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Process-evaluation of forest aerosol-cloud-
climate feedback shows clear evidence from
observationsand largeuncertainty inmodels

Sara M. Blichner 1,2 , Taina Yli-Juuti 3, Tero Mielonen 4,
Christopher Pöhlker 5, Eemeli Holopainen 3,4,14, Liine Heikkinen 1,2,
ClaudiaMohr1,2,15,16, PauloArtaxo 6, SamaraCarbone7, BrunoBackesMeller 6,
Cléo Quaresma Dias-Júnior 8, Markku Kulmala 9, Tuukka Petäjä 9,
Catherine E. Scott 10, Carl Svenhag11, Lars Nieradzik 12, Moa Sporre 11,
Daniel G. Partridge 13, Emanuele Tovazzi13, Annele Virtanen 3,
Harri Kokkola 3,4 & Ilona Riipinen 1,2

Natural aerosol feedbacks are expected to become more important in the
future, as anthropogenic aerosol emissions decrease due to air quality policy.
One such feedback is initiated by the increase in biogenic volatile organic
compound (BVOC) emissions with higher temperatures, leading to higher
secondary organic aerosol (SOA) production and a cooling of the surface via
impacts on cloud radiativeproperties.Motivatedby the considerable spread in
feedback strength in Earth SystemModels (ESMs), we here use two long-term
observational datasets from boreal and tropical forests, together with satellite
data, for a process-based evaluation of the BVOC-aerosol-cloud feedback in
four ESMs. The model evaluation shows that the weakest modelled feedback
estimates can likely be excluded, but highlights compensating errorsmaking it
difficult to draw conclusions of the strongest estimates. Overall, themethod of
evaluating along process chains shows promise in pin-pointing sources of
uncertainty and constraining modelled aerosol feedbacks.

Since the industrial revolution, the total anthropogenic warming
causedby increased greenhousegas concentrations in the atmosphere
has been partially masked by the cooling from anthropogenic emis-
sions of aerosol particles and their precursors1. Atmospheric aerosol
particles scatter and absorb incoming radiation directly (aerosol-

radiation interactions, ARI) and act as cloud condensation nuclei
(CCN). Increased aerosol loadings are thus expected to lead tobrighter
and more reflective clouds (aerosol-cloud interactions, ACI)2,3. In the
assessments of historic climate forcing and projections of future cli-
mates, ACI have remained among the largest sources of uncertainty4.
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Oneof the factors contributing to this is the non-linear responseofACI
to perturbations in particle emissions, which is stronger in a clean than
a polluted atmosphere3,5. The importance of natural aerosols and the
feedbacks associated with them may hence increase (again) as we
move into a warmer future where air pollution mitigation is expected
to give a cleaner atmosphere and thus a reduced aerosol cooling1. To
accurately capture these effects, reliable representation and evalua-
tion of natural aerosol feedbacks in Earth System Models (ESMs) are
needed.

The biogenic secondary organic aerosol (BSOA) driven feedback
is one of the natural feedback mechanisms that has been proposed to
compensate part of the reduction in anthropogenic aerosol
emissions6–9. This feedback is initiated by the strong positive rela-
tionship between temperature and the emissions of BVOCs10–12, which
form SOA after being oxidised in the atmosphere. The enhanced
production of SOA can then cool the surface by increasing the aerosol
optical depth (ARI related) and the number concentration of CCN (ACI
related)6–8,13. Despite considerable research effort being put into BSOA
feedback modelling, the estimates of the feedback strength vary by
two orders of magnitude – fromhighly significant ( −0.28Wm−2 K−1 for
NorESM2, offsetting almost 13% of the forcing from a doubling of CO2

from pre-industrial levels14), to completely negligible (0.001Wm−2 K−1

for UKESM1 in15, Table 9) see also8,9,13,16.
Boreal and tropical forests currently constitute about 27 and 45 %

of global forested area, respectively17. These forest ecosystems are
among the greatest sources of BVOCs emitted to the atmosphere18 and
the total global SOA burden18,19, and are therefore important drivers of
potential BVOC feedbacks. Tropical forests are characterised by high
diversity in tree species20, while boreal forests have fewer species
including a larger fraction of coniferous trees17,21. This leads to a dif-
ferent spectrum of BVOCs emitted by these two ecosystems: the tro-
pical BVOC emissions are dominated by isoprene (IP), while
monoterpenes (MT) typically dominate the VOCs emitted from boreal
forests22–25. The differences between the tropical versus the boreal
forest range fromdrivers of BVOCemissions10,26, themolecular spectra
of the emitted species, oxidation chemistry e.g.27, the hydrological
cycle, to cloud regimes, and it is therefore vital to analyse both
environments to understand the full impact of any feedback.

The models of SOA formation from BVOCs implemented in
most state-of-the-art ESMs are relatively similar: First, BVOC emis-
sions are calculated based on land use, vegetation and environ-
mental conditions see e.g.10. Emissions are often expected, at least
partially, to follow an exponential relationship with temperature see
e.g.10. The BVOCs are then oxidised in the atmosphere by the com-
mon oxidants such as OH, ozone and NO3, and some percentage
(yield) of the oxidation products are assumed to formSOA. Constant
yields are often used for simplicity, hence ignoring e.g. variations in
nitrogen oxides’ concentrations, relative humidity or aerosol acidity
as well as sub-grid co-variability of oxidants and BVOCs19. The oxi-
dation products of the BVOCs are lumped into some number of
tracers (often two) with different representative molecular proper-
ties (e.g. volatility) that affect their behaviour such as participation
in new particle formation (NPF). Models have very different degrees
of sophistication in the representation of SOA formation and its
aerosol particle size distribution dynamics, resulting in high inter-
model variability28,29. ESMs need to strike a balance between process
detail and computational burden. This raises the question of what
degree of simplification is acceptable and what improvements in
ESMs should be in focus to ensure accurate enough predictions of
the BVOC-aerosol-cloud-climate feedback.

The current common practices for estimating the BVOC-aerosol-
cloud-climate feedback strength in models see e.g.14,15 are based on
highly unrealistic perturbations, which cannot be evaluated against
observations. However, the emergence of long-term in-situ observa-
tional data sets30–36 gives rise to a unique opportunity to use natural

variability in environmental parameters and aerosols as a proxy for
perturbed states of the climate. While satellite data has been used to
evaluate e.g. cloud processes in ESMs37–39, in-situ data has mainly been
used to evaluate state variables in aerosols (mass and number con-
centrations, size distribution etc.), but not the relationships or pro-
cesses connecting these. Combined with satellite data, these in-situ
data setsmake it possible to follow regional processes affecting aerosol
composition and size distribution all the way to aerosol-cloud inter-
actions, and to compare the modelled and observed relationships.

Here we use two emerging long-term in-situ data sets repre-
senting the boreal and tropical forest environments together with
satellite data to evaluate ESMs with respect to the modelled rela-
tionships between the variables in the feedback loop depicted in
Fig. 1. The Station for Measuring Ecosystem-Atmosphere Relation-
ships (SMEAR-II)40 in Southern Finland is used for the boreal zone
and the Amazon Tall Tower Observatory (ATTO) measurement sta-
tion is used to represent a tropical rainforest environment41. We
evaluate the models by examining the components of the BVOC-
aerosol-climate feedback chain from the temperature dependence of
emissions through to subsequent impacts on organic aerosol mass,
particle number size distribution and cloud properties (following8)
using natural variability in environmental conditions as a proxy for a
perturbed climate state: i.e. we evaluate the relationships between
the variables in the feedback loop under natural variability of
weather. We seek to gain insight into the key processes contributing
to the BVOC-aerosol-cloud-climate feedback strength and behaviour
in these two globally important forest ecosystems, and their repre-
sentation in ESMs. The total feedback is by definition the change in
radiative forcing (F) with temperature (T) and can be decomposed as
follows:

dF
dT

=
dðOAÞ
dT

� dðCCNÞ
dðOAÞ � dðcloudprop:Þ

dðCCNÞ � dF
dðcloudprop:Þ ð1Þ

where CCN is cloud condensation nuclei concentration, OA is the
organic aerosol mass, and “cloud prop.” refers to cloud properties. In
this study, we target the terms in the feedback up until changes in

Fig. 1 | Illustration of the key parameters and processes associated with the
Biogenic Volatile Organic Compound (BVOC)-aerosol-cloud-climate-feedback.
Red arrows indicate positive (enhancing) and blue negative (dampening)
responses.
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cloud properties, i.e.

dðcloudprop:Þ
dT

=
dðOAÞ
dT

� dðCCNÞ
dðOAÞ � dðcloudprop:Þ

dðCCNÞ

=
dðOAÞ
dT

� dðcloudprop:Þ
dðOAÞ

ð2Þ

The relationship between changes in cloud properties and forcing
dF

dðcloudprop:Þ

� �
is currently an active area of research in its own right see

e.g.3,42, which we, therefore, leave outside of the scope of this study.
Note that using present-day conditions to evaluate the feedback limits
our analysis to the “pure” temperature feedback and excludes the
potential effect of CO2 fertilisation onBVOCemissions, whichhasbeen
shown to be a large contributor in some ESMs see e.g.43. We use
concentrations of number of particles larger than 50 nm, 100 nm and
200 nm (N50, N100, N200) to investigate the link between OA and CCN,
“cloud prop.” is investigated by changes in cloud droplet effective

radius and cloud optical thickness, and we evaluate the terms dðCCNÞ
dðOAÞ

and dðcloudprop:Þ
dðCCNÞ both separately and combined, i.e. dðcloudprop:Þ

dOA , to assess

the combined effect. In our process-based evaluation, we combine the
insights from relevant observational data sets with the unrivalled
ability of ESMs to produce projections on a global scale.

Results
Relationship between temperature and organic aerosol mass
concentration
Observational data from both SMEAR-II and ATTO display a clear
positive relationship between temperature and organic aerosol (OA)

mass concentrations (Fig. 2), described by an exponential function of
the formSOA=α expðβTÞ (residuals in Figs. S19 and S20). This is in line
with the expected exponential relationship between temperature and
emissions of BVOCs10,11 assuming the availability of BVOCs is a major
factor controlling SOA formation at the two sites compared to other
factors8. In the equation, α thus incorporates factors related to the
baseline emission strength of BVOCs, SOA yield, and the loss rates of
SOA, while the β term is related to the temperature dependency
(including possible temperature dependencies of yields, oxidation,
loss rates etc.). At SMEAR-II, the models all underestimate OA mass
concentration (see also section S9.1). However, β (the slope of the line
in the linear-log space in Fig. 2) is surprisingly well represented in all
the models, in spite of different emission schemes for BVOCs (see
Table 1). This means that at SMEAR-II, the models would agree with
observations verywell if SOAyieldswere scaledup, all elsebeing equal.
For ATTO, on the other hand, the models display very different
behaviour from each other and the observations, UKESM even show-
ing no real relationship (r2 = 0.06 for T versus lnðOAÞ) betweenOAwith
temperature. Note that both ECHAM-SALSA and UKESM have anom-
alously high temperatures for the years 2015 and 2016 (see discussion
in section S4.2 and in particular Figs. S11 and S14). If these anomalous
years are excluded, then ECHAM-SALSA is closer to the observations
because these years have highly abnormal emissions (the β-term in the
observations is 0.56 and ECHAM-SALSA has 0.20 with 2015/2016 and
0.46 without), while for UKESM the correlation stays similarly low as
with these years (see Table S3). The β-term in NorESM and EC-Earth
both have smaller values than the observed (0.33 and 0.25 versus the
observed 0.56), but this comes with a large overestimation of the OA
mass concentration, especially for NorESM. Contrary to SMEAR-II, the
OA concentrations at ATTO in the models are consistently too high,

Fig. 2 | Relationship between temperature and organic aerosol (OA) mass
concentration in EarthSystemModels (ESMs) (blue, red, orange andpurple for
ECHAM-SALSA, NorESM, EC-Earth and UKESM, respectively) and observations
(black) at The Station for Measuring Ecosystem-Atmosphere Relationships
(SMEAR-II, a–f) and Amazon Tall Tower Observatory (ATTO, g–l) during peri-
ods where biogenic secondary OA is known to dominate the OA budget
(July–August in SMEAR-II and February–April at ATTO). The main plot for each
station shows all the daily median values of temperature and OA mass and the
orthogonal distance regression for ln(OA) = aT+ b for the observations and nudged
model predictions for the same periods (see Methods for details). Histograms of

the observed and predicted values are shown on the top (for temperature) and
right (for OA) side of the main plots (a and g). The smaller plots display the same
information as the large plot but for each data source separately. The ESM grid box
covering the station (nearest-neighbour) is chosen for evaluation. Regressions are
not shown for UKESM at ATTO because the correlation is too weak (r2 = 0.06, see
Table S2). For ATTO, star symbols and dashed lines indicate values when 2015/2016
are excluded from thedata.Residuals for different regressions are shown inS19 and
S20. See Tables S1–S3 for uncertainties and r2 values for the regressions. Source
data are provided as a Source Data file.
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with NorESM being the most extreme (Fig. 2 and S49). Note also that
the temperature range at ATTO is much smaller than at SMEAR-II. This
is a natural consequence of a tropical versus a boreal environment and
introduces somemore noise into the signal in ATTO than in SMEAR-II.

These results confirm step (1) in our simplified chain of processes
(Fig. 1), i.e. that temperature indeed is a key factor regulating atmo-
sphericOA for both boreal and tropical forest environments in seasons
where we expect biogenic SOA to dominate the OA budget. The stu-
died ESMs reproduce this relationship reasonably well in the boreal
zone, but in the tropical environment there is a large disparity between
the models, with no model seeming to reasonably capture OA forma-
tion and its relationship to temperature.

In view of the results above, it might seem tempting to tune the IP
andMT SOA yields to improve the modelled OA concentrations, given
the dominanceofMT in the boreal zone and IP in the tropics. However,
further investigations with NorESM reveal that with the current model
setup, this tuningproblemmight not have a solution (the bestfit to the
observations has negative IP yields) and improving the model may
requiremore sophisticated yield calculations and the related oxidation
chemistry (see section S8.1.1).

Relationship between organic aerosol mass and number/size of
particles
The relationship between OAmass concentration and particle number
concentration in different size ranges indicates which parts of the
aerosol particle size distribution are perturbedwhen the production of
SOA is changed, and thus how strong the change in CCN and cloud
properties might be due to increasing BVOC emissions in the chain of
processes depicted in Fig. 1. If, for example, SOA mainly condenses
onto coarse mode particles (larger than 2.5 μm in diameter), then the
climate effects may be weak even with strong changes in emissions,
because these particles are already large enough to act as CCN. On the
other hand, if there is a significant addition of new particles in the CCN
range (particles larger than the activation diameter which is typically
50 nm to 200 nm, depending on particle composition and ambient
maximum supersaturation) then the climate impact may be very large
even for relatively modest emission enhancements.

The observational results shown in Fig. 3 (see Tables S1–S2 for
regression details) confirm a clear positive relationship between OA
and N50, N100 and N200 for both SMEAR-II and ATTO, which is mostly
represented in the models as well. However, the comparison reveals a
great spread in how the models represent the sensitivity of particles
large enough to act as CCN to perturbations in OA mass. Since SOA
dominates the OA budget at these locations and times, this describes
the sensitivity of climate-relevant particle number concentrations to

SOA formation. For example at ATTO, EC-Earth, ECHAM-SALSA and
UKESM underestimate the slope between OA and N100, while NorESM
overestimates it (see Tables S1–S2). NorESM stands out as strongly
overestimating the impactofOAonN100 andN50, while simultaneously
underestimating the impact on N200. This is likely related to a fairly
high concentration of Aitken mode particles in NorESM see e.g.29 and,
consequently, a large perturbation resulting from condensing SOA
growing these particles. UKESM and EC-Earth perform very similarly
and are themodels closest to capturing the impact onN200, while both
ECHAM-SALSA and NorESM underestimate this. Overall, EC-Earth,
ECHAM-SALSA and UKESM consistently underestimate the impact of
OA on N100 and N50, while NorESM overestimates it .

At SMEAR-II observations reveal a distinct buffering in the impact
onN50 andN100 for highOA concentrations and the relationship is well
captured by a logarithmic function,Nx =a+b lnðc+OAÞ. This buffering
is not seen in the sameway at ATTO. A buffering could be expected for
many different reasons: for one, with increased OA and thus number
concentration, the organic vapours will condense ontomore particles,
thus limiting the growth of each particle per increase in OA. Secondly,
high loadings of OA could inhibit new particle formation (NPF) which
will be suppressed both by an increased condensation sink (reducing
pre-cursor concentrations) and coagulation sink (reducing survival of
particles to larger sizes) e.g.44. SMEAR-II is known tohave frequentNPF,
even in summer45, ATTO is known to have very little22, which could
explain thediscrepancy between the two stations.On theother hand, it
could also be due to the aerosol concentrations (both number and
mass) simply being too low at ATTOcompared to SMEAR-II, so that the
buffering would only be seen at higher concentrations. The buffering
seems to be captured in all models except NorESM, but it is too strong
in EC-Earth, ECHAM-SALSA and UKESM. None of the models have
buffering at ATTO. The observed relationships between OA and
number concentration for the two environments (SMEAR-II andATTO)
are almost identical if both are fitted with a linear regression (see
Figs. S17 and S18). The models, however, predict a larger difference
between the two sites, with the exception of UKESM. The consistency
of the observed slope may of course be incidental, or it might be a
symptom of some process constraining the size distribution dynamics
in reality which is currently not well represented in models.

Overall, these results reveal a large uncertainty in the modelled
processes of SOA formation and highlight the importance of ade-
quately capturing aerosol size distribution dynamics.

Relationship between OA and cloud properties
We here analyse the modelled and observed impact on cloud prop-
erties, as represented by cloud optical thickness and cloud droplet

Table 1 | Summary of model components

Model NorESM61 ECHAM EC-Earth62,63 UKESM64

-SALSA65

BVOC emissions MEGAN2.110 MEGAN2.110,68 LPJ-GUESS 4.147,69 iBVOC: ref. 66,67
IP from70

MT from48

Aerosol scheme OsloAero671

(hybrid/plume scheme)
SALSA65

(sectional)
M772

(modal)
UKCA-GLOMAP73

(modal)

Vegetation/land surface model CLM-BGC74 JSBACH v377–79 H-TESSEL80 JULES75,76

Activation scheme Abdul-Razzak & Ghan(ARG)82 ARG81 sectional ARG82 with updraft pdf ARG82 with updraft pdf

Nucleation BL: ref. 83
Everywhere: ref. 84

Strat: ref. 84
Trop: ref. 86

BL: ref. 85
Everywhere: ref. 84

Everywhere: ref. 84

SOA treatment 2 products
Cond. as non-volatile

3 bin VBS
Cond. as semi-volatile

2 products
Cond. as non-volatile

1 product
Cond. as non-volatile

Warm clouds Double-moment
bulk scheme MG287

Double-moment
bulk scheme88

Single-moment
bulk scheme63

Single-moment
bulk scheme73

“Cond. as non-volatile”means theorganicproducts are treated essentially as non-volatile duringcondensation. Thenucleation rates are reported togetherwithwhichpart of the atmospherethey are
applied to: only in the boundary layer (BL), in the troposphere (Trop.), in the stratosphere (Strat.) or everywhere.
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effective radius. By binning by cloud water path (CWP), we constrain
the impact of different cloud regimes/types on our analysis and also
effectively constrain it to mainly the cloud albedo effect (or the first
indirect effect), leaving other aerosol-cloud interactions outside the
scope of this study3. We focus on the change in cloud properties as a
result of changes inOA (Fig. 4), not CCN. This is because the activation
diametermay vary both within and betweenmodels and reality, and to
evaluate the feedback strength, it is easier to follow the signal as out-
lined in Eq. (2) by considering dðcloudprops:Þ

dðOAÞ rather than dðcloudprops:Þ
dðCCNÞ . See

the supplementary, section S7.2, for the same figure as Fig. 4 but with
high versus low N100 and N50.

The response of cloud properties to OA, as derived from satellite
data from areas around both SMEAR-II and ATTO, aligns well with the
simplified picture outlined in Fig. 1: themedian cloud optical thickness
(COT) is generally higher and cloud droplet effective radius (reff) lower
onhighOAdays as comparedwith lowOAdays (Fig. 4), within the same
binofCWP.This is true for themajority of theCWPbins, although there
are bins where the difference is not significant (e.g. the lowest bins of
CWP at SMEAR-II and the lowest and highest in ATTO). This is, to the
best of our knowledge, the first time such an analysis has been done for
the tropical environment with results indicating an environment where
the clouds are sensitive to changes in BVOC emissions.

The ESMs, on the other hand, do not provide a uniform picture of
the response of the cloud properties to changes in OA. For SMEAR-II
(Fig. 4a, c), none of the analysed models consistently replicate the
observed increase in COT and decrease in reff on days with high OA
versus low OA. While NorESM produces the right sign for the differ-
ence in COT and reff, the magnitude of the response is clearly too high
(more than double that of the observations for CWP below 250 gm−2)
compared to the observations, especially considering that the total OA
concentrations (and thus also the change between high and low) are
lower in the model than in the observations. This is likely due to the
overestimation of the slope between OA and N100 and N50 meaning
that the increase in CCN is too strong for high OA concentrations. The

same analysis for N100 instead of OA (see Fig. S30a) also shows an
equally strong overestimation, which could indicate a too strong
aerosol sensitivity ingeneral in themodel. ECHAM-SALSAoften is close
to the observations in the median, but the uncertainties are high and
the response is significantly different from zero for only very few CWP
bins. The model also shows an increase in reff (as opposed to the
expected decrease) for the smallest CWP bins at SMEAR-II, though not
significantly different from zero. These results for ECHAM-SALSA
stand in contrast to the same analysis for high versus lowN100 and N50

(Figs. S30 and S31), which show a stronger and more often significant
response. It is therefore likely that the weak relationship between OA
andN50 seen in the previous section (see Fig. 3) likely plays a significant
role in reducing the impact of OA on cloud properties. UKESM and EC-
Earth show a significant response only for the lowest CWP bins in the
boreal environment, where the observations show a very weak change
in cloud properties. The low response in UKESM in the boreal zone is
not due to aweak aerosol sensitivity though (see Fig. S30a), but is likely
due to an erroneously low hygroscopicity of OA in UKESM (confirmed
through code inspection) which counteracts the effect of size during
activation. Note that the distribution of CWP in UKESM is quite heavily
skewed towards lower values, meaning that the smallest bins showing
a significant response in Fig. 4 for SMEAR-II actually constitutemost of
the data. EC-Earth has a similar lack of response in the higher CWP bins
forN100 andN50 as forOA. This limits the impact of the feedback and is
not in accordance with the observations, especially for the middle
values of CWP. For ATTO, all the models underestimate the change in
reff with elevated OA concentrations, possibly with the exception of
ECHAM-SALSA. On the other hand, for COT, NorESM is very similar to
the observations, thoughwith somenon-significant overestimation for
the middle CWP bins. ECHAM-SALSA overestimates the response for
all CWPbins and ismore than a factor of two toohigh for all bins above
170 gm−2. Note that both models show inconsistent responses in reff
compared toCOT,while the observationsmostly show the response to
bemirroredbetween the two. The low responseof themodelled reff for

Fig. 3 | The relationships between daily median organic aerosol (OA) mass
concentration and the number concentration of particles larger than 50 nm
(N50), 100 nm (N100) and 200 nm (N200). The Station for Measuring Ecosystem-
Atmosphere Relationships (SMEAR-II) in July–August is shown in the left panel in
a–e (N50), k–o (N100) and u–y(N200) and the Amazon Tall Tower Observatory
(ATTO) in February–April is shown in the right panels in f–j (N50), p–t (N100) and
z–ad(N200). ForATTO, the sizedistributionmeasurements only goup to 500nm, so
weuse the same intervals for themodels. The lines show the least-square regression
to a logarithmic function (a+b lnðc+ xÞ) for N50 and N100 at SMEAR-II and the
orthogonal distance regression to a linear function for all the others (ax + b) (see

Methods for details). The regressions and their properties are summed up in
Tables S1–S2 and the residuals for the regressions are shown in Figs. S21, S23,
S25–S28. The equivalent figure, but with all regression lines linear is shown in
Fig. S17with residuals in Figs. S22 and S24.NB: For ATTO, the axis limits for NorESM
are eight times those of the other plots (indicated by the red axis and background
colour of the plot). Also note that for N100 at SMEAR-II, NorESM is shown with a
linear fit because the regression did not converge for the logarithmic function. See
Tables S1–S2 for uncertainties and r2 values for the regressions. Source data are
provided as a Source Data file.
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all the models in ATTOmight be related to droplet sizes being smaller
in the models (see Fig. S34b), making the clouds less susceptible to
perturbation (updraft- rather than CCN-limited see e.g.32). This is
consistentwith the response of the cloud properties to high versus low
N50 and N100, which is similarly low as for OA, and also the fact that the
models overestimate aerosol concentrations at ATTO. In NorESM in
particular, the extreme overestimation of both OA and the number of
particles in the region (Figs. 2 and 3), likely results in the cloud regime
to be updraft- rather than CCN-limited. Note that this is the opposite
picture to SMEAR-II where most models were too sensitive to changes
in N50 and N100.

The changes in cloud properties are the most challenging both to
compare and interpret due to e.g. the diversity in representation in the
models, and different resolutions and uncertainties in the satellite
products. This is illustrated by the relatively large differences between
themodels and observations in absolute distributions of CWP, reff and
COT shown in Figs. S32 and S34. Furthermore, themodels do not have
exactly the samediagnostics and vary greatly in their representation of
cloudiness (see Methods section). In spite of these challenges, we
believe that the results above clearly suggest at least the following: (1)
the observational data from SMEAR-II and ATTO confirm the final step
in the proposed feedback chain (Fig 1) in terms of the key dependen-
cies driving the BVOC-aerosol-cloud-climate feedback for liquid-phase
clouds; (2) NorESM overestimates the strength of the feedback in the
boreal zone; (3) most of the models underestimate the impact on reff
over the Amazon, thus reducing the feedback strength in thesemodels
in this environment; (4) overall, the ESMs do not provide a consistent
picture of the COT and reff response to OA — underlining the need for
improved constraints on this crucial processes in the feedback loop.

Discussion
We show that the proposed feedback in Fig. 1 is detectable in obser-
vations and likely plays an important role in tropical (presented for the

first time here) and boreal forests (already presented in ref. 8). Fur-
thermore, our methodology for evaluating feedbacks in ESMs, using
the interplay between key variables in the present-day climate to
evaluate how realistic a given feedback is represented in ESMs, is
shown to be efficient in identifying model weaknesses and also com-
pensating errors along the process chain.

As mentioned, our evaluation only targets the temperature
feedback and not the direct effects increased CO2 concentrations
can have on BVOC emissions – both through the so-called CO2 fer-
tilisation effect46 and through CO2 inhibiting isoprene emissions
directly see e.g.47. This CO2 “branch” is not strictly a feedback since
there is no dependency on temperature, but is still highly relevant
for future emissions and is included in the feedback estimates in15.
Gomez et al.43 show that for the latest generation of ESMs (Coupled
Model Intercomparison Project 6, CMIP6), the CO2 branch is highly
variable, and again UKESM and NorESM stand out as extremes: in
UKESM the CO2 branch has a negative effect on BVOC emissions due
to CO2 inhibition while in NorESM the CO2 fertilisation dominates
and the signal of the CO2 branch is slightly higher than the tem-
perature branch. In spite of this, most of the difference between
UKESM and NorESM originates in the conversion of the emission
change to actual forcing, as can be seen in Table 9 in ref. 15. The total
change in emissions per change in temperature (which includes
4 × CO2) is a factor of approximately 7 larger for NorESM than
UKESM, while the change in effective radiative forcing (ERF) per
change in emissions is a factor of 30 larger for NorESM than for
UKESM. Our analysis is able to pinpoint specific issues in both
models in exactly the steps that convert changing emissions to
forcing. Based on the four ESMs in this study, we demonstrate
especially the following four issues:
1. While the models generally get the temperature dependence of

OA mass concentration right for boreal forests (SMEAR-II), for
tropical forests (ATTO), both the dependency on temperature

Fig. 4 | The change in cloud properties between dayswithhigh and loworganic
aerosol (OA) concentrations. The difference in median cloud optical thickness is
shown in a (The Station for Measuring Ecosystem-Atmosphere Relationships,
SMEAR-II) and b (Amazon Tall Tower Observatory, ATTO) and the difference in
cloud droplet effective radius (reff) is shown in c (SMEAR-II) and d (ATTO). High OA
is defined as above 67th percentile days and lowOA as below 34th percentile days.
The uncertainties marked by the bars and are the 5th to 95th percentile of the

median calculated by bootstrapping and the percentile method (see Methods
section). The numbers in the middle signify the number of data points in low/high
OA in each cloud water path (CWP) bin. Note that for ATTO, UKESM and EC-Earth
CWP values have been divided by two to fit on the same x-axis as the other data
sources. The cloud optical thickness (COT) output was not available for EC-Earth
and UKESM and these are therefore only shown in the lowermost panels. Source
data are provided as a Source Data file.
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and the overall OAmass is highly diverse and in particular UKESM
has no response to temperature at ATTO.

2. The influence of OA on particle number and size in the models is
very diverse, which suggests that size distribution dynamics are
highly important for the feedback strength.

3. These relationships between OA mass concentration and particle
number concentration affect the strength of the OA impact on
clouds.

4. The hygroscopicity of OA in the models may affect the total
feedback. This is seen forUKESM in theboreal zone,wherewefind
a relativelyweakcloud response toOA, in spite of themodel being
quite sensitive to N100 (similar to EC-Earth and ECHAM-SALSA).

The models perform overall much more coherently with both
each other and the observations in SMEAR-II compared to ATTO. This
is perhaps not surprising: a long history of both forest and aerosol
research performed at SMEAR-II means that the observations from this
station have been used actively during the development of these
models and components therein. It does, however, speak to the
importance of both establishing long-term measurements in under-
sampled parts of the atmosphere – especially in the southern hemi-
sphere – and placing more weight on already existing measurements,
like those from ATTO, in model development. It is, for example, pos-
sible that the fixed SOA yield approach used in these models works
well enough in a boreal forest, but fails in a high isoprene environment
like the tropics see e.g.27. If so, this is a significant structural error in the
models.

In this study, two of the models have interactive oxidant chem-
istry, UKESM and EC-Earth. This is in contrast to NorESM and ECHAM-
SALSA, where oxidant concentrations are read from file and cannot be
affected (e.g. depleted) by changes in the BVOC emissions. It is inter-
esting that these models both have too low a slope or a too weak
relationship between temperature and OA mass (Fig. 2). This is espe-
cially true for UKESM, where the temperature dependency of mono-
terpene emissions is very similar to NorESM and ECHAM-SALSA (they
all useMEGANor pre-runners10,48),meaning that thedependencyofOA
mass on temperature is lost during the oxidation process. A recent
study by49 using UKESM emphasises that oxidant chemistry can play a
major role in the total feedback, also for the cloud-aerosol interactions.
While the oxidant chemistry response is clearly missing in models like
NorESM and ECHAM-SALSA that have fixed oxidant concentrations,
the fact that the models in this study with interactive chemistry (EC-
Earth and UKESM) agree poorly with the observations for the tem-
perature toOA relationshipmight encourage further improvements of
the oxidant chemistry in the tropical forest regions in the models.

Reliable climate projections, with natural feedbacks being inclu-
ded, require a sufficiently accurate representation of fundamental
processes and their response to changes in emissions or other forcers.
Our results show that evaluatingmean absolute variables produced by
amodel, althoughgenerally a commonpracticewithin climate science,
is not alone a sufficient measure for how well a model performs in this
task. As an example, NorESMperforms reasonably in representingN100

concentrations at SMEAR-II (see e.g. Fig. S41), but overestimates its
response to changes in OA (see Fig. 3). The predictive power of a given
model depends on the robustness of the underlying theoretical
treatment in reproducing the inter-dependencies of the key variables.
As demonstrated here for the BVOC-aerosol-cloud-climate feedback,
the combinationof emerging long-term in-situmeasurements, satellite
data, and process understanding bear great potential in finding new
ways to evaluate and constrain ESMs, and reduce uncertainties in their
projections.

Of the models considered here, NorESM has previously been
shown to have a strong feedback (around − 0.3Wm−2 K−1), while
UKESM has been shown to have a negligible feedback 0.001Wm−2

K−1 14,15. Estimates of the feedback strength in impacting cloud

properties, here represented by reff, in this study (Fig. 5) suggest
NorESM overestimates the feedback strength in the boreal zone,
while displaying a much too weak feedback in the tropical region in
spite of a very strong OA perturbation. On the other hand, UKESM
does not simulate a feedback in the tropical zone, due to the lack of
relationship between temperature and OA. ECHAM-SALSA shows a
positive full feedback in SMEAR-II for reff, but Fig. S6 shows that for
COT, the full feedback strength in ECHAM-SALSA is very close to the
observed estimate, thus revealing inconsistency in the modelled
cloud response. Overall, our study seems to rule out the lowest
model estimates of the feedback (UKESM). Although the strongest
model estimates (NorESM) is revealed to overestimate the feedback
in the boreal zone, the compensating error in the tropics makes it
hard to completely rule it out, especially considering the important
role the tropics play in the global radiation budget. The failure of
the models to correctly represent the processes in the feedback
chain is concerning, not only for their ability to capture this feed-
back, but their ability to capture aerosol–climate interactions in
general. Using process–based evaluation to improve the models
may aid in reducing uncertainty and spread in future climate pro-
jections. As global temperatures rise, the ability of ESMs to capture

Fig. 5 | Estimatedstrengthof the terms in the feedback loopat the two stations.
The change in organic aerosol (OA) per temperature is shown in panel a (The
Station for Measuring Ecosystem-Atmosphere Relationships, SMEAR-II) and
b (Amazon Tall Tower Observatory, ATTO), the change in cloud droplet effective
radius (reff) per change in OA is shown in (c) (SMEAR-II) and d (ATTO), and finally
the product of these two terms, dreffdT = dOA

dT � dreffdOA is shown in e (SMEAR-II) and
f (ATTO). The change in OA per change in temperature is estimated in accordance
with the exponential fit for each model evaluated based on a 3 ∘C temperature
perturbation from the current median (in accordance with the best estimate for
climate sensitivity4). The change in reff from change in OA is estimated by doing a
weighted average over the bins in Fig. 4. Finally the change in reff by change in
temperature is the product of the two above (reffT = OA

T
reff
OA). See Fig. S6 for the same

figure with cloud optical thickness (COT). Source data are provided as a Source
Data file.
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the strength and sign of feedbacks between the biosphere and cli-
mate will make an increasingly important contribution to their
ability to accurately simulate future climate.

Methods
At each station,we focus our analysis onperiodswherebiogenic SOA is
expected to dominate theOAbudget andwe further limit the period in
time to avoid seasonality significantly influencing the result. For
SMEAR-II, we focus on July and August, as already investigated in ref. 8.
For ATTO we focus on February – April, when (1) biogenic SOA is
expected to dominate the OA (wet season)22 and (2) the influence of
seasonal changes in cloud properties and OA are weak (see Fig. S29).
Note that there is still an increase in reffover Feb–Apr. However,wefind
that our results do not change in character depending on which
months are chosen, as canbe seen in Figs. S1–S3which show results for
ATTO from similar analysis as presented in Figs. 2–4 but for different
choice of months.

Observational station data
For organic aerosol mass, we use Aerosol Chemical Speciation Moni-
tor (ACSM; ref. 50) measurements performed within the boreal forest
canopy at SMEAR-II station in Hyytiälä, Finland (4 m above ground30),
and over the tropical forest canopy (60m above ground and about 20
m above canopy top) at ATTO station. The OA data from SMEAR-II and
ATTO covered years 2012–2018 and 2014–2018, respectively (see
Fig. S36). The particle number size distribution was measured within
the boreal forest canopy at SMEAR-II with a Differential Mobility Par-
ticle Sizer (DMPS)51. At ATTO, the particle number size distributionwas
measuredwith a ScanningMobility Particle Sizer (SMPS), and sampling
was conducted 60 m above ground level34,52. Number concentrations
N50, N100 and N200 were calculated by first interpolating the size dis-
tribution linearly to a finer resolution in diameter and then integrating
over the size distribution. For SMEAR-II, the size distribution mea-
surements go upuntil 1000nmandNx thus refers to the concentration
of particles between x nm and 1000 nm. For ATTO, the size distribu-
tion measurements only go up to 500 nm, so Nx here refers to the
concentration of particles between x nm and 500 nm. The same
intervals are used for the models. Note that to avoid impact of diurnal
cycle, we use only data where we have 15 ormore observations per day
(hourly resolution).

We use temperature and wind measured at SMEAR-II mast at 16.8
m above ground with Pt100 sensor. From ATTO we use temperature
measured at 81 mmeasured with CS215-L Digital Air Temperature and
Relative Humidity Sensor, which is close to the particle measurements
and has the best data coverage. For SMEAR-II, we have discarded
measurements when the wind direction (hourly resolution) was
between 120∘ and 140∘ to exclude the influence of the emissions from a
nearby saw mill53. All data is averaged to hourly values to be compar-
able to the model output.

Model and simulation descriptions
Key characteristics of the models are found in Table 1 and details are
found in section S11.

Model SOA yields
Themodels all have between 1 and three classes of oxidation products
for BVOC. NorESM and EC-Earth both have two oxidation products
which approximate extremely low volatility organic compounds
(ELVOC) and low volatility organic compounds (LVOC). Both are
treated as essentially non-volatile during condensation (condensation
is calculated separately), but only ELVOC can participate in NPF and
early growth. The molar (mass) yields for NorESM are as follows: IP +
(OH/O3/NO3)→ 5(12.33)%LVOC, MT + (OH/NO3)→ 15(18.5)%LVOC, O3 +
MT→ 15(18.5)% ELVOC. The molar(mass) yields for EC-Earth are as
follows: IP + OH→0.97(3.3)%LVOC + 0.03(0.11)% ELVOC, IP +

O3→0.99(3.37)% LVOC + 0.01(0.036)% ELVOC, MT + OH→ 14(23.8)%
LVOC + 1(1.8)% ELVOC and MT + O3→ 10(17)% LVOC + 5(9.1)% ELVOC.
UKESM has one oxidation product denoted LVOC which is treated as
essentially non-volatile during condensation. The molar (mass) yields
for UKESM are as follows: MT + (OH/O3/NO3)→ 26(28.7)%LVOC.
ECHAM-SALSA has a volatility basis set (VBS) parameterisation with 3
bins with saturation vapour concentrations at standard temperature
and pressure (STP) of 0, 1, and 10 μg/m3 denoted as V0, V1, V10,
respectively in the following. Partitioning between the gas and particle
phase is calculated by solving the condensation equations for each size
bin. The molar (mass) yields are as follows: MT + (OH/O3/
NO3)→ 10(10)% V0 + 3.7(3.7)% V1 + 8.5(8.5)% V10, IP + (OH/O3/
NO3)→ 2.95(5.9)%V1 + 4.53(9.06)%V10 for oxidants. See also Tables S4
and S5 for a full overview.

Simulation description
We use the same setup for all models as far as possible, simulating the
period from2012 to and throughout 2018, using 2011 as a spin-up year.
All models use nudging to ERA-Interim data54 with a relaxation time of
6 hours. The nudging variables varies slightly, see details in section S11
(divergence, vorticity and surface pressure in EC-Earth and ECHAM-
SALSA and horizontal winds in UKESM and horizontal winds and sur-
face pressure in NorESM). We use historical emissions based on the
Community Emissions Data System (CEDS) inventory as recom-
mended for historical simulations in CMIP655 up until the end of 2014
and after this,weuse SSP2-4.5 emissions56. Due to technical limitations,
EC-Earth used SSP3-7.0 for the emissions.

Comparing models and observations
Weoutput hourly data from themodels, with the exception of UKESM,
for which we only had 3 hourly output available, and the cloud prop-
erties for EC-Earth, which canonly be output in 3 hourly resolution. For
both stations we use the grid cell covering the station. We use the
bottommodel level of the modelled atmosphere for SMEAR-II and the
second level for ATTO for the analysis. The bottom layer typically
covers approximately 100 metres above the surface, which covers the
inlet heights at both sites, but since the inlet for the aerosol mea-
surements at ATTO is at 60 m we use the second layer to account for
possibly unrepresentedboundary layer dynamics, for example that the
measurements be outside of the nocturnal boundary layer (see diurnal
variability for ATTO inFig. S50). The choice of the level does not have a
strong effect on the results (see Figs. S4 and S5). For themodels where
it is possible (UKESM and EC-Earth), we omit OA in the coarse mode
when calculating the total OA because the measurements include only
PM1. In NorESM, OA cannot contributemuch to the coarsemode (POA
is mainly emitted in PM1 and SOA will condense according to con-
densation sink which is dominated by PM1 particles), so total OA is an
acceptable approximation for PM1. Similarly for ECHAM-SALSA, the
partitioning of SOA is calculated by solving the condensation equation
for all sizes. However, since the area-to-volume ratio is higher for PM1
than for the coarse mode, SOA will have a more significant contribu-
tion to PM1 that of the coarse mode.

Regression analysis
For the regression lines in Fig. 2 we use orthogonal distance regression
(ODR) (using the python package scipy and the scipy.odr.ODR57), for
fitting a linear regression of the form lnðOAÞ=aT +b. For the linear
regression between OA mass concentration and number concentra-
tions in Figs. 3 and S17 we again use ODR. Least-square regression is
used for the logarithmic regression in Fig. 3 becauseODR regression is
known to struggle with non-linear regression. We present logarithmic
regression onlywhen for OA andN50 andN100 at SMEAR-II, because we
did not observe the same buffering in the observations for the other
regressions. The fitted parameters and their standard deviations are
listed in Tabs. S1 and S2.
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Cloud properties
For the observations, we follow the procedure used in8, and use level-3
MODIS-Aquadata (MYD08_D3, 6.1) daytime values forCOTand reff. For
the models we use the median daytime (9–16 UTC+2 for SMEAR-II and
UTC-4 forATTO) values for the analysis. The analysis is limited to liquid
clouds (cloud top temperature over − 15∘C), and use only data where
CWP is above 50 gm−2, COT between 5 and 50 and reff larger than 5 μm.
This is to get the most reliable cloud observations. For the models, we
limit CWP and COT in the same way, but we limit reff only to reff > 1 μm
because the modelled distribution of reff is shifted towards much
smaller values than the observations (see Figs. S32–S34). While the
histogram over the observed reff declines to practically 0 before the
5 μm limit, limiting the models to this value would mean removing
significant parts of the distribution which could introduce artificial
effects into the analysis (see Figs. S34 and S34). The area used for the
analysis of cloud properties is 60–66 ∘N, 22–30 ∘E for SMEAR-II and
8–1 ∘S, 67–52 ∘W for ATTO.

Finally, ice clouds are filtered/masked from the model output
not by cloud top temperature (which was not available in the model
output), but rather via using output indicating ice (see details in
section S12). To produce the final plots, the bins of CWP are uni-
formly distributed between the lowest value (given that below
50 gm−2 values are already filtered out) and the 95th percentile of the
CWP for each data source (observations or model output). The
position of the CWP bin on the x-axis is the median CWP within
the bin. For ATTO, UKESM is limited to CWP below 800 gm−2 due to
outliers (see Fig. S33b).

Estimating confidence intervals for changes in cloud properties
Figure 4 shows the difference in median COT (a, b) and cloud droplet
effective radius (c, d) between high OA (above 67th percentile) days
and low OA (below 33rd percentile) days and thus represents the
sensitivity of the clouds to the OA perturbations in the model or
observations. We choose to consider OA, rather than e.g. N100 because
the appropriate CCN proxy would vary depending on environmental
conditions, particularly water vapour mixing ratio and updraft - i.e.
information that is not available for us for all the data points. The
confidence intervals represent the sampling uncertainty for the dif-
ference in the median values for high versus low concentrations are
estimated by bootstrapping with 50,000 iterations and the percentile
method. In other words, each group is sampled with replacement
50.000 times and for each pair of samples, the difference in median
between high and low concentrations is calculated. The confidence
interval’s high and low limits are taken tobe the 5th and95thpercentile
of the resulting distribution. The median shows the original sample
median (not the median of the bootstrap samples). The random
retrieval for eachgrid cell in the level 3MODIS data productused in the
analysis are around 15%58 and the temporally aggregated values used in
this studywill be considerably lower and is therefore not considered in
the analysis.

Comparison of total feedback strength in Fig. 5
To compare the overall effect of the chain of processes outlined in
Fig. 1 in observations and models, we calculated the change in reff and
COT (shown in Figs. 5 and S6) with temperature by simply combining
the results using dX

dT = dOA
dT � dX

dOA, where X is reff or COT. We estimate dOA
dT

for each data source, i.e. amodel or observations, by taking the best fit
exponential function for the source, OA = f(T), and calculating the
dOA
dT ≈ ΔOA

ΔT ≈ f ðTmed + 3Þ�f ðTmed Þ
3 , where Tmed is the median measured tem-

perature for the seasons in question (15. 6 ∘C for SMEAR-II and 25. 5 ∘C
for ATTO) and 3 ∘C is the best estimate of the climate sensitivity4. We
estimate the dX

dOA byfirst estimatingΔXby averaging over the changes in
X between high and low OA in Fig. 4 and weighting by the number of
days in each CWP bin. Then we use the difference between themedian
of thehigh and the lowOAdays asanestimate forΔOA,finally calculate

dX
dOA≈

ΔX
ΔOA. Note: (1) that for UKESM at ATTO, the correlation between

temperature and organic aerosol is almost zero (see Table S2) and we
therefore set the change inOAwith temperature to zero for thismodel
at this station. (2) For ECHAM-SALSA we use the fit where 2015/2016
are excluded because these years are clearly anomalous and not rela-
ted to the biogenic emissions (see section S4).

Data availability
Themodel data generated in this studyhavebeendeposited in theBolin
Center database at59. The SMEAR-II particle number size distribution
data is available in the EBASdatabase at ebas-data.nilu.no. The SMEAR-II
OA mass concentration data is available in the EBAS database at ebas-
data.nilu.no. The temperature and wind measurement data from
SMEAR-II is in the AVAAdatabase at https://smear.avaa.csc.fi. The ATTO
station measurement is available in the ATTO data portal at https://
www.attodata.org. Source data are provided with this paper.

Code availability
The analysis code is available at60.
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