
1. Introduction
Climate change is intensifying the water cycle and increasing extreme precipitation (Brutsaert,  2016; Eicker 
et al., 2016; Huntington, 2006; Papalexiou & Montanari, 2019; Prein et al., 2017). It is unclear if other critical 
parts of the global water cycle, like terrestrial evapotranspiration (ET), are decreasing due to diminishing soil 
moisture (SM) (Jung et al., 2010), largely unchanging (Xue et al., 2020) despite increases in global atmospheric 
demand for water (Novick et al., 2016), or increasing due to global warming (R. Wang et al., 2022) and global 
greening (Yang et  al.,  2023). ET moves some 65,500  km 3 of water into the atmosphere every year (Oki & 
Kanae, 2006) and is a central component of the global water cycle. It is critical to understand how the processes 
that comprise ET—transpiration (T) and evaporation (E)—respond to ongoing global changes (Kool et al., 2014; 
Stoy et al., 2019).

T represents water flux to the atmosphere through plant stomata, while E comprises all other water flux path-
ways from the soil, plant surfaces, and other surfaces to the atmosphere. Both E and T are controlled by net 
radiation (Rn), vapor pressure deficit (VPD), air temperature (Ta), and atmospheric resistance (Good et al., 2015; 
Monteith, 1965; Penman, 1948; Wei et al., 2017). E is also controlled by resistances within the soil matrix, and 
T is also controlled by vegetation properties, namely the leaf area available for transpiration and canopy conduct-
ance, which is influenced by the dynamic response of plant stomata to environmental cues (Kool et al., 2014). 
Plants respond to water scarcity by closing their stomata to save water while sacrificing carbon gain with consid-
erable implications for carbon cycling (Peters et al., 2018). Stomatal closure also decreases evaporative cooling, 
which increases surface temperature and is therefore fundamental for understanding plant water stress and heat 
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and water transport to the atmospheric boundary layer to which the land surface is coupled (Oren et al., 1999). 
Understanding how different ecosystems regulate water supplies reveals insight into how much water is available 
for groundwater recharge and runoff (Anderson et al., 2017), and how ecosystem management decisions impact 
water cycling.

E and T can be measured using lysimeters, leaf-level gas exchange measurements, sap flow, and other techniques 
(Kool et  al.,  2014), but these measurements are difficult to scale up to the ecosystem level (Berkelhammer 
et al., 2016). Ecosystem ET is readily measured using eddy covariance (EC), but most studies do not seek to parti-
tion EC measured-ET into its components, which results in a paucity of ecosystem-scale E and T observations 
to understand the impacts of land use and land management changes on water cycling (Stoy et al., 2019). Water 
balance (Liu et al., 2016), machine learning (Granata et al., 2020), remote sensing (Martens et al., 2017), land 
surface models, and hydrologic models (Sun et al., 2017; X.-J. Zhang et al., 2014) can all be used to help estimate 
the contributions of E and T to ET at different spatial and temporal resolutions, but often rely on assumptions that 
require further validation. A large contributor to our uncertainty in understanding ET across multiple scales is the 
lack of ground-based E and T observations at the ecosystem scale (Rigden et al., 2018).

Most EC studies focus on a single ecosystem, paired ecosystems in close proximity, or multiple ecosystems 
across large spatial extents. Few studies have measured multiple ecosystems in close proximity, which is crit-
ical for understanding how different ecosystems contribute to the water balance of heterogeneous landscapes 
(Chu et al., 2021; Sun et al., 2017). We seek to address this by estimating E and T directly at the ecosystem 
scale at multiple sites within a diverse landscape using a dense array of EC towers within a 10 × 10 km area 
(Butterworth et  al., 2021). We do so using an approach developed to partition carbon and water fluxes from 
high frequency EC measurements called flux variance similarity (FVS) (Scanlon & Kustas, 2012; Scanlon & 
Sahu, 2008). FVS assumes that stomatal and non-stomatal fluxes independently conform to Monin-Obukhov 
similarity theory and has been successfully applied to study E and T across multiple global ecosystems (Kustas 
et al., 2018; Perez-Priego et al., 2018; Rana et al., 2018; Scanlon & Kustas, 2012; Sulman et al., 2018; Wagle 
et al., 2020) but less frequently in forests and wetlands (Klosterhalfen et al., 2019; Sulman et al., 2018), leaving 
opportunities to better understand the pathways by which different ecosystems use water.

Here, we use FVS to directly partition E and T from ET measurements across multiple forest and wetland ecosys-
tems in northern Wisconsin, USA. We briefly describe the study ecosystems and the conditions that result in 
successful partitioning of the FVS algorithm. We focus our analysis on quantifying the response of E and T from 
the study ecosystems to the diverse climatic conditions and phenological changes experienced during the meas-
urement period across the transition from summer to autumn. We are interested to see how the algorithm detects 
changes in ecosystem water flux and expect to see patterns, namely that: (a) the wetlands and forested sites will 
partition E and T differently across the study period and that wetlands will support more E. More specifically, 
(b) T will dominate ET during summer due to high energy inputs and leaf area and E will dominate ET during 
autumn in the forested ecosystems due to decreased T, and that (c) T will differ little amongst forest ecosys-
tems following the notion that it is a “conservative” quantity that is relatively insensitive to forest type (Oishi 
et al., 2010; Roberts, 1983). We focus our analysis on E and T, and their dynamics across ecosystems and time 
including large precipitation events and note that the extensive publicly available observations from the study 
ecosystems can be used for many lines of enquiry as outlined in Butterworth et al. (2021).

2. Materials and Methods
2.1. Study Sites

The Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive 
Array of Detectors 2019 (CHEESEHEAD19) was designed to understand how the atmospheric boundary layer 
responds to heterogeneity in land surface structure and function (Butterworth et al., 2021). It deployed one of the 
highest density networks of EC measurements of surface-atmosphere energy fluxes to date: 19 flux towers in a 
10 × 10 km area among an extensive array of land surface and atmospheric measurements in northern Wisconsin, 
USA, centered around the existing 447-m WLEF tower AmeriFlux site (US-PFa) (45.9459, −90.2723) (Figure 1, 
Table 1) near Park Falls, Wisconsin, USA in the Dfb (warm-summer humid continental) Köppen climate zone 
(Beck et  al.,  2018). The 3 July—13 October 2019 measurement period allowed us to capture how seasonal 
changes in vegetation structure and function impact E and T. Mean annual temperature is 4.33°C and mean 
annual precipitation is 823 mm with significant precipitation across all seasons.
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Tower placement within the study domain followed a stratified random grid pattern with towers placed on average 
1.4 km away from their nearest neighboring tower and 3.5 km from the WLEF tall tower (Davis et al., 2003; Xu 
et al., 2017). This partial randomization—taking distance to road, United States Forest Service (USFS)-owned 
land, and appropriate tree gap for tower into consideration—resulted in spatial variability in vegetation height 
and ecosystem type including observations in challenging flux measurement conditions. The study ecosystems 
included four evergreen needleleaf forests (ENF) sites dominated by Pinus spp., Picea mariana and/or Larix spp., 
two wetland sites (WET), six aspen (Populus tremuloides)-dominated sites, one maple (Acer saccharum)-domi-
nated site, and four mixed forest sites, one of which was near a lake, and most of which are a mix of aspens and 
pines (Tables S1 and S9). All mixed and deciduous forests are denoted as deciduous broadleaf forests (DBF) for 

Figure 1. A map of 17 of the 19 CHEESEHEAD19 eddy covariance study sites with open path infrared gas analyzers in a 10 × 10 km area in northern Wisconsin, 
USA. Sites are labeled with abbreviations used in the CHEESEHEAD19 project (Butterworth et al., 2021) (Table 1). Black markers indicate deciduous broadleaf 
forests, red indicates evergreen needleleaf forests, blue indicates wetland sites, and the red star indicates the WLEF tower (GIS & Wisconsin State Cartographer's 
Office, 2022, Esri, 2023).

Site 
name Vegetation

Ameriflux 
ID

Latitude 
(°N)

Longitude 
(°W)

Tower 
height (m)

Mean vegetation 
height (m)

St. dev. vegetation 
height (m)

% 
Sand

% 
Silt

% 
Clay

NW1 Red pine (ENF) US-PFb 45.97200 −90.32317 32 10.8 6.9 68.4 21.1 10.5

NW2 Aspen (DBF) US-PFc 45.96773 −90.30878 12 6.7 6 65.1 29.5 5.4

NW3 Tussock wetland US-PFd 45.96892 −90.30103 3 0.3 0.9 56.4 32.7 10.9

NW4 Aspen (near lake) (DBF) US-PFe 45.97930 −90.30042 32 8.9 8.9 56.4 32.7 10.9

NE1 Pine (ENF) US-PFg 45.97348 −90.27230 32 33.2 6.6 90.2 6.6 3.2

NE2 Pine and young larch (ENF) US-PFh 45.95573 −90.24060 32 10 6.7 92.7 3.6 3.7

NE3 Hardwood, pine understory (DBF) US-PFi 45.97490 −90.23273 32 13.1 6.5 65.1 29.5 5.4

NE4 Maple (DBF) US-PFj 45.96187 −90.22703 32 11.4 7.2 65.1 29.5 5.4

SW1 Aspen (DBF) US-PFk 45.91490 −90.34250 32 5.8 4.7 65.1 29.5 5.4

SW2 Aspen/birch (DBF) US-PFl 45.94090 −90.31773 25 6.8 5 90.2 6.6 3.2

SW3 Hardwood (DBF) US-PFm 45.92067 −90.30990 32 6.1 4.2 65.1 29.5 5.4

SW4 Hardwood (DBF) US-PFn 45.93922 −90.28232 32 11.5 5.9 65.1 29.5 5.4

SE2 Maple, pine understory (DBF) US-PFp 45.93652 −90.26408 32 11 5.1 49.5 42.2 8.3

SE3 Aspen (DBF) US-PFq 45.92715 −90.24750 32 6.2 4.7 79.1 12.4 8.5

SE4 Tussock wetland US-PFr 45.92448 −90.24745 3 0.1 0.2 56.4 32.7 10.9

SE5 Aspen (DBF) US-PFs 45.93808 −90.23818 12 4.4 6.1 90.2 6.6 3.2

SE6 Pine, aspen understory (ENF) US-PFt 45.91973 −90.22883 32 7.3 6.1 90.2 6.6 3.2

Note. Italicized sites did not pass data availability thresholds as described in the text.

Table 1 
All CHEESEHEAD19 Eddy Covariance Sites With Open-Path Infrared Gas Analyzers With Site Descriptions and Characteristics
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the purposes of this study given that their change in leaf area across the seasonal transition will differ from ENF 
sites. Towers were mounted 32 m above ground level at the forest sites and between 1 and 3 m above ground 
level at the wetland sites (Table 1). Of the total 19 EC towers, 17 used an open path infrared gas analyzer rather 
than closed path systems to which an additional density term needs to be applied to the Fluxpart algorithm (Stoy 
et al., 2019), described below. We evaluated all 17 sites and excluded three sites that did not meet the set criteria 
of at least 20% physically realistic solutions from the FVS algorithm (Table 2). We further excluded one site 
whose measurement record began in mid-July rather than late June to not have to either gap fill data beyond its 
measured range to make the data record lengths compatible, or to shorten the time series of the remaining sites for 
compatibility and limit our data record as a consequence. The remaining 13 sites included 3 ENF, 2 WET, and 8 
DBF ecosystems. We provide an extended description of all sites in Table S1 as well as vegetation classification 
fraction in the 90% flux footprint in Table S9.

The study towers were part of the Integrated Surface Flux System (University Corporation for Atmospheric 
Research [UCAR]/National Center for Atmospheric Research [NCAR]) and included CSAT3 sonic anemometers 
and EC150 open-path infrared H2O/CO2 gas analyzers (Campbell Scientific, Inc.) to measure turbulent fluxes, 
a NR01 four-component radiometer (Hukseflux, Delft, The Netherlands), and SHT85 aspirated air temperature 
(Ta) and relative humidity (RH) sensors (NCAR) above the plant canopies from which VPD was calculated. Ta 
and RH were also measured at 2 m and at mid-canopy in the forests. Soil measurements included four-level soil 
temperature measurements (NCAR) at 0.6, 1.9, 3.1, and 4.4 cm depths, EC-5 SM probes (Decagon, Pullman, 
WA) at 5 cm, and HFT heat flux plates at 5 cm in forested sites and buried in mats in the wetlands. Precipitation 
was measured at a SURFRAD station (Augustine et al., 2000), a ground-based measurement system for continu-
ous long-term measurements of climatic data, located in a grass field within the CHEESEHEAD19 study domain 
at 45.9458, −90.2944. From these observations we also calculated a one-dimensional water balance as the cumu-
lative sum of precipitation minus ET for the study period.

2.2. Eddy Covariance and Flux Partitioning

The EC method is widely used to measure carbon dioxide and water vapor fluxes worldwide (Baldocchi, 2014). 
EC takes high-frequency (10–20 Hz) measurements of three-dimensional wind velocity, CO2, and H2O concen-
trations in the roughness sublayer over the plant canopy. Assuming that turbulent mixing is sufficient, half-hourly 
(or hourly) net ecosystem-scale flux measurements can be calculated. However, to improve our process-level 
understanding of ecosystems and to improve models, EC fluxes need to be partitioned into their separate parts: 
photosynthesis and respiration for carbon dioxide fluxes and E and T for water. This underlies the need for effec-
tive and accurate flux partitioning methods (Kool et al., 2014; Stoy et al., 2019).

A promising approach for partitioning ET into T and E is flux-variance similarity (FVS) (Scanlon & Kustas, 2010). 
FVS assumes that stomatal and non-stomatal turbulent fluxes conform independently to Monin-Obukhov Simi-
larity Theory. For a brief conceptual description, assume that there are two end-member scenarios for a parcel of 
air transported from the surface: one that interacts only with stomata and one that does not. An eddy transported 
away from a surface that is respiring CO2 and evaporating water through pathways other than stomata will have 
deviations from mean CO2 concentration (c') and water vapor concentration (q') that are positively correlated. 
An eddy of air that interacts with a surface with open stomata will have a negative relationship between c' and q' 
that is determined by plant water use efficiency (WUE) with more water vapor and less carbon dioxide (due to 
photosynthesis) than surrounding air. WUE can be used to establish a relationship between the variance of CO2 
associated with stomatal intake and the correlation between stomatal and non-stomatal CO2 exchange processes 
(Figure 2).

In this way, evapotranspiration (ET) can be partitioned into E and T by matching observed correlations of q' and 
c' that represent a combination of stomatal and non-stomatal processes to those that correspond to purely stomatal 
or non-stomatal processes (Scanlon & Sahu, 2008). Subsequent work by Skaggs et al. (2018) noted an algebraic 
solution to terms that had previously been solved numerically (Palatella et al., 2014). The analytical solution 
was incorporated into an open-source Python 3 module, Fluxpart (Skaggs et  al.,  2018), that implements the 
FVS method to partition E and T. The original FVS approach of Scanlon and Kustas (2010) used a simple WUE 
formulation, which assumes a constant ratio between leaf-internal CO2 concentrations and atmospheric CO2 
concentration of 0.7 for C3 plants following Campbell and Norman (1998). Fluxpart also implements other meth-
ods for WUE, including models in which intercellular CO2 varies as a function of VPD (Skaggs et al., 2018), and 
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a model in which optimal stomatal behavior is assumed in response to VPD 
(Scanlon et al., 2019). We compared the constant ratio and optimality models 
and chose the constant ratio approach because it had a greater amount of 
successfully partitioned measurements, which we chose to analyze based on 
data acquisition (see Table S8 in Supporting Information S1 for all results). 
While Wagle et al. (2023) outline the benefits of using  the optimality-based 
model for partitioning, they also found a substantially lower number of 
successful partitioned outputs.

Fluxpart delivers predictions of latent heat flux due to evaporation (LEe) 
and transpiration (LEt) from the EC latent heat flux measurements (LE) with 
units of W m −2. E, T, and ET in mm half hr −1 were calculated by dividing 
their corresponding LE by the latent heat of vapourization using the equation 
of Henderson-Sellers (1984) and the density of water. It is important to note 
that the Fluxpart algorithm is not always able to make a calculation for differ-
ent reasons. FVS and the EC methodology assume the surface-atmosphere 
exchange is well-represented by a turbulent flux, which is not always the 
case, especially at night (Zhu et al., 2006). Additionally, the FVS method is 

applicable only when a negative carbon flux exists due to photosynthesis, and positive carbon and water fluxes 
exist due to respiration, transpiration and evaporation, and when EC measured fluxes, variances, and correlations 
for CO2 and water satisfy several constraints (see Scanlon et al. (2019), Equation 13). FVS results tend to match 
known fluxes generated using large eddy simulations when there is a clear separation of CO2 and H2O sinks and 
sources (Klosterhalfen et al., 2019), and our results are subject to these limitations. As a consequence of these 
limitations, and due to the fact that EC time series contain multiple gaps (e.g., due to weather or instrumentation, 
etc.), we gap filled missing E, T, and ET data to create continuous time series over the study period.

Eddy covariance data and FVS outputs were gap filled using REddyProc (Wutzler et al., 2018) for R (R Core 
Team, 2023). REddyProc inputs half-hourly EC data and performs quality checks and data filtering based on 
measured flux and friction velocity to discard data collected under insufficient turbulence. LEe and LEt were 
gap filled using marginal distribution sampling, which replaces missing values based on observations measured 
within 1 hour of a total of seven adjacent days if climate conditions are similar under the assumption that these 
fluxes, like ET, vary little from day-to-day with similar climate forcing. These gap filled LEe and LEt time series 
were used to gap fill LE.

We analyzed the success rate of FVS partitioning to site and measurement characteristics using linear regression 
to explore if there were certain circumstances that led to greater partitioning success. Partitioning success was 
analyzed against leaf area index (LAI), canopy height, (z), and instrument height (h), as well as the distance 
between them (z − h) and their ratio (z/h).

2.3. Uncertainty Analysis

Eddy covariance measurements, like all measurements, contain uncertainty, which must be quantified for a robust 
estimate of net fluxes (Goulden et al., 1996). We used the approach of Richardson et al. (2006) which assumes that 
surface-atmosphere fluxes taken under similar climatic conditions at the same time on consecutive days should be 
approximately equal and uses differences between these measurements to estimate a random error, which trends 
to follow a Laplacian (double exponential) distribution (Hollinger & Richardson, 2005). We performed a sensi-
tivity analysis on the conditions considered to be sufficiently similar by Richardson et al. (2006)—photosynthetic 
photon flux density differences of less than 37.5 μmol m −2 s −1, air temperature differences less than 3°C, and 
wind speed (WS) differences less than 1 m s −1—and found little justification to use other values. We added a wind 
direction threshold of a difference of no greater than 30° to account for heterogeneous vegetation surrounding 
some towers (Butterworth et al., 2021). We then used this “daily differencing” approach to calculate the stand-
ard deviation of measured or FVS-partitioned ET, T, and E by calculating the linear relationship between the 
magnitude of the flux and its standard deviation, and applying this linear model to all observations, which was 
taken to be the random error of the measurements.

Gap filling uncertainty was calculated using the standard deviation of the marginal distribution sampling calcu-
lated by REddyProc output (Wutzler et al., 2018) for ET, T, and E. We combined gap filling uncertainty for the 

Figure 2. A schematic representation of the basics of flux variance and 
correlation between stomatal and non-stomatal CO2 and water vapor exchange 
processes.
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gap filled quantities with random uncertainties of the measurements to create continuous vectors of the standard 
deviation of ET, T, and E at half-hourly time intervals. The resulting standard deviation estimates were auto-
correlated, and uncertainty was propagated by estimating the effective number of observations after account-
ing for autocorrelation (nEff) using “lognorm::computeEffectiveAutoCorr” (Wutzler, 2021) in R. We used the 
observed and gap filled flux measurements to compute nEff because the magnitude of measurement uncertainty 
is a function of the magnitude of the flux (Richardson et al., 2006), and because this approach provided a more 
conservative estimate of the standard error of the mean flux value. We computed the standard error of the mean 
for each latent heat flux (LEe, LEt, and LE) for each ecosystem for which sufficient partitioned values were 
obtained (described further in Section 3), by first calculating the variance for random and gap filling uncertainty 
(x) separately using

Var(𝑥𝑥) =
𝜎𝜎
2
𝑥𝑥

𝑛𝑛Eff − 1
 (1)

Where 𝐴𝐴 𝜎𝜎
2

𝑥𝑥
 is the mean value of the variance that describes the random or gap filling uncertainty of each flux 

(LEe, LEt, and LE). The total standard deviation was then calculated by summing variances. Significant differ-
ences in the mean value for each site were calculated using one-way ANOVA with Tukey's HSD post-hoc test. 
The Bonferroni filter was applied to adjust the 95% significance level for the 66 comparisons that resulted from 
analyzing differences amongst 13 sites: (1−0.95)/66 = 0.00076. We also averaged observations by vegetation 
type to simplify the visual display. All site-level statistical analyses are applied to the raw and not the filtered data.

2.4. Dominance Analysis

To find a parsimonious explanation for the amount of variability in ET, T, and E determined by different envi-
ronmental drivers, we chose a dominance analysis to account for the strong correlation between driving variables 
(Budescu, 1993). We used the dominance_analysis library in Python to calculate the relative importance of the 
drivers of the Penman-Monteith equation: available energy (Q, taken here to be Rn minus soil heat flux), VPD, 
WS (which impacts atmospheric and boundary layer conductance), SM, and temperature (which impacts the 
slope of the saturation vapor pressure curve) to ET, E, and T. Air temperature was chosen for ET and T calcula-
tions and 0.6 cm soil temperature was used in the dominance analysis for E.

2.5. Ecosystem Structure

We collected site-scale observations including LAI and z as noted (and the standard deviation of the latter), and 
soil data from the NRCS Soil Survey to categorize the dominant soil type for most of the flux footprint at each site 
in order to capture soil texture on an ecosystem scale. Of the 17 sites with open path gas analyzers, 5 were  sandy 
soils, one was a loam, and the rest were sandy loams (Table 1).

3. Results
Rn (Figure 3a) and Ta (Figure 3b) decreased from summer to autumn with oscillations at approximately weekly 
time scales as a consequence of synoptic-scale meteorological drivers observed during the measurement period 
(Butterworth et al., 2021; Desai et al., 2021). A maximum temperature of 27.7°C was observed on 5 July with 
a minimum of 2.3°C on 5 October. There was an extended period of above-average air temperatures for over a 
week beginning 16 September; such positive temperature anomalies during autumn are a common feature of the 
climate of the upper midwestern U.S. The temperature difference between the top of the canopy and the bottom 
of the canopy decreased throughout the season (not shown) suggesting more energy reaching the ground as leaves 
begin to fall despite decreasing Rn throughout the seasonal shift.

The study year, 2019, had frequent rain events during the measurement period (Figure 4a): Precipitation across 
the state of Wisconsin deviated from average by a positive 39.1 mm in July, negative 6.1 mm in August, positive 
83.3 mm in September, and positive 63.5 mm in October (NOAA 2022). The average daily precipitation event 
over the measurement period was 8.34 mm day −1, excluding trace rainfall, with a maximum event of 52 mm on 3 
September. The longest period without a rain event was 8 days in late-August. Soil moisture at most sites dropped 
to its lowest point in late-August at the end of this rain-free period (Figure 4b and Figure S1 in Supporting 
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Information S1). The highest SM content followed the storm events in September, peaking on 13 September 
(Figure 4b). The one-dimensional water balance reached positive values during the measurement period in early 
September (Figure 4c) after the large precipitation events at most sites. Atmospheric VPD was similar among the 
forested ecosystems where it averaged (3.47 kPa) but was lower in the wetland ecosystems (1.32 kPa) (Figure 4d).

3.1. FVS Partitioning

Results relied on physically realistic solutions based on the constraints of the algorithm. The FVS algorithm 
satisfied the constraints of physically realistic solutions 40% of the time at SE6, an ENF site (Table 2), but never 
did at NE1. It satisfied these constraints less than 20% of the time at NW2 and SE5. These sites with <20% parti-
tioning success were removed from subsequent analyses in the interest of studying sites with more available data 
as noted. NE3 was also left out of analysis, despite higher partitioning success, due to late start of data in mid-July 
that complicated comparisons. Subsequent analyses were performed for the remaining 13 sites as noted (Table 1).

The lack of partitioning success for most sites is due mainly to missing data, which accounted for between 15% 
and 42% of invalid partitioning data, depending on the site. The rest of the errors (Table 2) were largely due to 
an inability to satisfy realistic solutions and error messages indicating that the observation did not align with 
Monin-Obukhov similarity theory. Partitioning success increased with a greater difference between instrument 
height and canopy height (R 2 = 0.30), but no relationship between partitioning and position of measurements 

Figure 3. Thermodynamic variables including the (a) half hourly net radiation (Rn) and (b) air temperature (Ta) in black and 
soil temperature (Ts) in red for a representative tower, NE2 (Figure 1, Table 1) during late-June to mid-October 2019.
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relative to the roughness sublayer (using instrument height to canopy height ratio as a proxy) was found, nor 
between partitioning success and LAI, instrument height, or canopy height.

3.2. Evapotranspiration

ET generally decreased from summer to autumn (Figure 5a), in response to fluctuations in Rn at approximately 
weekly time scales that correspond to frontal weather systems (Figure 3a). The forested ecosystems maintained 
higher average ET than the wetland sites in mid-September (Figure 5a) after the rainy period in early September 
(Figure 4a). The ET (as well as E and T) uncertainty analysis indicated that cumulative fluxes from most sites were 
significantly different from most other sites (Table S2), but there was no significant difference amongst forests 
dominated by DBF or ENF trees (Figure 5) when comparing cumulative sums. Wetland sites had significantly 
lower average ET over the measurement period (244 mm), than forested sites (312 mm) (P < 0.0001, Figure 5b).

3.3. Evaporation

FVS-partitioned E across all sites was more aseasonal than perhaps expected given leaf fall in the DBF ecosys-
tems during autumn (Figure 6a). The sum of E for the wetland sites during the measurement period (129 mm) was 

Figure 4. Hydrological variables during the 3 July to 13 October 2019, measurement period. (a) Precipitation measured 
at the SURFRAD station, (b) soil water content for a representative site, NE2 (Table 1) (See Figure S1 in Supporting 
Information S1 for more sites), (c) the one-dimensional water balance (the cumulative sum of evapotranspiration subtracted 
from cumulative sum of precipitation) at all sites averaged by ecosystem type, and (d) daily averaged vapor pressure deficit by 
ecosystem type. Evergreen needleleaf forests sites are denoted in red, deciduous broadleaf forests sites in black, and wetlands 
in blue.
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not significantly different from the mean of the forested sites (134 mm) (Figure 6b). Mean LEe was significantly 
different among most sites, using pairwise comparison, but LEe at SW1 and NE2 was not significantly different 
to most other sites due to their larger standard errors (Table S3). The site with highest E (178 mm), SW2, was 
dominated by aspen, while the site with the lowest E (100 mm) was SW4, a mixed hardwood forest. As with ET, 
forested ecosystems maintained higher average E than the wetland sites in mid-September (Figure 6a) after the 
rainy period in early September (Figure 4a).

3.4. Transpiration

T decreased steadily, on average, throughout the study period along with the decline in Rn (Figures 3a and 7a). 
Mean LEt was significantly different across most ecosystems (Table S4). SW2, an aspen stand DBF, had the 
highest cumulative T (209 mm), while NW1, a pine and spruce/fir forest, had the lowest amongst forest sites 
(163 mm). Wetland sites (121 mm) transpired significantly less than the forested sites (182 mm) across the meas-
urement period (P < 0.0001). There was a period of increased transpiration in mid-September following the large 
precipitation events (Figure 4a) that was more prominent in the forested sites.

Figure 5. (a) The daily median evapotranspiration (ET) from 3 July to 13 October 2019, by ecosystem type and (b) the 
cumulative sum of evapotranspiration by ecosystem type. Evergreen needleleaf forests sites are denoted in red, deciduous 
broadleaf forests sites in black, and wetlands in blue.
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3.5. Uncertainty Analysis

The range of uncertainties in the FVS-partitioned water fluxes, calculated as the combination of random meas-
urement uncertainty and gap filling uncertainty, ranged from 3.0% to 6.3% for LE (Table S5 in Supporting Infor-
mation S1), 4.1% to 7.8% for LEt (Table S6 in Supporting Information S1), and 5.3% to 10.5% for LEe (Table S7 
in Supporting Information S1).

3.6. The T/ET Ratio

T/ET (Figure 8) decreased, on average, over the course of the study with a notable decrease in early September 
during the wet period and subsequent recovery thereafter. Average T/ET for all sites over the course of the entire 
study was 52% with an average of 53% at both DBF and ENF sites and 45% at the wetland sites (Figure 9).

3.7. Dominance Analysis

The environmental variables Q, VPD, WS, SM, and temperature combined explained 73% of the variability in 
ET (Figure 10a) and 67% of the variability in T (Figure 10c), but only 49% of the variability in E (Figure 10b), on 
average, at the site scale. Q explained more of the variability in all water fluxes than other variables and explained 

Figure 6. (a) The daily median evaporation (E) from 3 July to 11 October 2019 and (b) cumulative sum across all sites. 
Evergreen needleleaf forests sites are denoted in red, deciduous sites in black, and wetlands in blue.
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46% of the variability in ET on average, and 39% of the variability in E, but only 32% of the variability in T. 
Instead, VPD explained 25% of the variability of T at the site scale, but only 18% of ET and 6% of the variability 
in E, on average. Interestingly, VPD explained 13% of the variability in E in the wetland sites but on average only 
5% in the forested ecosystems. Temperature explained on average 6% and 7% of the variability in ET and T, but 
only 2% of the variability in E. Soil moisture and WS explained 1% or less of the variability in all water fluxes 
during the measurement period.

3.8. Relationships Between Water Fluxes and Ecosystem Structure

Both canopy height and its standard deviation were significantly related to the cumulative sum of T but not E 
(p < 0.04), but not after excluding wetland sites with shorter canopy heights (Table 1). Sand and silt were unre-
lated to the cumulative sum of E and T, and loam was significantly and negatively related to T (p = 0.01), but 
again not after excluding wetland sites that had loamier soils. Rather, edaphic factors were significantly related 
to water fluxes after large rain events. For example, on the day of the large rain event (3 September 2019), E was 
significantly and negatively related to silt and loam content (p < 0.025) and positively related to sand content 
(p = 0.02).

Figure 7. (a) The daily median transpiration and (b) cumulative sum of transpiration from 3 July to 13 October 2019. 
Evergreen needleleaf forests sites are denoted in red, deciduous broadleaf forests sites in black, and wetlands in blue.
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3.9. Relationships Between Water Fluxes and Precipitation Events

To examine the impacts of canopy wetness on E/T partitioning, we recal-
culated T/ET ratios after excluding all days with more than 0.5  inches of 
precipitation and the day after as periods indicative of having a wet canopy 
following findings that temperate forests canopies largely dry after ∼24 hr 
(Klemm et al., 2002). The T/ET ratio increased by 10% on average across all 
sites during dry canopy conditions (Figure 11).

4. Discussion
4.1. Overview

Partitioning ET to increase our understanding of its components is becoming 
increasingly important for water resource management in a changing climate. 
While T and E can be readily measured at point or individual tree scales, it 
remains difficult to measure at ecosystem scale across multiple sites. This 
study attempts to address this using a dense array of 17 EC towers in a 
10 × 10 km area of which 13 ecosystems had a higher proportion of Fluxpart 
algorithm convergence and data availability. We expected that wetlands and 
the different types of forests will partition E and T differently during the 

seasonal transition from early July to early October in northern Wisconsin and expected T to dominate ET in 
the summer and decrease into autumn with little differentiation between ecosystem types. We also expected that 
E should dominate in DBF forested ecosystems in autumn due to loss of transpirable surfaces and T will differ 
little amongst forest ecosystems following relative insensitivity to forest type (Oishi et al., 2010; Roberts, 1983).

We found that ET decreased (Figure  5a) when energy inputs into our energy-limited ecosystems decreased 
(Figure 3a), as expected. This seasonal decline in ET was dominated by a corresponding decline in T (Figure 7a), 
whereas E was largely aseasonal across the measurement period (Figure 6a) with little difference among ecosys-
tem types in its cumulative sum (Figure 6b) despite different responses to wet conditions that were related to 
soil texture. The cumulative sum of T across the measurement period differed little among forests as antici-
pated (Figure 7b), despite differences in forest composition (Butterworth et al., 2021; Murphy et al., 2022), and 
wetlands supported less cumulative T (Figure 7b). We describe the FVS partitioning outcomes that resulted in 
these findings before describing seasonal patterns of fluxes and their responses to micrometeorological variabil-
ity across different ecosystems.

Figure 8. The daily mean of T/ET for all sites from 3 July to 13 October 
2019. Evergreen needleleaf forests sites are denoted in red, deciduous 
broadleaf forests sites in black, and wetlands in blue.

Figure 9. The seasonal median of T/ET (color block) and E/ET (empty block) and for all sites from 3 July to 11 October 
2019. Evergreen needleleaf forests sites are denoted in red, deciduous broadleaf forests sites in black, and wetlands in blue.

 19447973, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
033757 by M

PI 322 C
hem

ical E
cology, W

iley O
nline L

ibrary on [12/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

SHVEYTSER ET AL.

10.1029/2022WR033757

14 of 23

Figure 10. Kernel density estimates of the amount of variability in (a) ET, (b) E, and (c) T explained by available energy (Q), 
vapor pressure deficit, air (for ET and T) or soil (for E) temperature (Temp.), wind speed, soil moisture, and the total variance 
explained by all selected variables.

Figure 11. The median of T/ET for all sites from 3 July to 13 October 2019 with (“ALL,” darker shade) and without days 
that include at least 0.5 cm of rain and the subsequent day (“NO RAIN,” lighter shade). Evergreen needleleaf forests sites are 
denoted in red, deciduous broadleaf forests sites in black, and wetlands in blue.
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4.2. FVS Partitioning

Towers were placed in a quasi-random nature to address the CHEESEHEAD19 study objectives to understand the 
role of landscape heterogeneity in mesoscale atmospheric dynamics (Butterworth et al., 2021). As a result, some 
towers were located in less-than-ideal flux measurement terrain including heterogeneous ecosystems and at the 
aquatic/terrestrial interface, which contributed to the lack of Fluxpart algorithm success in some cases. For example, 
partitioning results were not obtained at NE1 because the Fluxpart models for estimating WUE require the instrument 
height to be above the canopy height (Table 1). The Fluxpart algorithm often failed at the wetland sites due to “nega-
tive VPD,” which is consistent with the challenges of precisely calibrating humidity measurements near saturation 
(Meyer et al., 2008) noting that the near-surface air at the wetland ecosystems had lower VPD on average (Figure 4d).

Partitioning success is influenced by scalar-scalar correlations such as those between q and c, which in turn are 
influenced by sink-source distribution, height (atmospheric surface layer, roughness sublayer), surface hetero-
geneity, and canopy density (Klosterhalfen et al., 2019; Skaggs et al., 2018; Zahn et al., 2022). An addition to 
the inherent heterogeneity of the landscape, the senescence of (primarily) deciduous foliage produced additional 
patchiness to the landscape which can be an important factor in the validity of scalar similarity and may have 
interfered with scalar-scalar relations (Williams et al., 2007). We examined the relationship between partitioning 
success and site characteristics and found no significant correlation between LAI, the canopy height or instrument 
height. There was a weak positive correlation (R 2 = 0.30) between the distance between the canopy and instru-
ment height and partitioning success. Klosterhalfen et al. (2019) found that partitioning success was correlated 
positively to the instrument to canopy height ratio, overall canopy height, instrument height, and LAI using large 
eddy simulation outputs, which differ from field observations of heterogeneous ecosystems. We found no corre-
lation between partitioning success and the canopy to instrument height ratio, and no correlation to canopy or 
instrument height individually. If sampling heights are too far from the canopy, turbulence would likely fully mix 
the air parcel and distinguishing the scalars via partitioning may therefore no longer be accurate (Klosterhalfen 
et al., 2019; Zahn et al., 2022). Zahn et al. (2022) recommends an instrument to canopy height ratio (z/h) of less 
than or equal to 2, to fall outside of the roughness sublayer but not be too far above the canopy for flux parti-
tioning algorithms like FVS. Of our 17 total sites, 7 fell outside of this range, one of which was below canopy 
height. FVS also had the lowest rate of convergence in a methodological comparison because of frequent failure 
to satisfy its assumptions, compared to conditional sampling methods for partitioning (Zahn et al., 2022); the 
main challenge arose from approximations used to represent the correlation coefficient between carbon and water 
vapor components. Despite the limitations of any flux partitioning approach, FVS provided novel insights into E 
and T in this study that help us understand the ecohydrology of multiple different ecosystems within a landscape.

We also note that results presented here used the assumption that Ci/Ca = 0.7 for C3 vegetation following the 
original FVS derivation (Scanlon & Kustas,  2012), because the approach that uses optimality theory to derive 
WUE developed by Scanlon et al. (2019) yielded lower partitioning success as described in Table S8 in Supporting 
Information S1. The constant Ci/Ca assumption often yields similar T:ET values to the optimality theory-based 
approach (Wagle et al., 2023) and additional comparisons and tests against independent data in well-instrumented 
ecosystems are likely to yield valuable insights into the best approach for water flux partitioning (Stoy et al., 2019). 
Ancillary measurements like sapflow and lysimeters were not available in the current project to compare against 
EC (Perez-Priego et al., 2017; Poyatos et al., 2016), due in no small part to its large scope and the complexity of 
operating 19 EC towers and other instrumentation necessary to address the overarching hypotheses of the CHEESE-
HEAD19 project that the lack of EC balance closure is due to mesoscale atmospheric features that arise due to 
surface heterogeneity (Butterworth et al., 2021). However, many studies have been conducted in the vicinity of 
the study area using sap flux in the past (Ewers et al., 2002; Mackay et al., 2002, 2007; Tang et al., 2006). Mackay 
et al. (2007), for example, found that T in wetland sites was more sensitive to VPD and radiation in summer months, 
and we found that E in wetland sites was more related to VPD than forested ecosystems, which helps us understand 
controls over its variability, which are often rather muted and less related to microclimatic variability (Figure 10).

4.3. Controls Over Evaporation

The daily sum of E varied little throughout the shift from late June until mid-October (Figure 6b). This finding 
is supported by Paul-Limoges et al. (2020) who also found quasi-constant daily E below the canopy throughout 
seasonal changes in a deciduous forest in Switzerland. E is strongly associated with changes in SM under water 
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limited conditions (Or & Lehmann,  2019; Perez-Priego et  al.,  2018). When the moisture content of the soil 
surface is close to saturation, atmospheric conditions control E. Our observations typically fell between satura-
tion and water limitation during the measurement period (e.g., Figure 4b) such that we found weak relationships 
between both edaphic variables and atmospheric drivers when considering seasonal sums. We did find relation-
ships immediately after large rain events—namely that E was positively related to sand content but negatively 
related to silt and loam content, and that the T/ET ratio increased by some 10% when excluding days with rain 
and the subsequent day (Figure 11).

An explanation follows from recent advances in soil E modeling. Based on the widely used equation proposed 
by Gardner (1959) which suggests that evaporation decreases as a function of the square root of time follow-
ing precipitation events, Brutsaert  (2014) proposed an exponential decay function of SM drawdown. Or and 
Lehmann (2019) introduced a model based on the notion that soil is an “evaporative capacitor” with recharge and 
discharge based on precipitation statistics and soil physical characteristics. In this model, stage-I of drying soil is 
governed by atmospheric conditions, as capillary flow through the soil is sufficient to satisfy evaporative demand 
and E is only limited by available energy in the gradient between upper layers of the soil and the atmosphere. 
During stage-II, E becomes primarily a function of soil water content and soil hydraulic properties: evaporation 
rates drop significantly as the soil continues to dry and the system becomes water-limited. The transition between 
the first and second stage is dictated by storage, the product of average water content and the characteristic length 
(Lc) of the soil—the limiting depth for capillary extraction of water from deeper soils—which varies by soil 
texture, with shorter lengths for both coarse and fine-textured soils (Or & Lehmann, 2019). The characteristic 
length is considered a good indicator to encompass soil hydraulic properties' effect on evaporation (Schneider 
et al., 2021).

We can examine our observations in the context of these models. Frequent precipitation inputs in our study 
domain are consistent with a situation where the time-varying component of E during dry-downs played a minor 
role in the observed time-series, on average. The range in soil textures across the study domain indicated that 
we would expect to see evaporative differences at some sites during different climatic conditions. We found that 
while mean E at most sites was statistically different from each other, there was very little overall difference 
in cumulative LEe between them despite the variability in soil type. This is consistent with the notion that the 
ecosystems were rarely if ever water-limited in a way that would influence evaporation rates due to Lc during 
the study period. Soil moisture was variable throughout the summer but tended to increase through autumn 
(Table S1), keeping characteristic lengths short and E largely under atmospheric control. This is supported by 
Schneider et al. (2021) who found no difference in E between different soil types, while other studies have found 
distinct differences between evaporation and soil texture at water-limited sites (Merlin et al., 2016). We find that 
differences in E are situational following large precipitation events in the study ecosystems that did not sum to 
significant seasonal differences in our case (Figure 6).

During autumn, as total Rn decreases (Figure 3a), more sunlight can penetrate the canopy as leaves begin to fall 
during senescence, especially in the DBF forests. We posit that declining leaf area compensated for declining 
Rn through the seasonal transition such that changes in subcanopy Rn were muted, and as a result the subcanopy 
Rn declined at a lower rate than above-canopy Rn. Coupled with sporadic precipitation events which maintained 
SM levels in the later months, E/ET increased as T declined (Figure 7a). This resulted in a situation where E 
is quasi-constant throughout the season while T declined steadily due to its close coupling with Rn. We also 
found that VPD explained a larger proportion of the variance in E in wetlands than forests (Figure 10) which is 
interesting because VPD is characteristically lower in wetlands near at the study sites (Figure 4d). These findings 
are consistent with the notion that evaporation from standing water in the wetlands is more related to atmospheric 
demand than in forests where standing water is less frequently observed.

4.4. Controls Over Transpiration

T is driven by differences in atmospheric water and soil water potentials but, unlike E, is regulated through plant 
stomata. Q was the strongest determinant of T, which explained 34% of the average variance across all sites in 
our energy-limited ecosystems (Figure 10). High VPD typically causes plants to close their stomata to minimize 
water loss (Monteith, 1995), but high VPD conditions tend to co-occur with high radiation therefore making it 
difficult to separate their effects (Grossiord et al., 2020), hence our use of dominance analysis to separate the 
effects of covarying drivers. T tends increase as VPD increases to a certain threshold depending on the ecosystem 
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(Ficklin & Novick, 2017; Franks et al., 1997; Marchin et al., 2016; Sulman et al., 2016; Will et al., 2013). T posi-
tively covaried with VPD in the study ecosystems, but it infrequently reached the limiting threshold commonly 
taken to be ∼1 kPa (Körner, 1995; Oren et al., 1999). VPD remained below ∼1 kPa 90% of the time or more 
across the study ecosystems during the measurement period.

4.5. T/ET

Average T/ET from the July to October study period was 52% across all sites, with an average of 53% among the 
forested sites and 45% among the wetland sites. These numbers fall within the wide range established by many 
previous global studies of various ecosystems of 40%–90% (Good et al., 2015; Schlesinger & Jasechko, 2014; L. 
L. Wang et al., 2014; Wei et al., 2017; Zhou et al., 2016). This study is on the lower end of the previously reported 
range of 40%–86% for temperate forests (Schlesinger & Jasechko, 2014) and is lower than estimates generated 
using isotopic approaches on the order of 64% (Good et al., 2015). However, Paschalis et al.  (2018) found a 
significant decline in T/ET when moving from dry to wetter areas—about a 10% decrease—which may explain 
why we see lower T/ET than some other studies in our energy-limited ecosystems, as precipitation during 2019 
exceeded annual averages compared to previous years.

L. Wang et al. (2014) showed an exponential relationship between LAI and T/ET indicating that vegetative control 
over T/ET occurs over the lower LAI range. However, when only natural vegetation sites (with LAI > 1 m 2 m −2) 
were considered, there was a negligible dependence of T/ET on LAI (Paschalis et al., 2018). LAI data collected 
for five mixed forest sites on 25 June when LAI was measured (NE2, NE4, SE3, SE6, SW4) revealed no rela-
tionship between T/ET and LAI; however, all sites had LAI > 1 m 2 m −2. This finding is supported by Fatichi 
and Pappas (2017) and Berkelhammer et al. (2016) who found that LAI matched seasonal dynamics of T/ET but 
not diel, daily or annual timescales. In contrast, Nelson et al. (2020) found that T/ET varied much more between 
sites than different years at the same site, indicating more reliance on site characteristics than climatic variables. 
This finding is supported by other recent studies, who have also found a strong relationship between LAI and T 
(Paul-Limoges et al., 2022).

Wetland T/ET is significantly altered by structural factors such as open water, plant species and diversity, as well 
as environmental factors like diurnal fluctuations in air and water temperature and water table depths (Drexler 
et al., 2004; Eichelmann et al., 2018). Between wetland sites, the most important factor affecting ET levels is the 
proportion of open water versus vegetation cover (Eichelmann et al., 2018). Shorter vegetation, such as tussock 
grasses which can often be found in wetlands, optimize leaf structure to minimize water loss in light rich environ-
ments (Givnish, 1988) resulting in lower transpiration but greater WUE compared to forested sites. As the area 
of open water increases, E increases more than T, as we found evidence of decreased T/ET in wetlands compared 
to the forested sites.

4.6. Uncertainty Analysis

Uncertainties in the FVS-partitioned water fluxes ranged between 3.0% and 10.5%, which was similar to or 
slightly larger than random measurement uncertainties (3%–6%) from other forested ecosystems (Goulden 
et al., 1996; Oren et al., 2006; Stoy et al., 2006). Earlier approaches assumed that LE can be gap filled with a high 
degree of success due to their relatively predictable response to environmental conditions (Falge et al., 2001). For 
example, REddyProc tends to estimate gaps in latent heat flux measurements with a low degree of uncertainty 
(Foltýnová et al., 2020). Nevertheless, future efforts should examine the ability of gap filling methods to accu-
rately simulate LEt and LEe. More LE gap filling methods are being developed (e.g., Khan et al., 2021) but it 
needs to be determined if they will offer improved predictive skill. We elected not to estimate the “spatial” uncer-
tainty of estimating heterogeneous ecosystems using a single point measurement (Oren et al., 2006) as we did not 
have multiple towers in individual ecosystems to do so and sought to avoid unconstrained estimation. We also 
had little basis for estimating bias errors including potential underestimation of LE due to the known challenges 
of lack of energy balance closure of EC measurements (Foken, 2008; Leuning et al., 2012; Stoy et al., 2013) that 
the CHEESEHEAD19 experiment as a whole is designed in part to address (Butterworth et al., 2021). However, 
independent approaches are converging on the notion that underestimated turbulent flux terms may be due more 
to sensible than latent heat fluxes (Charuchittipan et al., 2014; Gerken et al., 2018; Mauder et al., 2020; Paleri 
et al., 2022). Ongoing efforts to parameterize underestimated turbulent fluxes require estimates of atmospheric 
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boundary layer heights (Mauder et al., 2021), which are difficult to quantify using individual flux towers, but the 
extensive land surface and atmospheric observations available from CHEESEHEAD19 (Butterworth et al., 2021) 
provide opportunities to better-understand potential bias uncertainties in EC measurements due to mesoscale 
atmospheric motions.

It is important to note that the unknown uncertainties discussed above and different methods to estimate WUE 
in the FVS algorithm also impact results. FVS may overestimate soil E (Klosterhalfen et al., 2019) while condi-
tional sampling methods may underestimate it in comparison to chamber measurements (Thomas et al., 2008; 
Zahn et al., 2022), with implications for our understanding of E and T. Ongoing efforts to improve water flux 
partitioning including optimality solutions for WUE in flux variance similarity (Scanlon et al., 2019) and new 
conditional sampling methodologies (Zahn et al., 2022) will ideally improve the accuracy of these methods to 
create defensible estimates of water flux terms (Wagle et al., 2023).

Interception remains a key uncertainty in flux partitioning as it can account for up to 15%–30% of incident 
precipitation to the atmosphere (Crockford & Richardson, 2000), but attempts to capture its magnitude through 
modeling remains a challenge (De Kauwe et al., 2013). This remains a critical area of research that needs further 
exploration (Stoy et al., 2019). The result that T/ET increases after excluding periods when canopies are likely 
wet after rain events suggest that interception is partitioned by FVS largely into E despite similar source areas of 
interception and T (Figure 11). If the increase in E/ET after rain events is largely attributable to interception, the 
magnitude of intercepted evaporation at our sites during the study period is of similar magnitude to other studies 
(e.g., Crockford & Richardson, 2000).

4.7. Implications for Forests, Wetlands, and Water Management

Our results have implications for forest hydrology, but few studies have looked at the influence of forest manage-
ment practices on evapotranspiration (Komatsu & Kume, 2020). Practices like forest thinning are commonly 
used as a water saving strategy but are understudied, particularly in wet environments (Sun et al., 2017). Forest 
thinning, which influences ET partitioning with increased light penetration due to a more open canopy, alters the 
microclimate of the ground layer. Sun et al. (2017) found that ET decreased by 20% after thinning, yielding an 
increase in water yield to the watershed, as supported by other studies (Dung et al., 2012; Hawthorne et al., 2013). 
Most forest hydrology research involves changes in runoff rather than change in ET; this omission—due in part 
to the relative difficulties in measuring ET versus runoff—can hinder accurate modeling and therefore optimal 
management (Komatsu & Kume, 2020).

Wetlands are essential climate regulators, but are globally declining three times faster than forests, with most 
losses due to land use change, agriculture and climate change (Finlayson & Davidson, 2018; Granata et al., 2020). 
Considering both wetland losses and wetland restoration efforts underway—such as converting crop lands back to 
wetlands—understanding their hydrologic impacts is imperative. Differences in evapotranspiration from wetland 
sites (especially with open water) are significant compared to drained agricultural sites, with much higher ET 
in the wetlands (Eichelmann et al., 2018). Not only is ET higher, but the use of water is much different; T/ET 
has found to be between 31% and 37% in wetlands (slightly smaller than our observations here) but on the order 
of 70% in the cropping systems that often replace them (Wang-Erlandsson et al., 2014; Wei et al., 2017). Addi-
tionally, increasing global temperatures could have significant implications for evaporative loss from wetlands 
as it has been shown that air and water temperatures are strong drivers of nighttime ET, which is dominated by 
E in these systems (Eichelmann et al., 2018, 2022) as we also find here. When wetlands are drained there are 
detrimental effects for water storage and groundwater inflation (van der Kamp & Hayashi, 2009). Improving our 
understanding of the contributions of E and T to ET is essential to understanding land use and climate change 
impacts on water cycling in these systems.

5. Conclusion
We applied FVS to partition ET using high frequency data from EC towers to investigate the role of vegetation 
and seasonal dynamics in E and T. On average T accounted for some 53% of ET at forested sites and 45% for 
wetlands, emphasizing a lower contribution of E in forests. E was relatively aseasonal and independent of ecosys-
tem type throughout the study period due to the frequent precipitation but differed after large precipitation events 
as a function of soil type. T is highly correlated with climatic variables, especially compared to E, and varied 

 19447973, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
033757 by M

PI 322 C
hem

ical E
cology, W

iley O
nline L

ibrary on [12/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

SHVEYTSER ET AL.

10.1029/2022WR033757

19 of 23

significantly between wetlands and forested ecosystems. Wisconsin has seen a 15% increase in annual precipi-
tation since 1950, with most extreme increases dominated by seasonal transitions (i.e., spring and fall) and this 
trend is expected to continue. Partitioning ET into its components during a seasonal transition across multiple 
ecosystems provides new insights for understanding how different ecosystems use water, with implications for 
hydrologic modeling in an era of rapid land use and climate change.
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