
1.  Introduction
Terrestrial ecosystem surface-atmosphere fluxes of energy, water, and carbon are fundamental components of the 
Earth system (Jung et al., 2010, 2019; Miralles et al., 2011). The eddy covariance method provides unique oppor-
tunities by enabling continuous measurements of ecosystem-level turbulent fluxes (Baldocchi et al., 2001). With 
eddy covariance towers fairly well distributed worldwide, recent years have seen major advancements in quanti-
fying and understanding land–atmosphere exchanges through the synthesis of their measurements (Migliavacca 
et al., 2021; Nelson et al., 2018, 2020). However, the accuracy of measured sensible (H) and latent heat fluxes 
(LE) is often questioned due to well-known energy imbalance problems (Foken, 2008; Mauder et  al., 2020). 
Specifically, the measured turbulent energy fluxes (TE, the sum of H and LE) is found to be ∼10%–20% less 
than the measured available energy (AE, the difference between net radiation (Rn) and ground heat flux (G)) 
on average where Rn and G are believed more accurately measured (Foken, 2008; Leuning et al., 2012; Mauder 
et al., 2020; Stoy et al., 2013). After excluding several other potential reasons for a systematic imbalance (e.g., 
footprint mismatch), this implies a bias of turbulent flux measurements and raises concerns about flux tower data 
in general, which have become an observational backbone for research on global biosphere-atmosphere interac-
tions (Jung et al., 2019; Stoy et al., 2019). A better understanding and ideally accounting for the energy imbalance 
problem of flux towers is critically needed to avoid issues arising from validating and calibrating global models 
with these data (Braswell et al., 2005; Keenan et al., 2011; Raupach et al., 2005).

Abstract  Latent and sensible heat flux observations are essential for understanding land–atmosphere 
interactions. Measurements from the eddy covariance technique are widely used but suffer from systematic 
energy imbalance problems, partly due to missing large eddies from sub-mesoscale transport. Because available 
energy drives the development of large eddies, we propose an available energy based correction method for 
turbulent flux measurements. We apply our method to 172 flux tower sites and show that we can reduce the 
energy imbalance from −14.99 to −0.65 W m −2 on average, together with improved consistency between 
turbulent fluxes and available energy and associated increases in r 2 at individual sites and across networks. Our 
results suggest that our method is conceptually and empirically preferable over the method implemented in the 
ONEFlux processing. This can contribute to the efforts in understanding and addressing the energy imbalance 
issue, which is crucial for the evaluation and calibration of land surface models.

Plain Language Summary  Eddy covariance measurements are key to understanding the exchange 
of energy and water between the Earth's surface and the atmosphere, which helps us validate Earth system 
models that predict how the land interacts with the atmosphere. However, these measurements often show 
an energy imbalance problem, meaning that the measured turbulent energy does not fully account for all the 
energy entering the system. For two decades, scientists have been using advanced simulations and multi-tower 
measurements to find out why this happens, and have found that the movements of airflow in a horizontal 
direction play a large role. Taking this knowledge into account, we propose a simple, data-driven method to 
make these measurements more accurate. This new approach reduces the error not just at one eddy covariance 
site, but at multiple sites around the globe, and it's also effective at reflecting the energy changes that occur with 
daily weather events like rain.
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Previous attempts to correct the measured TE are essentially based on assuming closure and positing that Bowen 
ratio is correctly measured for each timestep (Twine et  al.,  2000), and this approach has been used in many 
individual site-based studies. In the standard processing pipeline used to synthesize a data set across the site 
network, Pastorello et al. (2020) incorporated this Bowen ratio-based closure correction but assumes a closure 
within a temporal moving window. There are two potential conceptual issues with these Bowen ratio-based 
closure approaches: Firstly, the closure is based on an assumption that is often violated for example, by imperfect 
accounting of ground heat storage changes, or net radiation measurement issues which also have a different foot-
print compared to LE and H. Any factors not related to TE contributing to the imbalance will propagate to biases 
of the estimated correction factors of the turbulent fluxes. Secondly, the moving window approach assumes that 
the factors causing the imbalance to vary smoothly on a time-scale of days to weeks (typical moving window 
size), while this has no theoretical or empirical justification, and may lead to systematically biased correction 
factors along environmental gradients. An empirical correction method that is theoretically motivated and tied 
to an observed variable, which is expected to co-vary with the energy imbalance, would be an advancement over 
current practices.

A variety of factors that could contribute to the observed energy imbalance at flux towers have been identified 
and discussed (see Foken, 2008; Mauder et al., 2020 for a thorough review). It is useful to distinguish between 
factors that cause primarily noise, and factors that can explain the systematic bias observed across the network 
of sites. The former includes footprint differences between the TE and Rn as well as G, or imperfect accounting 
for heat storage changes of the soil and vegetation (especially for tall vegetation). Regarding systematic biases, 
several studies based on modeling and observations suggest that the omission of large eddies by the eddy covar-
iance technique could play a major role (Eder et al., 2015; Inagaki et al., 2006; Mauder et al., 2008; Steinfeld 
et al., 2007; Zhou et al., 2023). Such large eddies develop with a sub-mesoscale circulation driven by thermal 
gradients in the landscape and modulated by topography (Wanner et al., 2022). Therefore, the differential heat-
ing of the land surface, boundary layer growth variations, and emergent characteristics of the non-accounted 
large scale eddies are directly and indirectly related to changes in AE. As such, here we propose an available 
energy-based correction method (hereafter, AEC) for eddy covariance based turbulent fluxes. Our method is 
comparatively simple and broadly applicable to the entire network of flux tower sites and has conceptual advan-
tages compared to the Bowen ratio-based approaches by avoiding the closure assumption and by tying the esti-
mation of correction factors to AE as a causal variable instead of to time (i.e., in the Bowen ratio based closure 
method (Pastorello et al., 2020; Twine et al., 2000)). We further show empirically that our method can greatly 
reduce the energy imbalance at flux tower sites across networks and yields improved patterns compared to the 
Bowen ratio-based corrections implemented in the ONEFlux processing pipeline (hereafter, OFC).

2.  Data and Methods
2.1.  Data

We used 172 eddy covariance sites (from FLUXNET2015, ICOS-Drought2018, ICOS- WarmWinter2020, and 
AmeriFlux, see Table S1 in Supporting Information S1 for all sites with respective citations in the reference 
section) where all components of the energy balance equation are available and where there are at least 1-year 
measurements. All raw data was post-processed following the ONEFlux pipeline (Pastorello et al., 2020), and all 
half-hourly (for most sites) or hourly data were gap-filled by using the marginal distribution sampling method 
(Reichstein et al., 2005). Only half-hours or hours with good quality data for Rn, H, LE, and net exchange of 
carbon dioxide flux (used to filter out the nonturbulent periods) when the quality flag is either 0 (only meas-
ured) or 1 (measured with high-confident gap-filled), were reserved. For consistency, data were aggregated to 
hourly resolution because flux measurements are not available at the half-hourly scale for all sites. Hourly LE 
measurements (when the quality flags for Rn, H, LE, and net exchange of carbon dioxide flux being 0) were then 
corrected using the high relative humidity correction method (Zhang et al., 2023), where we also confirmed the 
small effect of G. To reconcile the complication and uncertainty of the diurnal cycle and the strong G (and storage 
flux) effects at the sub-daily scale, hourly data were averaged to the daily scale with discarding days when less 
than half the percentage of good quality within a day. In theory, the effect of G at a daily scale should be mini-
mized and may be neglected, as the heat flux stored in the soil surface during the day should be largely released 
from the surface during the night, and we further diagnosed the G effect for sites with G measurements (compar-
ing the energy balance closure when setting G to zero across the network, Figures S1 and S2 in Supporting 
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Information S1) to gain more confidence, we then gap-fill G by setting all missing values to 0 to cover as many 
days and sites as possible.

2.2.  Implementation of the AEC

Our proposed correction needs to be applied to time periods that are homogeneous with respect to sensor 
setup, as data artifacts may affect the energy balance closure. Therefore, we first apply Jung's approach (Jung 
et  al.,  2023) to identify breakpoints in the time series associated with marked changes in flux dynamics 
presumably caused by changes in sensor setup (e.g., maintenance of the system, replacement of instruments, 
changes in the height of the system) and changes in ecosystem (e.g., severe disturbance). Then for each 
segment of at least 365  days at one site, the correction factor (FCor) is determined hierarchically by the 
following steps:

�1)	� we fit a non-linear curve by performing a locally weighted scatterplot smoothing, LOWESS (from statsmod-
els python package, with the key parameter of “fraction” being 2/3), that de-scribes the variation of TE as a 
function of AE (Figure 1a):

𝑓𝑓(𝑥𝑥=AE) = LOWESS(𝑥𝑥 = AE, 𝑦𝑦 = TE);� (1)

�2)	� based on the fitted non-linear curve, we then fit a stepwise Ordinary Least Squares regression (OLS, from 
sklearn python package) for TE versus AE along sorted AE based group (60 values per group), thereby the 
FCor for each period is 1 over the slope (Figure 1b):

slope𝑎𝑎 = OLS(𝑥𝑥 = AE, 𝑦𝑦 = 𝑓𝑓(𝑥𝑥=AE)),� (2)

𝐹𝐹Cor𝑎𝑎 =
1

slope𝑎𝑎
.� (3)

�3)	� We then linearly interpolate the FCor to get the corresponding FCor for each AE (Figure 1c), and FCor at 
the two tails are extrapolated based on a linear model trained on the nearest 21 values.

Figure 1.  Calculation of FCor. The energy imbalance problem in the original daily data (after applying the HRHC correction) is shown in (a). The fitted curves in blue 
(from Formula 1) and in orange (from Formula 4) are shown in (a), (b), and (d). Note that for the case of Formula 4, we switched the TE and AE back to y-axis and 
x-axis to simplify the diagram plot. The slopes are estimated by the Ordinary Least Squares regression (using sklearn python package) for every 60-value step along 
the AE (from Formulas 2 And 5), and the correction factor (FCor) is calculated as 1 over the slope, shown in (b) and (d), respectively. Based on the response curve of 
FCor to AE, shown in (c) and (e) respectively, FCor is interpolated and extrapolated for each corresponding AE observation. The final FCor is the geometric mean of 
the FCor from (c) and (e), shown in (f), and the comparison of corrected TE and AE is shown in (g). Note that the correction starts from the ascendingly sorted values 
of positive AE where there is a significantly positive relationship (p < 0.1) between AE and TE, because the correction is based on an underlying assumption that 
variations of the energy imbalance are primarily related to variations of AE.
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�4)	� As FCor is sensitive to the non-linear fitting (e.g., at very low and high AE periods), we repeat the upper 
three steps again by switching TE and AE while fitting the non-linear curve (Figures 1a–1d, and 1e):

𝑓𝑓(𝑥𝑥=TE) = LOWESS(𝑥𝑥 = TE, 𝑦𝑦 = AE),� (4)

slope𝑏𝑏 = OLS(𝑥𝑥 = AE, 𝑦𝑦 = 𝑓𝑓(𝑥𝑥=TE)),� (5)

FCor𝑏𝑏 =
1

slope𝑏𝑏
.� (6)

�5)	� The final FCor then is determined as the geometric mean of the two FCor calculations (Figure 1f):

FCor =

√

FCor𝑎𝑎 × FCor𝑏𝑏.� (7)

2.3.  Implementation of the OFC

The standardized processing method among the FLUXNET community is the ONEFlux processing pipeline 
(Pastorello et al., 2020), which adopts data-processing methods that have been well-established and published 
by the eddy covariance community over the last decades. For TE, a Bowen ratio-based energy balance closure 
corrected version is provided in the standard ONEFlux processing pipeline (Pastorello et al., 2020). In detail, 
there are three (sub)methods (the key difference among the submethods is the time window used to determine 
the reference value), and the correction for each half-hour is implemented according to the three methods hier-
archically. Within each time window, the underlying surface conditions are assumed to be stable and the energy 
balance is supposed to be closed, but in the real world these strict requirements are rarely satisfied due to, for 
example, vegetation altering the underlying surface conditions (especially during growing seasons) and the refer-
ence value is not often close to one (Liu & Foken, 2001; Pastorello et al., 2020; Twine et al., 2000).

3.  Results
3.1.  Energy Balance Closure and FCor at Three Sites

Here we present three long-running sites as an example (Figures 2 and 3). In general, we can observe clear energy 
closure problems in the original data at these three sites (Figures 2a–2d, and 2g) from the smaller slope and large 
negative bias values (with the exception of the AU-Tum site, where the intercept is very high). After applying the 
AEC, slope, squared Pearson correlation coefficient (r 2), and bias (except for the AU-Tum site) are profoundly 
improved and the intercept and rmsd are reduced. For the AU-Tum site, the TE values are larger than the AE 
values at low AE conditions, causing the higher intercept and the lower bias, but the AEC can capture well the 
TE variations as a function of AE regardless of this type of uncertainty in AE. Comparatively, while slope, r 2 
(except for the FR-Pue site) and bias are all slightly improved after applying EXC, the magnitudes of intercept 
are obviously higher than those in the original data, suggesting downward corrections for TE on some days and 
overcorrection under high AE conditions. On top of that, the rmsd is not well constrained and we can also observe 
an obviously deteriorated distribution of the values (Figures 2c, 2f, and 2i).

As an example, we demonstrate 1 year at these three sites to clearly present variations of FCor over time and 
as a function of AE in Figure 3. In general, FCor for AEC shows similar temporal variations to that for EXC, 
with higher FCor values being observed at higher AE periods, as also suggested by the plot of FCor versus AE. 
However, the FCor values for OFC exhibits pronounced temporal changes (especially some sudden changes) 
when the underlying surface changes drastically (e.g., during early and later of the growing seasons when vegeta-
tion dominantly alters the surface conditions) and does not follow the daily fluctuations of AE well (Figures 3a, 
3c, and 3e). In addition, the FCor values for OFC are overall obviously larger than those for AEC, which may not 
have a significant effect on the corrected TE magnitude during low TE periods but can markedly overcorrect for 
TE during higher TE periods.

3.2.  Overall Energy Balance Closure Across the Network

Across the network of sites, the original data shows a 17% energy imbalance, calculated as 1 minus slope 
(Figure 4a). The AEC can improve the overall energy balance closure from 0.83 to 0.96 with a relatively higher 
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intercept (2.99 W m −2 compared to −0.62 W m −2, Figure 4b), and mean bias is reduced by ∼96% (from −14.99 
to −0.65 W m −2). In addition, r 2 is increased from 0.80 to 0.87 and the rmsd is reduced by ∼48% (from 19.27 to 
10.00 W m −2). Note that the AEC is applied on top of the high relative humidity correction (as depicted in Figure 
S3 in Supporting Information S1). Conversely, the implementation of EXC, illustrated in Figure 4c, yields a slope 
approximating 1 and an enhanced r 2 (0.81); however, the slight increase in r 2 and slight decrease in rmsd are 
overshadowed by the substantial mean bias (6.27 W m −2) and intercept (8.09 W m −2), indicating a pronounced 
overclosure.

3.3.  Variations of EBR Along AE Bins Across the Network

We also evaluate the correction methods by inspecting the variation of site-mean energy balance closure (EBR, 
the ratio of mean TE to mean AE) across AE bins, which suggests an overall improvement of EBR after apply-
ing correction methods (Figure  5). The original EBR is ∼80% across AE bins (consistent with the slope in 
Figure 4a, and AEC increases the site-mean EBR closer to 100% at middle AE bins, where there are most sites 
and the majority of data (∼90.66%) across the network. However, applying OFC results in a roughly constant 
over-closure (the EBR is ∼110%) along the AE bins. In addition, the spatial variations (i.e., the inter-quantile 
range) of EBR for AEC are slightly lower than those for OFC along the AE bins.

Figure 2.  Evaluation of the corrections at three long-running sites (AU-Tum, DE-Tha, and FR-Pue). The abbreviations (Ori, AEC, and OFC) after the site codes 
indicate the original data, available energy-based corrected data, and the corrected data in the ONEFlux pipeline, respectively. The black lines are the standard linear 
regression associated with the 95 confidence interval for the regression estimation. rmsd denotes the root mean squared difference, and bias indicates the difference 
between the average of TE and AE.
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4.  Discussion
Our results demonstrate that the AEC strongly improves the energy balance closure and yields improved consist-
ency between TE and AE after correction. This holds for individual sites (Figure 2) as well as the entire network 
(Figure 4) where the AEC method rectifies the TE close to the 1:1 line. It also yields larger r 2 with AE compared 
to the uncorrected fluxes, which indicates that it partially captures the underlying physical process. The fact 
that AEC works well empirically provides support for its underlying assumption that variations of the energy 
imbalance are primarily related to variations of AE. This is because the method can only correct the part of the 

Figure 3.  Variability of FCor in time and versus AE, along with their distributions at three sites (AU-Tum, DE-Tha, FR-Pue) in individual years as examples. (a), (c), 
(d) show the temporal variability of FCor (left y-axis) and AE (right y-axis), and the right panels show the variations of FCor as a function of AE. (b), (d), (f) show the 
distributions of AE (the top sub-plots) and FCor (the right sub-plots).

Figure 4.  TE versus AE before and after correction across the network of sites. Each dot represents one site. The black lines are the OLS regression associated with the 
95 confidence interval for the regression estimate.

 19448007, 2024, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
107084 by M

PI 322 C
hem

ical E
cology, W

iley O
nline L

ibrary on [12/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

ZHANG ET AL.

10.1029/2023GL107084

7 of 13

imbalance that covaries with AE and thereby does not assume or force energy balance closure (because of other 
factors causing the imbalance (Foken, 2008; Leuning et al., 2012; Maes et al., 2020)). Other factors in addition to 
AE that would contribute to a systematic imbalance are implicit in the intercept of the TE versus AE relationship, 
and this intercept is not used to calculate the correction factors. Such factors represented by the intercept include 
offsets due to calibration issues or footprint mismatches between TE and AE.

The correction factors of AEC suggest an interesting pattern where they first increase approximately linearly 
with AE up to approximately 100 W m −2 followed by a leveling off or even a mild decrease toward higher AE 
(Figure 3). The initial increase of the correction factors with AE would be consistent with stronger sub-mesoscale 
circulation developing due to stronger thermal heterogeneity of the landscape (Mauder et  al.,  2020; Wanner 
et al., 2022). The leveling off at high AE might imply that at a certain point of energy input the sub-mesoscale 
circulation has fully developed, and more energy does not generate more intense circulations, for example, when 
the thermal heterogeneity does not increase further. Alternatively, the fact that at high AE correction factors 
stabilize at a high level while being relatively insensitive to changes in AE could suggest that other factors 
become important that we have not accounted for. Some support for this interpretation is given by the weak trend 
of increasing under-closure of AEC with increasing AE (Figure 5). For example, changes in dryness (e.g., soil 
moisture) that impact evaporative cooling and thus spatial surface temperature patterns could be such a factor.

Clearly, we can not assume that all systematic energy balance closure issues scale only with AE (Foken, 2008; 
Mauder et al., 2020), while our method accounts explicitly only for this part of the energy imbalance (embedding 
the relative humidity dependent correction proposed in Zhang et al. (2023)). Strictly speaking this implies that 
our method is incomplete and it indeed shows a weak under-closure, which is more pronounced at high AE condi-
tions. However, a clear advantage of our method is that the correction is directly tied to a theoretically motivated, 
and accurately measured AE and that associated corrections are therefore directly attributable. This means that 
the methodology can be extended in the future for second and third order effects, for example, by running the 
methodology recursively on the residuals with other meaningful variables. At this point we have shown that AE 
represents a first order effect variable for the energy imbalance, which the AEC method leverages successfully 
(also be supported by an evaluation on the water-carbon coupling at a daily scale across the network in Figure S4 
in Supporting Information S1, where we demonstrate that the water-carbon coupling is preserved), and that the 
AEC method is conceptually as well as empirically preferable over the EXC.

While the AEC method is a step forward, the holy grail is still missing (to shed the light to get final corrected LE 
and H): the partitioning of the imbalance to contributions by H and LE. So far, we have no empirical constraints 

Figure 5.  Site-mean EBR (𝐴𝐴
∑

LE+𝐻𝐻
∑

Rn−𝐺𝐺
 ) across the AE bins. For each bin, we only reserve sites where there are at least 100 days 

of data, and then we randomly sampled 100 days without replacement to ensure an equal weight for each site. The last bin, 
labeled as “All,” depicts the site-mean EBR from all data (no sampling) from each site. Red dots and horizontal lines indicate 
the mean and median values of binned site means, respectively. The right y-axis indicates the cumulative frequency distribution 
(C.F.D.) of data across the network. The x-axis label consists of the AE bins and the number of sites within the bins.
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available for this for the entire site network. In the eddy covariance experiments community, promising advance-
ments in comprehension of fundamental transport processes in the atmospheric boundary layer have been observed 
through complicated field experimental designs, such as multi-tower measurements (Mauder et al., 2010; Oncley 
et al., 2007), spatially resolved lidar (Eder et al., 2015; Higgins et al., 2013), airborne measurements (Mauder 
et  al.,  2007; Paleri et  al.,  2022), high-resolution large-eddy simulations (Margairaz et  al.,  2020; Maronga & 
Raasch, 2013; Zhou et  al.,  2023), and machine-learning methods (Xu et  al.,  2018). Yet it is not enough and 
additional experimental and methodological efforts are essentially needed. Previous modeling studies have 
suggested that both fluxes are about equally affected (Mauder et al., 2013; Twine et al., 2000) in relative terms 
(i.e., the Bowen ratio is preserved) or that the sensible heat flux is about twice as much affected (Charuchittipan 
et al., 2014; Roo et al., 2018), depending on modeling assumptions. Solving this puzzle will need further studies 
taking into account the effect of dispersive fluxes generated by sub-mesoscale circulations, either from large-
eddy simulations (Roo et al., 2018; Wanner et al., 2022) or spatially resolving turbulence measurements (Mauder 
et al., 2010; Paleri et al., 2022). In addition, lysimeters (which typically provide estimates of evapotranspiration 
on scales smaller than a flux tower) and balloon soundings (which measured temperature and humidity can 
be used to estimate H and LE for the vertical profile), can also provide independent reference measurements 
if they are representative of the flux tower footprint (e.g., Gebler et al., 2015; Mauder et al., 2018; Widmoser 
& Wohlfahrt, 2018; Wouters et al., 2019). On the scale of the entire network, we can currently only work with 
assumptions and scenarios on how to partition the TE correction into correction factors for LE and H. Although 
we lack empirical constraints at the flux tower level, some large-scale constraints on mean LE are available from 
catchment water balances (Martens et  al.,  2020). This provides some opportunities for testing hypothesis by 
propagating different energy imbalance partitioning variants at site level through FLUXCOM (Jung et al., 2019) 
to yield large scale LE and H patterns for consistency checks with water balance derived estimates.

5.  Conclusions
We present a generalized method to reduce the energy imbalance in eddy covariance measurements across the 
site network, which is proposed based on the current consensus that sub-mesoscale circulation, fueled by hetero-
geneity in surface available energy, is the major contributor to the energy imbalance. Our method is based on the 
covariation of the imbalance with available energy and yields corrections that are empirically and conceptually 
preferable over the current standard method implemented in the ONEFlux processing pipeline. Additional efforts 
are urgently needed in the FLUXNET community, as the allocation of the bias to H and LE is a major obstacle, 
and accurate H and LE estimates are required for land–atmosphere interaction-related studies and land surface 
model validation. Integrated measurements (by deploying a large number of eddy towers) and independent meas-
urements (e.g., lysimeters and balloon soundings) could help, based on which we will be able to better understand 
the spatial transport mechanisms in the boundary layer and accurately quantify the dispersive flux. Moreover, we 
could also use machine learning algorithms and sufficient (ancillary) data to improve our understanding of the 
energy imbalance by involving other factors and diagnose the energy imbalance impacts on other trace gas flux 
measurements in the future.

Data Availability Statement
The Python package is released at Zhang (2024), with an example at an eddy covariance site. The Python pack-
age to implement the high relative humidity correction has been described in Zhang et al. (2023) and has been 
released with examples for user applications. The code to detect breakpoints in a time series for all sites will 
be provided in the related paper (Jung et al., 2023). We used 172 eddy covariance sites (from FLUXNET2015, 
ICOS-Drought2018, ICOS- WarmWinter2020, and AmeriFlux), and these are cited in the References from the 
Supporting Information section.
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