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Abstract

We study deterministic algorithms for computing graph cuts, with focus on two fundamen-
tal problems: balanced sparse cut and k-vertex connectivity for small k (k = O(polylog n)).
Both problems can be solved in near-linear time with randomized algorithms, but their
previous deterministic counterparts take at least quadratic time. In this paper, we break this
bound for both problems. Interestingly, achieving this for one problem crucially relies on
doing so for the other.

In particular, via a divide-and-conquer argument, a variant of the cut-matching game
by [Khandekar et al.‘07], and the local vertex connectivity algorithm of [Nanongkai et
al. STOC’19], we give a subquadratic time algorithm for k-vertex connectivity using a
subquadratic time algorithm for computing balanced sparse cuts on sparse graphs. To achieve
the latter, we improve the previously best mn bound for approximating balanced sparse cut
for the whole range of m. This starts from (1) breaking the n3 barrier on dense graphs to
nω+o(1) (where ω < 2.372) using the the PageRank matrix, but without explicitly sweeping
to find sparse cuts; to (2) getting the Õ(m1.58) bound by combining the J-trees by [Madry
FOCS ‘10] with the nω+o(1) bound above, and finally; to (3) getting the m1.5+o(1) bound by
recursively invoking the second bound in conjunction with expander-based graph sparsification.
Interestingly, our final m1.5+o(1) bound lands at a natural stopping point in the sense that
polynomially breaking it would lead to a breakthrough for the dynamic connectivity problem.
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1 Introduction

Graph cuts, or sets of vertices or edges whose removal disconnects graphs, are fundamental
objects in graph theory and graph algorithms. Efficiently computing graph cuts have a wide
range of applications that include planarity testing [HT73], image processing [BVZ99], and
high performance/parallel computing [BMS+16]. While a very large gap remains between the-
oretical and practical performances, graph partitioning algorithms have also proven to be a
powerful theoretical tool, with prominent applications including linear systems solving [ST11],
approximation algorithms for unique games [Tre08, ABS15], and dynamic graph data struc-
tures [NS17, Wul17, NSW17].

Due to the central role of cuts in graph algorithms, they are a natural focus in the study of
more efficient graph algorithms. Many improvements in the running times of cut-related graph
algorithms [KKT95, Kar00, ST14, She13, KLOS14, Mad10] stem from better understandings of
randomized algorithmic primitives: there is a polynomial factor separation between the best
randomized and the best deterministic algorithms for many problems on graphs.

On the other hand, deterministic algorithms have a multitude of advantages over random-
ized ones. Theoretically, this is perhaps most evident in data structures, where an adaptive
adversary can choose the next operation based on the previous output of the data structure.
This resulting dependency is not handled by the analysis of many randomized data struc-
tures [KL13, FMP+18], and is only fixable in isolated situations using more intricate tools for
analyzing probabilistic processes [CMP16, KS16, KPPS17]. The highly efficient performance of
the randomized algorithms also make it difficult to apply more general purpose derandomization
tools (e.g. [NW94, Uma03, CIS18]), as many such tools could potentially incur overheads of
polynomial factors. Historically, the derandomization efforts also led to powerful tools that are
useful beyond the derandomization itself. For the case of cuts, a recent example is Thorup and
Kawarabayashi’s edge connectivity algorithm [KT19] (see also [HRW17, LST18]), which is a
deterministic counterpart of Karger’s prominent randomized near-linear time algorithm [Kar00].
Techniques from [KT19] have later found applications in, e.g., distributed algorithms [DHNS19],
dynamic algorithms [GHT18], and querying algorithms [RSW18] (some of these algorithms are
randomized).

Near-linear Randomized vs Quadratic Deterministic. While deterministic algorithms
for edge connectivity are well understood, there remain big gaps between deterministic and
randomized algorithms for many other graph cut problems. Among such problems, two well-
known ones are k-vertex connectivity, and approximate sparsest cut along with its generalization
to balanced sparse cut. On sparse graphs, these problems can be solved in near-linear time with
randomized algorithms, but their previous deterministic counterparts take at least quadratic
time:

(I) The first problem asks whether k vertices can be removed to disconnect the graph for
a given parameter k. Note that on sparse graphs (when m = Õ(n)), it can be assumed that
k = O(polylog(n)) [NI92].1 There has been a long line of work on this problem (e.g. [Kle69, Pod73,
ET75, Eve75, Gal80, EH84, Mat87, BDD+82, LLW88, CT91, NI92, CR94, Hen97, HRG00,
Gab06, NSY19a]). The problem was recently shown to admit a randomized algorithm that takes
Õ(m+ nk3) time [NSY19a, NSY19b, FY19], thus near-linear time on sparse graphs. In contrast,

1We use n and m to denote the number of nodes and edges respectively, and use Õ to suppress polylog(n).
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the best deterministic algorithm, due to Gabow [Gab06], takes O(m · (n + min(k5/2, kn3/4)))
time, which is Õ(n2) on sparse graphs. Note, though, that for such k the Õ(n2) bound dates
five decades back to the result of Kleitman [Kle69]. Gabow’s and the preceding deterministic
algorithms (e.g. [HRG00, Eve75, FM95]) improved over Kleitman’s bound only when the input
graph is dense enough. In fact, no improvement over Kleitman was known even for k = 4
(the case of k < 4 was long known to admit near-linear time [Tar72, HT73]). See, e.g., [Sch03,
Chapter 15] and [Gab06] for further surveys.

(II) The second problem asks for a cut that approximately minimizes the conductance, which
is the ratio between the number of cut edges and the volume (the sum of degrees) of the smaller
side of the cut (we will make this, as well as other high level definitions, more precise in Section 2).
A harder version of this problem, the balanced sparse cut problem (Definition 2.5), additionally
requires that the two sides of the cut are (approximately) as equal as possible in terms of
volumes. Our focus is on algorithms for these problems with small approximation factors in both
the cut size and the balance. With randomization, both versions admit such algorithms with
near-linear time complexity (e.g. by flow-based algorithms [KRV09, KLOS14, She13, Pen16] or
spectral-based algorithms [ST04, ACL06, OV11, OSV12]), and such routines are widely used
primitives in efficient graph algorithms.

However, the previous best deterministic algorithms require Ω(mn) time (e.g. by computing
PageRank vectors [ACL06]). On dense graphs this bound can be improved to O(nω) for sparsest
cut [Alo86, PC99], where ω < 2.372 is the matrix multiplication exponent, but not for the
balanced version that underlies most uses of sparse cuts in efficient algorithms. 2

Furthermore, approximating balanced sparse cuts on sparse graphs is already understood to
be an extremely important graph theoretic primitive [NS17, Wul17, NSW17]. For any constant
θ > 0, achieving an O(n1.5−θ)-time deterministic algorithm for the balanced sparse cut problem
on sparse graphs would imply a major breakthrough in dynamic graph algorithms, namely
a polynomial improvement over the classic deterministic algorithm for the dynamic graph
connectivity problem [Fre85, EGIN97]. On sparse graphs, no time bound better than n2 was
known for balanced sparse cut or even the easier sparsest cut problem.

1.1 Our Contributions

In this paper, we present the first sub-quadratic time algorithms on sparse graphs for all the
above problems. Our result for the k-vertex connectivity problem is as follows.

Theorem 1.1. There is an algorithm that takes an undirected unweighted graph with n vertices
and m edges, along with a threshold k, where k < n1/8, and outputs a subset S of size less than k
whose removal from G disconnects it into at least two components, or that no such subsets exist,
in time Ô(m+ min{n1.75k1+k/2, n1.9k2.5}).3

Our key tool for obtaining this running time is an Ô(m1.5)-time algorithm for the balanced
sparse cut problem. The is the first subquadratic-time algorithm for both balanced sparse cut

2While there is a reduction from sparsest cut to balanced sparsest cut in the approximation algorithms literature,
it may need to iterate up to Θ(n) times, giving a worse overall total than the O(nm) bound.

3We use the Ô(·) notation to hide sup-polynomial lower order terms. Formally Ô(f(n)) = O(f(n)1+o(1)), or

that for any constant θ > 0, we have Ô(f(n)) ≤ O(f(n)1+θ). It can be viewed as a direct generalization of the
Õ(·) notation for hiding logarithmic factors, and behaves in the same manner.
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Method f(φ) β Rand. Runtime Det. Runtime

Spectral / Cheeger Cut
[Alo86]

O(φ1/2) n O(mφ−1/2 log n) O(nω)

LP/SDP rounding
[LR99, ARV09, AK16]

O(φ
√

log n) O(1) O(n2) poly(n,m)

Local PageRank
[ACL06, ACL08, AL08, AP09]

O(φ1/2 log n) O(1) Ô(mφ−1) O(nm)

Single Commodity Flows
[KRV09, KKOV07, She09, Pen16]

O(φ
√

log n) O(1) Ô(m) —

(A) This paper [Theorem 2.7] O(φ1/2 log n) O(1) — O(nω)

(B) This paper [Corollary 2.9] O(φ1/2 log2.5 n) O(1) — Ô(m
2ω−1
ω )

(C) This paper [Corollary 2.11] φ1/2no(1) O(1) — Ô(m1.5)

Table 1: Previous Results for Approximating Balanced Cuts. Recall from Definition 2.5 that
f(φ) is the loss in conductance, and β is the loss in balance.

and sparsest cut. All our results are summarized in Table 1. We only explain these results
roughly here, and defer detailed discussions to Section 2. Roughly, an algorithm for the sparsest
cut problem is given a parameter φ < 1, and must either output that the input graph has
conductance at least φ, or output a sparse cut, with conductance f(φ) ≥ φ, where we want f(φ)
to be as close to φ as possible. (Ideally, we want f(φ) = φ, but f(φ) = O(φΩ(1)no(1)) is typically
acceptable.) For the balanced sparsest cut, we have parameter β indicating the balancedness
of the output. Those algorithms with β = O(1) (i.e. all, but the first) can be used to solve the
balanced sparse cut problem. In Table 1, the most important parameter to compare our and
previous algorithms are the time bounds in the last column. (All algorithms guarantee acceptable
values of f(φ), and keep in mind that the first algorithm does not work for the balanced sparse
cut problem.) We present three algorithms for balanced sparse cut:

• The first algorithm (A) guarantees the same f(φ) as the previous O(nm) time algorithm,
but takes O(nω). It thus improves the previous O(mn) time bound for dense graphs and
match the O(nω) time bound previously hold only for the sparsest cut problem.

• The second algorithm (B) guarantees slightly worse f(φ) than our first algorithm, but with

lower time complexity (Ô(m
2ω−1
ω ) = O(m1.578)). Its time complexity is subquadratic for

sparse graphs.
• The third algorithm (C) guarantees an even worse f(φ), but with a even better time bound

(Ô(m1.5)). What is most interesting about this bound is that it lands at a natural stopping
point in the sense that polynomially polynomially improving it (even with a slightly worse
f(φ)) would lead to a breakthrough for the dynamic connectivity problem as discussed
above.

While there remains significant gaps in the performances of our methods and their randomized
counter parts (which we will discuss in Section 3), we believe our investigation represents a
natural stopping point for a first step on more efficient deterministic graph cut algorithms. As
mentioned earlier, improving our Ô(m1.5) bound further would lead to a major breakthrough in
dynamic graph algorithms.
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Subsequently, a result involving a subset of the authors of this paper [CGL+19] gave a
determinstic algorithm for computing balanced cuts with no(1) approximation in time Ô(m).
While this result supersedes our third balanced-cut algorithm (C) for all values of φ, its high
approximation error of no(1) means our first two algorithms (A) and (B) still give better
approximations when φ > n−o(1). Furthermore, the Ô(m1.5) runtime overhead in approximating
minimum vertex expansion (Theorem 2.6) means the result in [CGL+19] does not immediately
imply faster approximate vertex expansion routines. It can also be checked that the newer
deterministic approximate vertex expansion bounds in [CGL+19] 4 also don’t improve the overall
running times as stated in Theorem 1.1. It remains open to obtain almost-linear time algorithms
for deterministically approximating vertex expansion (which would imply k-vertex connectivity in
Ô(m+ n1.5) time for constant values of k), or almost-linear time algorithms for deterministically
computing k-vertex connectivity.

Techniques. An interesting aspect of our techniques is the inter-dependencies between the
results.

First, to obtain Theorem 1.1, we need a subquadratic-time algorithm for the balanced
sparse cut problem, in particular the Ô(m1.5)-time algorithm. This is because, based on the
deterministic local algorithms of [NSY19a, CHI+17], we can construct a deterministic graph
partitioning scheme which runs in subquadratic time as long as we have access to a deterministic
procedures for approximating the “vertex expansion” of a graph. Then, we construct such
procedure by relating the vertex expansion problem to the balanced sparse cut problem via a
variant of the cut-matching game [KKOV07].

Secondly, to compute balanced sparse cuts in subquadratic time on sparse graphs, we invoke
a deterministic version of the J-trees by Madry [Mad10] to reduce to solving the same problem
on dense graphs. Here existing algorithms for dense graph are not efficient enough for the a
subquadratic time balanced sparse cut algorithm, so we develop a new O(nω)-time algorithm
for dense graphs. For this, we show how to find balanced sparse cuts from several PageRank
vectors without sweeping; instead we can look at the volumes of some cuts and do binary search.

Combining this O(nω)-time algorithm together with J-trees leads to a time bound of Ô(m
2ω−1
ω ).

By recursive invocations of such balanced sparse-cut routines in conjunction with expander-based
graph sparsifications, we finally obtained the final time bound of Ô(m1.5).

2 Overview

In this section, we briefly outline our techniques. As from hereon the results will be stated in
their fullest formality, we will introduce notations as we proceed. A summary of these notations
is in Appendix A.

Our graphs will be represented using G = (V,E), and we will use n = |V | and m = |E|
to denote the number of edges and vertices respectively. We assume all graphs are connected
because otherwise, we either have a trivial cut, or can run our algorithms on each of the connected
components separately.

4Sections 7.6 and 7.7 of https://arxiv.org/pdf/1910.08025v1.pdf
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2.1 k-Vertex-Connectivity

We say that G = (V,E) is k-vertex-connected (or simply k-connected) if there is no set S ⊂ V of
size |S| < k where G[V − S] has more than one connected component. We need the following
notion:

Definition 2.1. A separation triple (L, S,R) is a partition of vertices such that L,R 6= and
there is no edge between L and R. The size of (L, S,R) is |S|.

Checking whether a graph is k-vertex-connected is then equivalent to finding a separation
triple of size less than k. We say that a pair of vertices x, y is k-connected if there is no separation
triple of size less than k where x ∈ L and y ∈ R.

Our deterministic algorithm for checking if G is k-connected is based on a divide-and-conquer
approach. This is done by first exhibiting a sequence of structural results in Section 4, and
then providing a divide-and-conquer algorithm in Section 5. The key structural theorem from
Section 4 is the following:

Theorem 2.2. For any separation triple (L, S,R), consider forming the graph HL by
1. removing all vertices of R,
2. replacing R with a clique Kright of size k, and
3. adding a biclique between S and Kright,

as well as HR symmetrically. Then G is k-connected if and only if
1. |S| ≥ k.
2. Both the graphs HL and HR are k-connected.
3. Each pair x, y ∈ S, x and y are k-connected.

Note that checking if x, y are k-connected can be done using augmenting-path based max-flow
algorithms in O(mk) time [ET75]. Therefore, the time for checking the third condition is small
when k and |S| are small. This theorem naturally motivates a divide-and-conquer algorithm
where we recurse on both HL and HR. In order to reduce the number of recursion levels, it is
useful to find a small S that splits the vertices as even as possible. This motivates the following
notion:

Definition 2.3. The vertex expansion of a separation triple (L, S,R) is

h (L, S,R) =
|S|

min {|L| , |R|}+ |S|
,

and the vertex expansion of G is h(G) = min(L,S,R) h(L, S,R). A c-approximation to the minimum
vertex expansion is a separation triple whose vertex expansion at most c · h(G).

At high level, our recursive algorithm works roughly as follows. We assume we can compute
quickly an no(1)-approximation (L̂, Ŝ, R̂) to the minimum vertex expansion. If G has low vertex
expansion, then we apply the structural theorem on such (L̂, Ŝ, R̂) and recurse on both HL̂ and
HR̂. Otherwise, G has high vertex expansion. In this case, observe that any separation triple
(L, S,R) of size less than k must be very unbalanced, i.e., either |L| or |R| is very small. Now, this
is exactly the situation where we can use local vertex connectivity routine from [NSY19a, CHI+17]
for quickly detecting such separation triple (L, S,R). By careful implementation of this idea
together with some standard techniques, the performance of our algorithm can be formalized as:

5



Theorem 2.4. Given a routine that computes no(1)-approximations to the minimum vertex
expansion of an undirected unweighted graph G with m edges in time mθ for some θ > 1, we can
compute a k-vertex cut, or determine if none exists, when k < n1/8, in time

Ô
(
m+ min

{
n1+ 1

2
θk1+ k

2 , n1+ 3
5
θk

8
5

+ 3
5
θ
})

.

Proving this is the main goal of Section 5. For our eventual value of θ = 1.5 + o(1) in
Section 2.4, this gives a running time of Ô(m+ min{n1.75k1+k/2, n1.9k2.5}) respectively.

2.2 From Vertex Expansion to Edge Conductance

To approximate vertex expansion of a graph, we relate it to its much more well-studied edge
analog, namely conductance. For any graph G = (V,E), the conductance of a cut S ⊂ V is

Φ (S) = |EG(S,V \S)|
min{vol(S),vol(V \S)} where vol(S) =

∑
u∈S deg u. The conductance Φ(G) of a graph G

is the minimum conductance of a subset of vertices, i.e., Φ(G) = min∅6=S⊂V Φ(S). Recall that
Φ(G) is NP-hard to compute [LR99]. Most efficient algorithms make the following bi-criteria
approximation:

Definition 2.5. A subset S ⊆ V of a graph G = (V,E) is a (φ̂, c)-most-balanced φ-conductance
cut for some parameters φ, φ̂, and c if

1. vol(S) ≤ m and Φ(S) ≤ φ, and

2. any set Ŝ ⊆ V satisfying vol(Ŝ) ≤ m and Φ(Ŝ) ≤ φ̂ satisfies vol(Ŝ) ≤ c · vol(S).

Furthermore, for a function f where f(φ) ≥ φ and a value c ≥ 1, we say that an algorithm A is
an (f(φ), c)-approximate balanced-cut algorithm if for any graph G and any parameter φ > 0
given as input, it either:

1. certifies that Φ(G) ≥ φ, or

2. outputs a (φ, c)-most-balanced f(φ)-conductance cut.

Our algorithmic definitions allow for general functions that transform conductances because
the Cheeger-based algorithms [Alo86, OSV12] take φ to 1/2 powers. A more detailed description
of previous graph partitioning algorithms in terms of this formulation is in Section 3. This notion
of approximation helps us connects all algorithmic component throughout the paper. First, in
Section 6, we show a reduction that, given a f(φ), c)-approximate balanced-cut routing, we can
obtain an no(1)-approximation to the minimum vertex expansion as we need from the previous
section:

Theorem 2.6. Given any (f(φ), c)-approximate balanced-cut routine ApproxBalCut such that
f(φ) ≤ φξno(1) for some absolute constant 0 < ξ ≤ 1, we can compute an no(1)-approximation to
the minimum vertex expansion on a graph with n vertices and m edges by invoking ApproxBalCut
a total of O(c log n) times, each time on a graph with n vertices and maximum degree O(c log n),
plus a further deterministic overhead of Ô(cm1.5).

6



The key to Theorem 2.6 is the cut-matching game framework by Khandekar et al. [KKOV07,
KRV09]. We observe that the cut-matching game variant by Khandekar, Khot, Orecchia, and
Vishnoi [KKOV07] can be seen as a general reduction that allow us to can reduce the problems of
approximating various notions of graph expansion (e.g. sparsity, vertex expansion, conductance)
to the problem of many computing low conductance cuts in a O(c log n)-regular graph.

This enables us to concentrate on approximating low conductance balanced cuts, which is
our second main contribution.

2.3 Approximating Low-Conductance Balanced Cuts

We develop three (f(φ), c)-approximate balanced-cut routines. The first algorithm, based on
computating the PageRank matrix, breaks the n3 barrier on dense graphs and have running time
O(nω). We then combine it with the j-tree technique of Madry [Mad10] previously developed for

randomized algorithms and obtain an algorithm with running time Ô(m
2ω−1
ω ) but has slightly

worse approximation. This breaks n2 barrier for sparse graphs. Finally, we speed up the
running time further to Ô(m1.5) by recursively invoking the second bound in conjunction with
expander-based graph sparsification.

We start with the formal statement of our first algorithm which is proved in Section 7:

Theorem 2.7. There is an (O(φ1/2 logm), 10)-approximate balanced-cut algorithm that runs in
deterministic O(nω) time on any multigraph G = (V,E) with n vertices, and any parameter φ.

This algorithm is a derandomization of the PageRank-Nibble algorithm by Andersen, Chung,
and Lang [ACL06]. Roughly speaking, this algorithm computes the PageRank vector pv ∈ RV≥0

of vertex v encoding a distribution of random walk starting at v. We first observe that computing
the PageRank vector pv for all v ∈ V simultaneously can be easily done in O(nω) by computing
an inverse of some matrix. How to exploits these vector are more subtle and challenging.

A sweep cut w.r.t. pv is a cut of the form V pv
≥t where V pv

≥t = {u ∈ V | pv(u) ≥ t}. Checking if
there is a sweep cut V pv

≥t with conductance at most φ in can be easily done in O(m). To do this,
we compute |E(V pv

≥t , V − V
pv
≥t )| and vol(V pv

≥t ) of all t in O(m), by sorting vertices according their
values in pv and “sweeping” through vertices in the sorted order. Unfortunately, spending O(m)
time for each vertex v would give O(mn) time algorithm which is again too slow.5

To overcome this obstacle, we show a novel way to obtain a sweep cut without approximating
the cut size |E(V pv

≥t′ , V − V
pv
≥t′)| for any t′. We exploit the fact the sweep cut is w.r.t. a PageRank

vector pv and not some arbitrary vector. This allows us to do a binary search tree for t where the
condition depends solely on the volume vol(V pv

≥t ) and not the cut size |E(V pv
≥t , V − V

pv
≥t )|. This is

the key to the efficiency of our algorithm.
Next, we in turn use this scheme to speed up the computation of balanced low-conductance

cuts via the j-tree constructions by Madry [Mad10]. In Section 8, we show:

Theorem 2.8. Given an (f(φ), c)-approximate balanced-cut routine with running time TBalCut(n,m),
along with any integer parameter k > 0, there is also an (f(O(φ log3 n)), 10c)-approximate
balanced-cut routine with running time:

Ô (k (m+ TBalCut (m/k,m))) .
5To the best of our knowledge, there is no deterministic data structure even for checking whether |E(S, V −S)| > 0

in o(m) time, given a vertex set S ⊂ V . That is, it is not clear how to approximate |E(V pv≥t , V − V
pv
≥t )| in o(m)

time even for a fix t.
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Our strategy for Theorem 2.8 is as follows. First, we transform the graph to have constant
degree via a standard reduction. At this point, we switch to the sparsest cut problem, since
it is easier to work with in the steps to follow. Recall that the sparsity σ(G) of a graph G is

σ(G) = minS
|E(S,V−S)

min{|S|,|V−S|} , which is similar to conductance but gives equal “weight” to each

vertex. Then, we apply Madry’s j-tree construction on the (bounded degree) graph for a choice
of j depending on k, obtaining k many j-trees such that there exists a j-tree with a near-optimal
sparsest cut. Moreover, we show that we can assume that this near-optimal sparsest cut has a
specific structure: either it cuts only the tree edges of the corresponding j-tree, or it cuts only the
core. The former case is handled with a simple dynamic programming without recursion, while
the latter requires a recursive low-conductance cut algorithm on the core; the algorithm tries
both cases and takes the better option. Our algorithm does this for each of the k many j-trees
and takes the best cut overall, amounting to k recursive low-conductance cut calls. Finally, since
the graph has bounded degree, transitioning from sparsest cut back to low-conductance cut
incurs only another constant factor loss in the approximation.

An immediate application of Theorem 2.8 gives

Corollary 2.9. There is an (O(φ1/2 log2.5m), 100)-approximate balanced-cut algorithm that runs

in deterministic Ô(m
2ω−1
ω ) time on any multigraph G = (V,E) with m edges, and any parameter

φ.

Proof. Given Theorem 2.8 the (O(φ1/2 logm), 10)-approximate balanced-cut algorithm that runs

in deterministic Ô(nω) time of Theorem 2.7 and setting k to m
ω−1
ω give an(

O (log n) ·O
(
φ1/2 log1.5m

)
, 10 · 10

)
=
(
O
(
φ1/2 log2.5m

)
, 100

)
-approximate balanced-cut algorithm with running time

Ô
(
m

ω−1
ω

(
m+ Ô((m/m

ω−1
ω )ω)

))
= Ô

(
m

ω−1
ω

(
m+ (m/m

ω−1
ω )ω

))
= Ô

(
m

2ω−1
ω

)
.

Of course, just as in the construction by Madry [Mad10], it is tempting to invoke the size
reductions given in Theorem 2.8 recursively. Such recursions will lead to a larger overhead on
conductance, which in turn factors only into the running time of the k-vertex-cut algorithm as
stated in Theorem 2.4. However, we obtain a faster running time by using recursion to speed
up the dense case instead. By combining balanced cuts with graph sparsification. We perform
a 4-way recursion akin to the one used for random spanning trees in [DKP+17] to obtain the
following result in Section 9.

Theorem 2.10. Given any (f(φ), c)-approximate balanced-cut routine ApproxBalCut in time
mθ for some 1 < θ ≤ 2 such that f(φ) ≤ φξno(1) for some absolute constant 0 < ξ ≤ 1, we can
obtain an (no(1) · f(φ), c)-approximate balanced-cut routine with running time

Ô
(
n2θ−2m2−θ

)
= Ô

(
n2
)
.

This result immediately implies a running time of Ô(n2) for dense graphs, but at the cost of
higher approximation factors compared to the matrix-inverse based one given in Theorem 2.7.
By further combination with previous algorithms, we obtain our third runtime bound.

8



Corollary 2.11. There is an (φ1/2no(1), 1000)-approximate balanced-cut algorithm that runs in
deterministic Ô(m1.5) time on any multigraph G = (V,E) with m edges, and any parameter φ.

Proof. By Corollary 2.9 and since ω < 2.38, we have an (O(φ1/2 log2.5m), 100)-approximate
balanced-cut algorithm that runs in deterministic m1.58 time on any multigraph G = (V,E) with
m edges, and any parameter φ. We can apply Theorem 2.10 with ξ = 1/2 on this algorithm to
get an (no(1) ·O(φ1/2 log2m), c)-approximate balanced-cut routine with running time Ô(n2).

Then we give the algorithm to Theorem 2.8 with k = m0.5 to get an (no(1)·O(φ1/2 log3m), 1000)-
approximate balanced-cut algorithm with running time

Ô
(
m0.5

(
m+ Ô

((
m/m0.5

)2)))
= Ô

(
m0.5

(
m+

(
m/m0.5

)2))
= Ô

(
m1.5

)
.

2.4 Putting Everything Together

We can now combine the pieces to obtain a sub-quadratic algorithm for vertex connectivity.

Proof of Theorem 1.1. By plugging the algorithm from Corollary 2.11 to Theorem 2.6 with
c = 1000 and f(φ) = φ1/2no(1). This results in an no(1)-approximation to the minimum vertex
expansion on a graph with n vertices and m edges with running time

O (log n) · Ô
(

(n ·O(log n))1.5
)

+ Ô
(
m1.5

)
= Ô

(
m1.5

)
.

Finally, we can use Theorem 2.4 with θ = 1.5 + o(1) on the minimum vertex expansion routine
above, computing a k-vertex cut or determining if none exists, when k < n1/8, in time

Ô
(
m+ min

{
n1.75k1+ k

2 , n1.9k2.5
})

,

which is the desired result of Theorem 1.1 when k ≥ 2.

We remark that while there are many other ways of combining the various pieces for graph
partitioning, specifically Lemmas 8.15 and Theorem 2.10, we believe it is unlikely for an algorithm
built from just these pieces to obtain a running time of o(m1.5). A (somewhat cyclic) way of
seeing this is to consider the gains of applying of these tools once when starting from an mθ time
algorithm (for some 1 < θ < 2): Theorem 2.10 implies that a dense graph can be solved in time

n2θ−2m2−θ,

which when plugged into the j-tree recurrence given by Lemmas 8.15 gives a running time of

k ·
(
m+

(n
k

)2θ−2
m2−θ

)
.

To simplify this, we first consider the sparse case where n ≈ m, where the above runtime
simplifies to

k ·
(
n+

(n
k

)2θ−2
n2−θ

)
= kn+ nθk3−2θ.
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Observe that if θ > 1.5, then k3−2θ < 1 and we can set k =
√
n so that the running time

is kn + nθk3−2θ = n1.5. For general m, this approach speeds up an mθ-time algorithm to an
algorithm with Ô(m1.5) running time. On the other hand, if θ ≤ 1.5, then k3−2θ ≥ 1 and so the
running time is at least nθ, which means that setting k > 1 does not help. This suggests that
any further improvements beyond o(m1.5) requires new tools.

3 Related Works

In the broadest sense, our results are related to the derandomization of graph algorithms, which
is a wells studied topic [Rei08, KT19, HRW17, MRSV17]. Deterministic algorithms have a wide
ranges practical of advantages, such as the reproducibility of errors, that make them significantly
more preferable in areas such as numerical analysis and high performance computing. While there
has been extensive work on pseudorandomness and derandomization [BFNW91, NW94, IW97,
Uma03, CIS18], the pursuit of more efficient deterministic graph algorithms is much more fine
grained. Even if one can show that BPP ⊆ P , it is not clear that any randomized nearly-linear
time algorithm can also be derandomized to run in nearly-linear time.

With a few exceptions such as computing global minimum cuts [KT19, HRW17], most
problems involving graph cuts have significantly faster randomized algorithms than deterministic
ones.

3.1 k-Vertex Connectivity

Vertex connectivity has been studied extensively in graph algorithms. For the k ≤ 3 case,
determinsitic O(m) time algoirthm were given by Tarjan [Tar72] and Hopcroft and Tarjan [HT73],
and were one of the primary motivations for studying depth first searchers. For k ≥ 4, there is a
long list of algorithms, starting from the five-decade-old O(n2)-time algorithm of Kleitman [Kle69]
when k = O(1) and m = O(n) and many others for larger values of k and m [LLW86, KR87,
NI92, HRG96].

However, even for the case of k = 4, no sub-quadratic deterministic algorithms are known.
Even with randomization, a subquadratic time algorithm was only given recently by Nanongkai
et al. [NSY19a, NSY19b]. Their algorithm runs in subquadratic (i.e. O(m + n2−θ) for some
constant θ > 0) time when k = o(n2/3), and near-linear time for constant values of k.

3.2 Graph Partitioning

Algorithms for approximating minimum conductance cuts have been extensively studied. A partial
list of results that fit into our notion of (f(φ), β)-approximate balanced-cuts from Definition 2.5
is given in Table 1.

This problem (in general case) can be solved in Õ(m) time by randomized algorithms
(e.g. by flow-based algorithms [KRV09, KLOS14, She13, Pen16] or spectral-based algorithms
[ST04, ACL06, OV11, OSV12]). However, previous deterministic algorithms still take Ω(mn)
time by, for example, computing PageRank vectors [ACL06] from every vertex. Such a runtime
upper bound is not sufficient for a sub-quadratic time vertex-cut algorithm.

We note that, if the balance guarantee is not needed, it is known how to solve this problem
in O(nω) since the 80’s (see e.g. [Alo86]). One can compute the second eigenvector v2 of the
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laplacian matrix of G deterministically in O(nω) time [PC99], and perform a “sweep cut” defined
by v2 in O(m) time. As observed in [Alo86, JS88], the returned cut S will have conductance at
most O(

√
φ∗) if there exists a cut with conductance φ∗. However, there is no guarantee about

the balance of S. Our running time for approximate balanced cuts matches the bound. However,
the balance guarantee is crucial for efficiently partitioning graphs: otherwise one could repeatedly
remove O(1) sized vertex subsets, leading to an Ω(n) factor overhead.

While undirected graph partitioning takes randomized nearly-linear time via reductions to
approximate maximum flow [She09, Pen16], in general it is a fundamental question whether there
is a deterministic almost linear time algorithm as well. Prior to this paper, the best deterministic
algorithm takes O(mn) time via PageRank [ACL06]. Our algorithms are the first deterministic
approximate balanced cut algorithm with subquadratic runtime, as well as the first with subcubic
runtime on dense graphs.

4 Structural Properties of Vertex-Cuts

Througout this section, we fix a connected graph G = (V,E) and an arbitrary separation triple
(L, S,R) in G.

In this section show the top-level structural result that enables recursive k-vertex-connectivity
algorithms.

Theorem 2.2. For any separation triple (L, S,R), consider forming the graph HL by
1. removing all vertices of R,
2. replacing R with a clique Kright of size k, and
3. adding a biclique between S and Kright,

as well as HR symmetrically. Then G is k-connected if and only if
1. |S| ≥ k.
2. Both the graphs HL and HR are k-connected.
3. Each pair x, y ∈ S, x and y are k-connected.

We first formally define the left subgraph HL of G, and right subgraph HR of G as follows.

Definition 4.1 (HL and HR). Given a connected graph G, a separation triple (L, S,R), and
a positive integer k, we define two subgraphs HL and HR as follows. We define HL = (VL, EL)
where

VL = V1,L t V2,L and EL = E1,L t E2,L t E3,L, (1)

where t denotes disjoint union of sets, and sets in Equation (1) are defined as follows.

• V1,L = L t S.
• V2,L is the set of k new vertices.
• E1,L is the set of edges from the induced subgraph G[L t S].
• E2,L = {(u, v) : u ∈ S, v ∈ V2,L}.
• E3,L = {(u, v) : u 6= v, u ∈ V2,L, and v ∈ V2,L}.

Similarly, we define HR = (VR, ER) where

VR = V1,R t V2,R and ER = E1,R t E2,R t E3,R, (2)

where sets in Equation (2) are defined as follows.
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• V1,R = S tR.
• V2,R is the set of k new vertices.
• E1,R is the set of edges from the induced subgraph G[S tR].
• E2,R = {(u, v) : u ∈ V2,R, v ∈ S}.
• E3,R = {(u, v) : u 6= v, u ∈ V2,R, and v ∈ V2,R}.

Remark 4.2. From Definition 4.1, HL[V2,L] is a clique of size k such that every vertex in S
has an edge to all vertices in V2,L. Symmetrically, HR[V2,R] is a clique of size k such that every
vertex V2,R has an edge to all vertices in S.

4.1 Interactions Between Two Separating Triples

When we consider two separation triples (L, S,R) and (L′, S′, R′), it is useful to draw a standard
crossing diagram as shown in Figure 1. For example, the neighbors of a “quadrant”, e.g. L ∩R′
are contained in parts of the two vertex-cuts.

L             S             R

L’

S’

R’

Figure 1: A crossing-diagram for two separation triples (L, S,R) and (L′, S′, R′). The neighbors
of L ∩R′ is a subset of (R′ ∩ S) ∪ (S′ \R).

Proposition 4.3. Let (L′, S′, R′) and (L, S,R) be any two separation triples. We have N(L ∩
R′) ⊆ (R′ ∩ S) ∪ (S′ \R).

Proof. By Definition A.4, there is no edge between L and R. Also, there is no edge between L′

and R′. Thus, a neighbor u of L∩R′ cannot be in L′ ∪R or in L∩R′. Therefore, if x ∈ R′, then
x ∈ R′ ∩ S, and if x 6∈ R′, then x ∈ S′ \R.

Theorem 4.4 ([NI92]). Given an undirected graph G = (V,E), there is an O(m)-time algorithm
that partitions E into a sequence of forests Fk, k = 1, . . . , n such that the forest subgraph
Hk = (V,

⋃k
i=1 Fi) is k-connected if and only if G is k-connected. In addition, any vertex set

of size < k is a vertex-cut in G if and only if it is a vertex-cut in Hk. Furthermore, Hk has
aboricity k, meaning that |E(S, S)| ≤ k|S| for any subset S ⊆ V .

4.2 Proof of Theorem 2.2: Part 1 (Sufficiency)

We first show that the conditions are sufficient. To do this, we show the contrapositive: if G has
a vertex-cut of size smaller than k, then at least one of the conditions in Theorem 2.2 is false.

If either condition 3 or 4 is false, then we are done.
Otherwise, we show that HL or HR is not k-connected.
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We now assume that G has a vertex cut of size smaller than k. This means κG < k. We
denote (L∗, S∗, R∗) as an optimal separation triple. Note that |S∗| = κG ≤ k − 1.

Claim 4.5. We have S ∩ L∗ = ∅ or S ∩R∗ = ∅.

Proof. Suppose otherwise that S ∩ L∗ 6= ∅ and S ∩ R∗ 6= ∅. There exists u ∈ S ∩ L∗, and
v ∈ S ∩ R∗. Hence, u ∈ S and v ∈ S, and so κG(u, v) ≥ k. On the other hand, u ∈ L∗ and
v ∈ R∗. Therefore, κG(u, v) = κG < k, which is a contradiction.

We now assume WLOG that S ∩R∗ = ∅. The case S ∩ L∗ = ∅ is similar.

Claim 4.6. There exists a vertex x ∈ S ∩ L∗, and another vertex y ∈ (L tR) ∩R∗.

Proof. Since |S| ≥ k > |S∗| and S ∩ R∗ = ∅, there exists a vertex x ∈ S ∩ L∗. Also, since
S ∩R∗ = ∅, we have R∗ ∩ (L tR) 6= ∅. In particular, L ∩R∗ 6= ∅, or R ∩R∗ 6= ∅.

By Claim 4.6, y ∈ L ∩ R∗ or y ∈ R ∩ R∗. We assume WLOG that y ∈ L ∩ R∗. The other
case is similar. So far, we have that

S ∩R∗ = ∅, x ∈ S ∩ L∗, and y ∈ L ∩R∗. (3)

Figure 2 shows the corresponding crossing diagram from Equation (3) with additional facts
from the following claim.

x

y

L             S             R

L*

S*

R*

x

y

L*

S*

R*

L               S             

V2,LV1,L

Figure 2: A crossing-diagram for two separation triples (L, S,R) and (L∗, S∗, R∗) before and
after transformation from G to HL.

Claim 4.7. For the two separation triples (L, S,R) and (L∗, S∗, R∗) in G,
1. N(L ∩R∗) ⊆ S∗ \R,
2. S∗ is an (x, y)-vertex-cut in G, and
3. S∗ ∩R = ∅.

Proof. We first show that N(L∩R∗) ⊆ S∗\R. By Proposition 4.3, N(L∩R∗) ⊆ (R∗∩S)t(S∗\R).
By Equation (3), S ∩R∗ = ∅. Therefore, N(L ∩R∗) ⊆ S∗ \R. Next, S∗ is an (x, y)-vertex-cut
in G. Since x ∈ S ∩ L∗ and y ∈ L ∩R∗, x ∈ L∗ and y ∈ R∗. Therefore. the claim follows.

We now show that S∗ ∩ R = ∅. Since N(L ∩ R∗) is an (x, y)-vertex-cut in G, and S∗

is the smallest vertex-cut, we have |N(L ∩ R∗)| ≥ |S∗|. Since N(L ∩ R∗) ⊆ (S∗ \ R) ⊆ S∗,
|N(L ∩ R∗)| ≤ |S∗ \ R| ≤ |S∗|. Therefore, we have |S∗| ≤ |N(L ∩ R∗)| ≤ |S∗ \ R| ≤ |S∗|. In
particular, |S∗ \R| = |S∗|.
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It remains to show that S∗ is also a vertex-cut in HL as suggested by Figure 2. We now make
the argument precise.

Claim 4.8. After transformation from G to HL by Definition 4.1, vertices x and y are in HL.
The set S∗ and L ∩R∗ do not change. In other words, for the left-subgraph HL, we have,

1. x ∈ V1,L,
2. y ∈ V1,L,
3. S∗ ⊆ V1,L, and
4. L ∩R∗ ⊆ V1,L.
5. N(L ∩R∗) ⊆ V1,L.

Proof. By Definition 4.1, for any node v in G, if v ∈ L t S, then v ∈ V1,L. We will use this fact
throughout the proof. We now show first two items. By Equation (3), x ∈ S ∩L∗ and y ∈ R∗ ∩L.
Thus, x ∈ S and y ∈ L. Since x and y are both in the set LtS, x ∈ V1,L and y ∈ V1,L. Next, we
show that S∗ ⊆ V1,L. By Claim 4.7 part 3, S∗ ∩R = ∅. Thus, S∗ ⊆ L t S. Therefore, S∗ ⊆ V1,L.
Next, we show that L∩R∗ ⊆ V1,L. Since L∩R∗, we have L∩R∗ ⊆ L. Therefore, L∩R∗ ⊆ V1,L.
Finally, we show that NHL(L ∩R∗) ⊆ V1,L. By Claim 4.7 part 1, we have N(L ∩R∗) ⊆ S∗ in G.
Also, S∗ ⊆ V1,L in HL. Therefore, N(L ∩R∗) ⊆ S∗ in HL.

Lemma 4.9. The left subgraph HL is not k-connected.

Proof. Since |S∗| < k, it is enough to show that S∗ is an (x, y)-vertex-cut in HL. To do so, we
prove four items (all in HL).
• N(L ∩R∗) ⊆ S∗.
• y ∈ L ∩R∗.
• x 6∈ L ∩R∗.
• x 6∈ S∗.

We prove the first item. By Claim 4.7 part 1, we have N(L ∩ R∗) ⊆ S∗ in G. By Claim 4.8
part 3, 4 and 5, the set S∗, L ∩ R∗, and N(L ∩ R∗) exist in HL. By Definition 4.1, the new
edges in HL do not join any vertex in L. In particular, the new edges do not join any vertex in
L ∩R∗. This means N(L ∩R∗) does not change after transformation from G to HL. Therefore,
N(L ∩ R∗) ⊆ S∗ in HL. Next, we show that y ∈ L ∩ R∗ in HL. By Equation (3), y ∈ L ∩ R∗
in G. By Claim 4.8 part 2, y exists in HL. Therefore, y ∈ L ∩ R∗ in HL. Next, we show that
x 6∈ R∗ ∩ L in HL. By Equation (3), x ∈ S ∩ L∗ in G. Hence, x 6∈ L and x 6∈ R∗ in G. By
Claim 4.8 part 1, x exists in HL. Therefore, x 6∈ L ∩ R∗ in HL. Finally, we show that x 6∈ S∗
in HL. By Claim 4.7 part 2, S∗ is an (x, y)-vertex-cut in G. Hence, x 6∈ S∗ in G, which means
x 6∈ S∗ in HL.

Remark 4.10. It is possible that HR is not k-connected when the two assumptions from above
are different.

4.3 Proof of Theorem 2.2: Part 2 (Necessity)

It remains to show the other direction. That is, we show that if not all the conditions in
Theorem 2.2 are true, then G has a vertex-cut of size smaller than k. Before the proof, we start
with simple observation.
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Lemma 4.11. For any separation triple (L′, S′, R′) in HL(or HR) such that |S′| < k, S′ 6⊆
V2,L(or V2,R). That is, the clique V2,L(or V2,R) in Definition 4.1 of size k does not contain the
vertex-cut S′.

Proof. We prove the result for HL. The proof for the case HR is similar. Suppose S′ ⊆ V2,L.
Let H ′L = HL − S′H . The new graph H ′L is essentially the same as HL except that the modified
clique V ′2,L = V2,L \ S′ has size k − |S′| ≥ 1 (since |S′| < k). In essence, the graph H ′L has the
same structure as HL, but with a smaller clique. That is, from the separation triple (L, S,R) in
G, we obtain the graph H ′L by contracting R into a clique of size at least 1. Since G is connected
and by Definition 4.1, H ′L is connected. Therefore, S′ does not disconnect HL, contradicting to
the fact that S′ is a vertex-cut.

Observation 4.12. The clique V2,L(or V2,R) cannot span both L′ and R′. That is, if V2,L∩L′ 6= ∅,
then V2,L ∩R′ = ∅. Likewise, if V2,L ∩R′ 6= ∅, then V2,L ∩ L′ = ∅.

Proof. Suppose V2,L ∩R′ 6= ∅, and V2,L ∩ L′ 6= ∅. There is an edge between L′ and R′ since V2,L

is a clique. Therefore, we have a contradiction since (L′, S′, R′) is a separation triple, but there
is an edge between L′ and R′.

Lemma 4.13. If there is a separation triple (L′, S′, R′) in HL(or HR) such that |S′| < k and
V2,L∩L′ 6= ∅(or V2,R∩L′ 6= ∅), then there is a separation triple (L′′, S′′, R′′) in HL(or HR) where
L′′ = L′ ∪ V2,L, S′′ = S′ \ V2,L, and R′′ = R′. In particular, |S′′| ≤ |S′| and V2,L(or V2,R) ⊆ L′′.

Proof. We prove the result for HL. The proof for thcase HR is similar. If V2,L ⊆ L′, then we are
done. Now, suppose otherwise. By Observation 4.12, we have V2,L ⊆ L′ t S′

We claim that N(V2,L) ⊆ L′ t S′. First of all, there is a vertex z ∈ V2,L ∩ L′ since V2,L ⊆
L′ t S′, |S′| < k but |V2,L| = k. Also, by Definition 4.1, N(V2,L) = S. Suppose that there is
a vertex z′ ∈ N(V2,L) such that z′ ∈ R′. Since (1) V2,L is a clique that every node has edges
to every vertex in S = N(V2,L), (2) z ∈ V2,L ∩ L′ and (3) z′ ∈ N(V2,L) ∩ R′, there is an edge
between L′ and R′. However, this contradicts to the fact that (L′, S′, R′) is a separation triple
where L′ and R′ cannot have an edge between each other. Therefore, the claim follows.

We construct a new separation triple in HL as follows. Let L′′ = L′ ∪ V2,L, S′′ = S′ \ V2,L,
and R′′ = R′. Clearly, V2,L ⊆ L′′, and |S′| < k.

We claim that the vertex set (L′′, S′′, R′′) forms a separation triple in HL. First of all, it is
clear that L′′, S′′, and R′′ form a partition of all vertices in HL (i.e., they are pairwise disjoint,
and L′′ t S′′ t R′′ = VHL). It is enough to verify that L′′, S′′, and R′′ are not empty, and that
S′′ is a vertex-cut in HL. We first show that each set L′′, S′′, R′′ is non-empty. Clearly, L′′ and
R′′ are not empty since we add new elements to the set L′′, and R′′ = R′. We show that S′′ is
also non-empty. By Lemma 4.11, there is a vertex in S′ that is not in the clique V2,L. Also, we
only move V2,L from S′ to L′. Therefore, S′′ is not empty. We now show that S′′ is a vertex-cut
in HL. Since N(V2,L) ⊆ L′ t S′, and L′ t S′ = L′′ t S′′, we have N(V2,L) ⊆ L′′ t S′′. Also, R′′

is not an emptyset. Hence, HL − S′′ has no path from any vertex in V2,L to any vertex in R′′.
Therefore, S′′ is a vertex-cut in HL.

Remark 4.14. If V2,L ∩R′ 6= ∅ for the separation triple (L′, S′, R′), then we can swap L′ and
R′ so that we can still apply Lemma 4.13.
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Lemma 4.15. If HL has a vertex-cut S′ corresponding to the separation triple (L′, S′, R′) such
that |S′| < k and V2,L ⊆ L′, then S′ is also a vertex-cut in G.

Proof. Since |S′| < k, we only need to show that S′ is a vertex-cut in G. Since V2,L ⊆ L′, we
have NHL(V2,L) ⊆ L′ t S′. This means HL − S′ has no paths from any vertex in V2,L to any
vertex in R′. Hence, by Definition 4.1, G− S′ has no paths from any vertex in R (the set R was
contracted into a V2,L) to any vertex in R′. Therefore, S′ is a vertex-cut in G.

To finish the proof of Theorem 2.2, we show that if not all the conditions in Theorem 2.2 are
true, then G has a vertex-cut of size smaller than k.

If |S| < k or κG(x, y) < k for some x, y ∈ S, then we are done. Suppose now that |S| ≥ k and
κG(x, y) ≥ k. This implies HL (or HR) is not k-connected. We show that an optimal vertex-cut
in HL or HR whose size is smaller than k can be used to construct a vertex-cut in G of size
smaller than k.

We assume WLOG that HL contains a vertex-cut of size smaller than k. The other case that
HR contains a vertex-cut of size smaller than k is similar.

Let (L∗, S∗, R∗) be an optimal separation triple in HL. Note that the vertex-cut S∗ has
size < k. We claim that V2,L ⊆ L∗ or V2,L ⊆ R∗. Suppose that V2,L 6⊆ L∗ and V2,L 6⊆ R∗. By
Observation 4.12, we have V2,L ∩ S∗ 6= ∅. By Lemma 4.13, we obtain a new separation triple
(L∗∪V2,L, S

∗\V2,L, R
∗). Clearly, |S∗\V2,L| < |S∗| since V2,L∩S∗ 6= ∅. However, this is impossible

since S∗ is the smallest vertex-cut, a contradiction.
We now show that G has a vertex-cut of size at most k. Since S∗ is an optimal vertex-cut,

HL has a vertex-cut S∗ corresponding to the separation triple (L∗, S∗, R∗) such that |S∗| < k,
and V2,L ⊆ L∗ (if V2,L ⊆ R∗, we can swap L∗ and R∗). By Lemma 4.15, S∗ is also a vertex-cut
in G.

4.4 Vertex-Expansion and k-Connectivity

Definition 4.16 (Vertex expansion of a separation triple h(L, S,R)). Given a separation triple

(L, S,R), the vertex expansion of (L, S,R), h(L, S,R), is |S|
min(|L|,|R|)+|S| .

Definition 4.17 (Vertex expansion of a graph h(G)). the vertex expansion of G, h(G), is
min(L,S,R)∈G h(L, S,R), i.e., the minimum vertex expansion over all separation triples in G.

Proposition 4.18. For any separation triple (L, S,R), min(|L|, |R|) ≤ n/2.

Proof. Suppose min(|L|, |R|) > n/2. We have |L| + |R| = min(|L|, |R|) + max(|L|, |R|) >
n/2 + n/2 = n, which is a contradiction.

Proposition 4.19. If h(L, S,R) ≤ η, then
• min(|L|, |R|) ≥ (1/η − 1)κG.
• |S| ≤ nη/(2− 2η).

Proof. By definition of vertex-expansion Definition 4.16, we have the following equations:

|S|/(min(|L|, |R|) + |S|) ≤ η,
|S| ≤ η(min(|L|, |R|) + |S|),

|S|(1− η) ≤ηmin(|L|, |R|).
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Hence, we get |S| ≤ min(|L|, |R|)η/(1− η), which is at most nη/(2− 2η) by Proposition 4.18.
We also get min(|L|, |R|) ≥ (1/η − 1)|S|, which is at least (1/η − 1)κG since |S| ≥ κG.

Proposition 4.20. If h(G) ≥ η, and there is no separation triple (L, S,R) such that min(|L|, |R|) ≤
2k/η and |S| < k, then G is k-connected.

Proof. Suppose G has a separation triple (L′, S′, R′) such that |S′| < k. By the given condition,
min(|L′|, |R′|) > 2k/η. Therefore, we have

η ≤ h(L′, S′, R′) =
|S′|

min(|L′|, |R′|) + |S′|
< k/min(|L′|, |R′|) < η/2.

The first inequality follows from h(G) ≥ η, and Definition 4.17, the second equality follows from
Definition 4.16. The third inequality follows from |S′| < k. The last inequality follows from
min(|L′|, |R′|) > 2k/η. Therefore, η < η/2, and we have a contradiction.

Corollary 4.21. For a ∈ (0, 1), if h(L, S,R) ≤ 1/(2n1−a−o(1)), then
• min(|L|, |R|) ≥ n1−a−o(1).
• |S| ≤ na+o(1)/2.

Proof. The results follows from By Proposition 4.19 where we use η = 1/(2n1−a−o(1)). By
Proposition 4.19, we get min(|L|, |R|) ≥ (1/η − 1)κG, which is ≥ (1/η − 1) = 2n1−a−o(1) − 1 ≥
n1−a−o(1). By Proposition 4.19, we have |S| ≤ nη/(2 − 2η) = (n/2)(1/(2n1−a−o(1) − 1)) ≤
(n/2)(1/n1−a−o(1)) ≤ na+o(1)/2.

5 Deterministic Vertex Connectivity Algorithm

In this section we give our main vertex connectivity algorithm. Our main result is

Theorem 2.4. Given a routine that computes no(1)-approximations to the minimum vertex
expansion of an undirected unweighted graph G with m edges in time mθ for some θ > 1, we can
compute a k-vertex cut, or determine if none exists, when k < n1/8, in time

Ô
(
m+ min

{
n1+ 1

2
θk1+ k

2 , n1+ 3
5
θk

8
5

+ 3
5
θ
})

.

5.1 Overview

Our algorithm is based on two structural lemmas about k-connectivity. Recall from Definition 2.3
that the vertex expansion of a separation triple (L, S,R) is h(L, S,R) = |S|

min(|L|,|R|)+|S| and the

vertex expansion of a graph G is h(G) = min(L,S,R)∈G h(L, S,R).
The first observation is the following. Suppose that the vertex expansion of G is h(G) ≥ γ for

some parameter γ. Then, any separation triple (L, S,R) of size less than k must be such that either
|L| < kγ−1 or |R| < kγ−1 because otherwise its vertex expansion is h(L, S,R) < k/(kγ−1) ≤ γ.
Therefore, G is not k-connected if and only if there is a set L ⊂ V where |L| ≤ kγ−1 and
|N(L)| < k where N(L) is the neighbors of L. Note that

vol (L) ≤ 2 |E (L,L)|+ E (L,N (L)) ≤ 2k |L|+ k |L| = O
(
γ−1

)
,
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because G has arboricity at most k.
This is exactly where the local vertex connectivity (LocalVC) algorithm introduced in [NSY19a]

can help us. This algorithm works as follows: given a vertex x in a graph G and parameters ν
and k, either

1. certifies that there is no set S 3 x where vol(S) ≤ ν and |N(S)| < k, or

2. returns a set S 3 x where |N(S)| < k. See Definition 5.1 for a formal definition.

There are currently two deterministic algorithms for this problem: an Ô(ν1.5k)-time algorithm
by a subset of the authors [NSY19a] and an Ô(νkk)-time algorithm via a slight adaptation of
the algorithm by Chechik et al. [CHI+17].

For simplicity, we will assume that k is a constant, and use the Ô(νkk)-time bound here,
which by our assumption we view as Ô(ν) time.

From the above observation about the set L, it is enough to run the LocalVC algorithm from
every vertex x with a parameter ν = O(nγ−1) to decide if such L exists. This takes Ô(nγ−1)
total time to decide k-connectivity of G with the assumption h(G) ≥ γ−1.

To remove the assumption, we start by calling our deterministic vertex expansion algorithm.
As described in Section 2.4, on sparse graphs this routine finds in Ô(n1.5) time a separating triple
(L, S,R) such that

h(L, S,R) ≤ h(G) · no(1).

If h(G) ≥ Ô(γ−1), then the above algorithm based on local vertex connectivity can be immediately
invoked. So it suffices to consider the remaining case where h(L, S,R) ≤ γ).

Notice that, in this case, we have:

|L| , |R| ≥ γ−1, and (4)

|S| ≤ n · γ (5)

That is, the cut is quite balanced, and we can thus use divide-and-conquer.
For such a separation (L, S,R) with h(L, S,R) ≤ γ, we first check if |S| ≥ k and whether

every pair of x, y ∈ S are k-vertex-connected. By simple augmenting-path based max-flow
routines (such as the Ford-Fulkerson algorithm), this takes time

|S|2 ·O (mk) ≤ |S|2 ·O
(
nk2

)
≤ Ô

(
n3γ2k2

)
,

where the first inequality follows from being able to trim the graph down to the first k spanning
trees.

In Appendix B, we will also show a faster algorithm that is useful when k = ω(1).
If any of these poly(|S|) checks returns a small cut, then we’re done. Otherwise, by the

structural property of separating triples given in Theorem 2.2 and proven in Section 4, it suffices
to check recursively if HL and HR (which are L and R with extra vertices attached, see statement
of Theorem 2.2) are both k-connected. In Section 5.4, we perform a detailed analysis of the
running time of this recursion. For small values of k, and ignoring overheads coming from the
extra edges in HL and HR, the running time recurrence that we obtain in terms of γ is essentially

T (n) = max

{
nγ−1, max

n1+n2=n,|n1|,|n2|≥γ−1
T (n1) + T (n2) + Ô

(
n3γ2

)
+ Ô

(
n1.5

)}
.
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The first term is maximized at the topmost level, so can be considered separately against the
total cost of a recursion that always takes the second case. The depth of such a recursion is more
or less bounded by the reduction in n at each step, which is γ−1. So the total layers of recursion
is Ô(nγ), and as the total size of each level of recursion is n, the total work can be bounded by

T (n) ≤ Ô
(
n4γ3 + n2.5γ + nγ−1

)
.

This is minimized at γ = n−0.75, for a total of Ô(n1.75).
In the above back-of-the-envelope calculation, we treated k as a constant for simplicity. For

larger values of k, specifically k = ω(log n/ log log n), we instead use the Õ(ν1.5k)-time LocalVC
algorithm by [NSY19a] as the running time of O(νkk) is too slow. In this situation, with our
framework, a O(m5/3−ε)-time low-vertex-expansion algorithm is needed to break quadratic time
for vertex-connectivity.

5.2 Algorithm

We now formalize this vertex connectivity algorithm that we outlined above. First, we formalize
the local vertex connectivity routine that searches for a small cut starting from a single vertex.

Definition 5.1 (LocalVC). LocalVC(G, x, ν, k) is any algorithm that takes as input a pointer
to any vertex x ∈ V in an adjacency list representing a connected graph G = (V,E), positive
integers ν, k such that

νk ≤ c1m ν + k ≤ c2n and min
v∈V

deg(v) ≥ k (6)

for some positive constant c1, c2 and outputs either a vertex-cut S corresponding to a separation
triple (L, S,R) such that

x ∈ L, vol(L) ≤ O(νk), and |S| ≤ k,

or the symbol ⊥ certifying that there is no separation triple (L, S,R) such that

x ∈ L, vol(L) ≤ ν, and |S| ≤ k.

Theorem 5.2 ([NSY19a, CHI+17]). There is a deterministic LocalVC algorithm that runs in
Õ(min(ν3/2k, νkk)) time.

Definition 5.3 (SplitVC). SplitVC(G,S, k) is any algorithm that takes as input a connected
graph G = (V,E), a vertex-cut S, and positive integer k such that |S| ≥ k, and decides if there
exists a pair x ∈ S, and y ∈ S such that κG(x, y) < k. If so, it returns an (x, y)-vertex-cut of
size less than k. Otherwise, it returns ⊥.

It is easy to see that we can implement SplitVC by using at most |S|2 calls to max-flow. We
show in Appendix B that it is possible to implement deterministic SplitVC with running time
O((|S|+ k2)mk).

Here, we denote n as the original input size, and treat n as a global variable. We denote |V |
as the size of the current input. Let Λ = max((8/c1)k2)1/a, (9/c2)k2)1/a, nε) = Θ(max(k2/a, nε))
where c1 and c2 are the constants in Equation (6), and ε > 0 is sufficiently small constant.
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Algorithm 1 MainVC(G, k, a, n)

Input: Graph G = (V,E), integer k > 0, real a ∈ (0, 1/2), integer n > 0.
Assumptions: G has aboricity k.
Output: A vertex-cut of size < k or the symbol ⊥ certifying that κG ≥ k.

1: if |V | ≤ Λ then
2: compute κG using any deterministic algorithm.
3: return answer based on κG.

4: Let η = 1/(2|V |1−a).
5: if h(G) ≥ η then
6: if minv∈V deg(v) < k then
7: return N(umin) where umin is the vertex with minimum degree.

8: Let ν ← 6k2/η.
9: for each x ∈ V do

10: if LocalVC(G, x, ν, k − 1) returns a vertex-cut then . Definition 5.1
11: return the corresponding vertex-cut in G.

12: return ⊥.
13: Let (L, S,R) be a separation triple such that h(L, S,R) ≤ η|V |o(1). . Theorem 6.1
14: if |S| < k, or SplitVC(G,S, k) returns a vertex-cut then . Definition 5.3
15: return the corresponding vertex-cut in G.

16: Let HL and HR be the left and right subgraph from G, respectively. . Definition 4.1
17: Let H̃L and H̃R be the sparsified graph from HL and HR respectively. . Theorem 4.4
18: if MainVC(H̃L, k, a, n) or MainVC(H̃R, k, a, n) returns a vertex-cut then
19: return the corresponding vertex-cut in G. . Lemma 4.13.

20: return ⊥.

5.3 Correctness

Lemma 5.4. Algorithm 1 returns either a vertex-cut of size < k or ⊥ certifying that G is
k-connected.

We use induction on number of vertices. We prove that given a connected graph G with n
vertices, Algorithm 1 correctly returns a vertex-cut of size < k or ⊥. For the base case, if G has
≤ Λ vertices, we run any deterministic vertex-connectivity algorithm to decide if κG < k. For
the inductive hypothesis, we assume that Algorithm 1 outputs correctly for any connected graph
with at most r vertices where

r ≥ Λ = max((8/c1)k2)1/a, (9/c2)k2)1/a, nε). (7)

We show as an inductive step that Algorithm 1 outputs correctly for the graph with at most
r + 1 vertices.

We fix an arbitrary connected graph G = (V,E) with r+ 1 vertices. By Theorem 4.4, we can
also assume that G has aboricity k. Therefore, the precondition for Algorithm 1 is satisfied.

We first verify that preconditions in Equation (6) for LocalVC are satisfied. If G has minimum
degree less than k, we can output the neighbors of the vertex of minimum degree. Otherwies, G
has minimum degree at least k. It remains to verify ν + k ≤ c2|V |, and νk ≤ c1|E|.
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Claim 5.5. Let ν and k be the numbers as defined in Algorithm 1 (line 8). Denote n′ = r + 1,
and m′ as number of edges in G. We have ν + k ≤ c2n

′ and νk ≤ c1m
′.

Proof. Since G has aboricity k, m′ ≤ n′k. Therefore, it is enough to show that νk < c1n
′k and

ν + k < c2n
′. By Equation (7), we have n′ ≥ Λ ≥ max((8/c1)k2)1/a, (9/c2)k2)1/a). By simple

algebra using ν = 8k2n′1−a , n′ ≥ ((8/c1)k2)1/a implies νk ≤ c1n
′k, and n′ ≥ ((9/c2)k2)1/a

implies ν + k ≤ c2n
′.

Lemma 5.6. If h(G) ≥ η, then Algorithm 1 correctly outputs a vertex-cut of size at most k
(line 11) or the symbol ⊥(line 12).

Proof. Suppose G has a separation triple (L, S,R) such that

min(|L|, |R|) ≤ 2k/η, and |S| < k. (8)

We claim that Algorithm 1 returns a vertex-cut of size at most k (line 11). We show that vol(L) ≤
6k2/η. Without loss of generality, we assume |L| ≤ |R|. By Equation (8), |L| ≤ 2k/η. Since G
has aboricity k, and |L| ≤ 2k/η, we have vol(L) ≤ 2|E(L,L)|+ |E(L, S)| ≤ 2k|L|+ k|L| = 6k2/η.
Also, Algorithm 1 (line 11) runs LocalVC on every seed vertex. So far, we have that there is
x ∈ L, and vol(L) ≤ 6k2/η ≤ ν, and |S| ≤ k − 1. Also, by Claim 5.5, the preconditions for
Theorem 5.2 are satisfied. Therefore, by Theorem 5.2, LocalVC at node x outputs a vertex-cut
of size at most k − 1.

Suppose now that G has no separation triple (L, S,R) satisfying Equation (8). Recall that
h(G) ≥ η. Therefore, by Proposition 4.20, G is k-connected. In this case, by Theorem 5.2,
LocalVC (line 11) always outputs ⊥, and Algorithm 1 correctly returns the symbol ⊥ (line 12).

Therefore, if h(G) ≥ η, then Lemma 5.6 says that Algorithm 1 outputs correctly. Now,
suppose that h(G) ≤ η(r + 1)o(1). We show that Algorithm 1 outputs correctly.

Lemma 5.7. If h(G) ≤ η(r + 1)o(1), then Algorithm 1 correctly outputs a vertex-cut of size at
most k (line 15 or line 19) or the symbol ⊥ (line 20).

Proof. Since h(G) ≤ η(r + 1)o(1), there is a separation triple (L, S,R) such that h(L, S,R) ≤
η(r + 1)o(1). If |S| < k, or we can find a pair of vertices x, y in S such that κ(x, y) < k, then
Algorithm 1 (line 15) outputs the corresponding vertex-cut of size at most k, and we are done.
Now, we assume |S| ≥ k and κ(x, y) ≥ k for all x, y ∈ S.

Since we set η = 1/(2(r + 1)1−a), h(L, S,R) ≤ 1/(2(r + 1)1−a−o(1)). By Corollary 4.21, we
have

min(|L|, |R|) ≥ (r + 1)1−a−o(1). (9)

Let HL and HR be the left and right subgraphs as in Definition 4.1. We claim that the number
of vertices of HL and HR are strictly smaller than n. We focus on HL because the case HR is
similar. Suppose otherwise that number of vertices from G to HL does not decrease. This means
k ≥ |R| by Definition 4.1. By Equation (9), |R| ≥ min(|L|, |R|) ≥ (r + 1)1−a−o(1). Therefore,
k ≥ (r + 1)1−a−o(1), so r < k1/(1−a−o(1)), contradicting to Equation (7).

By Theorem 4.4, we obtain H̃L and H̃R where number of vertices does not change from that
of HL and HR, which means the number of vertices are less than n. Also, both H̃L and H̃R have
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aboricity k. Furthremore, any vertex-cut of H̃L (H̃R) with cardinality < k is a vertex-cut in HL

(H̃R). We now prove the inductive step.
Suppose G is not k-connected. We show that Algorithm 1 (line 19) returns a vertex-cut in G.

By Theorem 2.2, HL or HR is not k-connected. By Theorem 4.4, H̃L or H̃R is not k-connected.
Since H̃L and H̃R have less than n vertices, and they have aboricity k, Algorithm 1 returns
a vertex-cut for H̃L (or H̃R) by inductive hypothesis. Also, any vertex-cut in H̃L (or H̃R) is
a vertex-cut in HL (or HR). By Lemmas 4.13 and 4.15, we can construct the corresponding
vertex-cut in G . Therefore, Algorithm 1 (line 19) finds a vertex-cut in G.

Suppose now that G is k-connected. We show that Algorithm 1 (line 20) returns the symbol
⊥. By Theorem 2.2, HL or HR is k-connected. By Theorem 4.4, H̃L or H̃R is k-connected. Since
H̃L and H̃R have fewer than n vertices, and they have aboricity k, Algorithm 1 returns the
symbol ⊥ by inductive hypothesis. Therefore, Algorithm 1 (line 20) correctly return the symbol
⊥.

Therefore, by Lemmas 5.6 and 5.7, we complete the proof of the inductive step that Algorithm 1
is correct for G of at most r + 1 vertices. Therefore, Lemma 5.4 is proved.

5.4 Running Time

Definition 5.8. We define the following running times for subroutines in Algorithm 1.
• An algorithm in the base-case runs in Tbase(m,n, k) time.
• Approximate vertex-expansion h(G) runs in Th(m,n) time.
• LocalVC(G, x, ν, k − 1) runs in Tlocal(ν, k) time.
• SplitVC(G,S, k) runs in Tsplit(m,n, k, |S|) time.

Definition 5.9. We define tcost, tlocal, and tbase as follows.
• tcost = Th(nk, n) + Tsplit(nk, n, k, n

a+o(1)) +O(nk).
• tlocal = T (k2n1−a, k).
• tbase = Tbase(Λk,Λ, k).

Lemma 5.10. Algorithm 1 runs in time Õ(tcostn
a+o(1) + n(tlocal + tbase))).

We derive the running time of the Algorithm 1 by providing an upper bound in terms of
recurrence relation as in Section 5.4.1, and solving the recurrence relation in Section 5.4.2. We
prove Lemma 5.10 in Section 5.4.3.

Throughout this section, we denote a′ = a+ o(1).

5.4.1 Recurrence Relation

Lemma 5.11. Suppose Algorithm 1 never encounters the case h(G) ≥ η, then the running time
satisfies the following recurrence relation.

Tk,a(n) ≤ Tk,a(`+ s+ k) + Tk,a(n− `+ k) + Th(nk, n) + Tsplit(nk, n, k, s) +O(nk), (10)

where `, s, k satisfy

k < s ≤ na′/2, ` ≥ n1−a′ , ` ≤ n/2, and k < n1−a′ , (11)

and the base case is Tk,a(n) = Tbase(nk, n, k) for n ≤ Λ.
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Proof. By assumption the input graph G = (V,E) has aboricity k, meaning that m = nk. If
n ≤ Λ, then we run any deterministic vertex-connectivity algorithm in Tbase(nk, n, k) time.
Now suppose n > Λ. Algorithm 1 first computes the vertex expansion h(G) of the graph G in
Th(nk, n) time. Next, we obtain a separation triple (L, S,R) such that h(L, S,R) ≤ 1/(2n1−a′).
By Corollary 4.21, we have

min(|L|, |R|) ≥ n1−a′ and |S| ≤ na′/2. (12)

Next, we runs SplitVC algorithm to check if there is a pair of vertices x ∈ S, y ∈ S such that
κG(x, y) < k. This takes Tsplit(nk, n, k, s) time where s = |S|. Without loss of generality, we
assume that there is no such pair and so the algorithm continues. In this situation, we have
k < |S| = s. Furthermore, by Equation (12), s = |S| ≤ na′/2. This justifies the first inequalities
in Equation (11). Next, we construct left and right subgraphs and sparsify them in O(m) = O(nk)
time. We assume WLOG that |L| ≤ |R| (otherwise, we can swap L and R in the separation triple).
Let ` = |L|. By Equation (12), ` = |L| ≥ n1−a′ , so we get the second inequality in Equation (11).
The third inequality in Equation (11) follows from Corollary 4.21 that ` = min(|L|, |R|) ≤ n/2.
The final inequality in Equation (11) follows from k < na

′
/2, and a < 0.5. By Definition 4.1, we

have that HL has `+ s+ k vertices, and HR has n− `+ k vertices. Also, the number of new
edges is O(|S|k + k2) = O(nk) for HL and HR. We apply Theorem 4.4 for both HL and HR,
which takes additional O(nk) time. Therefore, the running time for solving two subproblems is
additional Tk,a(`+ s+ k) + Tk,a(n− `+ k).

5.4.2 Solving Recurrence Relation

This section is devoted to solve recurrence relation Tk,a(n) in Equation (10). The main result is
the following lemma.

Lemma 5.12. An explicit function in Equation (10) is Tk,a(n) = Õ(tcostn
a+o(1) + ntbase).

Throughout this section, we denote tcost = Õ(nx) for some x ≥ 1.

Definition 5.13 (Recursion tree). A recursion tree for a recurrence relation is a tree that is
generated by tracing the function calls recursively. Each node v in the tree contains (1) size(v),
which is the input to the function, and (2) cost(v), which is the cost at current node excluding
the cost for recursions.

Let T be a recursion tree for the recurrence relation in Equation (10) where each node of size
ni in the tree has cost O(nxi ). Without loss of generality, we assume the recursion tree T always
has left subproblem of size `+ s+ k, and right subproblem of size n− `+ k (otherwise, we can
swap left and right subtrees without affecting total cost).

We give the intuition for solving the recurrence relation Equation (10) using recursion tree.
We consider the right child as the subproblem with “true” size, and left child as the subproblem
with extraneous nodes in the graph. Hence, the total cost on along the right spine from the root
counts the cost without extra nodes. For the extra nodes in the graph when recurse on the left,
we can essentially charge the cost on the “true” nodes. The number of extra nodes is sufficiently
small, and left-branching can happen at most O(log n) time. Therefore, the total extra cost can
be bounded. We now make the intuition precise.
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Definition 5.14. We call the right-spine R of the tree T to be the set of nodes from the root
using right branch all the way to the node before leaf in T . We denote vi ∈ R as the node with
path length i from the root to vi. By convention, v0 is the root.

Definition 5.15. Let Ck,a(n) be a function satisfying the following recurrence relation

Ck,a(n) ≤
∑
vi∈R

cost(vi) +
∑

i : vi∈R
Ck,a(ni), ni = `i + si + k, (13)

where the parameters satisfy∑
vi∈R

`i ≤ n, and `i + si + k ≤ 3n/4 for all vi ∈ R, (14)

and,

k < si ≤ na
′
i /2 and `i ≥ n1−a′

i . (15)

The base case is Ck,a(n) = Tbase(nk, n, k) for n ≤ Λ.

Remark 5.16. In essence, the recurion tree for Ck,a(n) can be obtained by contracting right
spine of the recursion tree from Tk,a(n) into a single node. The recusion continues for each left
subtree of each node in the right spine R.

Lemma 5.17. Tk,a(n) = O(Ck,a(n)).

Proof. If n ≤ Λ, then both functions coincide by definition. We now focus on n > Λ. We show
that the function C(n) can be obtained by rearranging the summation of the cost of all nodes
in the recusion tree T . The term

∑
vi∈R cost(vi) corresponds to the summation over all cost of

nodes in the right spine R. Now, for each node vi ∈ R, let Ti be the corresponding left-subtree of
vi in the recursion tree T . The size of vi is `i + si + k where `i and si correspond to the terms
` and s in Equation (11) for the left child of any node in the recursion tree T . Therefore, the
total cost is

∑
vi∈R cost(vi) plus the cost of each remaining subtree Ti, which we can compute

recursively. Note that by Equation (11), we have k < si ≤ na
′
i /2 and `i ≥ n1−a′

i .
It remains to show that

∑
vi∈R `i ≤ n and that `i+si+k ≤ 3n/4 for all vi ∈ R. We first show

that
∑

vi∈R `i ≤ n. The size of the leaf node in the right spine R is n−
∑

vi∈R `i, which is ≥ 0.
Therefore, n ≥

∑
vi∈R `i. Next, we show that `i + si + k ≤ 3n/4 for all vi ∈ R. Let ni be the size

at node vi. Since recursion does not increase the size of node, we have ni ≤ n. By Equation (11),
we have `i ≤ ni/2, si ≤ na

′
i /2, k < na

′
i /2 where `i, si corresponds to the parameters at node

vi ∈ R. Therefore, `i + si + k ≤ ni/2 +na
′
i /2 +na

′
i /2 ≤ n/2 +n

′a/2 +na
′
/2 ≤ 3n/4 for any n ≥ 8

and any a ∈ (0, 1/2).

Claim 5.18. The cost of all nodes in the right spine R,
∑

vi∈R cost(vi), is O(nx+a′ + tbase)).

Proof. Each node in R has size at most n, which means that the cost is at most O(nx) per node.
We show that number of nodes in the right-spine R is O(na

′
), and this implies O(nx+a′) term in

the total cost. By design, T always has right subproblem of size n− `+ k ≤ n− n1−a′ + k ≤
n − n1−a′ + na

′
/2 ≤ n − n1−a′/2. The second inequality follows from Equation (11) where

k < s ≤ na
′
/2, so k < na

′
/2. Therefore, the function L(n) ≤ L(dn− n1−a′/2e) + 1, L(1) = 1 is

an upperbound of the number of nodes in the right-spine R. It is easy to see that L(n) = O(na
′
).

Finally, the term tbase follows from the base case of the recurrence where n ≤ Λ Therefore, the
claim follows.
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We now solve the function Ck,a(n) for Equation (13). Let T ′ be the recursion tree for
Ck,a(n). Let child(v) be the set of children of node v in T ′. Let level(i) be the set of nodes with
distance i from root in T ′. For each node v ∈ T ′ except the root, we denote the size of v as
size(v) = nv = `v + sv + k according to Equation (13).

We make useful observation about the recursion tree T ′.

Observation 5.19. For any non-root internal node v in the recursion tree T ′,

k < sv, (16)

(1 + 2sv/`v) ≤ (1 + 2/nε(1−2a′)), (17)∑
u∈child(v)

`u ≤ nv, (18)

sv < `v. (19)

Proof. The results follow from Definition 5.15 and Equation (14). We now show that (1 +
2/nε(1−2a′)) ≥ (1 + 2sv/`v) for any internal node v. It is enough to show that `v/sv ≥ nε(1−2a′).
Since v is an internal node, nv ≥ Λ ≥ nε. By Equation (15), `v ≥ n1−a′

v and sv ≤ na
′
v . Hence,

`v/sv ≥ n1−2a′
v ≥ nε(1−2a′). Finally, sv < `v since a ∈ (0, 1/2), and sv ≤ na

′
v /2, and `v ≥ n1−a′ by

Equation (15).

Claim 5.20. For each level in the recursion tree T ′, the total size of internal nodes is most 2n.

Proof. First, we show that the recursion tree T ′ has depth at most c lnn for some constant c.
This follows from Equation (14) where each subproblem size is at most 3/4 factor of the current
size.

Let child∗(v) be the set of non-leaf children of node v in T ′. Let level∗(i) be the set of non-leaf
nodes with distance i from root in T ′.

We claim that the total size of internal nodes at level i,
∑

u∈level∗(i) nu, is at most n(1 +

2/nε(1−2a′))i. We prove the claim by induction on number of level. Base case is at level i = 1.
We have

∑
u∈level∗(1)

nu =
∑

v∈child∗(root)

nv

=
∑

v∈child∗(root)

`v + sv + k

(16)

≤
∑

v∈child∗(root)

`v(1 + 2sv/`v)

(17)
= (1 + 2/nε(1−2a′))

∑
v∈child∗(root)

`v

(18)

≤ (1 + 2/nε(1−2a′))n.
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For inductive hypothesis, we assume that∑
u∈level∗(i)

nu ≤ n(1 + 2/nε(1−2a′))i, for i ≥ 1 (20)

We now prove as inductive step that
∑

u∈level∗(i+1) nu ≤ n(1 + 2/nε(1−2a′))i+1 (as convention,
we define the sum over an empty set as zero) . This follows from Observation 5.19, and the
followings. ∑

u∈level∗(i+1)

nu =
∑

u∈level∗(i)

∑
v∈child∗(u)

(`v + sv + k)

(16)

≤
∑

u∈level∗(i)

∑
v∈child∗(u)

(`v + 2sv)

=
∑

u∈level∗(i)

∑
v∈child∗(u)

`v(1 + 2sv/`v)

(17)

≤ (1 + 2/nε(1−2a′))
∑

u∈level∗(i)

∑
v∈child∗(u)

`v

(18)

≤ (1 + 2/nε(1−2a′))
∑

u∈level∗(i)

nu

(20)

≤ (1 + 2/nε(1−2a′))n(1 + 2/nε(1−2a′))i

= n(1 + 2/nε(1−2a′))i+1

Therefore,
∑

u∈level∗(i) nu ≤ n(1 + 2/nε(1−2a′))i, which is ≤ 2n for sufficiently large n and
i ≤ c log n.

Lemma 5.21. For each level i in the recursion tree T ′, the total size
∑

u∈level(i) nu is O(n).

Proof. Let child∗(v) be the set of non-leaf children of node v in T ′. Also, let child†(v) be the set
of leaf children of node v in T ′. Note that child(v) = child∗(v) ∪ child†(v). Let level∗(i) be the
set of internal nodes at level i in T ′. Also, Let level†(i) be the set of leaf nodes at level i in T ′.
Note that level(i) = level∗(i) ∪ level†(i).

We first show that ∑
u∈level†(i+1)

nu ≤ 6n (21)
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by the followings.∑
u∈level†(i+1)

nu =
∑

u∈level∗(i)

∑
v∈child∗(u)

nu

=
∑

u∈level∗(i)

∑
v∈child∗(u)

(`v + sv + k)

(16)

≤
∑

u∈level∗(i)

∑
v∈child∗(u)

(`v + 2sv)

(19)

≤
∑

u∈level∗(i)

∑
v∈child∗(u)

3`v

≤
∑

u∈level∗(i)

∑
v∈child(u)

3`v

(18)

≤ 3
∑

u∈level∗(i)

nu

≤ 3(2n) = 6n by Claim 5.20.

By Claim 5.20, and Equation (21), we have the followings.∑
u∈level(i+1)

nu =
∑

u∈level†(i+1)

nu +
∑

u∈level∗(i+1)

nu

≤ 6n+ 2n = O(n).

Therefore, the result follows.

Corollary 5.22. The number of nodes in the recursion tree T ′ is Õ(n).

Proof. By Lemma 5.21, each level has total size O(n), and there are O(log n) levels. Thus,
total size is O(n log n). Each node has at least a unit size. Therefore, number of nodes is
O(n log n).

Corollary 5.23. The number of leaves in the recursion tree T is Õ(n).

We are now ready to prove Lemma 5.12.

Proof of Lemma 5.12. By Lemma 5.17, Tk,a(n) = O(Ck,a(n)), so it is enough to bound the cost
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for Ck,a(n). Denote the recursion tree T ′ for the function relation Ck,a(n). We have

Ck,a(n) =

O(logn)∑
i=0

∑
u∈level(i)

cost(v) O(log n) depth by Equation (14).

≤
O(logn)∑
i=0

(
∑

u∈level(i)

O(nx+a′
u ) + |level(i)|tbase) by Claim 5.18.

≤
O(logn)∑
i=0

(
∑

u∈level(i)

nu)x+a′ + |T ′|tbase |T ′| is the number of nodes in the tree.

= Õ(nx+a′ + ntbase) by Lemma 5.21 and corollary 5.22.

= Õ(tcostn
a+o(1) + tbasen) tcost = nx, and a′ = a+ o(1).

Therefore, the result follows.

5.4.3 Proof of Lemma 5.10

Let T ′k,a(n) be the running time of Algorithm 1. By Lemma 5.12, Tk,a(n) = Õ(tcostn
a+o(1)+tbasen).

Hence, it is enough to show that

T ′k,a(n) ≤ Õ(Tk,a(n) + tlocaln).

Let T be a recursion tree for the Algorithm 1. Suppose there is a leaf-node u that is not
the base-case. This means h(G) ≥ η, and we run LocalVC on every node in G, and return the
answer. We can overestimate this cost by extending node u to have two children v, w of size
`v + sv + k, and nu − `v + k. The total size is then nu + sv + 2k. By design, LocalVC will be run
at nodes v and w instead of node u. Hence, the running time due to LocalVC strictly increases.
The recursion continues which also increases the total cost. By repeat this process, we will end
up with the recursion where all leaf nodes are base-case. Therefore, we have the upperbound in
terms of Tk,a(n) with extra-cost due LocalVC. The extra-cost due to LocalVC is at most the
total size of the leaf nodes in T . By Corollary 5.23, the total size of leaf nodes is Õ(n). Hence,
the number of LocalVC calls is at most Õ(n).

5.5 Proof of Theorem 2.4

We analyze Algorithm 1. First, the correctness follows from Lemma 5.4. It remains to derive
the final running time. The first term O(m) follows from Theorem 4.4 as we first sparsify the
original graph in O(m) time. Since G (and later subgraphs in the recursions) has aboricity k,
m ≤ nk, and from now we treat m as nk. We now derive the latter term.

We now instantiate the running time for the corresponding algorithms in Definition 5.8.

Corollary 5.24. We have the following running times for subroutines in Algorithm 1.
• There is an algorithm for the base-case that runs in time O(m(n+ k3)).
• There is an algorithm for approximate vertex-expansion h(G) that runs in time Õ(m1.6).
• There is a LocalVC algorithm that runs in Õ(min(ν1.5k, νkk)) time.
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• There is a SplitVC algorithm that runs in O(mk(|S|+ k2)) time.

Proof. We use current best-known running time for the base case [Gab06] (with small k) which
runs in time O(mn+mk3). By Theorem 6.1, we can compute approximate vertex-expansion
in time Õ(m1.6). By Theorem 5.2, LocalVC runs in time Õ(min(ν1.5k, νkk)). By Theorem B.1,
SplitVC runs in time O(mk(|S|+ k2)).

Consequently, by Corollary 5.24, we instantiate the running time for each term in Definition 5.9
where we putting together subroutines in Definition 5.8 into Algorithm 1.

Corollary 5.25. We have the running time for tcost, tlocal, and tbase as follows. Assuming that
k > nε where we can select sufficiently small ε > 0.
• tcost = Õ(nθkθ + n1+a+o(1)k2 + nk4).
• tlocal = Õ(min(n1.5−1.5ak4, n1−ak2+k)).
• tbase = O(k1+4/a + k4+2/a).

Proof. The results follow from simple algebraic calculation from Definition 5.9, and Corollary 5.24.
For LocalVC, we use ν = O(k2n1−a).

Corollary 5.26. When θ > 1.5, the running time T̃a,k(n) for Algorithm 1 can be bounded by

T̃a,k(n) = Õ(nθ+a+o(1) + n2−ak2+k).

Proof. By Lemma 5.10, we have T̃a,k(n) = Õ(tcostn
a+o(1) + n(tlocal + tbase))). By Corollary 5.25

where k = O(1), we have tcost = Õ(nθ) (since a < 0.5) , tlocal = Õ(n1−a), and tbase = O(Λ2) =
O(n2ε).

Setting a = 0.25 then gives the first term of the running time as stated in Theorem 2.4. For
the larger k case, we instead use tlocal = Õ(n1.5−1.5ak4).

Corollary 5.27. Let a′ = a+ o(1). The running time T̃a,k(n) for Algorithm 1 can be bounded by

T̃a,k (n) = Õ
(
na
′
nθkθ + n2.5−1.5ak4 + nk4/a+1

)
Proof. By Lemma 5.10, we have T̃a,k(n) = Õ(tcostn

a+o(1) + n(tlocal + tbase)). By Corollary 5.25,
we obtain the following.

T̃a,k (n) ≤ Ô
(
na
′
(
nθkθ + n1+a′k2 + nk4

)
+ n2.5−1.5ak4 + n

(
k4/a+1 + k5+2/a

))
≤ Ô

(
na
′
nθkθ + n2.5−1.5ak4 + nk4/a+1

)
.

The last equality follows by the assumption of k < n1/8 (precondition for Theorem 2.4), and
a < 0.5.

Here the optimal choice of a is

a =
(2.5− θ) + (4− θ) logn k

2.5
.

By the assumption on k, we have that a < 0.5, and thus a satisfies the precondition for
Algorithm 1. Substituting this vlaue into Corollary 5.27 gives the final term of running time for
Algorithm 1, which is Ô(n1+0.6θk1.6+0.6θ). Therefore, we conclude the proof of Theorem 2.4.
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6 Low-Vertex-Expansion Cuts from Balanced Low-conductance
Cuts

In this section, we show how an approximate balanced cut algorithm can be used to give an
algorithm that approximates the minimum vertex expansion.

Theorem 2.6. Given any (f(φ), c)-approximate balanced-cut routine ApproxBalCut such that
f(φ) ≤ φξno(1) for some absolute constant 0 < ξ ≤ 1, we can compute an no(1)-approximation to
the minimum vertex expansion on a graph with n vertices and m edges by invoking ApproxBalCut
a total of O(c log n) times, each time on a graph with n vertices and maximum degree O(c log n),
plus a further deterministic overhead of Ô(cm1.5).

Theorem 6.1. There is a deterministic algorithm that, given a graph G and a parameter η,
runs in Õ(m1.6) and either

• certifies that h(G) ≥ η, or

• returns (L, S,R) where h(L, S,R) ≤ ηno(1).

This algorithm is based on the cut-matching game introduced by Khandekar, Rao, and
Vazirani [KRV09].

In the original paper [KRV09], they show a specific randomized approach, based on random
projection, for implementing the framework very fast. Later, it is shown in [KKOV07] that such
random projection is not inherent: given any algorithm for finding a sparsest cut, then the frame-
work can be implemented. In particular, this framework can be implemented deterministically.
However, in [KKOV07], they use exact algorithm for computing sparsest cut which is NP-hard.
Below, we will show that the idea [KKOV07] still works even if when we use only approximate
algorithms for finding sparse cuts.

Below, we first prove two main steps in the cut matching game in our context. In Section 6.1,
we show that how to lower bound the vertex expansion by embedding an expander. In Section 6.2,
we show how to find low vertex expansion cut using a single commodity flow. Then, Section 6.4,
we describe the cut-matching game variant by [KKOV07] with a relaxation that we can use
approximation algorithms. Then, we show how everything fits together.

The main technique in this section is the cut matching game by Khandekar, Rao, and Vazirani
[KRV09]. This is a very flexible framework that can be used to certify various notion of expansion
of graphs. The framework was used for approximating the sparsity σ(G) of a graph G where

σ(G) = minS
|E(S,V−S)

min{|S|,|V−S|} in [KRV09] and for approximating the conductance Φ(G) of G in

[SW19]. For our purpose, it is not hard to adjust the framework so that it works for vertex
expansion h(G) of the graph G.

Unfortunately, one of the two main components of the framework in [KRV09] is randomized.
More precisely, their framework requires computing a cut C with some specific property, and
they give a very fast randomized algorithm for computing such C based on a random-projection
technique. It is not clear how to derandomize the algorithm for computing such cut. Fortunately,
in a technical report by Khandekar, Khot, Orecchia, Vishnoi [KKOV07], they show how to adjust
the analysis of [KRV09] so that it works when C is the most-balanced low-conductance cut.
However, this is an NP-hard problem.
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We observe that we do not need an exact algorithm for computing C. For this, we require
an additional property of our approximate balanced cut routine, that it returns a set S with
|S| ≤ n/2 such that Φ(G[V − S]) ≥ α, or that the graph with S removed is an expander. It
turns out that there is a black box method [NS17, Wul17] to obtain this guarantee from an
approximate balanced cut algorithm. Formally, we obtain from this black-box, Tcut = Ô(m1.5)
and α = 1/no(1), which in turn gives the overall running time.

6.1 Lower Bounding Vertex Expansion via Expander Embedding

We first define some basic notions about flow. Although we are working with undirected vertex-
capacitated graphs, we will define the problems also on directed graphs and also edge capacitated
graphs. Let G be a directed graph G = (V,E) and s, t ∈ V . An s-t flow f ∈ RE≥0 is such
that, for any v ∈ V − {s, t}, the amount of flow into v equals the amount of flow out of v, i.e.,∑

(u,v)∈E f(u, v) =
∑

(v,u)∈E f(v, u). Let f(v) =
∑

(u,v)∈E f(u, v) be the amount of flow at v.
The value |f | of f is

∑
(s,v)∈E f(s, v)−

∑
(v,s)∈E f(v, s).

Let c ∈ (R>0 ∪ {∞})V be vertex capacities. f is vertex-capacity-feasible if f(v) ≤ c(v) for
all v ∈ V . If G is undirected, one way to define an s-t flow is by treating G as a directed graph
where there are two directed edge (u, v) and (v, u) for each undirected edge {u, v}. We will
assume that a flow only goes through an edge in one direction, i.e., for each edge {u, v} ∈ E,
either f(u, v) = 0 or f(v, u) = 0.

For 1 ≤ i ≤ k, let fi be an si-ti flow with value di. We call F = {f1, . . . , fk} a multi-
commodity flow. We call the k tuples (s1, t1, d1), . . . , (sk, tk, dk) the demands of F . We say that
F is edge-capacity-feasible if

∑
i fi(e) ≤ c(e) for each e ∈ E, and is vertex-capacity-feasible if∑

i fi(v) ≤ c(v) for all v ∈ V . We usually just write feasible. Let W = (V,E,w) be a weighted
graph. If a multicommodity flow f has the demands {(u, v, w(e)) | e = (u, v) ∈W}, then we say
that f respects W .

Definition 6.2 (Embedding with Vertex Congestion). Let G = (V,E) and W = (V,EW ) be
two graphs with the same set of vertices. We say that W can be embedded into G with vertex
congestion c iff there exists a feasible multicommodity flow f in G respecting W when each node
in G has capacity c.

Lemma 6.3. Suppose W has sparsity σ(W ) ≥ φ, and W can be embedded into G with vertex
congestion c, then h(G) ≥ φ/2c.

Proof. Consider any separation triple (L, S,R) where |S| ≤ |L|, |R|, otherwise h(L, S,R) ≥ 1/2 ≥
φ/2c. Assume w.l.o.g. that |L| ≤ |R|. In particular, |L| ≤ |L|. Then we have EW (L,L) ≥ φ|L|.
As W can be embedding into G with vertex congestion c, |NG(L)| = |S| ≥ φ|L|/c. So we conclude

h(L, S,R) = |S|
min{|L|,|R|}+|S| ≥

|S|
(c/φ)·|S|+|S| ≥ φ/2c.

6.2 Finding Low Vertex Expansion Cut via Single Commodity Flow

We prove the following in this section:

Lemma 6.4. Let G = (V,E) be a n-vertex m-edge graph. Let A,B ⊂ V be two disjoint vertex
sets. Let c be a congestion parameter. There is a deterministic algorithm that runs in Õ(m

√
n)

time, and either
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• return an embedding M into G with vertex congestion c, where M is a matching of size
min{|A|, |B|} between vertices of A and B , or

• return a separation triple (L, S,R) where h(L, S,R) < 1/c.

To prove the above, we define the following flow problem. Let G′ be a vertex-capacitated
graph defined from G as follows. We create a source vertex s and a sink vertex t. For each
vertex v ∈ A, we add a dummy vertex v′ and an edge (s, v′) and (v′, v). Let A′ be the set of such
dummy vertices incident to s. For each vertex v ∈ B, we add a dummy vertex v′ and an edge
(t, v′) and (v′, v). Let B′ be the set of such dummy vertices incident to t. Each vertex in V has
capacity v. Each vertex in A′ ∪B′ has capacity 1. The vertices s and t have capacity ∞.

The algorithm just computes a max flow in G′ using an deterministic Õ(m
√
n)-time algorithm

by the subset of the authors [NSY19a] (or a more well-known one with running time Õ(m1.5) by
Goldberg and Rao [GR98]). If the size of max flow value is min{|A|, |B|}, then by definition, we
can obtain an embedding M into G as stated in Lemma 6.4. Now, we need to show that if the
max flow value is less, then we obtain (L, S,R) where h(L, S,R) < 1/c.

Lemma 6.5. Let (L′, S′, R′) be the minimum vertex cut in G′ where s ∈ L′ and t ∈ R′. If the
cut value of (L′, S′, R′) is less than min{|A|, |B|}, then (L, S,R) = (L′ ∩ V, S′ ∩ V,R′ ∩ V ) is a
vertex-cut in G where h(L, S,R) < 1/c.

Proof. Observe that the cut value of (L′, S′, R′) is

|S′ ∩A′|+ |S′ ∩B′|+ c|S′ −A′ ∪B′|

which is less than |A| by assumption. Note that (S′ −A′ ∪B′) = (S′ ∩ V ) = S.
Observe that |S′ ∩ A′| ≥ |A ∩R|. This is because for each v ∈ A ∩R, we must include the

corresponding dummy node into v′ into S′, otherwise s can reach R ⊂ R′ and hence and reach t,
and this would mean that (L′, S′, R′) is not a s-t vertex cut. So we have

|A| > |S′ ∩A′|+ |S′ ∩B′|+ c|S′ −A′ ∪B′| ≥ |A ∩R|+ c|S|.

Hence,
|A ∩ (L ∪ S)| = |A| − |A ∩R| > c|S|.

So we have |L| + |S| > c|S|. Symmetrically, we also conclude that |R| + |S| > c|S|. In
particular, L 6= ∅ and R 6= ∅. As (L, S,R) is obtained from (L′, S′, R′) by just removing
A′ ∪B′ ∪ {s, t} from the graph, there must be no edge between L and R as there are no edges
between L′ and R′. That is, (L, S,R) is indeed a separation triple. Therefore, we conclude that
h(L, S,R) = |S|/(min{|L|, |R|}+ |S|) < 1/c.

6.3 Cut with expander complement

In this section, we show the following:

Theorem 6.6. Given an (f(φ), β)-approximate balanced cut algorithm A such that f(φ) ≤
φξ polylog(n) for some absolute constant 0 < ξ ≤ 1 and β ≤ O(log4 n) where A works on graph
instances with maximum degree O(log n), we can obtain an algorithm that takes an undirected
n-vertex m-edge graph G with maximum degree O(log n), calls A for no(1) many times with
parameter φ ≥ 1/no(1) and uses Ô(m) overhead, then either
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• certifies that Φ(G) ≥ γ, or

• outputs a cut S where ΦG(S) ≤ 1/ log2 n and vol(S) = Ω(m/ log n),

• outputs a cut S where ΦG(S) ≤ 1/ log2 n, vol(S) = O(m/ log n), and Φ(G[V − S]) ≥γ,

where γ = 1/no(1).

We follow the techniques from [NS17, Wul17], which show how to use an (approximate)
most-balanced low-conductance algorithm to obtain a cut with expander complement. Here, we
state their results.

Lemma 6.7 ([NS17, Wul17]). Let f be a function such that f(φ) ≥ φ for all φ ∈ [0, 1]. Let
csize = csize(n) be some number depending on n. Suppose that there is an algorithm A that, given
a n-vertex m-edge graph G with maximum degree ∆ and a parameter φ, either

• certifies that ΦG ≥ φ, or

• returns a (φ, csize(n))-most-balanced f(φ, n)-conductance cut.

Then, for any k ≥ 1, there is an algorithm that, given a n-vertex graph G with maximum degree
∆ and a parameter φ, calls A for O(m1/k/csize) many times plus Ô(m) overhead and then either

• certifies that ΦG ≥ φ, or

• returns a cut S where ΦG(S) ≤ fk(φ) where vol(S) ≥ Ω(m), or

• returns a cut S where ΦG(S) ≤ fk(φ) where Φ(G[V − S]) ≥ φ,

where f1(φ) = f(φ, n) and fk(φ) = fk−1(f(φ)).

Proof of Theorem 6.6. The given approximate balanced cut routine either (1) certifies that ΦG ≥
φ, or (2) returns a (φ, csize(n))-most-balanced f(φ, n)-conductance cut, where csize(n) = O(log4 n)
and f(φ, n) ≤ φξ polylog(n).

Observe that fk(φ) = φξ
k
(polylog(n))k. In order to have fk(φ) ≤ 1/ log2 n, we can set

φ =

(
1

(polylog(n))k

)ξ−k
.

If we set k = c · log logn for small enough constant c, then we have ξ−k = logε(n) for a very
small constant ε > 0. Therefore, φ = 1/no(1). So Lemma 6.7 gives us the routine that we need
for Theorem 6.6 where the number of calls to A is O(m1/k/csize) = no(1).

6.4 Cut-matching game via approximate low-conductance cut

Given an n-vertex graph G, the cut-matching game from [KKOV07] is a framework which
proceeds in rounds. There will be O(log n) rounds. Let W0 = ∅. Let c be a congestion parameter.
Let A be the algorithm from Theorem 6.6. At round i, we maintain the invariant that Wi−1 is
already embedded into G with congestion c× (i− 1) and vol(Wi−1) = Ω(n(i− 1)). We run A on
Wi−1 which can result in three cases.
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First, if A certify that Φ(Wi−1) ≥ γ. Hence, σ(Wi−1) ≥ γ and we have that h(G) ≥
γ/(2c(i− 1)) = Ω(γ/(c log n)) by Lemma 6.3, and so we terminate.

Second, if A returns a cut S where Φ(S) ≤ 1/ log2 n and vol(S) = Ω(vol(Wi−1)), then we
set A = S and B = V − S and invoke Lemma 6.4. If we obtain (L, S,R) where h(L, S,R) <
1/c, we terminate. Otherwise, we obtain a matching Mi of size |Mi| ≥ min{|S|, |V − S|} ≥
Ω(vol(Wi−1)/(i − 1)) = Ω(n). We set Wi ← Wi−1 ∪Mi and hence vol(Wi) = Ω(ni) and Wi is
embeddable into G with congestion c× i.

Third, if A returns a cut S where Φ(S) ≤ 1/ log2 n and Φ(G[V − S]) ≥ γ, then we set
A = S and B = V − S and invoke Lemma 6.4. If we obtain (L, S,R) where h(L, S,R) < 1/c,
we terminate. Otherwise, we obtain a matching Mi embeddable to G. We know |Mi| = |S|
because |S| ≤ vol(S) ≤ vol(V −S)/Θ(log n) ≤ |V −S| by Theorem 6.6. We set Wi ←Wi−1∪Mi.
We claim that σ(Wi) ≥ Ω(γ). As Wi is embeddable into G with congestion c × i, so h(G) ≥
γ/(2ci)) = Ω(γ/(c log n)) by Lemma 6.3, and so we terminate.

In [KKOV07], the following is proven:

Lemma 6.8 (Section 4 of [KKOV07]). The second case can occur at most O(log n) times.

Therefore, then indeed there at O(log n) rounds. This is because the algorithm will terminate
whenever the first or third case occur.

Lemma 6.9. In the third case, if we obtain a matching Mi, then σ(Wi) ≥ Ω(γ).

Proof. Let S be the cut that A returns in the third case. Consider any cut C ⊂ V where
|C| ≤ |V − C|. If |C ∩ S| ≥ 2|C − S| and so |C ∩ S| ≥ 2|C|/3, then there is

|EMi(C ∩ S, V − S)| ≥ |EMi(C ∩ S, V − C ∩ S)| − |EMi(C ∩ S,C − S)|
≥ |C ∩ S| − |C − S|
≥ |C ∩ S|/2
≥ |C|/3.

Next, if |C ∩ S| ≤ 2|C − S| and so |C − S| ≥ |C|/3then

|EWi−1(C − S, V − S)| ≥ γ|C − S|
≥ γ|C|/3.

That is, EWi(C, V − S) ≥ γ|C|/3. Hence, σ(Wi) ≥ γ/3.

Observe that the above algorithm just invoke the algorithm from Lemma 6.4 and Theorem 6.6
O(log n) times. Hence, the total running time is O(log n)× (Õ(m

√
n) plus the cost of O(log n)

calls to the approximate balanced cut routine. To conclude, whenever the first case occurs or
a matching is obtained in the third case, we have h(G) = Ω(γ/(c log n)). Otherwise, we must
obtain (L, S,R) where h(L, S,R) < 1/c during some round. By setting η = Θ(γ/(c log n)), we
conclude the proof of Theorem 2.6.

7 Near-Expander Low-Conductance Cuts on Dense Graphs

The main result in this section is an approximate balanced cut algorithm on dense graphs.
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Theorem 2.7. There is an (O(φ1/2 logm), 10)-approximate balanced-cut algorithm that runs in
deterministic O(nω) time on any multigraph G = (V,E) with n vertices, and any parameter φ.

Although, the algorithm is stated for general parameters, to start with, it is more convenient
to think of φ, φ∗ = 1/ poly log n but φ � φ∗, and c = poly log n. Our goal is to find a
(φ2/ poly logm, Õ(1))-balanced φ-conductance in O(nω) time. We emphasize that the requirement
vol(S) ≥ vol(S∗)/c is crucial for us. Without this requirement, there is in fact a very simple
O(nω) time algorithm that we discuss in Section 3

At the high level, our algorithm is a derandomization of the PageRank-Nibble algorithm by
Andersen, Chung, and Lang [ACL06] for finding (φ2/poly logm,O(1))-balanced φ-conductance
cut in Õ(m/φ2) time. However, there are several obstacles we need to overcome. To show how,
we need some basics about PageRank and the algorithm of [ACL06]. For any vertex v, the
PageRank vector pv ∈ RV≥0 of vertex v is a vector encoding a distribution over vertices when we
perform some variant of random walk starting at v. Roughly speaking, PageRank-Nibble works
as follows::

1. Sample a vertex v according to some distribution. Compute an approximation of pv.

2. Find a φ-conductance cut C by which is a sweep cut w.r.t. to pv, if exists. (We will define
sweep cuts later).

3. Then, set G← G[V − C] if C is found and repeat.

4. The next PageRank vector pv is w.r.t. the new graph.

The running time obtained by Andersen et al. [ACL06] critically relies on the vertex v being
sampled randomly. If v is chosen in some arbitrary order, the running time can be Ω(mn): we
may need to check Ω(n) vertice, spend Ω(m) time to compute (an approximation of) pv for each
v, and still could not find any φ-conductance cut.

Our first key idea is to instead compute the PageRank vector pv w.r.t. to the input graph G
for all v ∈ V simultaneously by inverting the PageRank matrix defined from G. That is, instead
of sampling, we consider all starting points v.

The more subtle and challenging obstacle is to compute sweep cuts. A sweep cut w.r.t. pv
is a cut of the form V pv

≥t where V pv
≥t = {u ∈ V | pv(u) ≥ t}. In [ACL06], the cost for computing

sweep cut can be charged to the cost for computing an approximation of pv. As our approach for
computing pv changes, we need to account the cost ourselves. We can trivially check if there is a
sweep cut V pv

≥t with conductance at most φ in O(m). To do this, we compute |E(V pv
≥t , V − V

pv
≥t )|

and vol(V pv
≥t ) of all t in O(m), by sorting vertices according their values in pv and “sweeping”

through vertices in the sorted order. Unfortunately, spending O(m) time for each vertex v would
give O(mn) time algorithm which is again too slow.6 To the best of our knowledge, there is no
deterministic data structure even for checking whether |E(S, V − S)| > 0 in o(m) time, given a
vertex set S ⊂ V . That is, it is not clear how to approximate |E(V pv

≥t , V − V
pv
≥t )| in o(m) time

even for a fix t.

6With randomization, given pv for all v, we can compute a sweep cut for all v in Õ(n2) total time. For example,
we can precompute the degrees of vertices in O(m) time. So we can compute vol(V pv≥t ) of all t in O(n) for each v.

Then, we can build a randomized data structure based on linear sketches in Õ(m) time. So we can approximate
|E(V pv≥t , V − V

pv
≥t )| of all t in O(n) for each v.
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To overcome this second obstacle, we show that how to obtain a sweep cut without approxi-
mating the cut size |E(V pv

≥t′ , V − V
pv
≥t′)| for any t′. More precisely, by preprocessing the PageRank

vectors pv of all v in Õ(n2), we show how obtain a sweep cut with conductance φ, if exists, in time
poly logm instead of O(m). To do this, we exploit the fact the sweep cut is w.r.t. a PageRank
vector pv and not some arbitrary vector. This allows us to do a binary search tree for t where the
condition depends solely on the volume vol(V pv

≥t ) and not the cut size |E(V pv
≥t , V − V

pv
≥t )|. The

details of technique is in Section 7.3. Once all sweep cuts are computed. We follow the analysis
of [ACL06, KT19] and obtain (φ2/poly logm,O(1))-balanced φ-conductance cut.

7.1 Near-Expander Cuts

For the analysis of this algorithm, it is most convenient to work near-expanders and near-expander
cuts.

Definition 7.1 (Nearly Expander). Given G = (V,E) and a set of nodes A ⊆ V , we say A is a
nearly φ-expander in G if

∀S ⊆ A, vol(S) ≤ vol(A)/2 : |E(S, V \ S)| ≥ φ vol(S).

Definition 7.2 (Near-Expander Edge Cut). Given G = (V,E) and parameters φ1, φ2, a set
S ⊆ V with vol(S) ≤ m is a φ2-near-expander φ1-conductance cut if it satisfies:

1. Φ(S) ≤ φ1,

2. Either vol(S) ≥ m/4, or V \ S is a nearly φ2-expander in G.

We can then prove the following equivalent form of Theorem 2.7.

Theorem 7.3. Given a multigraph G = (V,E) and parameter φ, there is a deterministic
algorithm that runs in O(nω) time and either:

1. Outputs a Ω(φ/ log(m))-near-expander O(
√
φ logm)-conductance cut, or

2. Certifies that Φ(G) ≥ φ.

We use this notion since it is more general and could prove useful in future applications. We
can use it to obtain a most balanced low conductance cut (as defined in Definition 2.5) by the
lemma below.

Lemma 7.4. Given G and parameters φ1, φ2 < 1 and c ≥ 4, if S is a ( cφ2+φ1
c−1 )-near-expander

φ1-conductance cut, then S is a (φ2, c)-most-balanced φ1-conductance cut.

Proof. If vol(S) ≥ m/4, then S must be a (φ2, 4)-most-balanced φ1-conductance cut, since
any cut S′ with vol(S′) ≤ m must satisfy vol(S′) ≤ m ≤ 4 vol(S). Since c ≥ 4, S is also a
(φ1, c)-most-balanced φ2-conductance cut.

From now on, suppose that vol(S) < m/4. Suppose for contradiction that S is not a (φ2, c)-
most-balanced φ1-conductance cut. Then, there exists a set T (vol(T ) ≤ m) of conductance at
most φ2 with

vol(T ) > c vol(S). (22)

36



Our goal is to show that the set T \ S ⊆ V \ S satisfies

|E(T \ S, V \ (T \ S))| < cφ2 + φ1

c− 1
vol(T \ S), (23)

contradicting the assumption that V \ S is a nearly
( cφ2+φ1

c−1

)
-expander.

We have

vol(T \ S) ≥ vol(T )− vol(S)
(22)
> vol(T )− 1

c
vol(T ) =

c− 1

c
vol(T )

and

|E(T\S, V \(T\S))| ≤ |E(T, V \T )|+|E(S, V \S)| ≤ φ2 vol(T )+φ1 vol(S)
(22)
< φ2 vol(T )+φ1·

1

c
vol(T ).

Therefore,
|E(T \ S, V \ (T \ S))|

vol(T \ S)
<

(φ2 + φ1/c) vol(T )

(c− 1)/c · vol(T )
=
cφ2 + φ1

c− 1
,

establishing (23).

The rest of this section is for proving Theorem 7.3 and is organized as follows. In Section 7.2,
we give definitions and basic properties about PageRank. In Section 7.3, we show the key
technical result of this section. This is the subroutine for finding a low conductance cut, given a
PageRank vector. Previous algorithms based on PageRank need to compute the size of a cut (i.e.
the number of edge crossing the cut). In fact, most algorithms “sweep through” a PageRank
vector and compute the size of n many cuts. Hence, this procedure is often called “sweep cut”.
We show an algorithm that, given a PageRank vector and access to degrees of vertices, does not
need to compute a cut size of any cut at all, and can still guarantee to return a low conductance
cut (given appropriate parameters).

Subsequent sections show how to exploit the algorithm in Section 7.3. We present in a
backward manner. Section 7.4 shows how to compute find a low conductance cut by calling
the algorithm in Section 7.3 once, given a set of vertices with large excess (where excess is
defined from a PageRank vector). Section 7.5 shows that if there exists a low conductance cut,
then there must exist a set of vertices with large excess. Section 7.6 shows the final algorithm
which computes the PageRank vectors from all vertices simultaneously, and obtain many low
conductance cuts by the guarantees of previous sections, and then combines them to obtain the
near-expander cut as desired in Theorem 7.3.

7.2 Preliminaries about PageRank

We will follow [KT19]’s treatment of PageRank [ACL’06], which is more algorithmic and can
be better adapted to our binary search algorithm. For our algorithm and analysis, we will only
need the following definition of PageRank vector, following Section 2.1 of [ACL06]:

Definition 7.5 (PageRank vector [ACL06]). Given real number α ∈ (0, 1] and vector v ∈ RV
satisfying 1

Tv = 1, the PageRank vector starting at v, denoted PR(v), is the unique solution to

PR(v) = αv + (1− α)PR(v)W. (24)
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Here, W = 1
2(I +D−1A), where A is the adjacency matrix of G and D is the diagonal matrix

with entry deg(v) at row and column v, for each v ∈ V . (W is known as the lazy random walk
transition matrix.)

We refer to p as a PageRank vector if p = PR(v) for some (possibly unspecified) vector v
with 1

Tv = 1.

We will use the following important properties of PageRank vectors; see Section 2 of [ACL06]
for more details.

Fact 7.6. For any vector v, the PageRank vector PR(v) is unique. Moreover, it satisfies
PR(v) ≥ 0 and 1

TPR(v) = 1.

Definition 7.7. Given a PageRank vector p and a real number t, we define the vertex sets
V p
≥t := {v ∈ V : p(v)/d(v) ≥ t} and V p

≤t := {v ∈ V : p(v)/d(v) ≤ t}.

We show some terminology and lemmas from [KT19].

Definition 7.8 (Median Expansion). Given any value t such that ∂V p
≥t 6= ∅, there exists some

tmed < t (the “median”) such that half the edges ∂V p
≥t go to vertices in V p

≥tmed and half go to
vertices in V p

≤tmed . We call tmed the median expansion at t.

Claim 7.9. If tmed is the median expansion at t, then:

vol(V p
≥tmed) ≥ vol(V p

≥t) + |∂V p
≥t|/2. (25)

Proof. By definition, at least half the edges of ∂V p
≥t go to vertices in V p

≥tmed . These edges make
up at least |∂V p

≥t| extra volume in V p
≥tmed when compared to V p

≥t.

The following lemma is proved in the proof of Lemma 33 in [KT19]:

Lemma 7.10 (Lemma 33 of [KT19]). If tmed is the median expansion at t, then:

t− tmed ≤
6α

|∂V p
≥t|

. (26)

7.3 Sweep Cut without Cut-size Query

Previous algorithms based on PageRank need to compute the number of edges crossing some cut,
for at least one cut. This might take O(m) time in the worst-case. In this section, we show that
this we do not need to query for the cut-size at all.

Lemma 7.11 (Sweep-cut with few queries). Suppose we have PageRank vector p, a real number
t0 that satisfies vol(V p

≥t0) ≤ 1.5m, and a real number τ ∈ (t0, 1]. Suppose that we have access
to an data structure that, given t, can return vol(V p

≥t) =
∑

v∈V p≥t
deg(v) in O(log n) time.

Then, for any τ ∈ (t0, 1], we can compute a cut of conductance at most
√

54α
(τ−t0) vol(V p≥τ )

in

O(log( logm
φ )) = O(logm) queries. Hence, the running time is O(log2m).
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We note that our constraint vol(V p
≥t0) ≤ 1.5m is looser than the constraint vol(V p

≥t0) ≤ m in

Section 7.2 of [KT19]. This explains the difference in our bound
√

54α
(τ−t0) vol(V p≥τ )

compared to

the bound
√

18α
(τ−t0) vol(V p≥τ )

in [KT19]

Algorithm 2 SweepCutBinarySearch(G, p, t0, τ)

Assumptions: t0 satisfies vol(V p
≥t0) ≤ 1.5m and τ satisfies τ ∈ (t0, 1]; access to an data structure

D that, given t, can return vol(V p
≥t) =

∑
v∈V p≥t

deg(v) in O(log n) time.

Output: A cut with conductance at most φ (as defined in line 1)
Runtime: O(logm) queries to D in O(log2m) time.

1: φ←
√

54α
(τ−t0) vol(V p≥τ )

, tinit ← τ , Linit ← dlog(1+φ/2)(2m)e
2: t+ ← tinit, L← Linit . Maintain tuple (t+, L) in binary search
3: while L > 1 do
4: tmid ← t+ −

∑bL/2c−1
i=0

18α
φ vol(V p≥t+

)(1+φ/2)i

5: if vol(V p
≥t+)(1 + φ/2)bL/2c ≥ vol(V p

≥tmid) then
6: L← bL/2c . (t+, L)← (t+, bL/2c)
7: else
8: t+ ← tmid, L← dL/2e . (t+, L)← (tmid, dL/2e)
9: return V p

≥t+ . Guarantee: Φ(V p
≥t+) ≤ O(φ)

Remark 7.12. We will be applying this with (τ − t0) = Θ(ε) and vol(V p
≥τ ) = Ω(1/(ε logm)) for

some ε, so that the ε’s cancel in the denominator of φ =
√

54α
(τ−t0) vol(V p≥τ )

, and we get a cut of

conductance O(
√
α logm).

Clearly, the number of queries in the algorithm O(logLinit) = O(log( logm
φ )) = O(logm)

queries. The rest of this section is dedicated to proving the promised guarantee:

Lemma 7.13. Algorithm 2 outputs a cut of conductance at most

√
O(α)

(τ−t0) vol(V p≥τ )
.

We now proceed to the proof of Lemma 7.13. We will maintain the following invariant
throughout the binary search:

Invariant 7.14. The tuple (t+, L) always satisfies the following. Define

t− := t+ −
L−1∑
i=0

18α

φ vol(V p
≥t+)(1 + φ/2)i

; (27)

then, we must have t− ≥ t0 and

vol(V p
≥t+)(1 + φ/2)L ≥ vol(V p

≥t−). (28)

There are three items that need to be proven:

Claim 7.15. Invariant 7.14 is satisfied at the beginning, for tuple (τinit, Linit).
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Proof. We have vol(V p
≥t+)(1 + φ/2)Linit ≥ (1 + φ/2)Linit ≥ 2m ≥ vol(V p

≥t−), satisfying (28). As
for t− ≥ t0, we have

t−
(27)
= τ −

L−1∑
i=0

18α

φ vol(V p
≥t+)(1 + φ/2)i

≥ τ −
∞∑
i=0

18α

φ vol(V p
≥t+)(1 + φ/2)i

= τ − 18α

φ vol(V p
≥t+)

· 1

1− (1 + φ/2)−1

= τ − 18α

φ vol(V p
≥t+)

· 1 + φ/2

φ/2

≥ τ − 18α

φ vol(V p
≥t+)

· 3

φ
= τ − 54α

φ2vol(V p
≥t+)

,

where the last inequality used that φ ≤ 1, which we can safely assume (otherwise, the guarantee

Φ(V p
≥t+) ≤ φ of Algorithm 2 is vacuous). Plugging in φ =

√
54α

(τ−t0) vol(V p≥τ )
, we obtain t− ≥

τ − (τ − t0) = t0, as desired.

Claim 7.16. Suppose that Invariant 7.14 is satisfied at the end, for some tuple (t+, 1). Then,

Φ(V p
≥t+) ≤

√
O(α)

(τ−t0) vol(V p≥τ )
.

Proof. Define φ :=
√

54α
(τ−t0) vol(V p≥τ )

, and suppose for contradiction that

Φ(V p
≥t+) =

|∂V p
≥t+ |

min{vol(V p
≥t+), vol(V \ V p

≥t+)}
> 3φ.

Assuming Invariant 7.14, we have t+ ≥ t− ≥ t0. Also, vol(V p
≥t0) ≤ 1.5m by assumption, so

vol(V p
≥t+) ≤ vol(V p

≥t0) ≤ 1.5m =⇒ min{vol(V p
≥t+), vol(V \ V p

≥t+)} ≥ 1

3
vol(V p

≥t+).

In particular, |∂V p
≥t+ | ≥ φ vol(V p

≥t+) ≥ (φ/3) vol(V p
≥t+). Let tmed be the median expansion at t+.

By Lemma 7.10, t+ − tmed ≤ 6α/|∂V p
≥t+ | ≤ 18α/(φ vol(V p

≥t+)). In particular,

tmed ≥ t+ − 18α/(φ vol(V p
≥t+))

(27)
= t−.

Therefore,

vol(V p
≥t+)(1 + φ/2)1

(28)

≥ vol(V p
≥t−) ≥ vol(V p

≥tmed)
Lem 7.9
≥ vol(V p

≥t+) + |∂V p
≥t+ |/2

=⇒ |∂V p
≥t+ | ≤ φ vol(V p

≥t+) ≤ 3φmin{vol(V p
≥t+), vol(V \ V p

≥t+)},

contradicting the assumption that |∂V p
≥t+ | > 3φ min{vol(V p

≥t+), vol(V \ V p
≥t+)}.
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Claim 7.17. Suppose Invariant 7.14 is satisfied before an iteration of the while loop. Then, it
is still satisfied after that iteration.

Proof. Suppose (t, L) is the tuple at the beginning of the iteration, and define t− as in (27).
First, suppose the If statement (line 5) is true. In order to prove that Invariant 7.14 is

maintained, we need to show that for t′− := t+ −
∑bL/2c−1

i=0
18α

φ vol(V p≥t+
)(1+φ/2)i

, we have t′− ≥ t0

and vol(V p
≥t+)(1 + φ/2)bL/2c ≥ vol(V p

≥t′−
). The former inequality is easy: clearly t′− ≥ t−, and

we know t− ≥ t0 since we assumed Invariant 7.14 is satisfied for (t, L). For the latter inequality,
observe that tmid = t′− by definition (line 4); therefore, since the If is true,

vol(V p
≥t+)(1 + φ/2)bL/2c ≥ vol(V p

≥tmid) = vol(V p
≥t′−

),

as desired.
Now suppose that the If is false, which means that

vol(V p
≥t+)(1 + φ/2)bL/2c ≤ vol(V p

≥tmid). (29)

This time, we define

t′− := tmid −
dL/2e−1∑
i=0

18α

φ vol(V p
≥tmid)(1 + φ/2)i

(29)

≥ tmid −
dL/2e−1∑
i=0

18α

φ ·
(
vol(V p

≥t+)(1 + φ/2)bL/2c
)
· (1 + φ/2)i

= tmid −
L−1∑

i=bL/2c

18α

φ vol(V p
≥t+)(1 + φ/2)i

line 4
= t+ −

L−1∑
i=0

18α

φ vol(V p
≥t+)(1 + φ/2)i

(27)
= t−.

Again, this means that t′− ≥ t− ≥ t0. Also, vol(V p
≥t′−

) ≤ vol(V p
≥t−), so

vol(V p
≥tmid) · (1 + φ/2)dL/2e

(29)

≥
(

vol(V p
≥t+)(1 + φ/2)bL/2c

)
· (1 + φ/2)dL/2e

= vol(V p
≥t+)(1 + φ/2)L

(28)

≥ vol(V p
≥t−)

≥ vol(V p
≥t′−

),

so Invariant 7.14 is satisfied for the tuple (tmid, dL/2e).
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7.4 Computing Low Conductance Cuts from Large Excess

Definition 7.18 (Excess). Given a PageRank vector p, the excess at a vertex v is defined as

excess(p, v) := p(v)− deg(v)

2m
.

The excess of a vertex set S ⊆ V is

excess(p, S) :=
∑
v∈S

excess(p, v) = p(S)− vol(S)

2m
.

When the PageRank vector p is implicit, we shorten the notations to excess(v) and excess(S).

The main result of this section is the following:

Lemma 7.19. Fix a PageRank vector p, and define S := {v ∈ V : excess(p, v)/ deg(v) ≥ 1
100m}.

(Note that S = V p
≥1/(2m)+1/(100m).) Suppose S satisfies the following two properties:

1. excess(S) ≥ 1/10

2. vol(S) ≤ 1.5m

Then, there is an algorithm that makes a single call to Algorithm 2 and outputs a cut of
conductance O(

√
α logm).

Proof. Partition the vertices of S into O(logm) “excess buckets” as follows: for each positive
integer i ≤ log2(50m), form a bucket B2−i := {v ∈ S : excess(v)/ deg(v) ∈ (2−i, 2−i+1]}.

Define S− := {v ∈ S : excess(v)/ deg(v) ≤ 1
25m}. Observe that

excess(S−) =
∑
v∈S−

excess(v) ≤
∑
v∈S−

deg(v) · 1

25m
≤ 2m · 1

25m
=

1

12.5
,

so excess(S \ S−) ≥ 1/10 − 1/12.5 = 1/50. Also, all vertices in S \ S− belong to exactly one
bucket, which means

blog2(50m)c∑
i=1

excess(B2−i) ≥ excess(S \ S−) =
1

50
.

In particular, there exists a bucket Bε (ε = 2−i for some i ≤ log2(50m)) with excess(Bε) ≥
1

50blog2(50m)c ≥
1

50 log2(50m) . Since each vertex v ∈ Bε satisfies excess(v)/ deg(v) ≤ ε ⇐⇒
deg(v) ≥ excess(v)/ε, we have

vol(Bε) =
∑
v∈Bε

deg(v) ≥
∑
v∈Bε

1

ε
excess(v) =

1

ε
· excess(Bε) ≥

1

50ε log2(50m)
= Ω

(
1

ε logm

)
.

Also, snce Bε ⊆ V p
≥ε, we have vol(V p

≥ε) = Ω(1/(ε logm)) as well.
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Set t0 ← 1
2m + ε/2 and τ ← 1

2m + ε. 7 Since ε ≥ 1/(50m), we have t0 ≥ 1
2m + 1

100m , and
since vol(V p

≥1/(2m)+1/(100m)) ≤ 1.5m, the guarantee vol(V p
≥t0) ≤ 1.5m of Lemma 7.11 is satisfied.

Finally, invoking Algorithm 2 with this t0 and τ gives a cut of conductance√
18α

(τ − t0) vol(V p
≥τ )
≤

√
18α

(ε/2) · Ω(1/(ε logm))
= O

(√
α logm

)
.

7.5 Guarantee of Large Excess from Existence of Low Conductance Cuts

Here, we justify the assumptions (1) and (2) of Lemma 7.19, assuming that a low-conductance
cut S exists in the graph. We use the theorem below of [ACL06].

Theorem 7.20 (Theorem 4 of [ACL06]). For any set C with vol(C) ≤ m and any constant
α ∈ (0, 1], there is a subset Cα ⊆ C with volume vol(Cα) ≥ vol(C)/2 such that for any vertex
v ∈ Cα, the PageRank vector p = p(χv) satisfies p(C) ≥ 1− 2Φ(C)/α.

For the application in [ACL06], the guarantee vol(Cα) ≥ vol(C)/2 is important, since it
means that a random vertex from C, weighted by degree, is in Cα with probability 1/2. In
contrast, since we are in the deterministic setting, we only need Cα to be nonempty, which
Theorem 7.20 guarantees.

Claim 7.21. Let C be a cut of conductance φ in G (vol(C) ≤ m), let α ≥ 400φ, and fix an
arbitrary vertex s ∈ Cα. For PageRank vector p = p(xs), Conditions (1) and (2) of Lemma 7.19
is satisfied.

Proof. As in Lemma 7.19, define S := {v ∈ V : excess(p, v)/ deg(v) ≥ 1
100m}.

We first prove Condition (1). By Theorem 7.20, p(C) ≥ 1− 2Φ(C)/α ≥ 1− 1/200, so

excess(C) =
∑
v∈C

(
p(v)− deg(v)

2m

)
= p(C)− vol(C)

2m
≥
(

1− 1

200

)
− 1

2
≥ 1

3
.

Let C− := {v ∈ C : excess(v)/ deg(v) < 1
100m} = C \ S. Observe that

excess(C−) =
∑
v∈C−

excess(v) ≤
∑
v∈C−

deg(v) · 1

100m
≤ 2m

100m
=

1

50
.

Since C \ C− = C ∩ S ⊆ S, we have

excess(S) ≥ excess(C \ C−) = excess(C)− excess(C−) ≥ 1

3
− 1

50
≥ 1

10
, .

proving Condition (1).
For Condition (2), let C+ := {v /∈ C : excess(v)/ deg(v) ≥ 1

100m} = S \ C. By Theorem 7.20,
p(C+) ≤ p(V \ C) ≤ 1/200, so

vol(C+) =
∑
v∈C+

deg(v) ≤
∑
v∈C+

excess(v) · 100m ≤
∑
v∈C+

p(v) · 100m ≤ 1

200
· 100m ≤ 1

2
m.

Therefore vol(S) ≤ vol(C ∪ C+) = vol(C) + vol(C+) ≤ m+m/2, proving Condition (2).
7Recall that V≥t is defined for densities, whereas we have excesses, hence the additional 1/(2m) term.
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7.6 Merging Low Conductance Cuts into a Near-Expander Cut

Lemma 7.22. Given a real number α ∈ (0, 1] and n initial vectors v1, . . . ,vn, we can compute
the n PageRank vectors PR(v1), . . . , PR(vn) in time O(nω).

Proof. We have

PR(vi)
(24)
= αvi(I − (1− α)W )−1,

where I− (1−α)W is guaranteed to be invertible by the uniqueness statement in Fact 7.6. Let V
be the matrix with vi as the i’th row; then, PR(vi) is simply the i’th row of αV(I− (1−α)W )−1.
Since matrix inversion and matrix multiplication can be computed in O(nω) time, the lemma
follows.

The algorithm computes PageRank starting at the n vectors {χv : v ∈ V }. Then, for each
vertex v ∈ V and each of the O(logm) buckets Bε (for that v),

Algorithm 3 MostBalancedEdgeCut(G,φ)

Assumption: Φ(G) < φ
Output: a

( φ
log2(50m)

)
-near-expander (

√
φ logm)-conductance cut

Runtime: O(nω)

1: Compute the n PageRank vectors PR(χv) for each v ∈ V . O(nω) time by Lemma 7.22
2: Compute the degree deg(v) for each v ∈ V . O(n2) time
3: C ← ∅ . C ⊆ 2V will be a collection of low-conductance cuts
4: for each pv ← PR(χv) do
5: Create a data structure that, given t, can return vol(V pv

≥t ) =
∑

u∈V pv≥t
deg(u) in O(log n)

time. . O(n log n) time using balanced binary search trees
6: Form the O(logm) excess buckets as in Lemma 7.19 with α = 400φ
7: Bε ← some bucket with excess(Be) ≥ 1/(50 log2(50m))
8: Call Algorithm 2 on (G, pv, 1/(2m) + ε/2, 1/(2m) + ε), which returns a set C (vol(C) ≤

1.5m) of conductance O(
√
α logm) = O(

√
φ logm)

9: Add C to C
10: S ← ∅ . S ⊆ V will be the near-expander conductance cut
11: for each cut C ∈ C in arbitrary order do
12: if vol(C \ S) ≥ vol(C)/2 then
13: S ← S ∪ C
14: if vol(S) ≥ m/4 then
15: break . Exit the for loop

16: return S or V \ S, whichever has smaller volume

Theorem 7.23. Algorithm 3 returns a
( φ

log2(50m)

)
-near-expander O(

√
φ logm)-conductance cut.

Proof. Let φ′ ≤ O(
√
φ logm) be an upper bound to the conductance of any cut C from line 8.

We first claim that at all times of the algorithm, |∂S| ≤ 2φ′ vol(S). Intuitively, this is because
every time we add a set C to S (line 15), the new edges in ∂S can be “charged” to the new
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volume vol(C \ S), which is always at least vol(C)/2. More formally, |∂S| ≤ 2φ′ vol(S) is clearly
satisfied initially with S = ∅, and whenever a new set C is added (line 13),

|∂(S ∪C)| ≤ |∂S|+ |∂C| ≤ 2φ′ vol(S) + φ′ vol(C) ≤ 2φ′ vol(S) + 2φ′ vol(C \ S) = 2φ′ vol(S ∪C).

Suppose that line 15 is reached in the algorithm. Let S′ be the set S before the last cut
C was added to it (line 13). Since vol(S′) ≤ m/4, we must have vol(S) = vol(S′ ∪ C) ≤
vol(S′) + vol(C) ≤ 1.5m+m/4 = 2m−m/4. This means that

min{vol(S), vol(V \ S)} ≥ 1

7
vol(S).

Therefore, the cut S that is output satisfies

Φ(S) =
|∂S|

min{vol(S), vol(V \ S)}
≤ |∂S|

vol(S)/7
≤ 14φ′.

This, along with the fact that min{vol(S), vol(V \ S)} ≥ m/4, shows that the algorithm outputs
a near-expander 14φ′-conductance cut, as desired.

Now suppose that line 15 is never reached. We know that vol(S) < m/4, so the algorithm
returns S (and not V \ S). Suppose for contradiction that S is not

( φ
log2(50m)

)
-near-expander

(14φ′)-conductance cut. By Definition 7.2, this can only happen if V \ S is not a nearly
φ

log2(50m) -expander, which means there exists T ⊆ V \ S with vol(T ) ≤ vol(V \ S)/2 and

|E(T, V \ T )| < φ
log2(50m) vol(T ). Our goal is to show that there exists some C ∈ C that should

have been added to S in line 13, a contradiction.
As α = 400φ, by Theorem 7.20 applied to α and T , there is a vertex t ∈ T such that if we

start PageRank at t, we have p(T ) ≥ 1− 2Φ(T )/α. This means that

excess(V \ T ) ≤ p(V \ T ) ≤ 2Φ(T )

α
≤ 2 · φ/ log2(50m)

400φ
=

1

200 log2(50m)
. (30)

By Claim 7.21 applied to T , the conditions of Lemma 7.19 are satisfied. Following the proof of
Lemma 7.19, there exists a bucket Be with excess(Bε) ≥ 1

50 log2(50m) and vol(Bε) ≥ 1
ε excess(Bε) ≥

1
50ε log2(50m) . Since Algorithm 2 is called with τ ← 1

2m + ε, the cut C returned satisfies

vol(C) ≥ vol(V p
≥1/(2m)+ε) ≥ vol(Bε) ≥

1

50ε log2(50m)
(31)

(where p is the relevant PageRank vector). Also, since Algorithm 2 is called with t0 ← 1
2m + ε/2,

all vertices v in the returned cut C satisfy excess(v) ≥ ε/2. Therefore,

vol(V \ T ) ≤ 2

ε
· excess(V \ T )

(30)

≤ 2

ε
· 1

200 log2(50m)
=

1

100ε log2(50m)

(31)

≤ vol(C)

2
.

Therefore,
vol(C \ S) ≥ vol(C ∩ T ) ≥ vol(C)− vol(V \ T ) ≥ vol(C)/2,

which means that C should have been added to S in line 13, contradiction.

Thus, Algorithm 3 achieves the guarantees of Theorem 7.3. Apply Lemma 7.4 with φ1 =
Θ(
√
φ logm), φ2 = Θ(φ/ log(m)), and c := Θ(φ−0.5 log1.5m) then gives the guarantees of the

dense approximate balanced cut algorithm from Theorem 2.7.
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8 Most-Balanced Low-Conductance Cuts on Sparse Graphs

Our next goal is to speed up the previous algorithm on sparse graphs.

Theorem 2.8. Given an (f(φ), c)-approximate balanced-cut routine with running time TBalCut(n,m),
along with any integer parameter k > 0, there is also an (f(O(φ log3 n)), 10c)-approximate
balanced-cut routine with running time:

Ô (k (m+ TBalCut (m/k,m))) .

As before in Section 7, for explanation purposes, it is more convenient to assume that there
exists S∗ where Φ(S∗) ≤ 1/ poly log n and vol(S∗) = Ω(m), and our goal is find a (1/ log n)-
conductance cut S where vol(S) = Ω(m).

The main technique we use here is the j-trees by Madry [Mad10]. A j-tree is a graph where
consisting of two parts:

1. a core K which contains at most j vertices, and

2. a forest F such that for each tree T ∈ F , |V (T ) ∪ V (K)| = 1.

Intuitively, j-trees are graphs with j vertices that have a forest “attached” to it. Although
j-trees are very restricted form of graphs, Madry [Mad10] shows that a collection of j-trees can
approximate an arbitrary graph in the following sense:

Fact 8.1 ([Mad10] Paraphrased). There is an deterministic algorithm that, given an m-edge
graph G and a parameter t, runs in Õ(mt) time and outputs t many Õ(m/t)-trees G1, . . . , Gt
such that, for any C ⊂ V

• |EG(C, V − C)| ≤ |EGi(C, V − C)| for all i, and

• |EGi(C, V − C)| ≤ α|EG(C, V − C)| for some i where α = O(log3 n).

To discuss the main idea, it is more convenient to use a notion of sparsity of cuts.Namely,
the sparsity of a cut S is σ(S) = E(S,V−S)

min{|S|,|V−S|} . A (φ∗, c)-most-balanced φ-sparse cut S is such

that σ(S) ≤ φ and |S| ≥ |S∗|/c where S∗ is the set with maximum |S∗| out of all sets S′ where
σ(S′) ≤ φ∗. In this language, our goal is to find a cut with φ∗ = O(φ2/ poly logm) and c = Õ(1).

Setting C in Fact 8.1 above to S∗ gives that there is some i such that |EGi(S∗, V − S∗)| ≤
α|EG(S∗, V − S∗)|. So S∗ is has sparsity σGi(S

∗) ≤ αφ∗. Let Si be an (αφ∗, c)-most-balanced φ-
sparse cut in Gi. That is, σGi(Si) ≤ φ and |Si| ≥ |S∗|/c. As |EG(Si, V −Si)| ≤ |EGi(Si, V −Si)|,
we have

σG (Si) ≤ φ.

That is, Si is in fact a (φ∗, c)-most-balanced φ-sparse in G. This argument shows that it suffices
to compute an (αφ∗, c)-most-balanced φ-sparse cut in each j-tree Gi where j = Õ(m/t).

To compute such cut in a j-tree Gi, we will use different approaches on the core K and the
forest F :

• The forest F of Gi will be computed using greedy in linear time.

• We then apply the dense graph algorithm from Section 7 to the core.
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The main obstacle is that the dense graph algorithm deals with low-conductance instead of
low-sparsity cuts. These two notions may be different in Gi because Gi might not have constant
degree. Also, it is non-trivial how one can combine the two solution from two parts together.
Thus, the bulk of our technical contribution in this section it to show that computing approximate
balanced cuts on the forests and core separately is sufficient.

Theorem 8.2. There is a deterministic (Õ(∆3/2φ1/2), c)-approximate balanced cut algorithm
for graphs with maximum degree ∆ that runs in O(m1.579) time.

Definition 8.3 (Multi-forest, multi-tree). A multigraph G = (V,E) is a multi-forest if the
support graph {(u, v) : there exists edge e ∈ E with endpoints u, v} is a forest. Similarly, a
multigraph is a multi-tree if its support graph is a tree. We represent multiforests and multitrees
in Õ(n) space by storing the number of multi-edges in E for each edge in the support graph.

Definition 8.4 (j-tree). Given a multigraph G = (V,E), a j-tree of G is a graph whose edges
are the union of (i) a graph on a vertex set K of size j, and (ii) a multi-forest F with no edge
between two vertices in K (F can contain edges not in G). The set K is called the core of the
j-tree. (The core may not be unique.)

Theorem 8.5 ([Mad10]). For any multigraph G = (V,E) and parameter t, there exists a
distribution D on t multigraphs G1, . . . , Gt of Õ(m/t)-trees of G such that for any subset C ⊆ V :

1. For all i ∈ [t], |EG(C, V \ C)| ≤ |EGi(C, V \ C)|

2. EGi∼D[|EGi(C, V \ C)|] ≤ α |EG(C, V \ C)| for α = O(log2 n log log n)

Moreover, we can find such a distribution in Õ(|E| · t) time.

The only randomized procedure in Theorem 8.5 is the construction of low-stretch spanning
trees, but this can be replaced with a deterministic construction with slightly worse parame-
ters [EEST08]. In other words, Theorem 8.5 can be made entirely deterministic with the same
guarantees up to O(log2 n log logn) factors.

Definition 8.6 (Canonical j-tree). Fix a multigraph G = (V,E,w) and a parameter j, and fix
a vertex set K ⊆ V of size j and an unweighted forest F in V with no edge between two vertices
in K (F can contain edges not in G). A canonical j-tree H with core K and forest F is a j-tree
constructed as follows: For each vertex v ∈ V , consider the tree T in F containing v, and let r(v)
be the (unique) vertex of T that is also in K (the “root” of T ). For each edge e = (u, v) ∈ E:

1. If r(u) = r(v), then for each edge e′ in the path from u to v in F , add an edge e′ to H.

2. Otherwise, r(u) 6= r(v). For each edge e′ on the path from u to r(u) in F , add an edge e′

to H. Do the same for each edge e′ on the path from v to r(v) in F . Finally, add the edge
(r(u), r(v)) to H.

Lemma 8.7. Fix a graph G = (V,E) and a parameter j, and let H be a j-tree of G with core
K such that G ≤ H ≤ αG. Then, there exists a canonical j-tree H ′ with core K such that
G ≤ H ′ ≤ H. Furthermore, given the core K of H, we can compute in Õ(|V | + |E|) time a
weighted graph H ′′ where each edge (u, v) ∈ H ′′ has weight equal to the number of (parallel) edges
between u and v in H ′.
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Proof. The direction H ′ ≥ G follows from the embedding of the canonical j-tree, so we focus on
the other direction H ′ ≤ H. Consider an embedding of G into H; we will use this embedding to
construct an embedding from H ′ into H. Let F be the forest of H, and for each vertex v ∈ V ,
let r(v) be defined as in Definition 8.6 for K and F . For each edge e = (u, v) in G, by the j-tree
structure of H, the embedded path Pe of e in H must consist of either (1) the path from u to v
in F if r(u) = r(v), or (2) the path from u to r(u) in F , the path from v to r(v) in F , and some
path from r(u) to r(v) in H. Now consider the edges in H ′ that resulted from edge e in G. In
case (1), for each edge e′ on the path from u to v in F , we added an edge e′ in H ′; embed each
edge e′ onto the edge in Pe with the same endpoints of e′. This gives an embedding of the edges
in H ′ constructed by e onto the edges of Pe. In case (2), we can do the same for the edges e′ in
the path from u to r(u) and from v to r(v). For the edge (r(u), r(v)) in H ′, we embed it along
the path from r(u) to r(v) in Pe. Altogether, we also embed every edge constructed by e onto
the edges of Pe. Doing this for every e in G, we obtain an embedding of H ′ into H.

The computation of H ′′ is straightforward. First, for each edge (u, v) ∈ G with r(u) = r(v),
we can compute the lowest common ancestor a(u, v) of u and v in the corresponding tree in F
rooted at r(u) = r(v) [AHU76]. For each edge (u, v) with r(u) 6= r(v), we can find the vertices
r(u) and r(v). Next, for each tree in F , we can perform a simple traversal to determine, for
each edge e in the tree, the number of pairs (u, r(u)) or (u, a(u, v)) whose path between the two
vertices passes through e. Lastly, we can easily keep track of the edges (r(u), r(v)) for each edge
(u, v) with r(u) 6= r(v).

From Theorem 8.5 and Lemma 8.7, we obtain the following corollary:

Corollary 8.8. For any multigraph G = (V,E) and parameter t, there exists a distribution on t
graphs G1, . . . , Gt of Õ(n/t)-trees of G such that for any subset C ⊆ V :

1. For all i ∈ [t], w(∂GiC) ≤ w(∂GC)

2. Ei[w(∂GiC)] ≤ αw(∂GC)

Moreover, we can find such a distribution in Õ(|E| · t) time.

Proof. Apply Theorem 8.5 to find the j-trees G1, . . . , Gt, and then apply Lemma 8.7 onto each
one. The two properties hold by the properties of an embedding.

8.1 Most-Balanced Sparse Cut on a j-tree

We will actually compute most-balanced sparse cut, defined as follows:

Definition 8.9 (Most-Balanced Sparse Cut). Given G = (V,E) and parameters φ, φ∗, c, a set
S ⊆ V with vol(S) ≤ m is a (φ∗, c)-most-balanced φ-sparse cut if it satisfies:

1. σ(S) ≤ φ.

2. Let S∗ ⊆ V be the set with maximum vol(S∗) out of all sets S′ satisfying σ(S′) ≤ φ∗ and
|S′| ≤ n/2. Then, |S| ≥ |S∗|/c.
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Algorithm 4 MostBalancedSparseCut(G,H,K,F, φ)

Assumption: H = (V,E) is a |K|-tree of G with core K and multi-forest F .
Output:
Runtime: Õ(m+ |K|ω)

1: HK ← H[K] with the following additional self-loops : for each edge (u, v) in G, if r(u) = r(v),
then add a self-loop at r(u) ∈ K.

2: SK ← (recursive) (f(φ), β)-approximate most-balanced low-conductance cut on HK

3: Construct a vertex-weighted multi-tree T = (VT , ET , wT ) as follows: Starting with H,
contract K into a single vertex k with weight |K|. All other vertices have weight 1. (The
vertices of T have total weight n.)

4: Root T at a vertex r ∈ VT such that every subtree rooted at a child of r has total weight at
most n/2. . A subtree of T rooted at u is the set of vertices v ∈ V whose path to r includes
u.

5: ST ← RootedTreeMostBalancedSparseCut(T, r, φ) (Algorithm 5)
6: It is guaranteed that one of SK and ST has conductance ≤ O(∆

√
φ logm). Of the (one or

two) cuts satisfying this property, output the one with highest volume.

Algorithm 5 RootedTreeMostBalancedSparseCut(T = (V,E,w), r, φ)

Assumption: T is a weighted multi-tree with weight function w : V → N (so that w(v) is the
weight of vertex v ∈ V ). The tree is rooted at a root r such that every subtree Vu rooted at a
vertex u ∈ V \ {r} has total weight w(Vu) ≤ w(V )/2.
Output: a set S ⊆ V satisfying the conditions of Lemma 8.10.
Runtime: Õ(nω)

1: Find all vertices u ∈ V \ {r} such that if Vu is the vertices in the subtree rooted at u, then
w(E[Vu, V \ Vu])/|Vu| ≤ 2φ. Let this set be X.

2: Let X↑ denote all vertices u ∈ X without an ancestor in X (that is, there is no v ∈ X \ {u}
with u ∈ Tv).

3: Starting with S = ∅, iteratively add the vertices Vu for u ∈ X↑. If w(S) ≥ n/4 at any point,
then terminate immediately and output S. Otherwise, output S at the end.

Lemma 8.10. Algorithm 5 can be implemented to run in O(|V |) time. The set S output by
Algorithm 5 satisfies |E[S, V \ S]|/min{w(S), w(V \ S)} ≤ 6φ. Moreover, for any set S∗ with
|E[S∗, V \ S∗]|/w(S∗) ≤ φ and w(S∗) ≤ 2w(V )/3, and which is composed of vertex-disjoint
subtrees rooted at vertices in T , we have min{w(S), w(V \ S)} ≥ w(S∗)/3.

Proof. Clearly, every line in the algorithm can be implemented in linear time, so the running
time follows. We focus on the other properties.

Every set of vertices Vu added to S satisfies |E[Vu, V \Vu]|/w(Vu) ≤ 2φ. Also, the added sets Vu
are vertex-disjoint, so |E[S, V \S]| =

∑
Vu⊆S |E[Vu, V \Vu]|. This means that Algorithm 5 outputs

S satisfying |E[S, V \S]|/w(S) ≤ 2φ. Since every set Vu has total weight at most w(V )/2, and since
the algorithm terminates early if w(S) ≥ w(V )/4, we have w(S) ≤ 3w(V )/4. This means that
min{w(S), w(V \S)} ≥ w(S)/3, so |E[S, V \S]|/min{w(S), w(V \S)} ≤ 3|E[S, V \S]|/w(S) ≤ 6φ.

Suppose first that the algorithm terminates early. Then, as argued above, min{w(S), w(V \
S)} ≥ w(V )/4, which is at least (2w(V )/3)/3 ≥ w(S∗)/3, so min{w(S), w(V \ S)} ≥ w(S∗)/3.
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Now suppose that S does not terminate early. Let S∗1 , . . . , S
∗
` be the vertices in the (vertex-

disjoint) subtrees that together compose S∗, that is,
⋃
i S
∗
i = S∗. Note that E[S∗i , V \ S∗i ] is a

single edge in E for each i. Suppose we reorder the sets S∗i so that S∗1 , . . . , S
∗
q are the sets that

satisfy |E[S∗i , V \ S∗i ]|/w(S∗i ) ≤ 2φ. Since |E[S∗, V \ S∗]|/w(S∗) ≤ φ, by a Markov’s inequality-
like argument, we must have

∑
i∈[q]w(S∗i ) ≥ (1/2)

∑
i∈[`]w(S∗i ) = w(S∗)/2. Observe that by

construction of X↑, each of the subsets S∗1 , . . . , S
∗
q is inside Vu for some u ∈ X↑. Therefore,

the set S that Algorithm 5 outputs satisfies w(S) ≥
∑

i∈[q]w(S∗i ) ≥ w(S∗)/2. The bound on
|E[S, V \ S]|/min{w(S), w(V \ S)} follows as before.

Lemma 8.11. Algorithm 4 runs in time O(m) plus the recursive call (line 2 of Algorithm 4).

Proof. Lines 3 and 4, can be easily implemented in linear time. By Lemma 8.10, line 5 also takes
linear time.

Claim 8.12. Let H be a |K|-tree of a connected graph G with core K and multi-forest F , and
let ∆ be the maximum degree in G. Fix a subset S ⊆ K, and let SF be the vertices in the trees
in F intersecting S (note that SF ⊇ S). Then,

1. |EHK (S, VK \ S)| = |EH(SF , V \ SF )|, and

2. |SF | ≤ volHK (S) ≤ ∆ · |SF |.

Proof. For (1), observe that every edge in EH(SF , V \ SF ) must belong in H[K]: the only
difference in the edges of H[K] and HK are self-loops, which never appear in EHK (S, VK \ S);
this proves property (1).

For (2), we first show the |SF | ≤ volHK (S) direction. For a given vertex u ∈ SF , let e = (u, v)
be an edge in G incident to u, which must exist since G is connected. By the construction of
HK , e corresponds to the edge (r(u), r(v)) in HK : either r(u) 6= r(v) and the edge (r(u), r(v))
was added in the construction of H (see Definition 8.6), or r(u) = r(v) and it was added in line 1
of Algorithm 4. Let us charge the vertex u to the endpoint r(u) of the edge (r(u), r(v)) in HK .
Since no endpoint of any edge is charged more than once, and since the number of endpoints in
S of edges in H[K] is exactly volHK (S), we have |SF | ≤ volHK (S).

We now show the volHK (S) ≤ ∆ · |SF | direction. Consider an endpoint u ∈ S of edge (u, v)
in HK (possibly a self-loop). This edge resulted from an edge (u′, v′) in G with r(u′) = u and
r(v′) = v; note that u′ ∈ SF . Let us charge the endpoint u of edge (u, v) in HK to the endpoint
u′ ∈ SF of edge (u′, v′) in G. Every vertex in |SF | can be charged at most ∆ times, since
its degree in G is at most ∆. Therefore, the quantity volHK (S), which equals the number of
endpoints u ∈ S of edges in HK , is at most ∆ · |SF |.

The next lemma shows that we can transform the optimal cut S∗ ⊆ V into either a cut
S∗T ⊆ VT or a cut S∗K ⊆ HK without losing too much in sparsity and volume. Note that S∗T
corresponds to a cut in H that only cuts the forest edges in F , and S∗K corresponds to a cut in
H that only cuts edges in the core H[K]. Then, in the proof of Lemma 8.14, we will show that
the cuts ST and SK computed by Algorithm 4 approximate S∗T and S∗K respectively.

Lemma 8.13. Let H be a |K|-tree of a connected graph G = (V,E) with core K and multi-forest
F , and let S∗ ⊆ V be any cut with |S∗| ≤ n/2 (where n := |V |). Let T and HK be defined as in
Algorithm 4. One of the following must hold:
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Figure 3: Cases 2a and 2b of Lemma 8.13. The set S is the cyan vertices.

1. There exists a cut S∗T in T satisfying |ET (S∗T , V \ S∗T )| ≤ |EH(S∗, V \ S∗)| and |S∗|/2 ≤
w(S∗T ) ≤ 2n/3, and S∗T is the disjoint union of subtrees of T rooted at r.

2. There exists a cut S∗K in HK satisfying |EHK (S∗K ,K \ S∗K)| ≤ |EH(S∗, V \ S∗)| and
min{volHK (S∗K), volHK (K \ S∗K)} ≥ |S∗|/3.

Proof. Let S∗ ⊆ V the set as described in Definition 8.9 (σH(S∗) ≤ φ). Let U be the vertices
u ∈ V whose (unique) path to r(u) in F contains at least one edge in E[S∗, V \S∗] (see Figure 3).
Note that U ∩K = ∅ and EH(U, V \ U) ⊆ EH(S∗, V \ S∗). Moreover, suppose we first root the
tree T at k (not r); then, for each vertex u ∈ U , its entire subtree is contained in U . Therefore,
U is a union of subtrees of T rooted at k.

Case 1: r ∈ U . In this case, let U ′ ⊆ U be the vertices in the subtree containing r. Then, if we
now re-root T at vertex r, then the vertices in VT \ U ′ now form a subtree. Define S∗T ⊆ VT as
S∗T := VT \U ′ (Figure 3 shows a different case). By our selection of r, w(S∗T ) = w(VT \U ′) ≤ n/2.
Moreover, w(S∗T ) = w(VT \ U ′) ≥ |S∗| and ET (S∗T , V \ S∗T ) ⊆ EH(U, V \ U) ⊆ EH(S∗, V \ S∗),
so the conditions |S∗| ≤ w(S∗T ) ≤ n/2 and |ET (S∗T , V \ S∗T )| ≤ |EH(S∗, V \ S∗)| are satisfied,
fulfilling condition (1).

Case 2a: r /∈ U and |U | ≥ n/6. Since r /∈ U , every subtree in U has weight at most n/2.
Let U ′ be a subset of these subtrees of total weight in the range [n/6, n/2]. Define S∗T := U ′,
which satisfies n/2 ≥ |S∗T | ≥ n/6 ≥ |S∗|/3 and ET (S∗T , V \S∗T ) ⊆ EH(U, V \U) ⊆ EH(S∗, V \S∗),
fulfilling condition (1).

Case 2b: r /∈ U and |U | < n/6. In this case, let S := S∗ ∪ U , which satisfies |S∗| ≤ |S| ≤
|S∗|+ |U | ≤ |S∗|+ n/6 ≤ 2n/3 and EH(S, V \ S) ⊆ EH(S∗, V \ S∗). Next, partition S into SK
and S∗T , where SK consists of the vertices of all connected components of H[S] that intersect
K, and S∗T := S \ SK is the rest. Clearly, we have |EH(SK , V \ SK)| ≤ EH(S∗, V \ S∗) and
|EH(S∗T , V \ S∗T )| ≤ EH(S∗, V \ S∗). Also, observe that for each tree T in F , either V (T ) ⊆ S∗T
or V (T ) ∩ S∗T = ∅.

We have that either |S∗T | ≥ |S|/2 or |SK | ≥ |S|/2. If the former is true, then the set S∗T
satisfies condition (1). Otherwise, assume the latter. Since EH(SK , V \SK) does not contain any
edges in F , there exists a set S∗K := {r(v) : v ∈ SK} ⊆ K such that SK is the vertices in the trees
in F intersecting S∗K . This also means that V \ SK is the vertices in the trees of F intersecting
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K \ S∗K . By Claim 8.12 on S∗K and K \ S∗K , we have |EHK (S∗K ,K \ S∗K)| = |EH(SK , V \ SK)| ≤
|EH(S∗, V \ S∗)|, and

min{volHK (S∗K), volHK (K \ S∗K)} ≥ min{|SK |, |V \ SK |}.

It suffices to show that min{|SK |, |V \ SK |} ≥ |S∗|/3. We have |SK | ≤ |S∗| + n/4 ≤ 3n/4, so
min{|SK |, |V \SK |} ≥ |S∗|/3, and this along with |SK | ≥ |S∗| shows that min{|SK |, |V \SK |} ≥
|SK |/3 ≥ |S∗|/3.

Lemma 8.14. For a |K|-tree H = (V,E) with core K and multi-forest F , and for any parameter
φ, Algorithm 4 outputs a (φ,O(∆β))-most-balanced max{f(3φ), 6φ}-sparse cut for H.

Proof. Let S∗ ⊆ V the set as described in Definition 8.9 (σH(S∗) ≤ φ). We need to show that
Algorithm 4 outputs a cut S (|S| ≤ n/2) satisfying σ(S) ≤ max{f(3φ), 6φ} and |S| ≥ |S∗|/O(∆β).

First, suppose that condition (1) of Lemma 8.13 holds. Then, by Lemma 8.10, line 5 of
Algorithm 4 returns a cut ST ⊆ VT with |E[S∗, VT \ S∗]|/w(S∗) ≤ 6φ and min{w(ST ), w(VT \
ST )} ≥ w(S∗T )/3 ≥ |S∗|/6. Let SH := ST \ {k} ∪K if k ∈ ST and SH := ST otherwise. Then,
min{|SH |, |V \ SH |} = min{w(ST ), w(VT \ ST )} ≥ |S∗|/6 and

σ(SH) =
|EH(SH , V \ SH)|

min{|SH |, |V \ SH |}
=

|EH(ST , VT \ ST )|
min{w(ST ), w(VT \ ST )}

≤ 6φ.

Otherwise, suppose that condition (2) of Lemma 8.13 holds. Then, the cut S∗K satisfies

ΦHK (S∗K) =
|EHK (S∗K ,K \ S∗K)|

min{volHK (S∗K), volHK (K \ S∗K)}
≤ 3φ.

By the guarantee of the recursive call in line 2, the set SK that it outputs satisfies vol(SK) ≤ m
and

ΦHK (SK) ≤ f(ΦHK (S∗K)) ≤ f(3φ)

and

volHK (SK) ≥ (1/β) ·min{volHK (S∗K), volHK (K \ S∗K)}.

Let SF be the vertices in the trees in F intersecting SK . By Claim 8.12 on SK and K\SK , we have
|EHK (SK ,K \ SK)| = |E(SF , V \ SF )| and |SF | ≥ vol(SK)/∆ and |V \ SF | ≥ vol(K \ SK)/∆ ≥
vol(SK)/∆, so

min{|SF |, |V \ SF |} ≥
1

∆
volHK (SK) (32)

≥ Ω

(
1

∆β

)
·min{volHK (S∗K), volHK (K \ S∗K)}

≥ Ω

(
1

∆β

)
· |S∗|,

where the last inequality follows by property (2) of Lemma 8.13.
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8.2 Most Balanced Cut on G

Lemma 8.15. Let G be a graph with n vertices and m edges, and fix a parameter j depending on
n. Suppose we have an (f(φ), c)-approximate balanced cut algorithm (which was invoked on line 2
of Algorithm 4) that takes time T (n̂, m̂) on an input with n̂ vertices and m̂ edges. Then there
is a (max{f(3α∆φ), 6α∆φ}, O(∆2c))-approximate balanced cut algorithm that for any graph G
with m edges and any parameter j, runs in time

Õ

(
m

j
(T (j,m) +m)

)
.

Proof. Let S∗ ⊆ V be the set as described in Definition 8.9 (Φ(S∗) ≤ φ). Since vol(S∗) ≤ ∆|S∗|
and vol(S∗) ≤ vol(V \ S∗) ≤ ∆|V \ S∗|, we have min{|S∗|, |V \ S∗|} ≥ vol(S∗)/∆, so σ(S∗) ≤
∆Φ(S∗) ≤ ∆φ.

Invoke Theorem 8.5 with a parameter t := Õ(m/j), computing t many j-trees G1, . . . , Gt
with j = Õ(m/t). Let α be the parameter specified in Theorem 8.5.

For each j-tree Gi, run Algorithm 4 with parameter α∆φ on each of the j-trees. By
Lemma 8.11, Algorithm 4 takes O(m) time plus one call to A for each of t many j-trees, which
is a total of Õ(tm) = Õ(m2/j) time plus Õ(m/j) calls to A.

By property (2) of Theorem 8.5, there exists a j-tree Gi such that |EGi(S∗, V \ S∗)| ≤
α |EG(S∗, V \ S∗)|, so σGi(S

∗) ≤ ασG(S∗) = α∆φ. By Lemma 8.14, Algorithm 4 returns a
(α∆φ,O(∆/c))-most-balanced max{f(3α∆φ), 6α∆φ}-sparse cut S for Gi.

Since vol(S) ≥ |S| and vol(V \ S) ≥ |V \ S| ≥ |S|, we have

min{vol(S), vol(V \ S)} ≥ |S|. (33)

By property (1) of Theorem 8.5, this cut S satisfies |EG(S, V \S) ≤ |EGi(S, V \S)|, which means
that

ΦG(S)
(33)

≤ σG(S) ≤ σGi(S) ≤ max{f(3α∆φ), 6φ}.

By property (2) of most-balanced sparse cut (Definition 8.9), the set S∗ with σGi(S
∗) ≤ α∆φ

ensures that |S| ≥ |S∗|/O(∆c).

min{vol(S), vol(V \ S)}
(33)

≥ |S| ≥ |S∗|
O(∆c)

≥ vol(S∗)

O(∆2c)
.

Thus, S is a (φ,O(∆2c))-most-balanced max{f(3α∆φ), 6α∆φ}-conductance cut.

Recall that α = O(log2 n log log n). By setting the parameter k = n/j, Lemma 8.15 says that
given an (f(φ), c)-approximate balanced-cut routine with running time T (m) on an input with n
vertices and m edges, we can obtain an (f(O(φ log3 n)), O(c))-approximate balanced-cut routine
on a graph with maximum degree ∆ = O(1) with running time:

Õ
(
k
(
m+ T

(m
k
,m
)))

.

We would have proven Theorem 2.8 if there is no restriction on the maximum degree ∆ = O(1).
Fortunately, the following lemma show that for the most balanced lower conductance cut problem,
we can in fact assume with out loss of generality that ∆ = O(1) (see Appendix C for the proof):
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Lemma 8.16. Given a graph G with n vertices and m edges, we can compute in linear time a
graph G′ such that

1. G′ has O(m) vertices with constant maximum degree.

2. Φ(G) = Φ(G′).

3. Given a (φ, c)-most balanced α-conductance cut in G′, we can transform it into a (φ,O(c))-
most balanced O(α)-conductance cut in G′ in linear time.

This allows us to invoke Lemma 8.15 with ∆ = O(1), and thus obtaining the guarantees of
Theorem 2.8.

9 Recursive Sparsification

Theorem 2.10. Given any (f(φ), c)-approximate balanced-cut routine ApproxBalCut in time
mθ for some 1 < θ ≤ 2 such that f(φ) ≤ φξno(1) for some absolute constant 0 < ξ ≤ 1, we can
obtain an (no(1) · f(φ), c)-approximate balanced-cut routine with running time

Ô
(
n2θ−2m2−θ

)
= Ô

(
n2
)
.

The general idea here is to incorporate one of the most well-known applications of graph
partitioning: graph sparsification. This routine essentially allow one to transform any graph
into a sparse one by repeatedly computing balanced separators on it, and then replacing the
expanding pieces with expanders. Then we use another divide and conquer scheme to avoid
calling sparsify on the initial, possibility dense, graph ith m edges. Instead, we will partition
the vertices into b equal sized parts, and recursively sparsify each of the O(b2) subgraphs on
about 2n/b vertices. The resulting graphs are then combined with another call to sparsification.
This scheme essentially trades the multiplicative accumulation of errors from repeatedly calling
sparsification with the smaller sizes throughout these calls.

Definition 9.1. A weighted graph H = (V,E(H), w(H)) is a κ-approximation of another weighted
graph G = (V,E(G), w(H)) on the same set of vertices V if for any cut S ⊆ V , we have

1

κ
·w (G)

(
E(G)

(
S, S

))
≤ w (H)

(
E(H)

(
S, S

))
≤ κ ·w (G)

(
E(G)

(
S, S

))
.

This notion is a simplified notion of graph sparsification, and we can show modify the
existing sparsification literature to produce no(1)-approximations deterministically, when given
an approximate balanced cut procedure.

Lemma 9.2. Given any (f(φ), β)-approximate balanced-cut routine ApproxBalCut in time
mθ for some 1 < θ ≤ 2 such that f(φ) ≤ φ−ξno(1) for some absolute constant ξ > 0 (as specified
in Theorem 2.10),

we can construct a deterministic sparsification algorithm DeterministicSparsify that takes
any weighted graph G as input, and outputs in deterministic Ô(mθ) time a sparse graph H with
Ô(n) edges that no(1)-approximates G.
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Proof. By the minimum spanning tree based hierarchical invocation given in the weighted
sparsifier section of [ST11], it suffices to give such an algorithm for unweighted graphs.

On such graphs, the equivalence between finding approximate balanced cuts and almost-
expanders [SW19] as stated in Theorem 6.6 means we also have a routine that either finds an
1/2-balanced cut, or a expander of size at least half the graph. Then by repeatedly invoking
this partition routine, we obtain in Ô(mθ) time a partition of the vertices into expanders with
conductance at least n−o(1), so that at most

f (φ)m log n ≤ m

2

edges are between the pieces. Repeating this process O(log n) iterations then puts all the edges
into expanders, and thus gives a total number of vertices of O(n log2 n).

Then the construction of weighted expanders from Appendix J of [KLP+16] gives that each
of these expanders can be no(1)-approximated by a graph with average degree O(1). These
constructions in turn rely on the explicit expander constructions by either Margulis [Mar88], or
by Lubotzky, Phillips, and Sarnak [LPS88], both of which are determinsitic. Such a replacement,
however, incurs an error equaling to conductance (expanders have constant conductace), which
in turn goes into the overall approximation factor.

This notion of approximation composes under summation of graphs, as well as compositions.

Fact 9.3. (see e.g. Section 2 of [KLP+16])

• If G1 κ1-approximates H1, and G2 κ2-approximates H2, then G1 + G2 max{κ1, κ2}-
approximates H1 +H2.

• If G1 κ1-approxiamtes G2, and G2 κ2-approximates G3, then G1 κ1κ2-approximates G3.

Pseudocode of our routine is then given in Algorithm 6.

Algorithm 6 RecursiveSparsify(G)

1: Let m be the number of edges of G
2: Let n be the number of vertices of G
3: if m ≤ b · n then
4: Return DeterministicSparsify(G)
5: else
6: Partition V (G) into b parts V1, . . . , Vb such that their sizes differ by at most 1

7: Decompose G into b(b−1)
2 subgraphs: Gi,j = (Vi ∪ Vj , E(G)(Vi, Vj))

8: for 1 ≤ i ≤ j ≤ b do
9: Hi,j=RecursiveSparsify(Gi,j)

10: Return DeterministicSparsify(
∑

ij Hi,j)

Proof of Theorem 2.10. We may assume that G is simple. Let n0 be the number of ver-
tices and edges in the original graph G0 on which we call RecursiveSparsify (Algorithm 6).

It suffices to show that Algorithm 6 runs in O(n
(1+c)(2θ−2)

c m2−θ) time on any graph G with
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n vertices and m edges such that n ≤ n0 if b = 3n
1
c
0 and returns a no(1) approximation of G

with Ô(n) edges, since we can then call the given ApproxBalCut routine on the returned graph.

The time cost of Line 6 and 7 and passing function arguments are bounded by O(m) =
O(n2θ−2m2−θ). So we focus on bounding the total running time of recursive calls (Line 4,
9 and 10), denoted by T (n,m). We will prove by induction that T (n,m) is no more than
(nb)2θ−2m2−θ100logb/3(n).

As base case, if m ≤ b · n, by Lemma 9.2, DeterministicSparsify computes an no(1)-
approximation of any graph in Ô(mθ) time. So Algorithm 6 runs in mθ time which is no more
than (nb)2θ−2m2−θ.

Otherwise, m > b · n ≥ 3n. This implies n ≥ 6.
If m > b · n,

T (n,m) ≤(b2(n/b))θ +
∑

1≤i≤j≤b
T (2n/b+ 1,mi,j)100logb/3(2n/b+1)

≤(b2(n/b))θ +
∑

1≤i≤j≤b
(9n2θ−2m2−θ

i,j )100logb/3(2n/b+1)

(by ((2n/b+ 1)b)2θ−2 ≤ (3n)2θ−2)

≤(b2(n/b))θ + 9
∑

1≤i≤j≤b
(n2θ−2(2m/b/(b− 1))2−θ)100logb/3(2n/b+1)

=(b2(n/b))θ + 9b2(n2θ−2(2m/b/(b− 1))2−θ)100logb/3(2n/b+1)

≤(b2(n/b))θ + 36b2(n2θ−2(m/(b2))2−θ)100logb/3(2n/b+1)

=(b2(n/b))θ + 36b2θ−2(n2θ−2m2−θ)100logb/3(2n/b+1)

≤(b2(n/b))θ + 36b2θ−2(n2θ−2m2−θ)100−1+logb/3(n)

≤(b2(n/b))θ + 0.36b2θ−2n2θ−2m2−θ100logb/3(n)

≤b2θ−2n2θ−2m2−θ100logb/3(n)

for n ≥ 6. The last inequality is by (nb)θ < mθ = mθ−1m2−θ ≤ n2θ−2m2−θ.

The number of edges returned by Algorithm 6 is equal to that number of DeterministicSparsify,
which is Ô(n).

Since there are at most logb/3 n = c layers of recursion and each layer computes a no(1)-
approximation (by DeterministicSparsify) of the graph returned by the previous layer (Fact
9.3), Algorithm 6 returns a

(
no(1)

)c
= no(1)-approximation of G.

Note however that this accumulation of errors is due to the approximation of a piece with φ
conductance with a regular expander. We believe this lack of better deterministic approximations
of expanders is an inherent gap in the construction of deterministic sparsification / partitioning
tools. While it does not affect our overall final performances, it is a question worth investigation
on its own.
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A Notations

We use G = (V,E) to denote an undirected graph, and |V | = n and |E| = m to denote the
number of edges and vertices respectively. We assume that G is connected because otherwise
there is a trivial separator of 0 vertices/edges. We also assume that G does not have parallel
edges: otherwise, we can remove duplicate edges without changing vertex connectivity.

Definition A.1 (deg, vol, N). For any vertex v on graph G, and any subset of vertex U ⊆ V ,
• degG(v) = number of edges incident to v.
• volG(U) =

∑
v∈U degG(v).

• NG(v) = {u : (u, v) ∈ E}, i.e., NG(v) is the set of neighbors of v.
• NG(U) =

⋃
v∈U NG(v) \ U . Note that U is excluded.

We omit subscription when the graph that we refer to is clear from the context.

Definition A.2 (Subgraphs). For any set of vertices U ⊆ V , we denote G[U ] as an induced
subgraph by U . For any vertex set U and edge set F , we denote
• G− U = (V \ U,E), and
• G− F = (V,E \ F )

Definition A.3 (Edge-cuts and vertex-cuts). Let x, y be any distinct vertices. We call any
edge-set C ⊂ E (respectively any vertex-set U ⊂ V ):
• an (x, y)-edge-cut (respectively an (x, y)-vertex-cut) if there is no path from x to y in G−C

(respectively if there is no path from x to y in G− U and x, y 6∈ U),
• an edge-cut (respectively an vertex-cut) if it is an (s, t)-edge-cut (respectively (s, t)-vertex-

cut) for some distinct vertices s and t.

Definition A.4 (Separation triple). A separation triple (L, S,R) is an order triplet of sets
forming a partition of V where L and R are non-empty, and there is no edge between L and R.

Note that S is an (x, y)-vertex-cut for any x ∈ L and y ∈ R.

Definition A.5 (Edge set). We denote E(S, T ) = {(u, v) : u ∈ S, v ∈ T, and v ∈ E}.

Definition A.6 (Vertex connectivity κ). Vertex connectivity of a graph G, denoted as κG, is
the minimum cardinality vertex-cut or n− 1 if no vertex-cut exists. For any vertices x, y ∈ V ,
we denote κG(x, y) as the smallest cardinality (x, y)-vertex-cut or n− 1 if (x, y)-vertex-cut does
not exist.

Observe that κG = min{κG(x, y) : x, y ∈ V, x 6= y}.
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B Split Vertex Connectivity

Theorem B.1. There is a deterministic SplitVC algorithm (Definition 5.3) that runs in
O(mk(|S|+ k2)) time.

We prove Theorem B.1 by giving an algorithm, and analyzing its correctness and running
time.

B.1 Algorithm

Algorithm 7 SplitVC(G,S, k)

Input: Graph G = (V,E), a vertex-cut S, and a positive integer k
Assumptions: |S| ≥ k.
Output: An (x, y)-vertex-cut of size < k for some x ∈ S and y ∈ S or the symbol ⊥ certifying
that κG(x, y) ≥ k for all x ∈ S and y ∈ S.

1: Let X be any subset of size k from S. . X exists since |S| ≥ k.
2: if minx∈X,y∈X κG(x, y) < k then
3: return the corresponding (x, y)-vertex-cut in G.

4: Let G′ be a graph obtained from G by adding a new vertex s, and edges (s, v) for all v ∈ X.
5: if minv∈S κG′(s, v) < k then
6: return A (u, v)-vertex-cut in G where u ∈ S, v ∈ S. . See Proposition B.2.

7: return ⊥.

B.2 Analysis

We show that Algorithm 7 is correct. Let X be the set as defined in Algorithm 7 (line 1). Recall
that s is the new vertex in G′. Let κ′ = minv∈S κG′(s, v).

Proposition B.2. If κ′ < k, then the corresponding (s, v)-vertex-cut in G′ is also a (u, v)-vertex-
cut in G for some u ∈ S and some v ∈ S.

Proof. Let (L′, S′, R′) be a separation triple such that s ∈ L′ and |S′| = κ′ and v ∈ R′ ∩ S (such
separation triple exists by Algorithm 7 line 5). Since s ∈ L′ and there cannot be an edge between
L′ and R′, we have NG′(s) ⊆ L′ t S′. Since |S′| < k , but |NG′(s)| = |X| = k, there is some
vertex u in X that is also in L′. That is, L′ \ {s} 6= ∅. Also, R′ contains a vertex v ∈ S. Hence,
we get a new separation triple in G by removing s from L′ Therefore, S′ is a (u, v)-vertex-cut in
G where u ∈ S and v ∈ S.

Lemma B.3. Suppose there exist x and y such that x ∈ S, y ∈ S and κG(x, y) < k. Then,
Algorithm 7 (line 3 or line 6) returns a (u, v)-vertex-cut of size at most k where u ∈ S and v ∈ S.

Proof. Let (L∗, S∗, R∗) be a separation triple such that x ∈ L∗ and y ∈ R∗ and |S∗| = κG(x, y).
We have that S \ S∗ has two components S ∩ L∗ and S ∩R∗.

If X ∩ L∗ 6= ∅ and X ∩R∗ 6= ∅, then there exist u ∈ X ∩ L∗ and v ∈ X ∩R∗. Hence, u ∈ L∗
and v ∈ R∗. Therefore, κG(u, v) = |S∗| < k. Since u ∈ X and v ∈ X, Algorithm 7(line 3) returns
a vertex-cut of size at most k.
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Otherwise, X ∩ L∗ = ∅ or X ∩ R∗ = ∅. Since |S∗| < k, and |X| = k, either X ∩ L∗ = ∅ or
X ∩R∗ = ∅. Now, we assume WLOG that X ∩R∗ = ∅. This means X ⊆ L∗ t S∗. Let G′ be the
graph as defined in Algorithm 7 (line 4). Let κ′ = minv∈S κG′(s, v).

We claim that κ′ ≤ κG(x, y). Recall that (L∗, S∗, R∗) is a separation triple such that
x ∈ S ∩ L∗, y ∈ S ∩R∗ and |S∗| = κG(x, y). We show that S∗ is an (s, y)-vertex-cut in G′. Note
that s is a new vertex in G′, and y ∈ S. Since NG′(s) = X ⊆ L∗ t S∗, the new edges do not
join L∗ and R∗. Also, y ∈ R∗. Hence, (L∗ ∪ {s}, S∗, R∗) is a separation triple in G′ where s
and y belong to different partitions. Therefore, S∗ is an (s, y)-vertex-cut in G′, and we have
κG′(s, y) ≤ |S∗| = κG(x, y). Therefore, κ′ ≤ κG(x, y) < k.

Therefore, by Proposition B.2, Algorithm 7(line 6) outputs correctly a (u, v)-vertex-cut in G
of size < k where u ∈ S and v ∈ S.

We show the last part.

Lemma B.4. Suppose κG(x, y) ≥ k for all x ∈ S and y ∈ S. Algorithm 7 returns the symbol ⊥
at line 7.

Proof. Clealy, Algorithm 7 never returns a vertex-cut at line 3. Let κ′ = minv∈S κG′(s, v). It
remains to show that κ′ ≥ k. Suppose κ′ < k. Let S′ be the corresponding (s, v)-vertex-cut
in G′ where v ∈ S. By Proposition B.2, S′ is also a (u, v)-vertex-cut in G where u ∈ S and
v ∈ S. Therefore, κG(u, v) < k, which is a contradiction. Therefore, Algorithm 7 never returns a
vertex-cut at line 6, and correctly returns the symbol ⊥ at line 7.

Lemma B.5. Algorithm 7 terminates in O(mk(|S|+ k2)) time.

Proof. Given x, y, we can compute an (x, y)-vertex-cut such that κG(x, y) < k or certify that
κG(x, y) ≥ k in O(mk) time using Ford-Fulkerson algorithm. We run at most |X|2 = k2 calls
of κ(x, y) at line 2, and at most |S| calls of κ(x, y) at line 5. Each call of κ(x, y) takes O(mk).
Therefore, the running time for Algorithm 7 follows.

Proof of Theorem B.1. This follows from Algorithm 7 is correct by Lemma B.3, and Lemma B.4
for the two possible cases. The running time follows from Lemma B.5.

C Expander Split

Definition C.1 (Expander Split). Let G = (V,E) be a graph. The expander split graph G′ of
G is obtained from G by the following operations

• For each node u ∈ V , we replace u by a constant-degree expander Xu with deg(u) nodes.
We call Xu a super-node in G′.

• Let Eu = {eu,1, . . . , eu,deg(u)} denote the set of edges in G incident to u. For each e = (u, v),
suppose e = eu,i = ev,j , we create add an edge between the i-th of node Xu and the j-th
node of Xv.

Proposition C.2. For any m-edge graph G = (V,E), the expander split graph G′ = (V ′, E′) of
G has the following properties
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1. G′ has O(m) vertices with constant maximum degree, and can be obtained from G in O(m)
time.

2. ΦG′ = Θ(ΦG).

3. Given a β-balanced cut S in G′ where ΦG′(S) ≤ ε for some small enough constant ε < 1,
then we can obtain in O(m) time a Ω(β)-balanced cut T in G where ΦG(T ) = O(ΦG′(S)).

Proposition C.2 allows us to assume that we only work with a graph with constant degree.

C.1 Proof of Proposition C.2

We prove Proposition C.2 here. This part should be skipped in the first read.

Proposition C.3. [Fast explicit expanders]Given any number n, there is a deterministic algo-
rithm with running time O(n) that constructs a graph Hn with n vertices such that each vertex
has degree at most 16, and the conductance ΦHn = Ω(1).

Proof. We assume that n ≥ 10, otherwise Hn can be constructed in constant time. The expander
construction by Margulis, Gabber and Galil is as follows. For any number k, the H ′k2 is a vertex
set Zk × Zk where Zk = Z/kZ. For each vertex (x, y) ∈ Zk × Zk, its eight adjacent vertices are
(x± 2y, y), (x± (2y+ 1), y), (x, y± 2x), (x, y± (2x+ 1)). In [GG81], it is shown that ΦH′

k2
= Ω(1).

Let k be such that (k − 1)2 < n ≤ k2. As n ≥ 10, so k ≥ 4, and so (k − 1)2 ≥ k2/2. So we
can contract disjoint pairs of vertices in H ′k2 and obtain a graph Hn with n nodes where each
node has degree between 8 and 16. Note that ΦHn ≥ ΦH′

k2
. It is clear that the construction

takes O(n) time.

Let P = {V1, . . . Vk} be a partition of V . We say that a cut S respects P if for each i,
either Vi ⊆ S or Vi ∩ S = ∅ (i.e. no overlapping). Let Φout

G = minS respects ¶ΦG(S). Let
Φin
G = mini ΦG[Vi]. We say that Vi is a clump if, for each u ∈ Vi, degG[Vi](u) = Θ(degG(u)). In

particular, for every S ⊂ Vi, we have volG[Vi](S) = Θ(volG(S)).

Lemma C.4. Suppose that P = {V1, . . . Vk} is a partition of V where each Vi is a clump. We
have

1. ΦG = Ω(Φout
G · Φin

G ).

2. Given a β-balanced cut S where ΦG(S) ≤ εΦin
G for some small enough constant ε < 1,

then we can obtain in O(volG(V )) time a Ω(β)-balanced cut T respecting where ΦG(T ) =
O(ΦG(S)/Φin

G ).

Proof. Below, we write a . b to denote a = O(b). Consider any β-balanced cut (S, V − S)
in G where volG(S) ≤ volG(V − S). We will prove that either 1) ΦG(S) = Ω(Φin

G ), otherwise
we can obtain in O(volG(V )) time a Ω(β)-balanced cut (T, V − T ) respecting P such that
ΦG(T ) = O(ΦG(S)/Φin

G ). Observe that this implies both the first part of the lemma, i.e.
ΦG = Ω(Φout

G · Φin
G ), and also the second part.

Let P ′ = {Vi | 0 < volG(S∩Vi) < 2 volG(Vi−S)} and P ′′ = {Vi | volG(S∩Vi) > 2 volG(Vi−S)}.
Note that as Vi is a clump, volG[Vi](S∩Vi) = Θ(volG(S∩Vi)) and volG[Vi](Vi−S) = Θ(volG(Vi−S)).
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So δG[Vi](Vi∩S) ≥ Ω(Φin
G ·volG[Vi](Vi∩S)) for each Vi ∈ P ′ and δG[Vi](Vi−S) ≥ Ω(Φin

G ·volG[Vi](Vi−
S)) for each Vi ∈ P ′′. Let T =

⋃
Vi∈P ′′ Vi, T = V − T and S = V − S. There are two cases.

In the first case, suppose volG(S − T ) ≥ volG(S)/2. Then, we have

δG(S) ≥
∑
Vi∈P ′

δG[Vi](S ∩ Vi).

≥ Ω(Φin
G ) ·

∑
Vi∈P ′

volG[Vi](S ∩ Vi)

≥ Ω(Φin
G ) ·

∑
Vi∈P ′

volG(S ∩ Vi)

= Ω(Φin
G ) · volG(S − T )

≥ Ω(Φin
G ) · volG(S)/2

So ΦG(S) = Ω(Φin
G ).

In the second case, suppose volG(S − T ) ≤ ε volG(S). We will show that (1) δG(T ) =
O(δG(S)/Φin

G ), (2) volG(T ) = Ω(volG(S)), and (3) volG(T ) = Ω(volG(S)). This would imply

ΦG(T ) =
δG(T )

min{volG(T ), volG(T )

.
δG(S)/Φin

G

min{volG(S), volG(S)}
= ΦG(S)/Φin

G .

and that T is a Ω(β)-balanced cut. Now, it remains to prove the three claims.

Claim C.5. We have the following:

• δG(T ) = O(δG(S)/Φin
G ),

• volG(S) = O(volG(T )), and

• volG(S) = O(volG(T )).

Proof. It is convenient to bound volG(T − S) and volG(S − T ) first. We have

volG(T − S) =
∑
Vi∈P ′′

volG(Vi − S)

.
∑
Vi∈P ′′

volG[Vi](Vi − S)

.
∑
Vi∈P ′′

δG[Vi](Vi − S)/Φin
G

≤ δG(V − S)/Φin
G = δG(S)/Φin

G .
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Next,

volG(S − T ) =
∑
Vi∈P ′

volG(S ∩ Vi)

.
∑
Vi∈P ′

volG[Vi](S ∩ Vi)

.
∑
Vi∈P ′

δG[Vi](S)/Φin
G

≤ δG(S)/Φin
G .

Both of the two bounds above exploit the fact that Vi is a clump. From this, we obtain the first
part of the claim:

δG(T ) ≤ δG(S) + volG(T − S) + volG(S − T )

= O(δG(S)/Φin
G ).

For the second part, we have

volG(S) ≤ volG(T ) + volG(S − T )

≤ volG(T ) + volG(S)/2

and so volG(S) = O(volG(T )). For the last part, first observe that

volG(T − S) =
∑
Vi∈P ′′

volG(Vi − S)

<
∑
Vi∈P ′′

volG(Vi ∩ S)/2

= volG(T ∩ S)/2.

So we have

volG′(S) = volG(T ) + volG(T − S)

< volG(T ) + volG(T ∩ S)/2

≤ volG(T ) + volG(S)/2

≤ volG(T ) + volG(S)/2,

and so volG(S) = O(volG(T )).

Now we are ready to prove Proposition C.2.

Proof of Proposition C.2. For 1), property follow immediately from the definition of expander
split graph and Proposition C.3. For 2), ΦG′ ≤ ΦG by the construction. To show that
ΦG′ = Ω(ΦG), let P= {Xu}u∈V be a partition of V ′. For any cut S′ in G′ respecting P, there
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is a corresponding cut S in G. Note that δG′(S
′) = δG(S) and volG′(S

′) = Θ(volG(S)). So
Φout
G′ = Θ(ΦG). By Proposition C.3, Φin

G′ = Θ(1). Note that each node u in G′ is such that
degG′(u) = Θ(degXu(u)). In particular, each super-node Xu is a clump in G′. By Lemma C.4
we have ΦG′ = Ω(Φout

G′ Φin
G ) = Ω(ΦG). For 3), this follows from Lemma C.4 as well.
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