (2 · 8B · 0.5M = 8MB) fit into the
cache. The one million elements case already requires 16MB,
which exceed the cache size, so the performance of the naive
scheme suffers a large slowdown and from thereon becomes
completely limited by the available system bandwidth. The
CATS scheme, on the other hand, has a more consistent scaling
and simply ignores the fact that the data does not fit into the
cache any more. This causes the CATS graph for T = 100
iterations on the Xeon in 2D (Fig. 6) and 3D (Fig. 8) to
come close to the naive graph for T = 10 iterations on large
problems. The PluTo scheme also scales consistently but at
a much lower level. The Opteron does not show the jump
on the naive scheme because its 4MiB of L2 cache cannot
accommodate two copies of the 0.5 million elements, so it is
already in the slow mode determined by the system bandwidth.

b) The Opteron is faster than the Xeon on the naive
scheme but slower on PluTo and CATS: The faster execution
on the naive schemes is directly related to the higher system
bandwith on this machine as it is the limiting performance
factor, see Table I. For the time skewing PluTo and CATS
schemes, on the other hand, the system bandwidth is less
relevant even when the data size exceeds the cache size
more than hundredfold, as in the case of the 128 million
element examples with 1GiB of data for each vector. The
cache bandwidth is the decisive factor, hence the Xeon is better
and consequently shows better results despite its low system
bandwidth.

For the achievable acceleration factor the ratio of cache to
system bandwidth (3.6 Opteron, 10.4 Xeon, see Table I) and
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Fig. 5. Timings of the Opteron 2218 with constant stencils in
2D. GFLOPS for 128 million elements with T = 100: NaiveSSE
Opteron 3.4, PluTo Opteron 3.6, CATS Opteron 5.8 (50% of stencil
peak).
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GFLOPS for 128 million elements with T = 100: NaiveSSE Xeon
1.4, PluTo Xeon 3.7, CATS Xeon 13 (52% of stencil peak).

the scheme’s ability to exploit this ratio are important. CATS
exploits this ratio well outperforming the naive scheme on the
Opteron by a factor 2 on average, and on the Xeon by at least
7.5x. PluTo does also benefit from the ratio but to a smaller
extent. It performs on average slower than the naive scheme
on the Opteron, but faster on the Xeon due to the bigger ratio
on the Xeon.

c) Performance in 2D is generally better than in 3D:
This is not suprising as the surface area to volume ratio is
worse in 3D but the effect on the schemes varies substantially.
The naive scheme in 3D maintains the same performance as
in 2D on smaller domains, which makes sense because the
same amount of data is transported and system bandwidth is
the limiting factor. Beyond a certain size in 3D, four 2D slices
(3 input plus 1 output) of the domain do not fit into the cache
anymore so that stencil neighbors have to be brought into
cache multiple times and performance degrades. PluTo works
best in 2D where it is on par with the naive scheme on the
Opteron and much faster on the Xeon. In 3D the performance

degrades by more than 2x in both cases. CATS also slows
down in 3D but only by around 20%, so the speedup over
PluTo grows to more than 3.5x.

d) Comparison with stencil peak: The stencil peak
benchmark (Table I) measures the performance of the stencil
computation in case of infinite bandwidth. The CATS scheme
achieves more than 50% of this performance even when op-
erating on gigabyte large domains connected with low system
bandwidth (only 6.2 GB/s on the Xeon).

B. Banded Matrix

If the stencil is not constant but rather varies across the
domain, then its application corresponds to a banded matrix
vector product. In Section II we assumed NS as the number of
non-empty stencil elements, this corresponds to the number of
bands in the matrix. For the space-time traversal this means
that not only the vector components (domain values) must
reside in the cache but also the corresponding matrix entries.
We need the matrix entries only for the current wavefront
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Fig. 9. Timings of the Opteron 2218 with a banded matrix in
2D. GFLOPS for 32 million elements with T = 100: NaiveSSE
Opteron 1.1, PluTo Opteron 1.2, CATS Opteron 2.8 (24% of stencil
peak).
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0.6, PluTo Xeon 3.1, CATS Xeon 4.9 (20% of stencil peak).
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0.4, PluTo Xeon 0.5, CATS Xeon 2.5 (10% of stencil peak).

during the computation, so CS must be replaced by CS + NS

in our formulas Eq. 1 and Eq. 2 that compute the maximum
extent of the wavefront. We run performance tests with T = 10
and T = 100 iterations shown in Figs. 9, 10 for 2D and
Figs. 11, 12 for 3D. We make similar observations to the
constant stencil case.

e) The Opteron is faster than the Xeon on the naive
scheme but slower on PluTo and CATS: The main reason is
the same as for the constant stencil: for the naive scheme the
system bandwidth matters most while for the time skewing
schemes the cache bandwidth is more important. However, the
performance ratios between the Opteron and the Xeon for the
naive scheme are now larger and for PluTo and CATS smaller
than before, because the additional matrix transfers increases
the influence of the system bandwidth speed on all schemes.

f) Performance in 2D is generally better than in 3D:
This effect is further enforced by the fact that the 2D matrix
has NS = 5 bands while the 3D matrix has NS = 7. This time
the naive scheme is the least affected by the transition from

2D to 3D. Therefore, CATS’s advantage over the naive scheme
drops from 2.5x to 1.5x on the Opteron and from 8.2x to 6.2x
on the Xeon. For PluTo it means that equal performance with
the naive scheme drops to worse on the Opteron and much
better performance drops to equal on the Xeon.

g) Comparison with stencil peak: The application of a
constant stencil is already memory-bound so in the matrix case
the memory wall is truly a devastating performance killer. The
naive scheme and PluTo reach less than 2% of the available
stencil peak performance on the Xeon in 3D. The comparison
against the stencil peak benchmark reveals the true extent of
the memory wall problem.

In general the naive scheme with the banded matrix runs
around 2.5x–3x times slower than with constant stencils. The
performance of PluTo and CATS is reduced by similar factors
in 2D, but in 3D most reductions fall in the range 4x–5.5x.
The additional matrix transfers make the performance depend
on the low system bandwidth again. Although CATS clearly
outperforms the other schemes, the comparison against the
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stencil peak benchmark is less favorable. CATS stays above
20% in 2D and 10% in 3D. This is good in comparison to the
2% from above, but in case of infinite bandwidth we could
still run up to 10 times faster.

C. FDTD Solver

The previous sections analyzed basic stencil computations
on a scalar domain with constant or variable weights in
detail. In practice, these basic stencil computations appear
in different variations. In this section we examine one such
variation that is often used to demonstrate the efficiency of
time skewing schemes, namely a 2D Finite Difference Time
Domain (FDTD) electromagnetic kernel.

For PluTo we use the code given in the paper [1], which is
also included as a software example. For CATS we fuse the
three loops in 2D FDTD manually to obtain a single kernel.
Then we write a vectorized version of this kernel and pass its
pointer to the naive scheme and CATS. Figs. 13, 14 show the
results. Because this is a vector valued problem with 3 doubles
for each point in the space-time, more data must be kept in
cache which forces the wavefronts to become smaller. Not
surprisingly the results are a slowed down version of the 2D
constant stencil tests in Figs. 5, 6. PluTo has a small advantage
over the naive implementation of around 1.2x on the Opteron
and a clearer advantage of 1.7x on the Xeon. CATS beats the
naive scheme by 1.7x (1.4x vs. PluTo) on the Opteron and
5.3x (3.2x vs. PluTo) on the Xeon.

D. Scalability

GFLOPS of . . . 1 thread 2 threads 4 threads
CATS Opteron 1.7 3.3 6.4
CATS Xeon 5 9.6 13

The table above shows how CATS scales from one to four
threads on the constant 7-point stencil for the 128 million el-
ements problem in 3D with T = 100 iterations. Although this
is a memory-bound problem, both the Opteron and the Xeon
scale almost perfectly from one to two threads. Supported by
higher system bandwidth (11.2 GB/s) the Opteron also scales
well to four threads, while the lower system bandwidth (6.20
GB/s) of the Xeon limits the gains from additional cores.

E. Larger Stencils

GFLOPS of . . . s = 1 s = 2 s = 3
NaiveSSE Opteron 2.4 3.1 3.1
PluTo Opteron 1.5 0.9 0.9
CATS Opteron 6.4 7.5 4.7
GFLOPS of . . . s = 1 s = 2 s = 3
NaiveSSE Xeon 1.4 1.9 1.7
PluTo Xeon 3.7 4.3 1.9
CATS Xeon 13.0 8.5 4.6

Up to now we have shown results for the most common
stencils of slope s = 1. Larger slopes worsen the surface area
to volume ratio of the space-time tiles. Above we compare

the performance of the constant 7-point stencil of slope 1, the
13-point stencil of slope 2, and the 19-point stencil of slope
3 for the 128 million elements problem in 3D with T = 100
iterations. We see that CATS maintains a clear advantage in
all cases despite the different performance dependence of the
schemes on the slope s.

F. Result Comparison

A ( [5]) 3D Laplace (8 flops) 2563 × 100 on Xeon X5550;
B ( [22]) 3D Jacobi (8 flops) 5123 × 100 on Xeon X5550;
C ( [11]) 3D Jacobi (6 flops) 6003 × 100 on Xeon X5550; D
( [20]) 2D FDTD (11 flops) 20002 × 2000 on Xeon E5462;
CATS on Xeon X5482.

giga updates/sec A B C D

paper 0.49 1.2 1.75 0.70
CATS 1.31 0.85 0.62 0.61

In the above table we compare CATS against most recent
results from literature. A shows the maximum performance that
can be achieved without time skewing, B and C serve as rep-
resentatives of Wonnacott’s wavefront processsing [8] adapted
to multi-cores and enriched by shared cache optimization, and
D shows strongest results of an automatic loop transformation
framework, PTile [20]. In all cases we run exactly the same
kernel as described in the corresponding paper. A uses an auto-
tuner for parameter settings, B and C use manually selected
parameters, D and CATS use internal formulas and heuristics.
A to C run on Nehalem architecture with integrated memory
controllers whereas D and CATS run on previous generation
CPUs with FSB.

A fair comparison of absolute performance across different
machines is difficult, e.g., our measured system bandwidth
of 6.20 GB/s is three times smaller than the 18.5 GB/s
measured by Wittmann et al. [11] on their Xeon X5550, or
PluTo achieves 0.55 giga updates/sec on the Xeon E5462 [20]
whereas PluTo on our machine runs at only 0.23 giga up-
dates/sec. Therefore, in our detailed results we have chosen
PluTo as an automatic, easy-to-use tool which can be quickly
executed on any machine to provide a good baseline for
a relative performance comparison. Most of our speedups
against PluTo lie in the range 2x-4x and we have not seen
this level of improvement previously in literature.

Note, that PluTo is a much more general tool and offers
more functionality than the optimization of iterative stencil
computations. Both in software and hardware there is always
a trade-off between the specialization of a solution and its
performance. We demonstrate in this paper that for the class
of iterative stencil computations there is still significant room
for improvement and hope that eventually these techniques
will find their way into automatic transformation frameworks
in order to reduce this gap.

IV. CONCLUSIONS

We have presented CATS, a cache accurate time skewing
scheme for iterative stencil computations on multi-core pro-
cessors. It is based on a novel usage of a wavefront traversal in
multi-dimensional time skewing, an unconventional departure
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from the commonly used techniques of multi-dimensional
tiling and multi-level tiling. The strategy is particularly suc-
cessful on stencils of slope one, where the algorithm breaks
the dependence on the low system bandwidth and achieves
at least 50% of the stencil peak benchmark performance in
2D and 3D even when operating on gigabyte large domains.
This is a significant improvement over the optimized naive
scheme and the state-of-art in automatic optimization. For
large stencils and banded matrices the system bandwidth limits
the performance again but in comparison CATS maintains a
clear advantage.

In future, we want to analyze and model the performance
of CATS and include support for NUMA memory handling.
In this way we will be able to study scalability on many-core
shared memory machines.
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