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Frustrated magnetism in octahedra-based Ce6Ni6P17
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Magnetic frustration allows to access novel and intriguing properties of magnetic systems and has been
explored mainly in planar triangular-like arrays of magnetic ions. In this work, we describe the phosphide
Ce6Ni6P17, where the Ce+3 ions accommodate in a body-centered cubic lattice of Ce6 regular octahedra. From
measurements of magnetization, specific heat, and resistivity, we determine a rich phase diagram as a function of
temperature and magnetic field in which different magnetic phases are found. Besides clear evidence of magnetic
frustration is obtained from entropy analysis. At zero field, a second-order antiferromagnetic transition occurs at
TN1 ≈ 1 K followed by a first-order transition at TN2 ≈ 0.45 K. With magnetic field new magnetic phases appear,
including a weakly first-order transition which ends in a classical critical point and a third magnetic phase. We
also study the exact solution of the spin-1/2 Heisenberg model in an octahedron which allows us a qualitative
understanding of the phase diagram and compare with the experimental results.

DOI: 10.1103/PhysRevB.109.054405

I. INTRODUCTION

Ce-based compounds show a rich variety of magnetic and
thermodynamic behaviors, which can be qualitatively un-
derstood based on the competition between magnetic order
(due to the Ruderman-Kittel-Kasuya-Yosida interaction) and
single-ion Kondo physics. Such competition has been ratio-
nalized in the so called Doniach phase diagram [1–3], where a
tuning parameter, such as magnetic field or pressure, changes
drastically the properties of the material. Different behaviors
such as heavy-fermion superconductivity, quantum criticality,
metamagnetism, among others, have been reported [4–6].

Magnetic frustration has emerged as a new direction to
access novel and exotic states of matter in strongly corre-
lated electronic systems [7,8]. It occurs in antiferromagnetic
systems when magnetic interactions cannot be satisfied simul-
taneously, giving rise to non standard ground states where new
properties can be found [9–11].

There are two scenarios for the emergence of magnetic
frustration. The first one is realized in certain crystalline ar-
rangements: the archetypical example is a triangular lattice
with only antiferromagnetic nearest-neighbor interactions. In
this case and similar ones, it is not possible to simultane-
ously align antiferromagnetically all the spins and therefore
magnetic frustration arises. Two-dimensional triangular based
structures like Kagome and honeycomb lattices have been
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studied in this context [11–13]. Also three-dimensional struc-
tures are able to show magnetic frustration, for example,
the pyrochlore lattice where magnetic ions are arranged
in vertex-sharing tetrahedra [7,9,10]. The second scenario
is competition between different magnetic interactions, for
example nearest-neighbor and next-nearest-neighbor interac-
tions in a square lattice [14,15].

Many insulating frustrated systems have been explored, for
example, pyrochlore oxides where fluidlike states of matter
can be formed, giving rise to the so called spin-liquid behavior
[16]. On the other hand frustrated metallic systems remain
largely unexplored. A few examples of intermetallic materials
with frustration include the Shastry-Sutherland lattice with
magnetic ions arranged on squares with two interactions or
triangular-based systems [14,17–19], all of which are two
dimensional in nature.

Ce6Ni6P17 was first synthesized as single crystals at the end
of the seventies and crystallizes in the cubic space group I43m
[20]. This crystal structure is quite unique as it features cerium
ions arranged on Ce6 octahedra on a body-centered cubic unit
cell. From the magnetic point of view, six ions arranged in
a regular octahedron with antiferromagnetic nearest-neighbor
interactions should be frustrated, since each face is an equilat-
eral triangle. Therefore this compound offers the possibility
for the study of magnetic frustration on a three-dimensional
lattice composed of octahedra. If additional magnetic inter-
actions are important as, for example, next-nearest-neighbor
ones, further frustration effects might appear due to com-
petition with these additional magnetic interactions. Indeed,
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some evidence of frustration was reported [21,22], but the low
temperature physical properties were not studied in detail.

In this work, we present the synthesis and characterization
of physical properties of polycrystalline and single-crystal
Ce6Ni6P17 by means of magnetization, specific heat, and elec-
trical transport measurements. We show that effectively the
system presents a complex phase diagram as a function of
temperature and magnetic field, with several magnetic phases
where the frustration plays an important role. To provide a
theoretical support to experiment, we have solved exactly a
spin Heisenberg model for six spins 1/2 at the vertices of
a regular octahedron. The problem is solved in an elegant
way using group theory. The effect of interactions between
octahedra is also discussed.

The rest of this paper is organized as follows. In Sec. II,
we present the details for the synthesis of polycrystalline and
single crystal samples and their characterization by means of
x-ray and neutron diffraction, magnetization, specific heat,
and resistivity. In Sec. III, we present the experimental results,
while in Sec. IV, we show the simplified theory for the mag-
netic interactions. Finally, in Sec. V, we summarize our main
results and conclusions.

II. EXPERIMENTAL

Powder samples of Ce6Ni6P17 and the nonmagnetic anal-
ogous compound La6Ni6P17 were synthesized from Ce/La
(Ames Lab), Ni slugs (99.995% Alfa-Aesar), and red P
(99.999% Alfa-Aesar) in a three-step procedure. In a first step,
the rare-earth (Ce or La) and nickel pieces were melted in an
arc melting furnace. The binary alloy was crushed, mixed with
red phosphorus in (Ce/La)Ni:P 1:2 molar relation and heated
at 700 ◦C for several days in a closed quartz ampule with an
aluminum oxide crucible. Slow heating rates were employed
in the vicinity of melting and boiling points of P, in order to
ease the chemical reaction with the other components. The
obtained material was ground to powder, the remaining phos-
phorus amount to give the desired stoichiometry composition
was added and a second heat treatment was performed, similar
to the first one.

The initial microscopic mixture of cerium and nickel met-
als by arc melting, as well as the reaction with phosphorus in
two stages, were necessary steps to reduce the reaction time
and the loss of phosphorus. It is important to notice that the
6-6-17 stoichiometry implies a high phosphorus to metal ratio.

Ce6Ni6P17 single crystals were grown in tin flux. The over-
all composition Ce:Ni:P:Sn was 1:1:8:30. The mixture was
placed in an alumina crucible and heated in a quartz ampule
up to 900 ◦C in order to dissolve all solutes. After an initial
fast cooling to 750 ◦C, the temperature was slowly decreased
to 400 ◦C at 0.03 ◦C/min, and then the furnace was cooled
down to room temperature. The single crystals were obtained
dissolving the flux with diluted HCl. Typically Ce6Ni6P17

crystals were approximately 0.20 mm × 0.20 mm × 0.20 mm
in size.

Chemical composition on all samples was confirmed
by energy-dispersive x-ray spectroscopy (SEM-EDX, Zeiss
Crossbeam 340). Powder x-ray diffraction patterns (XRD)
were measured at room temperature on a STOE Stadip MP
instrument with Cu Kα1 radiation (λ = 1.54056 Å). Single-

crystal data for the cerium compound only were collected on a
Rigaku AFC7 diffractometer, Saturn 724+ CCD detector with
Mo Kα radiation. Neutron powder diffraction patters (NPD) at
several temperatures were measured on a Ce6Ni6P17 powder
sample at the E6 diffractometer, HZB facility, λ = 2.43 Å.
Crystal structure refinements were done in the powder data
case with FULLPROF program [23] and in single crystal data
with SHELXL [24]. The crystal structure was drawn using
VESTA [25].

Magnetization (M) was measured as a function of tem-
perature (1.8 < T < 300 K) and magnetic field (H) in a
Quantum Design SQUID VSM - 70 kOe magnetometer. A
3He attachment to a Quantum Design SQUID MPMS - 70
kOe magnetometer was used for low temperature measure-
ments (0.5 < T < 2 K). Specific heat (C) measurements on
polycrystalline samples were performed in a Quantum Design
PPMS system with a 3He option up to 70 kOe by the stan-
dard two-tau model and also with a single slope analysis of
relaxation curves. La6Ni6P17 was used as the nonmagnetic
analog for phonon and electronic specific heat subtraction.
Temperature and field dependencies of the resistance (R)
were measured on focused ion beam (FIB) microstructures
prepared from Ce6Ni6P17 single crystals with a conventional
four-probe configuration. The small crystals were fabricated
into microbars to facilitate homogeneous current flow and a
reliable determination of the resistivity, following the recipe of
Ref. [26]. A Quantum Design PPMS system with 3He option
and an Oxford K400 dilution refrigerator were used. Resistiv-
ity was measured along [110] crystallographic direction with
the applied magnetic field in the direction of the electrical
current.

III. EXPERIMENTAL RESULTS

A. Synthesis and diffraction

High-purity polycrystalline La6Ni6P17 and Ce6Ni6P17

samples were obtained as confirmed by x-ray powder diffrac-
tion data. Besides small Ce6Ni6P17 single crystals were grown
in tin flux. Homogeneous distribution of Ce, Ni, and P atoms
as well as the expected Ce:Ni:P 6:6:17 stoichiometry was
verified by energy-dispersive x-ray spectroscopy. A typical
spectra together with atomic distribution maps can be found
in Ref. [27].

Cerium and lanthanum compounds crystallize in the cubic
space group I43m. Lattice parameters and xyz positions are
shown in Table I and are in good agreement with previous
reports on these materials [20]. The Rietveld refinement of
the x-ray room temperature data for the cerium compound is
shown in the top panel of Fig. 1. Crystal structure refinement
results for Ce6Ni6P17 single-crystal data are available on the
joint CCDC/FIZ Karlsruhe deposition service, CSD 2296485
[28]. The rare-earth (RE) ion in this crystal structure is lo-
cated at a 12e site with C2v symmetry giving a body-centered
cubic arrangement of RE6 octahedra, as shown schematically
in Fig. 2. A given RE ion has four nearest-neighbors (NN)
in the same octahedra, red bonds in the figure, one next-
nearest neighbor (NNN) in an adjacent octahedra, blue, and
one next-next-nearest neighbor (NNNN) on the opposite side
of the same octahedra, yellow. For the cerium compound the
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TABLE I. Crystal structure for Ce6Ni6P17 [a = 10.11490(9) Å]
and La6Ni6P17 [a = 10.17433(9) Å], space group I43m, Z = 2. The
results were obtained from refinement on powder samples (pc) and
single crystal (sc) x-ray diffraction data. Agreement factors are also
shown.

Atom Site x y z

La6Ni6P17 La 12e 0.2894(1) 0 0
pc Ni 12d 1/4 1/2 0

P1 24g 0.2027(3) x 0.4320(4)
P2 8c 0.2121(4) x x
P3 2a 0 0 0

χ 2 = 4.82, RB = 0.175, Rf = 0.113

Ce6Ni6P17 Ce 12e 0.28932(9) 0 0
pc Ni 12d 1/4 1/2 0

P1 24g 0.2021(2) x 0.4326(3)
P2 8c 0.2131(3) x x
P3 2a 0 0 0

χ 2 = 2.04, RB = 0.0234, Rf = 0.0196

Ce6Ni6P17 Ce 12e 0.28927(3) 0 0
sc Ni 12d 1/4 1/2 0

P1 24g 0.20207(8) x 0.4323(1)
P2 8c 0.2135(1) x x
P3 2a 0 0 0

R1 = 0.0216, wR2 = 0.0449

following distances were obtained: ≈4.138, ≈4.261, and
≈5.852 Å for NN, NNN, and NNNN, respectively. Similar
distances were found for the lanthanum compound.

To characterize possible changes in the crystal structure
and magnetic ordering at low temperatures in Ce6Ni6P17,
we measured neutron powder diffraction (NPD) from room
temperature down to 0.245 K. We show in the lower panel of
Fig. 1 some selected diffractograms for T � 90 K. Neither
additional peaks nor splitting in the reflections is observed
down to 0.245 K disregarding a change in the cubic I43m
crystal structure. The evolution of the cell parameter with
temperature is shown in the inset, where a typical contraction
on cooling is obtained. Besides no long-range magnetic order
is observed on the neutron data. However we will show next
clear evidence in magnetization, specific heat, and resistivity
data, that there is magnetic order below 1 K. This apparent
contradiction is explained based on the nature of the ground
state for Ce6Ni6P17 and will be fully derived and explained
in Sec. IV. Essentially the ground state is, according to our
model, a singlet and therefore the system is in a nonmagnetic
state. As a consequence no magnetic neutron diffraction is
expected.

B. Magnetization

At 10kOe a Curie-Weiss M/H = C/(T − �CW) behavior
was found above 200 K, Fig. 3 top panel, where C is the
Curie constant and �CW the Curie-Weiss temperature. The
effective magnetic moment μeff = 2.52(4)μB, calculated from
C, is in good agreement with the expected value according
Hund’s rules for a Ce+3 ion with J = 5/2: μeff (Ce+3) =
2.54(4)μB. The obtained Curie-Weiss temperature is �CW =

(deg)

(deg)

FIG. 1. Powder diffraction data for Ce6Ni6Ni17. (Top) Rietveld
refinement of XRD data in the cubic I43m space group (Cu Kα1,
λ = 1.54056 Å). (Bottom) NPD at low temperatures as indicated,
λ = 2.43 Å. The diffractogram at 0.245 K does not display addi-
tional Bragg peaks connected with antiferromagnetic order. The inset
shows the relative thermal evolution of the cell parameter a; aRT is
the cell parameter at room temperature. Error bars are smaller than
the symbols used.

FIG. 2. Two views of RE6Ni6P17 cubic unit cell (black line),
space group I43m, showing RE subcell as yellow spheres. NN, NNN,
and NNNN interactions are shown as red, blue and yellow bonds
respectively. A body-centered cubic lattice of RE6 octahedra is rec-
ognized identifying the octahedra formed by the RE yellow spheres
joined by red lines.
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FIG. 3. Magnetization measurements for a powder Ce6Ni6P17

sample. (Top) Temperature (T ) dependence of H/M at 10 kOe (dots).
The red line represents a Curie-Weiss fit above 200 K. The inset
shows the low-temperature magnetization at 1 kOe (left axis) and
the temperature derivative of magnetization (right axis). The vertical
striped lines indicate the maximum (zero) and inflection point (maxi-
mum) in the magnetization (temperature derivative of magnetization)
which correspond to Tm and TN1 , respectively. (Bottom) M vs H at 2
and 0.5 K.

−11 K, which indicates predominantly antiferromagnetic in-
teractions between cerium ions. Similar μeff and �CW values
were obtained from data measured at 1 and 70 kOe (data not
shown).

At low temperatures, no peak typical for a long range
antiferromagnet is observed, see inset in Fig. 3 for 1 kOe
magnetization data, but a broad cusp with a maximum at
Tm = 1.15 K (1.30 K) and an inflection point at 0.80 K
(0.90 K) at 10 kOe (1 kOe). This temperature depen-
dence of the magnetization closely resembles the behavior in
CePdAl and Yb2Pt2Pb, two known frustrated metallic
compounds [17,29–31]. The inflection point obtained for
Ce6Ni6P17 is a characteristic temperature for a phase transi-
tion to an antiferromagnetic state and therefore we call it TN1 .
On the other hand, Tm characterizes the broad maximum and
reflects magnetic fluctuations above the ordering temperature.
Further data and analysis supporting magnetic transitions in
this compound will be presented when discussing specific heat
and resistivity measurements, see below. High values of the
empirical ratio fCW = |�CW|/TN have been used mainly in
insulating systems as a measure of frustration, as magnetic
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FIG. 4. C/T at different magnetic fields for a powder Ce6Ni6P17

sample. La6Ni6P17 nonmagnetic analog is also shown at zero applied
magnetic field (La). The dotted line is the Ce6Ni6P17 magnetic en-
tropy (for H = 0 kOe), to be read on the right axis. A detail of C/T
around TN2 for small fields (in kOe) is plotted in the inset.

systems with no frustration order at approximately the same
energy scale as given by �CW and therefore |�CW| ≈ TN [32].
For metallic systems, a more appropriate ratio is f = Tm/TN ,
where Tm plays the role of energy scale as it reflects the
ordering temperature for the system without frustration. For
Ce6Ni6P17, taking TN = TN1 = 0.90 K and Tm = 1.30 K, one
obtains f = 1.44, similar to the value 1.5 reported in frustrated
systems like CePdAl [17] and the Shastry-Sutherland lattice
Yb2Pt2Pb [31]. In no frustrated systems f = 1 because there
is no difference between TN and Tm.

The field dependence of the magnetization at 2 K, Fig. 3
bottom panel, shows a paramagnetic-like behavior with a ten-
dency to saturation at about 1μB at 70 kOe. At 0.5 K, a feature
like a broadened step appears at about 20.5 kOe, resembling a
metamagnetic-like transition between two different magnetic
states. No hysteresis is observed.

C. Specific heat

Figure 4 shows the main specific heat C/T versus T results
below 10 K where several features are observed. First a clear
peak is seen at TN1 ≈ 1 K for zero applied magnetic field.
This temperature correlates with the inflection point previ-
ously discussed on magnetization versus temperature data,
see inset in Fig. 3. Besides there is a second peak which
corresponds to another magnetic transition at TN2 ≈ 0.5 K.
Taking into account that no secondary phases were detected
by x-ray diffraction and the bulk nature of the specific heat
technique we can safely disregard an impurity contribution to
the obtained data and consider both peaks as bulk magnetic
transitions for Ce6Ni6P17. The relatively small anomaly in C
versus T at TN1 is compensated by a large tail extending far
above the transition temperature. This large tail and the broad
maximum in M/H for T > TN1 indicate strong fluctuations
above the ordering temperature as a consequence of mag-
netic frustration. The effect of the magnetic field is to shift
both specific heat peaks to lower temperatures, as expected
for an antiferromagnet. At high fields, where the magnetic
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FIG. 5. Heat pulse (left axis, lines) and specific heat (right axis,
symbols) of Ce6Ni6P17 around TN2 and zero magnetic field. Warming
and cooling parts of the heat pulse (red and blue lines, respectively)
show a subtle indication of a first-order phase transition at TN2 . Spe-
cific heat data obtained from a single slope analysis of the warming
and cooling part of the heat pulse are shown as red and blue triangles,
respectively. For comparison, the values measured with the conven-
tional thermal relaxation technique are shown as violet circles.

order is suppressed, a Schottky-like dependence typical for
a completely polarized state emerges and shifts to higher
temperatures as the field is increased.

The data just described were obtained with the standard
two-tau model measurement protocol of the PPMS system
[33], which consists of heating-cooling cycles initiated by a
heat pulse. When the specific heat does not depend strongly on
temperature, a single specific heat value can be obtained fitting
the complete temperature versus time relaxation curve of one
pulse with a model that takes into account the relaxation of
the sample with the sample platform [34]. For getting the
temperature dependence of the specific heat, several pulses at
different base temperature are needed.

When the specific heat changes appreciably with tempera-
ture or there is a transition with latent heat (as in first-order
phase transitions), this approach is not adequate; instead a
single slope analysis is recommended. This second method
uses a unique relaxation curve for getting the specific heat
values between the maximum and minimum temperature of
the relaxation curve. A detailed discussion and analysis on this
matter can be found in Ref. [35] and references therein.

Figure 5 shows a typical time versus temperature heat pulse
in the vicinity of TN2 where a clear change in slope is seen on
both parts of the heat pulse (heating and cooling), suggesting a
first-order nature of the magnetic transition. This feature is not
taken into account on the standard two-tau model and there-
fore a single slope analysis was performed. On the right axis
of Fig. 5, the obtained specific heat is plotted revealing a small
hysteresis of about 7 mK between heating and cooling curves.
Further evidence of the first-order nature of the transition at
TN2 was obtained also in resistivity data (see next section).
For comparison the specific heat measured with the standard
protocol is also shown on the figure, demonstrating a clear
underestimation of the specific heat values. The heat pulses
around TN1 do not show any change in slope and the two-tau
model was good enough to fit the data.

The measured specific heat C at zero applied magnetic
field can be decomposed in three different contributions: C =
Cmag + Cel + Cph, where Cmag, Cel, and Cph stand for the mag-
netic, electron, and phonon contributions respectively to the
total specific heat of the sample. In order to obtain Cmag, it is
necessary to subtract Cel and Cph. With that aim we measured
the specific heat on the isostructural nonmagnetic compound
La6Ni6P17, see Fig. 4. It is clear that the electronic and phonon
contributions are practically negligible in comparison with the
magnetic specific heat. With Cmag we calculated the magnetic
entropy Sm as Sm(T ) = ∫

Cmag/T dT , see Fig. 4. For Ce+3

in a doublet ground state, the entropy should reach Sm(∞)
= Rln2 at saturation. In magnetic systems where there is no
magnetic frustration, the expected value at the transition tem-
perature is Sm(TN ) ≈ 0.9Sm(∞). Experimental results show
that a huge amount of entropy is missing at TN1 , as Sm(TN1 ) ≈
0.35Sm(∞). The remaining entropy is recovered well above
the ordering temperature and Sm tends to the expected value
around 10 K, reflecting the experimental tail observed in C
versus T . This indication of strong fluctuations and entropy
accumulation above the phase-transition temperature hints to
a strong degree of magnetic frustration on the system [36].

D. Electronic transport

The magneto electronic transport properties were mea-
sured on microstructured lamella cut from Ce6Ni6P17 single
crystals. Such FIB-machining not only allows an exceptional
control over shape, size and contact alignment, but also elim-
inates possible surface impurity remains from the growing
process. Figure 6 shows the temperature and field dependence
of resistivity measured with the magnetic field applied par-
allel to the direction of the electrical current. The residual
resistivity ratio calculated as RRT /RLT , where RT is room
temperature and LT is low temperature corresponding to ap-
proximately 0.4 K, is around 70 for [110] direction. This
value indicates a high crystalline quality with small amounts
of defects and impurities. While small differences between
the absolute values of the measured resistivity for differ-
ent crystalline directions and field and current configurations
(perpendicular or parallel) were observed, the main features
associated with magnetic transitions and changes in behavior
that we will discuss remain unaffected by such different mea-
surement conditions.

The temperature dependence of resistivity clearly shows
a metallic like behavior with no evidence of Kondo effect,
see upper inset in the upper panel of Fig. 6. At about 10 K,
there is clear change in regime reflecting the onset of mag-
netic fluctuations, followed by a kink at TN1 = 0.96 K and
a steplike transition at TN2 = 0.44 K. The applied magnetic
field shifts both magnetic transitions to lower temperatures.
These evidences are in good correlation with specific heat
results previously discussed. At high fields a quadratic depen-
dence ρ(T) is observed, as expected according to Fermi-liquid
theory.

Figure 6 lower panel shows field scans of resistivity at
selected temperatures, sweeping the field up and down, where
several features are observed. On one hand, at the highest
temperature (900 mK), there is a maximum which corre-
sponds with TN1 . The decrease of temperature shifts TN1 to

054405-5



D. G. FRANCO et al. PHYSICAL REVIEW B 109, 054405 (2024)

100 101

T (K)

0

2

4

6

8

10

12

ρ
(μ

Ω
cm

)

0kOe
15kOe
20kOe

25kOe
30kOe
40kOe

FL fit

TN2↓

TN1

−30 −20 −10 0 10 20 30

H (kOe)

0

2

4

6

8

ρ
(μ

Ω
cm

)

100mK 300mK 400mK 600mK
700mK 750mK 800mK 900mK

TN1 T ∗
↙↙

0 100 200 300

T (K)

0

50

100

150

ρ
(μ

Ω
cm

)

[110]

0kOe

0.35 0.40 0.45 0.50

T (K)

1.5

2.0

2.5

ρ
(μ

Ω
cm

)

0
2

5

FIG. 6. Magneto electronic transport measurements on a
Ce6Ni6P17 single crystal. (Top) ρ vs T at different constant applied
magnetic fields H along the [110] crystalline direction. For H = 40
kOe, a Fermi-liquid (FL) fit is shown as a dashed line. The upper
inset shows the resistivity at zero field from room temperature down
to ≈ 0.4 K. The lower inset shows a zoom on the low temperature
region for small fields: 0, 2, and 5 kOe. (Bottom) ρ vs H at constant
temperature. Curves obtained sweeping the field up and down are
shown for all cases by continuous and dashed lines, respectively.
Measurements were displaced by 0.6μ� cm with respect to each
other for clarity, except 100-mK data.

higher fields and at 300 mK—and lower temperatures—it
splits in two separate kinks indicating the emergence of a new
magnetic phase. On the other hand, at the lowest tempera-
ture and low fields a hysteresis between up and down field
sweeps is clearly observed. This demonstrates without doubt
the first-order nature of the magnetic transition occurring at
TN2 , validating the evidence already seen and discussed on
specific heat measurements. There is a further feature in the
field dependence of resistivity below 800 mK. We define the
characteristic temperature for this change in the electrical
behavior by T ∗, taken as the inflection point on ρ(H).

E. Magnetic phase diagram

Characteristic magnetic transitions for Ce6Ni6P17 obtained
from magnetization, specific heat, and resistivity data are col-
lected on the magnetic phase diagram T -H shown in Fig. 7.

0 5 10 15 20 25

H (kOe)
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0.2

0.4

0.6

0.8

1.0

T
(K

)
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T ∗
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MH

CT

RT

RH

FIG. 7. Magnetic phase diagram T -H obtained from temperature
and field dependence of magnetization (MT and MH, respectively),
specific heat data (CT), and temperature and field dependencies of
resistivity (RT and RH, respectively) on Ce6Ni6P17.

Except for small differences coming from different techniques
on different instruments there is a clear agreement on the
magnetic behavior of the compound. A monotonous decrease
of the characteristic temperatures TN1 and TN2 is seen when
increasing the applied magnetic field, with the appearance of
a new magnetic phase below 400 mK and fields approximately
between 20.5 and 23 kOe.

On the other hand, T ∗ seems to be a weakly first-order
phase transition which ends in a classical critical end point
at T ≈ 800 mK, resulting in a crossover behavior for T >

800 mK. This has been confirmed by ρ(H ) curves measured
at 860 and 900 mK, where no kink is observed around the
expected value for T ∗. We note that in another system, a
similar signature in magnetoresistance to the one observed
at T ∗ have been reported [37]. Such feature is accompanied
with jumps in the field dependence of magnetization and do
not correspond to real phase transitions but to reorientation
of magnetic domains [38]. In our system no jump in M(H )
at 0.5 K is observed around 8 kOe, see Fig. 3, disregarding a
domain reorientation. We will return to the nature of this T ∗
line when discussing the crossovers as a function of magnetic
field in Sec. IV D.

IV. SIMPLIFIED THEORY FOR THE MAGNETIC
INTERACTIONS IN Ce6Ni6P17

The evolution of the entropy with temperature indicates
that the Ce+3 ions have a doublet ground state, in agreement
with the physical expectations for an isolated cerium ion in
an environment with C2v symmetry. Our main approximation
is to assume that the magnetic properties of the system can
be described by an isotropic Heisenberg model for the spins
of a basic Ce6 octahedron. Thus the essential part of the
Hamiltonian has the form

HHeis = J1

∑
〈i, j〉

Si · S j + J2

∑
〈〈i, j〉〉

Si · S j, (1)
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where 〈i, j〉 indicates nearest neighbors (edges of the octa-
hedron, red bonds in Fig. 2) and 〈〈i, j〉〉 next next-nearest
neighbors (opposite sites of the octahedron, yellow bonds in
Fig. 2). In the real system, one expects that the interactions are
more involved and depend on the structure of the ground-state
doublet determined by the crystal-field felt by both interacting
Ce atoms. A limiting case would be like the spin Kitaev
model, in which for a bond in the direction of the unit vector v̂,
the interaction has the form (Si · v̂)(S j · v̂) [39]. However, the
detailed structure of the doublet is not known and therefore
we assume isotropic interactions. As it will be shown next,
such simplified model with only a small cluster of six sites in
a regular octahedron is able to explain and describe most of
the experimental features observed.

A shortcoming of the model in Eq. (1) is that for total spin
of the octahedron S = 2 and 3, the degeneracy 2S + 1 is too
large for the cubic symmetry of the octahedron. Therefore we
have added to the Hamiltonian a cubic crystal field, which
corresponds to include the expansion up to fourth order in spin
components in Oh symmetry [40]

HCF = C
{
35S4

z + 5
2 (S4

+ + S4
−) − [30S(S + 1) − 25]S2

z

−6S(S + 1) + 3S2(S + 1)2
}
, (2)

where Sz is the total spin projection of the octahedron and
S+ and S− are the raising and lowering spin operators, respec-
tively.

Including a magnetic field, the Hamiltonian takes the form

H = HHeis + HCF − BSz, (3)

where B = gμBH , g is the gyromagnetic factor and μB the
Bohr magneton.

An important term missing in H is the magnetic interaction
between different Ce6 octahedra. We left this out because the
simplest assumption for the magnetic ordering of the system,
that all six spins of each octahedron are oriented in the same
direction, needs too strong interactions to lead to long-range
magnetic order. We return to this point below.

A. Solution of the Heisenberg Hamiltonian

The Hamiltonian (1) has the property that it is invariant
under the operations of the point group Oh applied to the space
part (the six positions of the spins) keeping the spins fixed,
and also the symmetry operations of SU(2) for the total spin.
Therefore it can be solved in an elegant way constructing the
states for each given total spin S and spin projection Sz that
for the space part have a well defined symmetry. Specifically,
for each S, Sz, we project the space part over the basis states
of the irreducible representations of the symmetry point group
Oh. The general procedure and the matrices used can be found
in Ref. [41].

Although there are 26 = 64 states in the system, using
symmetry the largest matrices that have to be solved are 2 × 2
(one for S = 0 and irreducible representation A2u and another
one for S = 1 and T1u). The resulting energies classified by
total spin and irreducible representation are listed in Table II.

The degeneracy of each eigenstate is given by (2S + 1)d
where d is the dimension of the irreducible representation
(irrep) of the space part, which is 1 for the A, 2 for E , and

TABLE II. Energies of the Heisenberg model Eq. (1) for different
total spin and irreducible representations (irrep).

S irrep EHeis

0 A2u −3J1 + 3
4 J2

0 T2u −2J1 − 1
4 J2

0 A2u − 9
4 J2

1 A1g −2J1 + 3
4 J2

1 Eu −2J1 + 3
4 J2

1 T1u −J1 − 1
4 J2

1 T1u − 5
4 J2

2 Eu
3
4 J2

2 T2u J1 − 1
4 J2

3 A1g 3J1 + 3
4 J2

3 for T independently of the subscript which indicates the
symmetry under inversion (g for even and u for odd states).
For the particular case J2 = J1, the symmetry increases to the
permutation group of six elements S6 and there are additional
degeneracies.

From the resulting energies, it is easy to realize that ne-
glecting HCF and assuming not too large J2, in particular for
|J2| � J1, the model predicts three transitions at temperature
T = 0 as a function of magnetic field between the state of
minimum energy for S = i − 1 and S = i at the critical fields

Bi = iJ1. (4)

Remarkably, this simple result is independent of J2 in the in-
dicated range. We also obtain that other results do not change
substantially with J2. Therefore we will take J2 = 0 in the
numerical evaluations shown here.

Experimentally there are four transitions as a function of
magnetic field for T = 0, see Fig. 7. In fact, we find that
splitting the states of S = 2 and 3 by the cubic crystal field
given by Eq. (2), for certain values of the factor C, five states
appear in the ground state for increasing B giving rise to four
transitions.

B. The structure of the ground state

For small J2 and B, among the 20 spin configurations with
Sz = 0, 12 are present (with equal probability) in the ground
state, which has total spin S = 0 and space symmetry A2u. The
remaining eight configurations are present in the excited state
with S = 0 and space symmetry A2u. The state of smallest
energy, the ground state, can be constructed combining two
spin triplets to form a total spin 0 (a singlet). One of the
triplet is constructed from two spins at opposite sites of the
octahedron, which we call the “poles”:

|11〉P = |↑↑〉, |10〉P = |↑↓〉 + |↓ ↑〉√
2

,

|1 − 1〉P = |↓↓〉. (5)
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TABLE III. Energies of the crystal field plus magnetic field term
HCF − BSz for different total spin and eigenvalues of a rotation in
π/2.

S C4 E2

2 1 72C

2 −i −48C − B

2 i −48C + B

2 −1 12C −
√

(2B)2 + (60C)2

2 −1 12C +
√

(2B)2 + (60C)2

3 1 120C

3 −i 120C + B −
√

(2B + 60C)2 + 240C2

3 −i 120C + B +
√

(2B + 60C)2 + 240C2

3 i 120C − B −
√

(2B − 60C)2 + 240C2

3 i 120C − B +
√

(2B − 60C)2 + 240C2

3 −1 −420C −
√

(2B)2 + (300C)2

3 −1 −420C +
√

(2B)2 + (300C)2

The remaining spins at the “equator” ordered in a ring of four
sites constitute the other spin triplet:

|11〉E = 1

2
(−|↓ ↑↑↑〉 + |↑ ↓↑↑〉 − |↑ ↑↓↑〉 + |↑ ↑↑↓〉),

|1 − 1〉E = 1

2
(|↑↓↓ ↓〉 − |↓ ↑ ↓↓〉 + |↓↓ ↑↓〉 − |↓↓ ↓↑〉),

|10〉E = 1√
2

(|↑ ↓↑↓〉 − |↓ ↑↓↑〉). (6)

The ground state is

|g〉 = 1√
3

(|11〉P ⊗ |1 − 1〉E − |10〉P ⊗ |10〉E

+|1 − 1〉P ⊗ |11〉E ). (7)

It is important to stress that the ground state is a singlet
and it has a substantial energy gap with the excited triplet. As
a consequence, for zero applied magnetic field, one expects a
nonmagnetic system. Such scenario explains the lack of mag-
netic peaks in the neutron diffraction experiments discussed
in Sec. III A.

C. Splitting of the spin degeneracy by the cubic crystal field

The energy for each eigenstate of the Hamiltonian | j〉 is
given by

E ( j) = EHeis( j) + E2( j), (8)

where EHeis( j) is given in Table II and E2( j) is the contribu-
tion to the energy of HCF − BSz [last two terms of Eq. (3)].
For the states with S = 0, E2( j) = 0, and for the states with
S = 1, E2( j) = −BSz, since the crystal field does not split
these states. For S = 2 and 3, we extend the results of Lea,
Leask, and Wolf [40] to the case when a magnetic field is
present. The corresponding energies are listed in Table III.

Each eigenstate is also eigenstate of the operator Ĉ4 of a ro-
tation of the spin in π/2 around z: Ĉ4| j, S〉 = C4| j, S〉, where
| j, S〉 is the spin part of the eigenstate | j〉. The eigenvalues

TABLE IV. Magnetic fields at which a transition occur BT /J1 and
the spin projection before transition 〈Sz〉o and after transition 〈Sz〉 f .

BT /J1 〈Sz〉o 〈Sz〉 f

1 0 1

1.856 1 1.778

3.540 1.931 1.997

3.936 1.997 2.962

C4 = exp(−iπSz/2) are listed in the table. The expectation
value is 〈 j|Sz| j〉 = −∂E2( j)/∂B.

Choosing C = 0.00638J1 and J2 = 0, we obtain four tran-
sitions as a function of magnetic field at zero temperature in
qualitative agreement with experimental results. The first one
corresponds to B1 = J1 (as for C = 0) between the state of
lowest energy with S = 0 and space symmetry A2u and the
degenerate states with S = Sz = 1 and space symmetry A1g

and Eu. The second transition at B2 = 1.856J1 is between
the latter state and the state of lowest energy with S = 3,
space symmetry A1g and C4 = −1. The third transition at
B3 = 3.540J1 takes place between the latter state and the state
of lowest energy with S = 2, space symmetry Eu and C4 =
−1. Finally the last transition at B4 = 3.936J1 corresponds to
the transition between the latter state and the state of lowest
energy with S = 3, space symmetry A1g and C4 = i.

The expectation value of the total spin projection of the oc-
tahedron 〈Sz〉 as a function of magnetic field is like a staircase
with four jumps at the transition points Bi. The values Bi and
〈Sz〉 at the transitions are listed in Table IV.

D. Crossovers as a function of magnetic
field at finite temperature

For finite T , the total spin projection of the octahedron
〈Sz〉 as a function of B is a continuous smooth function,
see Fig. 8. Therefore the transitions described at the end
of the previous section become crossovers. We expect that

0 1 2 3 4 5 6

B/J1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

<
S

Z
>

kBT = 0.1J1

kBT = 0.001J1

FIG. 8. Spin projection 〈Sz〉 as a function of magnetic field B at
different temperatures and C = 0.00638J1.
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FIG. 9. Local maxima of ∂〈Sz〉/∂B as a function of temperature
T and magnetic field B for C = 0.00638J1.

substantial changes in the resistance take place at the relative
maxima of ∂〈Sz〉/∂B.

We note that the partition function

Z =
64∑
j=1

exp

(
−E ( j)

kBT

)
, (9)

with E ( j) defined in Eq. (8) and Tables II and III is an analytic
function of T and B from which all thermodynamic quantities
can be derived.

In Fig. 9, we show the results for the local maxima of
∂〈Sz〉/∂B as a function of temperature. As T is increased some
local maxima disappear. In particular the transition at B3 for
T = 0 which involved a small change in 〈Sz〉 is rapidly blurred
with increasing temperature (see Figs. 8 and 9). Since this is
not experimentally the case, probably the nature of the third
transition is different from that predicted by our model.

Another discrepancy with the experiment is that the last
transition is displaced to larger B with increasing T in our
theory. This is corrected when interoctahedra magnetic inter-
actions are included (see next), since the effective field felt by
each ion decreases with temperature.

1. Effects of magnetic interactions between different octahedra

The above picture is substantially modified when mag-
netic interactions of spins belonging to different octahedra
are included. As it is well known, in a finite system there
are no phase transitions, but the interoctahedra interactions,
even if they are small, connect all Ce magnetic moments of
the system. Even if these interactions are not known, one
can conclude on general physical grounds, that the above
described crossovers become real transitions if the magnetic
space groups of the two phases involved are different. We have
assumed here uniform magnetization in which all Ce spins
have the same spin projection 〈Sz〉/6, but the inter-octahedra
interactions can modify this picture.

Looking at the irreducible representations of the point
group of one octahedron (see Table II), one realizes that all

0 1 2 3 4 5

kBT/J1

0.0

0.2

0.4

0.6

0.8

J
1
χ

0

FIG. 10. Magnetic susceptibility as a function of temperature for
C = 0.00638J1.

jumps in the total spin of the octahedron induced by magnetic
field at low temperatures are accompanied by a change of
symmetry, except possibly for the jump between S = 1 and
2. For S = 2, the ground state has Eu symmetry and for S = 1
the ground state is degenerate between Eu and A1g. However,
as argued in Sec. IV E, the former is likely to be favored by
the interactions between octahedra. Therefore it is possible
that the second and third phases observed in Figs. 7 and 9
for increasing magnetic field at low temperatures correspond
to the same magnetic group. Then one expects that at low
temperatures one has a first-order transition but that it can end
at a critical point at finite temperatures. This is consistent with
the experimental observations in Fig. 7. For the rest of the
transitions, one expects that they remain as real transitions for
all finite temperatures, because of the different symmetries of
the two phases involved.

E. Magnetic susceptibility as a function of temperature

In Fig. 10, we show the magnetic susceptibility defined as

χ0(T ) = ∂〈Sz〉
∂B

∣∣∣∣
B=0

, (10)

where the subscript 0 indicates that magnetic interactions be-
tween different octahedra have been neglected and only inter
octahedra interactions have been taken into account. There is
a maximum for kBTmax = 0.5496J1 with χ0(Tmax) = χmax

0 =
0.7360/J1. As it can be seen, the magnetic susceptibility is
zero at low temperatures and the increase while increasing
temperature is due to the population of excited triplet states.
A further decrease in magnetic susceptibility occurs at even
higher temperatures.

To discuss the effect of the magnetic interactions between
different octahedra, let us assume that the effective magnetic
field felt by each spin is increased including this interaction in
mean field,

Beff = B + K
〈Sz〉

6
, (11)
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where K is the sum of the interactions felt by a given spin
that are outside its octahedron, and it is assumed that the
expectation value of all spins is the same (〈Sz〉/6) and point
in the z direction. The ordering between different octahedra
can be ferro- or antiferromagnetic, depending of which one
minimizes the energy. Under these assumptions the magnetic
susceptibility is

χ = ∂〈Sz〉
∂B

= ∂〈Sz〉
∂Beff

∂Beff

∂B

= χ0

(
1 + K

χ

6

)
= χ0

1 − K
6 χ0

. (12)

This implies that for a sufficiently large interaction K >

6/χmax
0 , the system is magnetically stable in the range of tem-

peratures for which χ0(T ) > K/6, and there is a magnetizing
transition at T2 and demagnetizing transition at T1 > T2, where
T1 and T2 are the two roots of χ0(T ) = K/6. The identification
of these two roots with TN2 and TN1 respectively, opens the
possibility for a temperature-driven transition from a nonmag-
netic ground state to a weakly magnetic state at TN2 , followed
by a subsequent transition to another nonmagnetic state at TN1 .

We have done calculations including this interaction, but it
turns out that the required K is too large and shifts the Bi to
too large values, which would require a gyromagnetic factor g
much larger than expected.

We think that for the magnetic order, the hypothesis of
a uniform magnetization of each octahedron is not correct,
and that the system gains more energy for other distributions,
for example with Eu symmetry, which is part of the ground
state in the sector S = 1. Research along this line requires
more information on the interactions, and breaking the Oh

symmetry for the effective Hamiltonian of each octahedron.
More realistic interactions may transform nonmagnetic

phases at finite temperatures into weakly magnetic ones. In
any case, these findings align with the absence of distinct
magnetic peaks in neutron diffraction experiments. In essence,
under a zero magnetic field, the system likely exhibits charac-
teristics akin to a valence-bond liquid, undergoing multiple
magnetic transitions as the magnetic field strength increases,
as previously described.

V. SUMMARY AND DISCUSSION

We have studied the compound Ce6Ni6P17 based on a se-
ries of measurements (in powders and single crystals), which
include magnetization, specific heat and resistivity. From the
kinks in the susceptibility and resistivity, and the peaks in the

specific heat, a rich phase diagram in the plane of temperature
T and magnetic field H is obtained, for T < 1 K and H <

25 kOe, where five different phases can be identified. Besides
clear evidence of important magnetic fluctuations above the
ordering temperatures is seen in all the physical properties
measured, both on powder and single crystal Ce6Ni6P17. The
magnetic frustration originates on the Ce+3 magnetic ions
which are accommodated on a highly frustrated crystal struc-
ture of body-centered cubic Ce6 octahedrons.

From the entropy ≈Rln2 per Ce+3 ion at T ∼ 10 K, one
concludes that al low T the relevant degrees of freedom are
Ce+3 doublets split by crystal field from the total angular
momentum J = 5/2 of the 4 f 1 configuration. This fact sug-
gest to use a spin-1/2 Heisenberg model including only the
nearest-neighbor interaction J1 as a first approximation to
describe the system. The geometry corresponds to six spins at
the vertices of a regular octahedron. We obtain that J1 should
be antiferromagnetic and since all faces of the octahedron are
triangles, a perfect antiferromagnetic alignment is impossible
and the system is highly frustrated. Nevertheless, the ground
state has a rather simple structure [see Eqs. (5)–(7)] and is a
singlet. For each octahedron as a function of increasing H the
total spin in the model should jump gradually from S = 0 to
3. These jumps become crossovers at finite T , but in the real
system, the magnetic interactions between different octahedra
should lead to phases belonging to different magnetic space
groups (except probably for the transition between S = 1 and
2) leading to magnetic transitions instead of crossovers.

Further progress in the understanding of the system would
come from the identification of the ground state doublet of
an isolated Ce+3, as it would be an important step towards
a detailed microscopic magnetic interactions model for the
system. However our simple model is able to qualitatively
account for most of the experimental evidence studied.
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