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Supporting Information Text 

Text S1: Bias due to sparse airborne spatial coverage 

We showed in Fig. 3 and SI Appendix, Fig. S4-6 that, using the true 3-D atmospheric fields 30 

of models, we could successfully reconstruct the underlying surface CO2 fluxes from 

knowledge of the true inventories of CO2 within the Mθe bands. Our estimated inventories 

from the airborne data may be biased, however, due to sparse coverage. To assess this bias, 

we compare the true χi of models (i.e., the 3-D atmospheric field of each inversion product) 

with χi calculated by subsampling the model atmospheric field along flight tracks. The true 35 

model χi  is computed by averaging over all inversion product tropospheric grid cells 

(troposphere defined as potential vorticity unit, PVU, smaller than 2) of flight dates of each 

airborne campaign within the corresponding Mθe box. The subsampled average χi  is 

computed by subsampling model data along the flight tracks at flight dates and by 

trapezoidal integration of subsampled model data as a function of Mθe (1), using Mθe 40 

calculated from MERRA-2 and interpolated to the model grids. Prior to the trapezoidal 

integration, the subsampled data is also extrapolated to Mθe = 0 surface using the average 

of the 100 observations with the lowest Mθe values, except for HIPPO4, in which we only 

extrapolate to Mθe = 15. We show the differences between true and subsampled averages 

in SI Appendix, Fig. S12 and Table S5 and S6. This comparison is conducted for each 45 

inversion posterior atmospheric CO2 field, for each airborne campaign and for each Mθe 

band. These four inversion products generally agree on the sign of the bias in CO2 

concentration due to sparse airborne spatial coverage. We correct our χi calculated from 

airborne observations for each Mθe band and each airborne mission using the corresponding 

bias averaged over 4 inversion products. The 1𝜎 uncertainty of the correction for each 50 

campaign (or sub-campaign) and Mθe band is assumed to be the standard deviation of the 

corresponding corrections of four 3-D CO2 inversions. The day-to-day variability (1𝜎) in 

model χi computed from the 3-D fields is small ( < 0.05 ppm), thus this correction for 

sparse spatial sampling also effectively corrects for any temporal sampling biases from 

sampling on particular flight days. 55 

Text S2: Uncertainty  

We access the uncertainty of airborne-based seasonal air-sea CO2 flux estimates of each 

Mθe band by generating a large ensemble (2000 iterations) of flux estimates incorporating 
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uncertainty from the following sources: (1) uncertainty of airborne CO2 measurements of 

instrument; (2) uncertainty of the bias correction for CO2 concentration of each Mθe band 60 

due to sparse airborne spatial coverage; (3) interannual variability of the diabatic mixing 

rates; (4) differences of diabatic mixing rates between two reanalyses; (5) uncertainty of 

correction for the biosphere and fossil fuel CO2 flux; (6) interannual variability of air-sea 

CO2 flux. 

We first generate 2000 iterations of the airborne AO2 data that accounts for AO2 CO2 65 

measurement uncertainty (detailed below in SI Appendix, Text S2.1). For each iteration, 

we resolve detrended CO2 for each Mθe band and each airborne campaign or sub-campaign, 

while correcting for spatial bias with 1σ uncertainty of the correction incorporated (detailed 

in SI Appendix, Text S1). We then apply each iteration to the 4-box model to calculate 

surface CO2 flux estimates for each Mθe band and for each airborne campaign. We apply 70 

MERRA-based mixing rates to the first 1000 iterations and JRA-based mixing rates to the 

last 1000 iterations, with both sets incorporating interannual variability of the diabatic 

mixing rates as random errors (detailed in Materials and Methods). For individual flux (12 

estimates) in each iteration, we add additional uncertainty due to flux interannual 

variability as suggested by MIROC-ACTM (details see below in SI Appendix, Text S2.2). 75 

Flux estimates from each campaign or sub-campaign and iteration are corrected for the 

small non-oceanic flux as the average of corresponding fluxes from four 3-D inversion 

models, while allowing 1σ uncertainty amounting to the standard deviation of four models 

(detailed in Materials and Methods). For each campaign, the overall 1σ uncertainty of flux 

(error bars in Fig. 5a-d) is calculated as the standard deviation of the 2000 iterations of flux 80 

estimates. We also calculate an ensemble of daily seasonal CO2 flux cycles by carrying out 

2-harmonic fits to each iteration of CO2 flux estimates (12 campaigns or sub-campaigns) 

and for each Mθe band. The 1σ uncertainty is calculated as the standard deviation of the 2-

harmonic fitted daily flux of the large ensemble (2000 iterations), shown as shaded regions 

in Fig. 5a-d. 85 

Text S2.1: Uncertainty of AO2 CO2 measurement 

The AO2 instrument is primarily an atmospheric oxygen instrument, which also includes 

a CO2 sensor. Although this sensor is not as precise as the other sensors flown in these 
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campaigns, the short-term random error essentially averages out over the large spatial 

integrals used here. However, we allow that the AO2 CO2 measurements may have 90 

systematic errors due to drift in calibration or other artifacts during or between flights. To 

address measurement error, we generate an ensemble (2000 iterations) of 10-sec airborne 

measurements (aligned with data in HIPPO, ORCAS, and ATom merged files), with each 

iteration representing a plausible representation of the AO2 CO2 signal with error, 

following: 95 

 CO2
i (t) = CO2

AO2 (t) + [within flight error] + [between flight error] (S1) 

where CO2
i (t)  represents the ith iteration of CO2, where i runs from 1 to 2000, and 

CO2
AO2 represents the original AO2 CO2 data. Both within- and between-flight errors are 

estimated based on the differences in CO2 (CO2
Diff) measured between the AO2 instrument 

and other in-situ instruments (Harvard QCLS, Harvard OMS, or NOAA Picarro), assuming 

that the other measurements are correct and AO2 is wrong, which effectively provides a 100 

conservative assumption of errors in AO2. In this study, we estimate the error using AO2 

and QCLS or OMS for HIPPO flights, and using AO2 and QCLS or NOAA Picarro for 

ORCAS and ATom flights. 

The within-flight error is modeled as a random variable across all flights and 

measurements.  For each flight and each pair of instruments (AO2 and the other), we build 105 

an autoregressive model using the method of Elorrieta et al. (2), which is suitable for 

irregular time series due to sampling gaps. The within-flight error is modeled as follows:  

  CO2
Diff(t) = AR10−sec

j,k
· CO2

Diff(t − 1) + ϵj,k(t) (S2) 

where AR10−sec
j,k

 is the autocorrelation coefficient that indicates the dependence of CO2 of 

current time step CO2
Diff(t) on that of previous time step CO2

Diff(t − 1), and ϵj,k(t) is the 

random error, drawn from a Gaussian distribution, with a new sample drawn for each data 110 

point. Both the AR coefficient and the standard deviation (1σ) of ϵ(t) are unique for each 

flight (j) and for each instrument pair (k), which we summarize in SI Appendix, Table S7. 

The 1σ random error is dominated by the short-term imprecision of the AO2 instrument, 

leading to an average uncertainty in CO2
Diff of ±0.08 ppm. We note that the mean CO2 offset 

of the flight (j) between two instruments is pre-subtracted while constructing the 115 

autoregressive model (Eq. S2), because between-flight error is considered separately. For 
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HIPPO flights, 1000 iterations are based on coefficients resulting from AO2 minus QCLS 

and 1000 iterations are based on AO2 minus OMS. For ORCAS and ATom flights, 1000 

iterations are based on coefficients resulted from AO2 minus QCLS and 1000 iterations 

are based on AO2 minus NOAA Picarro. The order of these 2000 iterations is randomized 120 

for other error analyses. For flights where one of the instruments is unavailable (the target 

instrument AO2 and/or other instruments), we use the averaged AR coefficient and the 

averaged 1 𝜎  value for ϵ(t)  of the corresponding campaign or sub-campaign and the 

corresponding instrument to generate simulated CO2
Diff(t).  

The between-flight error is sampled from a Gaussian distribution centered on zero with a 125 

new sample drawn for each flight and applied as a uniform offset to all data in that flight. 

We use a standard deviation (1𝜎 ) of ± 0.26 ppm for all HIPPO flights, and ± 0.13 for all 

ATom and ORCAS flights based on AO2-QCLS differences. To establish these 1𝜎 values, 

we compare the averaged CO2 differences of each flight between AO2 and QCLS. The 1𝜎  

values are therefore calculated as the standard deviation of all flight-averaged CO2 130 

differences between two instruments, as shown in SI Appendix, Fig. S13. This approach 

gives a conservative estimate of AO2 flight-to-flight stability, as some variability could 

result from biases in the other sensor. Fig. S13 also shows differences between AO2 and 

other in-situ instruments (i.e., OMS and NOAA-Picarro) and NOAA portable flask 

packages (PFP) (3). Using ± 0.25 ppm for HIPPO based on AO2-OMS differences, ± 0.13 135 

ppm for ORCAS and ATom based on AO2-NOAA Picarro differences, or ±  0.23 ppm for 

ORCAS and ATom based on AO2-PFP differences would not significantly change our 

results. The larger 1𝜎 value for PFP comparisons might result from less data per flight with 

the PFP flask system. We did not compare with another flask dataset (Medusa) because the 

AO2 CO2 measurements are already adjusted to match Medusa on a flight-average basis 140 

(4). 

Text S2.2: Flux interannual variability (IAV) 

In this study, we estimate 12 separate snapshots of the flux on particular dates that spread 

over 10 years, and fit a 2-harmonic seasonal flux cycle. Due to the interannual variability 

of the flux, our approximate seasonal cycle estimate will not conform to the true 145 

climatology. To estimate errors relative to a true climatology, we rely on IAV from inverted 
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oceanic CO2 fluxes estimated using MIROC-ACTM. We access the flux bias due to limited 

temporal sampling for each airborne campaign (or sub-campaign) by comparing the ACTM 

modeled flux of a 15-day flight window and a 10-year averaged flux of the same 15-day 

window repeating from 2009 to 2018 (SI Appendix, Fig. S14). The 15-day flight window 150 

is selected as the mean campaign flight day ±7 days. We could correct for interannual 

variability, in principle, based on the difference between the modeled flux in a specific year 

and the 10-year averaged flux for each campaign. We find, however, only a small potential 

correction (bars in SI Appendix, Fig. S14, mean absolute correction of 0.04 PgC yr-1). This 

bias also does not contribute to a clear seasonal flux cycle bias (black curves in SI 155 

Appendix, Fig. S14). Therefore, we do not correct for this bias but rather consider the flux 

IAV of each campaign (sub-campaign) as a random error, calculated as the standard 

deviation of the 15-day averaged flux from 2009 to 2018, as summarized in SI Appendix, 

Table S8. We use MIROC-ACTM to evaluate IAV because the simulated diabatic mixing 

rates and CO2 gradients of ACTM match best with reanalysis and airborne observations. 160 

Text S3: Thermal-driven CO2 flux cycle 

We estimate the thermal-driven flux cycle (Fig. 5i-l) using the following expression as 

suggested by Takahashi et al.(5). 

  FCO2

thermal =  k ∙ α ∙ pCO2
eq

∙ 0.04 ∙ (SST−< SST >) (S3) 

where k is the CO2 gas transfer velocity (cm hr-1), α is the CO2 solubility in seawater (mmol 

m-3 atm-1), pCO2
eq

 is the CO2 partial pressure at equilibrium, assumed to be 400 μatm, SST 165 

is the sea surface temperature, < SST > represents the annual average SST. 0.04 denotes a 

4% pCO2 change per 1°C SST change, also as suggested by Takahashi et al. (5). 

We use monthly gridded (lon × lat = 1° × 1°) SST data from the NOAA Optimum 

Interpolation (OI) SST V2 product (6). The α ∙ pCO2
eq

 term is a function of sea surface 

temperature (SST) and is calculated from CO2cal (7), by assuming salinity at 34 PSU, total 170 

alkalinity at 2250 μmol kgSW-1, sea water density at 1.02 g cm-3, and using monthly SST 

data from the NOAA OISST V2 product (6). 

The gas exchange coefficient k is calculated following Wanninkhof, 1992 (8): 



 

 

7 

 

  k = 0.31 ∙ U10
2 ∙ (

Sc

660
)

−
1
2
 (S4) 

where U10 is 10-m surface wind speed, which we obtained from MERRA-2 reanalysis (9), 

Sc is the Schmidt number, and 660 is the Schmidt number of CO2 in seawater at 20°C. We 175 

calculate gridded monthly Sc from 2009 to 2018 using the expression below, as suggested 

in Wanninkhof, 1992 (8): 

 Sc = 2073.1 − 125.62 ∙ SST + 3.6276 ∙ SST2 − 0.043219 ∙ SST3 (S5) 

where we use monthly SST data from NOAA OISST V2 (6). 

Text S4: Airborne campaigns 

Both the HIPPO and ATom campaigns had broad coverage in the Southern Hemisphere, 180 

extending from the Equator to the Antarctic, and from near the surface (150-300 m) to the 

lower stratosphere (12-15 km) (SI Appendix, Fig. S1). HIPPO consisted of five missions 

(referred to as HIPPO1-5) between 2009 and 2011 and ATom consisted of four missions 

(refer to as ATom1-4) between 2016 and 2018 (detailed in SI Appendix, Table S2). HIPPO 

missions were over the Pacific Ocean, while ATom missions covered both the Pacific 185 

Ocean and the Atlantic Ocean.  

ORCAS had 19 research flights during Jan. and Feb. of 2016, with spatial coverage from 

~35°S to 75°S. These flights collected samples over the Drake Passage and surrounding 

South America and Antarctic Peninsula coastal regions. Since the ORCAS campaign spans 

about two months, we divide ORCAS flights into three groups (detailed in SI Appendix, 190 

Table S2) to yield the average CO2 of each Mθe band.  

We exclude all observations near landing sites with the same criteria as in Jin et al. (2021), 

for example, samples that were collected 120s after takeoff, 600 s prior to landing, and 

likewise for any missed approaches. 

Text S5: Calculation of Mθe for each airborne observation 195 

The computation of Mθe is presented in Jin et al. (1), follows: 

 Mθe
(θe, t) = ∑Mx(t)|θex<θe

 (S6) 

where x indicates an individual grid cell of the atmospheric field, Mx(t) is the dry air mass 

of each grid cell x at time t, and θex
 is the equivalent potential temperature of the grid cell. 
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For a given θe threshold, the corresponding Mθe value is calculated by integrating the 

airmass of all grid cells with θe value smaller than the threshold. We only integrate airmass 200 

in the troposphere, which is defined as potential vorticity unit (PVU) smaller than 2. This 

calculation yields a unique value of Mθe for each value of θe as well as a 3-D field of 

atmospheric Mθe, which we generate at daily resolution in the Southern Hemisphere based 

on MERRA-2 reanalysis (9). We also calculate Mθe using other reanalyses (NCEP, JRA-

55, and ERA-5) and we find that the differences are generally small (1). 205 

We define surface Mθe as the Mθe value of the lowest available altitude level in the 

MERRA-2 reanalysis at a given longitude and latitude. 

The Mθe value of each airborne observation is computed by matching the observed θe value 

with our daily θe-Mθe lookup table. We compute observed θe following 

 θe = (T +
Lv(T)

Cp
q) (

P0

P
)

Rd
Cp

 (S7) 

where T (K) is the temperature of air; q (kg of water vapor per kg of air mass) is the water 210 

vapor mixing ratio; Rd (287.04 J kg−1 K−1) is the gas constant for air; Cpd (1005.7 J kg−1 

K−1) is the specific heat of dry air at constant pressure; P0 (1013.25 mbar) is the reference 

pressure at the surface, and Lv(T) is the latent heat of evaporation at temperature T. Lv(T) 

is defined as 2406 kJ kg−1 at 40°C and 2501 kJ kg−1 at 0°C and scales linearly with 

temperature. 215 

For HIPPO and ORCAS, we calculate θe using the recommended static pressure and air 

temperature variables (PSX and ATX), and water vapor mole fraction measured by VCSEL 

(10; H2Oppmv_vxl for HIPPO and VMR_VXL for ORCAS). We interpolate specific 

humidity in MERRA-2 to any missing water vapor mole fraction measurement along 

HIPPO flights. For ATom, we calculate θe from static pressure and air temperature as 220 

measured by the Meteorological Measurement System (MMS, P), and relative humidity of 

water vapor as measured by the Diode Laser Hygrometer (DLH, Sat_Vapor_Press_H2O) 

(11, 12).  
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Text S6: Atmospheric CO2 inversion products, empirical surface ocean pCO2 

products, global biogeochemistry models, and prior airborne estimate 225 

We use estimated air-sea CO2 fluxes and posterior atmospheric CO2 concentration from 

four atmospheric inversion products. The transport model, resolution, and meteorology of 

each inversion product are summarized in SI Appendix, Table S3. In these inversions, the 

fossil fuel and fire CO2 fluxes are prescribed, while the ocean and land CO2 fluxes are 

optimized to match in-situ CO2 observations, except Jena sEXTocNEET_v2020 which 230 

uses prescribed ocean CO2 fluxes provided by assimilation of surface ocean pCO2 

observations from SOCAT (13) by the Jena mixed-layer scheme (14). The land fluxes in 

Jena sEXTocNEET_v2020 are optimized. 

Surface ocean pCO2 products used for comparison purposes in this study were derived 

using neural-network approaches to interpolate pCO2 data from SOCAT (13) or SOCCOM 235 

(15), as described in Landschützer et al. (16). Here we use two different flux estimates from 

Landschützer et al. (17, 18), with the methodology presented by Bushinsky et al. (19) and 

listed here by the names used in Fig. 5e-h:  

1. SOCAT: only shipboard pCO2 measurements were used to train the neural 

network and generate extrapolated pCO2 fields used to estimate fluxes, no profiling 240 

float data were included. 

2. SOCCOM(only): a sensitivity run where all shipboard data from SOCAT were 

excluded (only SOCCOM float data were included) south of 35°S after the year 

2014. 

We compare to modeled air-sea CO2 flux fields from nine global ocean biogeochemistry 245 

models that were submitted to the Global Carbon Budget 2020 (20). These models are all 

general circulation models coupled with biogeochemistry modules. Details can be found 

in Hauck et al. (21) and Table A2 of Friedlingstein et al. (20). We downloaded flux fields 

from Hauck et al. (21), which have been previously regridded to 1° x 1°. 

We use monthly surface Mθe maps (averaged from the daily maps based on MERRA-2 that 250 

are interpolated to model grids to assign a Mθe value to each surface grid of the CO2 flux 

fields. Total fluxes of each month are calculated by integrating all selected grids of the 

corresponding Mθe range. Seasonal cycles of total fluxes are calculated by a 2-harmonic fit 
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to the monthly fluxes from 2009 to 2018, except for SOCCOM and FESOM, which are 

from 2015 to 2017, and from 2009 to 2017, respectively.  255 

For each product, we calculate annual uptake by integrating the monthly fluxes of each 

year, and we report the mean annual uptake from 2009 to 2018, with 1σ uncertainty as the 

standard deviation of 10 years. 

Text S7: Discussion of diabatic mixing rates 

We find that diabatic mixing rates are generally larger at a high Mθe surface (lower 260 

latitudes) relative to a low surface (Fig. 2 and SI Appendix, Fig. S3), suggesting a faster 

diabatic transport time scale in low latitudes. Diabatic mixing rates also show a clear 

seasonal cycle at higher Mθe surfaces (30 and 45), which display slower transport time 

scales (low values) in the austral summer relative to the winter. We show a large spread of 

mixing rates that are calculated from four different inversion products, corresponding to 265 

four different atmospheric transport models driven by four different reanalysis wind 

products (SI Appendix, Table S3). Among all four ATM-based mixing rates, CT-based 

mixing rates display the fastest transport, while ACTM-based mixing rates display the 

slowest transport. Jena-based mixing rates only show a small seasonal cycle and are close 

to ACTM-based mixing rates in the winter (small mixing rate), but relatively close to CT-270 

based mixing rates in the summer (larger mixing rate). CAM-based mixing rates show a 

fast transport in the winter that is close to CT-based mixing rates, but show a slow transport 

in the summer that is close to ACTM-based mixing rates. On the other hand, mixing rates 

computed using moist static energy from reanalyses (MSE-based mixing rates) generally 

show a slower transport compared to the average of ATM-based mixing rates. The two 275 

MSE-based mixing rates are highly comparable and show a slow transport time scale that 

is close to ACTM-based mixing rates in the summer. Diabatic mixing rates only show very 

small interannual variability at each Mθe surface and from each product, indicated by the 

small 1𝜎 uncertainty bars in Fig. 2 and SI Appendix, Fig. S3. We note that ATM-based 

mixing rates are poorly constrained when the atmospheric CO2 gradient across Mθe is small 280 

(e.g., from September to November in CAMS). This suggests that, provided we use the 

same transport model, a different mixing rate would be derived if we base our calculations 

on a single component of atmospheric CO2 (e.g., ocean flux alone), or if we use other 

chemical tracers (e.g., O2) that have different gradients compared to CO2. 
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 285 

Fig. S1: HIPPO, ORCAS and ATom horizonal flight tracks, colored by campaigns or sub-

campaigns. The aircraft profiled continuously from near the ocean surface to 12-14 km (see 

Fig. S1 in Long et al. 2021 (22)). 

 

 290 
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Fig. S2: Similar to Fig. 1b, but showing Mθe surface contours for each season (by color, 

averaged from 2009 to 2018 based on MERRA-2 reanalysis) of three Mθe surfaces (1016 

kg). 295 
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Fig. S3: Diabatic mixing rates of the (a) 15 (1016 kg), (b) 30 (1016 kg), and (c) 45 (1016 kg) 

Mθe surface. These mixing rates are parameterized from four 3-D CO2 inversion products 

and moist static energy budgets of two reanalysis products (MERRA-2 and JRA-55). Error 300 

bars represent only the interannual variability of parameterized mixing rates, which is 

shown to be small. Panel (b) is identical to Fig. 2, but with a larger y-range. 
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Fig. S4: (a) – (d) Monthly reconstructed air-sea CO2 fluxes (solid black) of the 0-15 (1016 305 

kg) Mθe band (~ south of 51°S near the Earth surface, detailed in Fig. 1b and SI Appendix, 

Fig. S2) based on four 3-D inversions, comparing with the original monthly inversion 

fluxes of the same Mθe band (dashed black). Each component (i.e., diabatic CO2 transport 

and CO2 inventory change, detailed in Materials and Methods, and Eq. 1) of the box-model 

reconstruction is shown as well. Negative values of the diabatic transport represents CO2 310 

transport into the 0-15 Mθe band (poleward transport). (e) – (h) Similar to (a) – (d), but 

showing the flux and each component as a climatological monthly average (2009 to 2018).  
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Fig. S5: Similar to Fig. S2, but showing reconstruction of surface CO2 flux for the Mθe 315 

band of 15 to 30 (1016 kg). 
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Fig. S6: Similar to Fig. S2, but showing reconstruction of surface CO2 flux for the Mθe 

band of 30 to 45 (1016 kg). 320 
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Fig. S7: Similar to Fig. 4a but exploring the correlation between April to November 

averaged ATM-based mixing rates for three Mθe surfaces and simulated atmospheric CO2 

gradients across the corresponding Mθe surfaces of four transport models (inversion 325 

products). Simulated gradients are averaged at the mean dates of seven airborne campaigns 

that took place during April to November (HIPPO2-5, and ATom1, 3, 4). The 

corresponding ATM-based mixing rate is calculated as the April to November average. For 

comparison, we show the observed CO2 gradients (spatial bias corrected) in horizontal 

black lines, which are calculated as the average of the same seven campaigns, while the 330 

dashed lines show the 1 σ  uncertainty (measurement and spatial bias correction 

uncertainty). We also show two MSE-based mixing rates (April to November average) as 

vertical brown lines. 
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 335 

Fig. S8: Seasonal cycles (2009 to 2018 average) of biosphere and anthropogenic CO2 

fluxes estimated by the atmospheric inversion products for three approximate latitude 

bands (calculated based on surface Mθe range). The seasonal cycles are calculated by 2-

harmonic fits to monthly fluxes from 2009 to 2018. For each Mθe band, we subtract the 

mean biospheric and anthropogenic flux (averaged from the four flux estimates) from our 340 

surface CO2 flux estimates (based on airborne observation and box model) to yield air-sea 

CO2 fluxes. This correction has 1σ uncertainty amounting to the standard deviation of the 

four flux estimates. 
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 345 

Fig. S9: Similar to Fig. 5e-h, but comparing our airborne-based estimates (black) with 

ocean biogeochemistry models that are used in Global Carbon Project 2020 (20, 21). 
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Fig. S10: Similar to Fig. 5a–d but showing the fitted flux cycles calculated using the mean 350 

of four ATM-based mixing rates and 2 MSE-based mixing rates. 
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Fig. S11: Similar to Fig. 5a–d but showing the fitted flux cycles calculated using each set 

of diabatic mixing rate (i.e., 4 ATM-based and 2 MST-based). 355 
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Fig. S12: Identifying bias in our estimates of CO2 concentration for each Mθe box due to 

limited spatial coverage of the airborne CO2 measurements. We compare the true model 

CO2 (i.e., calculated from the 3-D atmospheric field of each inversion product) with values 360 

calculated by subsampling the model atmospheric field along the flight track of each 

airborne mission (method see SI Appendix, Text S1) and processing identically to the 

observations. The bias is calculated as the subsampled average minus the true average, and 

therefore, a positive bias indicates that the limited spatial coverage biases the estimated 

CO2 concentration too large. We adjust our measurements using the average across models 365 

for each campaign or sub-campaign. 
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Fig. S13: Histogram of CO2 differences, averaged over each flight, between the AO2 

instrument and other instruments (for method see SI Appendix, Text S2.1). One value is 370 

generated per flight and the histogram shows these differences across all flights and 

campaigns. We also show the mean and standard deviation of CO2 offsets for each 

instrument, and the number of flights that are available.  
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 375 

Fig. S14: Identifying bias in CO2 flux estimates for each Mθe box and each airborne 

campaign or sub-campaign due to limited temporal coverage (interannual variability), 

based on estimated flux from MIROC-ACTM. For each campaign, we quantify the bias 

(shown as bars) as the differences between the modelled flux of a 15-day flight window 

around the corresponding campaign mean date and the 10-year averaged flux of the same 380 

15-day window repeating from 2009 to 2018. The 15-day flight window is selected as the 

mean campaign flight day ±7 days. A positive bias indicates that the limited temporal 

coverage biases the estimated air-sea CO2 flux too large (more outgassing or less uptake). 

We also show the corresponding seasonal cycle of these interannual flux biases as black 

curves, estimated by 2-harmonic fits of corresponding bars for each Mθe band. We do not 385 

adjust for interannual sampling biases, but do include a component in our uncertainty 

budget from inverted flux in MIROC-ACTM. 
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Fig. S15: Detrended airborne CO2 observations (ΔCO2) expressed on the Mθe coordinate. 390 

We note that we have dense measurements across all Mθe surfaces in each campaign except 

close-to-0 Mθe during HIPPO1, ATom1, and ATom2. We also do not have measurements 

in the entire first Mθe band during HIPPO4 (no observation lower than 17.88 Mθe). 
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 395 
 

Fig. S16: Similar to Fig. 3, but reconstructing air-sea CO2 flux from the neural-network 

interpolation of SOCAT data that is forward transported by the TM3 model, together with 

inverted fossil fuel CO2 flux and ecosystem CO2 flux from the Jena sEXTocNEEv2020. 

For this reconstruction, we use the diabatic mixing rates of the Jena sEXTocNEEv2020 400 

(TM3 transport model) as in Fig. 2, rather than recalculating the mixing rates based on the 

flux field and atmospheric CO2 field. The comparison of the grey and black dashed curves 

shows that biases are small, with a small systematic offset in summer. The offset suggests 

that the mixing rates derived from simulated atmospheric CO2 data depends slightly on the 

original CO2 flux fields. This error is not directly relevant to our reported fluxes based on 405 

observations, which use MSE-based mixing rates. 
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Table S1: RMSE (PgC yr-1) of reconstructed monthly surface CO2 fluxes compared to the 

original fluxes. 

Mθe
band 

(1016 kg) 

RMSE of each inversion products 

Jena CO2 inversion 

sEXTocNEET_v2020 

CarbonTracker 

2019b 

CAMS 

V20r1 

MIROC-

ACTM2020 

0-15 0.067 0.097 0.048 0.094 

15-30 0.066 0.086 0.081 0.067 

30-45 0.083 0.118 0.113 0.109 

 410 
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Table S2: Summary of research flight number, latitude coverage, and duration of each 

airborne mission in the Southern Hemisphere. 

Campaign 
Flight 

numbers 
Latitude coverage Date 

HIPPO1 5 – 10 66.2°S – 0.0°S 2009.01.16 – 2009.01.28 

HIPPO2 4 – 8 66.0°S – 0.0°S 2009.11.07 – 2009.11.16 

HIPPO3 4 – 8 66.9°S – 0.0°S 2010.03.31 – 2010.04.10 

HIPPO4 4 – 8 58.0°S – 0.0°S 2011.06.22 – 2011.07.03 

HIPPO5 7 – 11 67.2°S – 0.0°S 2011.08.24 – 2011.09.03 

ORCAS1 1 – 6 69.0°S – 33.3°S 2016.01.15 – 2016.01.25 

ORCAS2 7 – 11 75.0°S – 35.0°S 2016.01.30 – 2016.02.12 

ORCAS3 12 – 19 68.5°S – 18.3°S 2016.02.18 – 2016.02.29 

ATom1 4 – 8 65.3°S – 0.0°S 2016.08.06 – 2016.08.17 

ATom2 4 – 8 65.3°S – 0.0°S 2017.02.03 – 2017.02.15 

ATom3 4 – 9 80.1°S – 0.0°S 2017.10.06 – 2017.10.19 

ATom4 4 – 9 86.2°S – 0.0°S 2018.05.01 – 2018.05.14 

 

  415 
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Table S3: Atmospheric inversion products. 

Product Years 
Transport 

Model 

Resolution 

(lon x lat x 

vertical level) 

Meteorology Reference 

Jena Inversion 

sEXTocNEET_v2020 

1999-

2019 
TM3 4 x 5 x 19 NCEP (23) 

Carbon Tracker 

2019b 

2000-

2018 
TM5 3 x 2 x 25 

ERA-

Interim 
(24) 

CAMS v20r1 
1979-

2020 
LMDZ6A 

3.75 x 1.875 x 

39 
ERA5 (25–27) 

MIROC-ACTM2020 
1996-

2019 

MIROC4-

ACTM 
2.8 x 2.8 x 67 JRA-55 (28) 
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Table S4: Airborne-based air-sea CO2 fluxes estimated for each campaign and Mθe band. 

The mean day of year of each airborne campaign is also listed. Positive flux denotes net 

outgassing into the atmosphere. Latitudes represent mean annual locations of Mθe 420 

boundaries. We did not resolve flux estimates in the first two bands of HIPPO4 because 

there is no observation data within the entire first Mθe band (0-15 1016 kg). 

Campaign 

Day 

of 

year 

Mθe
(1016 kg): 0-15 

Latitude: 90°S - 51°S 

Mθe
(1016 kg): 15-30 

Latitude: 51°S - 43°S 

Mθe
(1016 kg): 30-45 

Latitude: 43°S - 39°S 

Mθe
(1016 kg): 0-30 

Latitude: 90°S - 43°S 

Flux 

(PgC yr-1) 

Uncertainty 

(PgC yr-1) 

Flux 

(PgC yr-1) 

Uncertainty 

(PgC yr-1) 

Flux 

(PgC yr-1) 

Uncertainty 

(PgC yr-1) 

Flux 

(PgC yr-1) 

Uncertainty 

(PgC yr-1) 

HIPPO1 22 -0.68 0.24 -0.28 0.39 -0.01 0.50 -0.97 0.40 

HIPPO2 314 -0.03 0.15 -0.35 0.42 -0.24 0.50 -0.39 0.46 

HIPPO3 95 0.20 0.15 -0.54 0.46 -0.54 0.74 -0.34 0.47 

HIPPO4 179 / / / / -0.61 1.48 / / 

HIPPO5 241 0.10 0.21 -0.02 0.63 -0.47 1.21 0.08 0.64 

ORCAS1 20 -0.61 0.24 -0.66 0.24 -0.19 0.39 -1.27 0.32 

ORCAS2 37 -0.50 0.24 -0.73 0.37 -0.25 0.36 -1.23 0.42 

ORCAS3 55 -0.44 0.19 -0.45 0.25 -0.34 0.36 -0.90 0.28 

ATom1 223 0.28 0.16 -0.15 0.30 -0.52 0.73 0.13 0.32 

ATom2 40 -0.61 0.24 -0.99 0.41 -0.02 0.77 -1.61 0.46 

ATom3 286 0.15 0.14 -0.46 0.28 -0.38 0.49 -0.31 0.33 

ATom4 127 0.23 0.14 -0.30 0.34 -0.45 0.60 -0.07 0.38 
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Table S5: Atmospheric CO2 gradients across Mθe bands observed by each airborne 

campaign. The adjusted gradient is also shown here, which is calculated by subtracting the 425 

bias due to limited spatial coverage (detailed in SI Appendix, Text S1 and Fig. S12) 

Campaign 

Mθe

15−30-Mθe

0−15 Mθe

30−45-Mθe

15−30 Mθe

45−60-Mθe

30−45 

Gradient 

(ppm) 

Adjusted 

gradient 

(ppm) 

 

Uncertainty

(ppm) 

Gradient 

(ppm) 

Adjusted 

gradient 

(ppm) 

 

Uncertainty

(ppm) 

Gradient 

(ppm) 

Adjusted 

gradient 

(ppm) 

 

Uncertainty

(ppm) 

HIPPO1 0.53 0.51 0.16 0.32 0.32 0.17 0.08 0.18 0.10 

HIPPO2 0.09 0.03 0.11 0.23 0.20 0.17 0.14 0.27 0.10 

HIPPO3 0.08 0.09 0.11 0.18 0.23 0.15 0.08 0.23 0.13 

HIPPO4 / / / 0.08 0.12 0.21 0.08 0.16 0.13 

HIPPO5 0.14 0.05 0.15 0.16 0.06 0.14 0.15 0.14 0.14 

ORCAS1 0.71 0.60 0.09 0.66 0.64 0.10 0.20 0.47 0.08 

ORCAS2 0.31 0.50 0.15 0.65 0.57 0.12 0.22 0.42 0.07 

ORCAS3 0.38 0.53 0.09 0.59 0.42 0.08 0.39 0.44 0.07 

ATom1 -0.01 -0.06 0.10 0.12 0.07 0.06 0.14 0.15 0.09 

ATom2 0.68 0.47 0.16 0.52 0.62 0.15 0.31 0.32 0.19 

ATom3 0.03 0.03 0.08 0.24 0.23 0.08 0.21 0.31 0.08 

ATom4 0.29 0.22 0.05 0.13 0.22 0.08 0.14 0.21 0.06 
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Table S6: Bias of averaged CO2 concentration due to limited spatial coverage (detailed in 

SI Appendix, Text S1). A positive value indicates that the limited spatial coverage would 430 

bias the observed average CO2 of the corresponding Mθe band too high. We also show the 

1 σ  uncertainty of these corrections (± values), which are calculated as the standard 

deviation of the correction of four models for each campaign or sub-campaign and Mθe 

band. 

Campaign 

(sub-

campaign) 

Mθe
(1016 kg) band 

0-15 15-30 30-45 45-60 

HIPPO1 0.01±0.06 0.02±0.09 0.02±0.06 -0.07±0.06 

HIPPO2 0.00±0.09 0.06±0.02 0.09±0.04 -0.04±0.06 

HIPPO3 0.23±0.08 0.22±0.03 0.18±0.02 0.03±0.06 

HIPPO4 / 0.13±0.08 0.09±0.07 0.00±0.05 

HIPPO5 0.03±0.03 0.12±0.07 0.21±0.07 0.23±0.09 

ORCAS1 0.05±0.07 0.16±0.05 0.18±0.07 -0.09±0.01 

ORCAS2 0.05±0.05 -0.14±0.11 -0.07±0.02 -0.26±0.04 

ORCAS3 -0.06±0.05 -0.20±0.03 -0.03±0.04 0.02±0.04 

ATom1 -0.02±0.06 0.02±0.01 0.07±0.01 0.06±0.08 

ATom2 -0.21±0.07 0.00±0.11 -0.09±0.08 -0.11±0.15 

ATom3 0.00±0.06 -0.01±0.04 0.00±0.04 -0.10±0.05 

ATom4 0.07±0.02 0.13±0.03 0.14±0.05 0.07±0.02 

  435 
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Table S7: AR10−sec coefficient (unitless) and 1σ uncertainty (ppm) of random error ϵ(t) 
estimated from the autoregressive model for each pair of in situ instruments (detailed in SI 

Appendix, Text S2.1). Here we only show the mean values for each campaign, averaged 

from all flights of the campaign. We note that the variability of parameters within a 

campaign is generally small. 440 

Campaign 

(sub-

campaign) 

Instrument 

AO2 - QCLS AO2 - OMS AO2 - NOAA Picarro 

AR10-sec 1𝜎 of ϵ(t) AR10-sec 1𝜎 of ϵ(t) AR10-sec 1𝜎 of ϵ(t) 

HIPPO1 0.85 0.41 0.83 0.44   

HIPPO2 0.83 0.43 0.83 0.47   

HIPPO3 0.82 0.44 0.84 0.46   

HIPPO4 0.80 0.45 0.82 0.46   

HIPPO5 0.82 0.47 0.82 0.48   

ORCAS1 0.83 0.27   0.83 0.27 

ORCAS2 0.85 0.30   0.83 0.26 

ORCAS3 0.85 0.29   0.85 0.29 

ATom1 0.77 0.47   0.74 0.47 

ATom2 0.79 0.51   0.79 0.52 

ATom3 0.84 0.28   0.83 0.27 

ATom4 0.81 0.27   0.82 0.27 
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Table S8: 1σ Interannual variability (IAV, PgC yr-1) of air-sea CO2 flux for each Mθe band 

and each airborne campaign or sub-campaign, as suggested by the MIROC-ACTM model. 

IAV is calculated as detailed in SI Appendix, Text S2.2. 

Campaign 
Mθe

(1016 kg) band 

0-15 15-30 30-45 

HIPPO1 0.090 0.042 0.044 

HIPPO2 0.062 0.032 0.023 

HIPPO3 0.076 0.038 0.039 

HIPPO4 / 0.049 0.032 

HIPPO5 0.085 0.045 0.045 

ORCAS1 0.091 0.043 0.045 

ORCAS2 0.076 0.027 0.024 

ORCAS3 0.071 0.024 0.023 

ATom1 0.090 0.048 0.048 

ATom2 0.077 0.026 0.023 

ATom3 0.083 0.043 0.026 

ATom4 0.064 0.037 0.041 

  445 
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