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Abstract
Mus cypriacus is one of three small palaeoendemic mammals that have survived the Mediterranean islands’ anthropization. 
This species, endemic to Cyprus, was described in 2006 and stands out as one of the last mammal species to have been 
discovered in Europe. Despite scarce data on its genetics, ecology, and life-history traits, Mus cypriacus is assessed as Least 
Concern LC in the IUCN Red List, partly due to its morphological similarity with the sympatric house mouse that prevented 
earlier identification. Our study uses mitochondrial and microsatellite markers to investigate this small rodent's population 
genetic structure and diversity. Our analysis did not identify any population genetic structure and suggested a high genetic 
diversity across Cyprus. When inferring habitat preference using sample locations, it appeared that M. cypriacus utilizes a 
diverse variety of habitats, covering more than 80% of the island. Although these results are encouraging for the conservation 
status of the species, they still need to be cautiously applied as potential threats may arise due to increasing habitat destruction 
and changes in land use. Consequently, our encouraging results should be applied judiciously. Additional ecological data are 
urgently needed to gain a more comprehensive understanding of this inconspicuous endemic species.
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Introduction

Human activity is considered one of the primary causes of 
the current environmental changes, altering various ecologi-
cal systems at a global level (Brooks et al. 2006; Pysek et al. 
2010; Strassburg et al. 2012). Projections indicate that up 
to 50% of species will become extinct in the next 50 years 
(Koh et al. 2004; Thomas et al. 2004) as consequence attrib-
uted to human-mediated climate change and habitat destruc-
tion (Crutzen 2002; Zalasiewicz et al. 2011). In 2023, the 
International Union for Conservation of Nature (IUCN) Red 
List reported 42,100 species as threatened with extinction 
(https:// www. iucnr edlist. org/). The identified threats include 
habitat destruction, invasive species, pollution, overexploi-
tation, and climate change (Baillie et al. 2004; Amori et al. 
2008; Young et al. 2016; Tilman et al. 2017). Many species 
are endangered worldwide due to at least one of these fac-
tors (Capdevila et al. 2022), with endemic species being 
particularly susceptible to these threats (Purvis et al. 2000; 
Vié et al. 2008; Garcia and Di Marco 2020).
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Cyprus is the third largest island in the Mediterranean 
basin. It is located in the Mediterranean biodiversity hotspot 
and hosts numerous endemic species due to its long-standing 
isolation since the Messinian Crisis (6–5.3 Myr—Hadjik-
yriakou and Hadjisterkotis 2002; Hadjisterkotis and Reese 
2008; Hadjisterkotis 2012; Essl et al. 2013; Nicolaou et al. 
2016). Among these, the endemic mouse Mus cypriacus 
(Rodentia: Muridae) was recently described on the island 
(Bonhomme et al. 2004; Cucchi et al. 2006). Notably, it 
represents one of the few terrestrial mammalian species 
discovered in Europe in the last 100 years (Nicolaou et al. 
2016). It is of high conservation interest, as it is one of three 
small palaeoendemic mammals and, in fact, the only rodent 
species, which has survived the anthropization of Mediter-
ranean islands. The other two are shrew species, i.e., Croci-
dura sicula and C. zimmermanni (Gippoliti and Amori 2006; 
Auffray and Britton-Davidian 2012; Frynta et al. 2015). 
Diverging from Mus macedonicus approximately 0.53 mil-
lion years ago (Hadjisterkotis et al. 2000; Cucchi et al. 2006; 
Macholán et al. 2007), Mus cypriacus adds a compelling 
dimension to the island’s evolutionary narrative.

Mus cypriacus is morphologically close to M. macedoni-
cus with similar body size, but it displays a bigger skull 
with a longer lower tooth row (Cucchi et al. 2006; Macho-
lán et al. 2008) and a longer tail (Kryštufek and Vohralík 
2009). It is mainly found in cultivated areas at moderate 
altitudes between 300 and 900 m but occasionally reaching 
up to 1600 m. It sometimes occurs in syntopy with M. m. 
domesticus (Cucchi et al. 2006; Macholán et al. 2007; own 
observations), but it is almost absent from areas subjected to 
high anthropogenic pressure (Cucchi et al. 2006; Kryštufek 
and Vohralík 2009). Despite being assessed as Least Con-
cern (LC), by IUCN (Amori 2017), this designation is based 
on scarce data, particularly regarding the ecology and life-
history traits of M. cypriacus. Furthermore, critical knowl-
edge gaps persist concerning its distribution on the island, 
and no research has been undertaken to understand potential 
threats to the species (Amori 2017). Addressing these gaps, 
the present study delves into the conservation status of M. 
cypriacus using molecular information to provide a more 
comprehensive understanding.

Materials and methods

Data collection

A total of 40 specimens of M. cypriacus collected during 
two sampling expeditions on Cyprus in 2005 and 2015 were 
used in the present study (Fig. 1). D-loop sequences and 
sampling locations of the specimens collected in 2005 were 
previously published in Macholán et al. (2007). Thirteen 
extra samples were collected in 6 localities from southern 

Cyprus from the 03rd to the 17th of September 2015 using 
Sherman traps. Samples were mainly collected on stony-
rocky substrate covered with garrigue/maquis vegetation 
during an intense sampling expedition for the study of 
Acomys cahirinus (sensu Renaud et al. 2020) in Cyprus. 
The new sampling locations can be found in Supplemen-
tary Material Table A. Samples were collected following 
local regulations for field collection of small mammals, 
and all procedures regarding animal handling complied 
with the approved guidelines by the American Society of 
Mammalogists (Sikes et al. 2011). Mitochondrial D-loop 
was sequenced for the specimens collected in 2015 using 
the protocol from Hardouin et al. (2010), and nucleotide 
sequences were deposited in GenBank (accession numbers 
OR227591 to OR227603). Those sequences were aligned 
with the sequences generated by Macholán et al. (2007), 
GenBank accession numbers EU106194–EU106216 and 
EU106278– EU106281. Twenty-one microsatellites were 
amplified on specimens captured in 2005 and 2015 using 
primers initially designed for M. m. domesticus, following 
the protocol of Hardouin et al. (2015). Microsatellite geno-
types are provided in Supplementary Material Table B.

Molecular phylogeny and divergence time 
estimations

A median-joining haplotype network (Bandelt et al. 1999) 
was reconstructed using PopArt v.1.7 (Leigh and Bryant 
2015) with the sequences generated in the present study 
and all M. cypriacus sequences available in GenBank 
(EU106194-EU106216, EU106278-EU106281—Macholán 
et al. 2007). The final alignment comprises 38 sequences 
with a length of 1066 bp. The number of haplotypes, haplo-
type diversity, nucleotide diversity, and mismatch distribu-
tion (MMD) were calculated using DNAsp (Librado and 
Rozas 2009).  FST (Reynolds et al. 1983) and  RST (Slatkin 
1995) pairwise comparisons per sampling district, as well 
as Hardy–Weinberg equilibrium, were tested using Arle-
quin ver. 3.5.2.2. (Excoffier and Lischer 2010). Isolation 
by distance was investigated using a Mantel test performed 
using ade4 (Dray and Dufour 2007). To gain insight into 
the historical demography of M. cypriacus, a Bayesian 
Skyline Plot (BSP) was constructed using BEAST v2.6.7 
(Bouckaert et al. 2014). The selected substitution model was 
GTR + G4 using jModelTest2 (Darriba et al. 2012). Since 
there is no current estimation of the number of substitution 
sites per generation, a strict molecular clock of 2.0 ×  10–8 
substitution sites per generation was used as it was found to 
be a conservative estimate for the close relative species M. 
musculus (Förster et al. 2009). The analysis was run for 75 
million generations, with parameters and genealogies sam-
pled every 5000 iterations and the first 10% discarded as 
burn-in. To assess convergence and the effective sample size 
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(ESS > 200) of each parameter, the log files were examined 
using Tracer v1.6 (Rambaut et al. 2014).

The divergence time between M. cypriacus and M. mac-
edonicus was estimated through a phylogenetic tree analysis 
using BEAST 2.6 (Bouckaert et al. 2019). In the analysis, 
we incorporated D-loop and cytochrome b sequences of M. 
cypriacus, along with representatives from four subgenera 
of Mus (Mus, Coelomys, Nannomys, and Pyromys), as well 
as other murine genera (Supplementary Material Table C). 
Arvicanthis niloticus and Otomys irroratus were used as 
outgroups. For some species, we extracted the portion that 
includes cytochrome b and D-loop sequences from the com-
plete mitochondrial genome. The sequences were aligned 
with MUSCLE (Edgar 2004), and gaps and ambiguous areas 
were excluded from the alignment using Gblocks (Castre-
sana 2000) implemented in Seaview (Gouy et al. 2010). The 
complete alignment comprises 35 sequences and 2090 bp 
divided into two partitions to separate the coding cytochrome 

b (1140 bp) and the non-coding portion of the alignment 
(950 bp). We used three calibration intervals defined in pre-
vious studies: 1) stem Apodemini ((Offset: 8.93, Log(Stdev): 
1, Log(Mean): 4.5, (Aghová et al. 2018)), Most Recent Com-
mon Ancestor (MRCA) of Mus ((Offset: 7.29, Log(Stdev): 
1, Log(Mean): 4.9, (Aghová et al. 2018)) and the divergence 
of Apodemus mystacinus/Sylvaemus (median prior age of 
7 Myr (upper 95%, 5.96–12.37 Myr) (Fabre et al. 2013)). 
Bayesian model averaging was performed for each partition 
using the bModelTest package (Bouckaert and Drummond 
2017) as implemented in BEAST v.2.6. We used a Birth 
Death Model speciation tree prior and assumed a log-normal 
relaxed molecular clock. Two independent runs were carried 
out with 20,000,000 Markov Chain Monte Carlo (MCMC) 
iterations, sampling trees, and log files every 1000 iterations. 
Result files were examined in Tracer v.1.7.1 (Rambaut et al. 
2018) for each run to assess the chain and parameter con-
vergence of independent runs and to verify that the overall 

Fig. 1  Map of Cyprus with the different land covers and country districts. Black circles: sites with D-loop and microsatellite data available; blue 
circles: occurrence data from literature only (Bonhomme et al. 2004; Cucchi et al. 2006)
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effective sample size (ESS) was > 200. Tree files from sepa-
rate runs were combined using LogCombiner v.2.6, and a 
consensus maximum clade credibility (MCC) tree was cre-
ated using TreeAnnotator v.2.6 after removing 10% of ini-
tial trees and using median heights for nodes. The tree was 
visualized with FigTree v. 1.4 (Rambaut 2012).

Microsatellites

The presence of null alleles was investigated using Micro-
Checker (Van Oosterhout et al. 2004). Loci that significantly 
(p < 0.05) deviated from the Hardy–Weinberg proportions 
due to null alleles were discarded from the dataset. The 
observed and expected heterozygosity and the average 
number of alleles per locus were calculated using Genetix 
(Belkhir et al. 2004). Allelic richness was calculated using 
PopGenReport (Adamack and Gruber 2014) and  FIS using 
diveRsity (Keenan et al. 2013). STRU CTU RE was used 
to infer population structure (Pritchard et al. 2000), with 
a burn-in period of 250,000 simulations, followed by a 
run length of 750,000 MCMC simulations and ten itera-
tions for each K (number of clusters) with the admixture 
model. K from 1 to 5 was tested in our dataset. The results 
were analyzed using STRU CTU RE HARVESTER (Earl and 
vonHoldt 2012). Results were summarized using CLUMPP 
(Jakobsson and Rosenberg 2007) and drawn using Distruct 
(Rosenberg 2004). A discriminant analysis of principal com-
ponents (DAPC) (Jombart et al. 2010) was used to assess 
the population structure further using the ADEGENET 
package (Jombart 2008). The interaction number used was 
1,000,000,000. Thirty principal components, explaining 
93.2% of the total variance, were retained as predictors for 
the discriminant analysis. The presence of a population bot-
tleneck was tested using BOTTLENECK (Piry et al. 1999), 
and the effective population size was estimated using NeEs-
timator V2.1 and the linkage disequilibrium method (Do 
et al. 2014).

Characterization of habitat occupation

To map the habitat preference of M. cypriacus on the 
island, we reviewed all known sampling locations of 
reported M. cypriacus specimens from Bonhomme et al. 
(2004), Cucchi et al. (2006), Macholán et al. (2007) and 
the present study. Land-cover analysis was performed for 
each reported location using the Corine Land Cover (CLC) 
data 2018 from the EU Observation programme Coperni-
cus. The main land-cover categories used included artifi-
cial surfaces (corresponding to Corine class level code 1), 
agricultural areas (code 2), forest and seminatural areas 
(code 3), wetlands (code 4), and water bodies (code 5). 
The different land covers, except for wetlands and water 
bodies, represented in the category “other”, are displayed 

in Fig. 1. The CLC data have a three-level hierarchical 
classification system, where the third level is the most 
detailed. For example, at Level 1, artificial surfaces are 
considered homogeneous. Still, at Level 3, they are split 
into eleven different categories (continuous and discon-
tinuous urban fabric, industrial or commercial units, min-
eral extraction sites, green urban areas, etc.). Therefore, 
a more detailed analysis of the habitat preferences of M. 
cypriacus was conducted using both Level 2 and Level 3 
classification systems (Supplementary Material Table D). 
All analyses were done in ArcMap 10.6 (ESRI).

Results

Phylogenetic analyses and divergence times

The divergence time between M. cypriacus and M. mac-
edonicus was estimated using the chronogram obtained with 
BEAST, revealing that the mitochondrial DNA between the 
two species diverged 0.63 Mya [0.42, 0.88–95% highest pos-
terior density interval, HPD] (Fig. 2).

Thirteen M. cypriacus mitochondrial D-loop sequences 
generated in the present study were aligned with the 27 
sequences from Macholán et  al. (2007) and analyzed 
together. Twenty-nine haplotypes and segregation sites were 
found in the dataset (Fig. 3A, Table 1). Average haplotype 
diversity was 0.979 (SD = 0.011), and nucleotide diversity 
(π) was 0.008 (SD = 0.0004). Haplotype diversity (Hd) was 
high in all studied districts (Hd between 1 and 0.89, Table 1). 
No geographic signal was found in our dataset (Fig. 3A, B). 
This was confirmed by pairwise  Fst values, which were low 
and non-significant between samples from all Cypriot dis-
tricts except between Larnaca and Limassol (Table 2). The 
Mantel test did not detect a signature of isolation by distance 
(Mantel test: r = – 0.75, p = 1).

A mismatch distribution (Fig.  4A) based on the 40 
mitochondrial D-loop sequences available for this study 
was unimodal, indicative of population expansion (Rog-
ers and Harpending 1992). τ was estimated to be 4.88 with 
θ0 = 0.967 and θ1 = 1000.

A Bayesian skyline plot was also produced to further 
investigate population demography at the island level. M. 
cypriacus was found to be stable for at least the last 25 gen-
erations (Fig. 4B). The number of generations per year is not 
known for this species. However, a value of two generations 
per year was found to be a conservative estimate for Mus 
species (Macholán et al. 2007) and was used in the present 
study, leading to the estimate of 25 generations represent-
ing 12.5 years. The effective population size was calculated 
to be 5895 with a very high posterior density interval (95% 
HPD = 113–31,882).
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Microsatellite‑based population genetic analysis

A total of 21 microsatellites were genotyped on the samples 
collected in 2005 and 2015 (Fig. 1). One of those mark-
ers did not amplify, four were monomorphic, and two had 
null alleles. Those were discarded, and the remaining 14 
loci were tested for Hardy–Weinberg equilibrium (HWE), 
revealing deviation in one microsatellite marker which was 
also excluded from the dataset. Hence, the final data set 

contained 13 microsatellite loci. The mean allelic richness 
for the whole island was found to be 13.98. The possible 
genetic population structure was studied using STRU CTU 
RE. Even though the best K was found to be K = 2 using the 
Evanno method, the structure plot only reveals one popula-
tion (Fig. 5). The Evanno method does not evaluate K = 1, 
leading to an overestimation of the number of populations 
(Cullingham et al. 2020), which is most likely scenario here 
(Fig. 5). A DAPC analysis was also performed to further 

Fig. 2  Chronogram based on 
BEAST analysis. The three 
calibration points are indicated 
by a star (see method section for 
details); for each node, the mean 
and the 95% highest posterior 
density (blue bars) are indicated
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investigate population structure; however, the lowest Bayes-
ian information criterion (BIC) value (68.00) was found for 
K = 1, indicating no population structure. The first 10 PCs 

of the PCA, explaining 50.5% of the total variance, were 
retained in the DAPC (Fig. 6). Populations were found to 
cluster together except Paphos and Kerynia which show 
slight divergence (Fig. 6).  Rst values between the popula-
tion groups were low (Table 3).

As no population structure was found, population demog-
raphy was investigated for Mus cypriacus from the entire 
island. No recent bottleneck was identified using the one-
tailed Wilcoxon test with the stepwise mutation model 
(SMM, p = 0.95), and also, no deficit or excess of heterozy-
gotes was found using FIS (FIS = – 0.020, – 0.052; 0.011 95% 
CI). The effective population size was calculated and found 
to be 109 (71.3–211.5, 95% CI).

Fig. 3  A D-loop haplotype 
network calculated using 
median-joining. The circle size 
represents the frequency of the 
respective haplotype, and the 
colours represent the popula-
tions of the individuals carrying 
a given haplotype. The hatch 
marks on the edge represent 
mutations between haplotypes 
and black circles represent 
hypothetical haplotypes. B Map 
of Cyprus with the geographi-
cal location of M. cypriacus 
samples, with the same colour 
code as in (A)

Table 1  Population genetic parameters for Mus cypriacus by district

N number of individuals, SD standard deviation, Hexp expected heterozygosity, Hobs observed heterozygosity

Mitochondrial D-loop Microsatellites

N Number of 
haplotypes

Number 
of variable 
sites

Haplotype 
diversity 
(SD)

Nucleotide diversity (SD) N Hexp (SD) Hobs (SD) Average 
allele per 
locus

Mean 
allelic rich-
ness

Keryneia 2 2 9 1.00 (0.500) 0.012 (0.006) 4 0.69 (0.08) 0.90 (0.16) 4.23 3.33
Larnaca 8 5 11 0.89 (0.086) 0.007 (0.001) 6 0.78 (0.12) 0.87 (0.14) 6.77 5.37
Limassol 25 20 20 0.98 (0.017) 0.007 (0.0004) 24 0.85 (0.12) 0.88 (0.14) 13.15 10.96
Paphos 5 5 16 1.00 (0.126) 0.010 ( 0.002) 5 0.79 (0.05) 0.85 (0.15) 5.77 4.01
Total 40 29 29 0.98 (0.011) 0.008 (0.0004) 39 0.86 (0.11) 0.88 (0.11) 16.08 13.97

Table 2  Pairwise FST values calculated using mitochondrial D-loop

Values corresponding to p values < 0.05 are highlighted in bold

Keryneia Limassol Larnaca Paphos

Keryneia –
Limassol 0.12 –
Larnaca 0.03 0.09 –
Paphos 0.02 0.03 0.12 –
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Characterization of habitat preferences

Fifty-five sampling locations have been reported for M. 
cypriacus (Bonhomme et  al. 2004; Cucchi et  al. 2006; 
Macholán et al. 2007; present study). Corine Land Cover 
analysis identified that M. cypriacus was most commonly 
found in agricultural areas (41.82%, N = 23), followed by 
forests and seminatural regions (36.36%, N = 20), and arti-
ficial surfaces (21.82%, N = 12; Supplementary Material 
Table B). A more detailed land-cover analysis (CLC Level 
3) showed that M. cypriacus was primarily found in complex 
cultivation patterns (Corine Land Cover 2.4.2.–21.82%), 
followed by sclerophyllous vegetation (Corine Land Cover 
3.2.3.–20%), and discontinuous urban environment (Corine 
Land Cover 1.1.2.–18.18%). In agreement with this toler-
ance to anthropized environments, 80% of M. cypriacus 
were captured within 2000 m from artificial surfaces. This 
could represent a sampling bias since traps are typically set 
in areas easily accessible via roads. Overall, the habitats 
from which M. cypriacus were observed cover 81.8% of the 
island (Supplementary Material Table D).

Discussion

Our results obtained using mitochondrial D-loop and micro-
satellites demonstrate that M. cypriacus is genetically highly 
diverse, with little or no population differentiation found on 
the island using these markers. We discuss reasons for this 
below. This result is in accordance with the previous litera-
ture indicating that M. cypriacus could be found in a wide 

variety of habitats except in highly anthropogenic ones (Cuc-
chi et al. 2006; Kryštufek and Vohralík 2009). The absence 
of Mus cypriacus from the latter might be due to competition 
with M. m. domesticus (García-Rodríguez et al. 2018) and 
the presence of high numbers of domestic and stray cats, 
which are significant predators of mice on the island (Heise-
Pavlov and Hadjisterkotis 2009). Other ecological charac-
teristics unique to these habitats could also contribute to M. 
cypriacus avoiding them.

Population demography

The mitochondrial divergence between M. cypriacus and 
M. macedonicus was estimated to be 0.63 million years 
[0.42, 0.88], consistent with a previous study that reported 
a divergence of 0.53 million years (Macholán et  al. 
2007). This timeframe aligns with the Mindel Glaciation 
(750,000–675,000 years ago), a period of low sea level dur-
ing which the distance between Cyprus and the continent 
was reduced (Held 1989). This would have favoured the 
island's colonization by a common ancestor shared with 
Mus macedonicus (Bonhomme et al. 2004; Macholán et al. 
2007; Auffray and Britton-Davidian 2012). Those mice 
would have then diverged from their continental counterpart, 
ultimately leading to the origin of Mus cypriacus (Macholán 
et al. 2007; Auffray and Britton-Davidian 2012). Population 
expansion growth has been dated at around 100,000 years 
(Macholán et al. 2007). While Bayesian skyline plots suggest 
a relatively stable mean effective population size in recent 
times, the wide range of the HPD interval implies that con-
temporary effective population sizes should be interpreted 

Fig. 4  A Mismatch distribution of the mitochondrial DNA D-loop. 
The observed mismatch distribution (bars) is compared with the 
expected mismatch distribution (dotted line) under a stable popu-

lation model. B Bayesian skyline plot of the mitochondrial DNA 
D-loop. The black line indicates the mean effective population size, 
and the blue shaded area represents the 95% HPD interval
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with extreme caution. The discrepancy between the popula-
tion expansion detected by the mismatch distribution and the 
stable population size suggested by the BSP may be due to 
differential sensitivity to sample size. Bayesian skyline plots 
and especially the detection of recent population changes are 
known to be affected by small sample sizes, while the mis-
match distribution is less sensitive (Felsenstein 2006; Grant 
2015). Specifically, Bayesian skyline plots based on less than 
50 individuals often fail to capture population expansion, 
resulting in a flat shape (Grant 2015).

Genetic diversity

Mus cypriacus genetic diversity calculated using mito-
chondrial D-loop was high (haplotype diversity: 0.98). 
However, it may have been underestimated due to the low 
sample size and the uneven distribution across the island 
(e.g., sparse representation from the North and none from 
the North-East). Interestingly, the observed genetic diversity 

is comparable to its closely related species, M. macedoni-
cus (haplotype diversity: 0.98) and M. spicilegus (haplo-
type diversity: 0.97), both of which, however, have a much 
broader distribution area on the continent (Macholán et al. 
2007). These results are surprising at first glance, as island 
populations often exhibit lower genetic diversity compared 
to their mainland counterparts (e.g., Abdelkrim et al. 2005; 
White and Searle 2007; Hardouin et al. 2019, 2021; Conroy 
et al. 2021; Chevret et al. 2021; Sacks et al. 2022). How-
ever, counter-examples exist such as of Oryzomys couesi 
cozumelae or Reithrodontomys spectabilis, both endemic 
rodents on the island of Cozumel, the largest island of the 
Mexican Caribbean (with an area of c. 486  km2). These spe-
cies exhibited unexpectedly high levels of genetic diversity 
(Vega et al. 2007; Espindola et al. 2014). Indeed, genetic 
diversity is known to be influenced by island size, with 
larger islands able to harbour a larger number of individu-
als (Frankham 1997). Accordingly, in Darwin’s finches, a 
significant positive correlation exists between island size 

Fig. 5  Population structure analysis using 13 microsatellites. Results 
for K = 2 and K = 3 are presented. The colours correspond to different 
clusters identified by the structure analysis

Fig. 6  Representation of the microsatellite variation on the first two 
axes of a DAPC. The percentage of the total variance explained by 
Axis 1 is 49%, and Axis 2 is 30%

Table 3  Pairwise RST values calculated using microsatellites

No p values < 0.05 were found

Keryneia Larnaca Limassol Paphos

Keryneia –
Larnaca 0.06 –
Limassol 0.04 0.02 –
Paphos 0.06 0.03 0.02 –
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and genomic diversity (Petren et al. 2005; Brüniche-Olsen 
et al. 2019). This pattern is also observed in the feral M. 
m. domesticus populations from the Kerguelen Archipelago 
(Hardouin et al. 2010) or the Orkney Islands (Chevret et al. 
2021). With a substantial area of 9251  km2, Cyprus is one of 
the largest Mediterranean islands and can probably sustain a 
large population size for a small rodent.

Absence of population fragmentation in M. 
cypriacus

No evidence of population fragmentation was found for 
M. cypriacus despite sampling localities covering distant 
areas across most of the island. Our habitat analysis further 
indicated that M. cypriacus is a generalist rodent utilizing a 
wide variety of habitats (Cucchi et al. 2006; Macholán et al. 
2007; Hadjisterkotis pers. observations), which, when com-
bined, cover more than 80% of the island area (Supplemen-
tary Table D). The generalist preferences of M. cypriacus 
and the availability of suitable habitats allow for efficient 
dispersal. This leads to an absence of genetic population 
structure and the maintenance of high genetic diversity. 
Given the rapid urban development experienced in Cyprus 
over the past 40 years, there is concern that it could disturb 
habitat connectivity, threatening the current situation. Pres-
ently, this threat still seems limited since areas with high 
anthropogenic pressure, from which M. cypriacus is absent, 
only cover 9.2% of the island’s total area (Supplementary 
Material Table D).

Implications for conservation and management

Mus cypriacus has been classified as least concern by the 
IUCN despite the lack of information on the species. The 
present genetic data do not support an urgent reclassifica-
tion. However, this species constitutes an example of the bias 
in perceiving different species and their importance for con-
servation (Brambilla et al. 2013). Small rodents are typically 
considered “uncharismatic” species, often leading to their 
significance being underestimated or overlooked (Amori 
et al. 2008). This bias arises from a negative perception, pri-
marily driven by the damage caused by a few invasive spe-
cies, such as the rat and the house mouse (Amori et al. 2008; 
Espindola et al. 2014). For example, the black rat (Rattus 
rattus) can threaten Cyprus’s biodiversity by predating upon 
eggs of ground-nesting birds (Hadjisterkotis 2000, 2017), 
and the recently introduced brown rat (Rattus norvegicus) 
is known to kill poultry on the island (Hadjisterkotis et al. 
2020).

Mus cypriacus may hold conservation significance sim-
ply by its survival into modern times as the sole extant 
endemic rodent among the past endemics of the Mediter-
ranean islands. This is particularly noteworthy, considering 

that even anciently introduced anthropochorous species are 
considered of conservation value as part of our “cultural 
heritage” (Masseti 2009). The success of M. cypriacus in 
persisting despite the range of habitat modifications (e.g., 
urbanization and the introduction of non-native species like 
cats and rats, to name only a few) that led to the extinction 
of all other endemic rodents on Mediterranean islands might 
be attributed to its evolution in a context that involved ter-
restrial predation by a local, endemic predator, the Cypriot 
genet Genetta plesictoides (Masseti 2009; Vigne et al. 2023). 
As a result, M. cypriacus was not naïve towards introduced 
terrestrial predators, showcasing a resilience that sets it 
apart.

The earliest evidence of domestic cats on the island dates 
back to approximately 9000 years ago from the Neolithic site 
of Shillourokambos (Vigne et al. 2004). African wildcats 
were, however, introduced to Cyprus at least 10,000 years 
ago by early Neolithic farmers, presumably to control house 
mouse pests (Cucchi et al. 2020). Consequently, the Cyp-
riot mice have evolved in the presence of cats for the last 
11,000 years. As a consequence, in response to cat odour, 
it displays avoidance behaviour similar to continental house 
mice (Frynta et al. 2015). This behavioural adaptation may 
have contributed to the species’ ability to partially mitigate 
the impact of feral cats (Felis catus), which occur in high 
densities on Cyprus (Heise-Pavlov and Hadjisterkotis 2009).

A further possible evolutionary consequence of this per-
manent predation pressure may be that M. cypriacus does 
not display any trend towards body size gigantism (Masseti 
2009). This characteristic contributes to the inconspicuous 
nature of M. cypriacus, allowing easy concealment and 
escape from predation. The small body size of this species 
(head + body length range: 75–91 mm according to Cucchi 
et al. 2006) also likely reduces potential competition with 
local populations of Acomys cahirinus (head + body length 
range: 98–119 mm according to Renaud et al. 2020). A. 
cahirinus, probably unintentionally introduced to Cyprus 
through human-mediated transport (Barome et al. 2001), 
now coexists with M. cypriacus in wild habitats. Both spe-
cies face competition from the house mouse in anthropized 
environments.

Another aspect that emphasizes the need for efficient 
management measures to ensure the long-term conservation 
of M. cypriacus is its crucial role in maintaining ecologi-
cal equilibrium on Cyprus. As an important prey item for 
predatory birds (Bonhomme et al. 2004; Hadjisterkotis pers. 
observation) and Cypriot snakes, including endemic taxa 
(Hierophis cypriensis and Macrovipera lebetina lebetina), 
M. cypriacus plays a significant role in the local food web. 
To comprehensively understand the factors contributing to 
its exceptional adaptability, further studies should focus 
on exploring the species’ life-history traits and ecological 
habits. Additionally, adopting approaches that integrate 
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modern and archaeological data, such as using ancient 
DNA or employing geometric morphometrics, would pro-
vide valuable insights into the eco-evolutionary components 
that facilitated the survival and adaptability of the Cypriot 
mouse.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42991- 024- 00410-w.
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