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Bruno Backes Meller6, Cléo Quaresma Dias-Júnior8, Markku Kulmala9, Tuukka Petäjä9,6
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S1 Sensitivity to choice of season for ATTO64

For SMEAR-II, we based our analysis on [1] and the choice of season was therefore given. For ATTO, on the other hand, we65

choose the season based on (1) when biogenic SOA is expected to dominate the OA (wet season) [2] and (2) when there is66

not strong seasonal changes in cloud properties (see Fig. S29). However, we find that our results do not change in character67

depending on which months are chosen, as can be seen in Fig. S1–S3 which show results from similar analysis as presented in68

Fig. 2–4 but for different choice of months.69
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Figure S1. ATTO: Same as Fig. 2, but only for ATTO and varying the months. Relationship between temperature and OA
mass concentration in ESMs (blue, red, orange and purple for ECHAM-SALSA, NorESM, EC-Earth and UKESM respectively)
and observations (black). The main plot for each choice of months shows all the daily median values of temperature and OA
mass and the least-square regression to an exponential function for the observations and nudged model predictions for the same
periods (see Methods for details). Histograms of the observed and predicted values are shown on the top and right sides of the
main plots. The smaller plots display the same information as the large plots but for each data source separately. The ESM grid
box covering the station (nearest-neighbour) is chosen for evaluation. Months included in each sub-figure are a) January-May,
b) March-May, c) January-March and d) February-April.
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Figure S2. Same as Fig. 3, but for different choices of months and only for ATTO. The relationship between daily median OA
mass concentration and the number concentration of particles larger than 50 nm (N50), 100 nm (N100) and 200 nm (N200). The
lines show the orthogonal distance regression to a linear function (ax+b) (see Methods for details). Note that the NorESM
values are divided by four both for OA mass and the particle number concentration (marked by the red axis and background
colour of the plot) for figures a-c and divided by eight for subplot d). Months included in each sub-figure are a) January-May, b)
March-May, c) January-March and d) February-April.
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Figure S3. ATTO: Same as Fig. 4, but for different months and only for ATTO. The difference in median cloud optical
thickness (top) and cloud droplet effective radius (bottom) between high OA (above 67th percentile) days and low OA (below
34th percentile) days. The uncertainties marked by the bars and are the 2.5th to 97.5th percentile of the median calculated by
bootstrapping and the percentile method (see Methods section). The numbers at the top signify the number of data points in
low/high OA in each CWP bin. Note that for UKESM and EC-Earth, COT was not available as output. Months included in
each sub-figure are a) January-May, b) March-May and c) January-March.

6/55



S2 Sensitivity to choice of level at ATTO70
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Figure S4. Same as Fig. 2, but with using the level closest to the surface, instead of the second lowest. Relationship between
temperature and organic aerosol (OA) mass concentration in Earth System Models (ESMs) (blue, red, orange and purple for
ECHAM-SALSA, NorESM, EC-Earth and UKESM, respectively) and observations (black) at SMEAR-II (left panel) and
ATTO (right panel) during periods where biogenic SOA is known to dominate the OA budget (February–April at ATTO). The
main plot shows all the daily median values of temperature and OA mass and the least-square regression to an exponential
function for the observations and nudged model predictions for the same periods (see Methods for details). Histograms of the
observed and predicted values are shown on the top (for temperature)and right (for OA) side of the main plots. The smaller
plots display the same information as the large plot but for each data source separately. The ESM grid box covering the station
(nearest-neighbour) is chosen for evaluation. For ATTO, star symbols and dashed lines indicate values when 2015/2016 are
excluded from the data.
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Figure S5. Same as Fig. 3, but with using the level closest to the surface, instead of the second lowest. The relationship
between daily median organic aerosol (OA) mass concentration and the number concentration of particles larger than 50 nm
(N50), 100 nm (N100) and 200 nm (N200) for ATTO in February–April (right). The size distribution measurements only go up to
500 nm, so we use the same intervals for the models. The lines show the least-square regression to a logarithmic function
(a+b ln(c+ x)) for N50 and N100 at SMEAR-II and the orthogonal distance regression to a linear function for all the others
(ax+b) (see Methods for details). NB: The axis limits for NorESM are eight times those of EC-Earth, ECHAM-SALSA and
UKESM (indicated by the red/purple axis and background color of the plot)
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Figure S6. Estimated strength of the terms in the feedback loop for the change in OA mass per temperature (top panel), the
change in COT per change in OA mass (middle panel), and finally the product of these two terms, dCOT

dT = dOA
dT · dCOT

dOA (bottom
panel). The change in OA mass per change in temperature is estimated in accordance with the exponential fit for each model
and with a 3-degree temperature perturbation from the current median (in accordance with the best estimate for climate
sensitivity, [3]). The change in COT from change in OA mass is estimated by doing a weighted average over the bins in Fig. 4.
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S4 Modelled emissions72

S4.1 SMEAR-II73
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Figure S7. SMEAR-II Jul & Aug: The relationship between temperature (x-axis) and BVOC emissions in the four models:
Isoprene (y-axis, top) and monoterpene (y-axis, bottom). The title gives the model and the Pearson correlation coefficient for
each plot. These plots include all data, i.e. they are not filtered by when the observations are available. Each dot represents a
daily median value.
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Figure S8. SMEAR-II Jul & Aug: The relationship between emissions of isoprene (x-axis, top) and monoterpene (x-axis,
bottom) and OA mass (y-axis) in the four models. The title gives the model and the Pearson correlation coefficient for each plot.
These plots include all data, i.e. they are not filtered by when the observations are available. Each dot represents a daily median
value. Note that in UKESM, only monoterpene contributes to SOA formation.
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Figure S9. SMEAR-II July & August: The relationship between temperature (x-axis’) and OA mass (y-axis) in the four
models and the observations. The colour of the dots signifies the year. The title gives the model and the Pearson correlation
coefficient for each plot. These plots include all data, i.e. they are not filtered by when the observations are available. Each dot
represents a daily median value.
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Figure S10. SMEAR-II in July & Aug: The relationship between temperature (x-axis, left) and incoming short wave (SW)
radiation at the surface (x-axis, right) and BVOC emissions in NorESM: Isoprene (y-axis, top) and monoterpene (y-axis,
bottom). These plots include all data, i.e. they are not filtered by when the observations are available. Each dot represents a
daily median value.

Figure S7 shows the relationship between temperature and BVOC emissions divided into isoprene and monoterpene at SMEAR-74

II during July and August. These show a very clear, and very similar, relationship for all the models using MEGAN2.1 (UKESM75

and NorESM), and a slightly less clear one for EC-Earth (using emissions from LPJ-Guess). The slope is, though, lower for76

UKESM than the other models. Figure S8 shows the relationship between BVOC emissions (isoprene and monoterpene) and77

the concentration of OA mass in the models. These results show clear relationships, though for isoprene the relationship may78

be mainly driven by similar emission drivers as monoterpene as SOA production from isoprene is quite weak in the boreal79

forest (see yields in section S11). Also note that in UKESM, isoprene does not contribute to SOA formation at all. Finally,80

the relationships between temperature and OA mass (as in Fig. 2) are repeated in Figure S9 but this time coloured by year to81

show that there does not seem to be any large perturbations based on the year (which is different for ATTO – see next section).82

Finally, to investigate the impact of radiation versus temperature on emissions, we show in Fig. S10 the relationship between83
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temperature and short wave radiation at the surface and BVOC emissions. This is only shown for NorESM because we did not84

have the output to do these plots for the other models. It reveals that both monoterpene and isoprene emissions are more tightly85

linked to temperatures than radiation in NorESM for this boreal forest environment during summer.86

S4.2 ATTO87
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Figure S11. ATTO in Feb–Apr: The relationship between temperature (x-axis) and isoprene (y-axis, top) and monoterpene
(y-axis, bottom) for the four models. The title gives the model and the Pearson correlation coefficient for each plot. These plots
include all data, i.e. they are not filtered by when the observations are available. Each dot represents a daily median value.
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Figure S12. ATTO in Feb–Apr, NorESM: The relationship between temperature (x-axis, left) and incoming short wave
radiation at the surface (x-axis, right) and isoprene (y-axis, top) and monoterpene (y-axis, bottom). These plots include all data,
i.e. they are not filtered by when the observations are available. Each dot represents a daily median value.
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Figure S13. ATTO February – April: Relationship between emissions of isoprene and monoterpene (x-axis’) and OA mass
(y-axis) for the four models. The colour of the dots signifies the year. The title gives the model and the Pearson correlation
coefficient for each plot. These plots include all data, i.e. they are not filtered by when the observations are available. Each dot
represents a daily median value. Note that in UKESM, only monoterpene contributes to SOA formation.
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Figure S14. ATTO February – April: Relationship between temperature (x-axis’) and OA mass (y-axis) for the four models
and the observations. The colour of the dots signifies the year. The title gives the model and the Pearson correlation coefficient
for each plot. These plots include all data, i.e. they are not filtered by when the observations are available. Each dot represents
a daily median value. Similar to Fig. 2, but including all model data and has colouring by year.
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Figure S15. ATTO February – April excluding years 2015 and 2016: Relationship between temperature (x-axis’) and OA
mass (y-axis) for the four models. The colour of the dots signifies the year. The title gives the model and the Pearson
correlation coefficient for each plot. These plots include all data, i.e. they are not filtered by when the observations are
available. Each dot represents a daily median value.
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Figure S16. ATTO: Pearson correlation coefficient between emissions of BVOCs (isoprene and monoterpene) and OA mass
per month for the four models. The correlation is first calculated in each month and then averaged. The solid lines are OA and
monoterpene emissions and the dotted lines are OA and isoprene emission. These plots include all data, i.e. they are not filtered
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Figure S11 shows the relationship between temperature and BVOC emissions divided into isoprene and monoterpene at ATTO88

during Feb–Apr. The colour of the dot signifies the year and reveals that there is significant difference in how the models treat89

interannual variability. ECHAM-SALSA and NorESM stand out here with a particularly strong interannual variability. For90

both the relationship between temperature and emissions is much clearer within a single year, but is somewhat distorted by91

what appears to be another influence on the interannual level. For NorESM, we could confirm that this is due to a significant92

reduction in biomass due to forest fires when going from the historical simulation configuration (up to year 2014) to the93

SSP-2-4.5 configuration (not shown here). The reduction in LAI thus reduces the baseline emission upon which the temperature94

impact comes. Something similar might be happening for ECHAM-SALSA – there are reduced emissions in 2015 and 2016 –95

but in this case the emissions seem to recover fast (by 2018 they are similar to before). Note however, that the high OA mass96

values for 2015 and 2016 are at extremely high temperatures (see also Fig. S11) and if these were excluded, the BVOC emission97

to OA mass relationship would appear less noisy. EC-Earth has a weaker dependency on temperature for both emitted species98

compared to the other three models. Finally, UKESM has a very strong relationship between temperature and monoterpene99

emissions and no large impact of the year beyond what is expected from the temperature, though a very weak one, or even a100

negative one, for isoprene emissions.101

We show in Fig. S12 the relationship between temperature and short wave radiation at the surface and BVOC emissions,102

again only for NorESM due to data availability constraints. This reveals that radiation has a stronger effect, in particular on103

isoprene emissions in ATTO than in the boreal zone (see Fig. S10), in MEGAN2.1, which is likely related to the fraction of the104

emissions which are light sensitive [see 4].105

While it is fairly clear that the modelled OA mass is governed by biogenic local emissions for SMEAR-II (see Fig. S8), Fig.106

S13 shows that this is less dominant in the models at ATTO. In particular, ECHAM-SALSA seems to have a much clearer107

relationship if years 2015 and 2016 are excluded, but in these years the OA mass concentrations do not reduce in spite of almost108

zero biogenic emissions. Unfortunately, we do not have the output data to conclude what is happening in this model, but one109

theory could be that increases in forest fires are both giving lower BVOC emission and at the same time increasing emissions of110

biomass burning organic aerosol.111

NorESM has a fairly strong relationship between emissions and OA at ATTO, while EC-Earth has a weak one and UKESM112

has a negative correlation for monoterpene (isoprene does not form SOA in UKESM). This pinpoints that the lack of relationship113

between temperature and OA in UKESM for ATTO originates not from the emissions side, but rather from the conversion of114

BVOCs to OA. Again, we cannot conclude, but one explanation for this could be a depletion of oxidants with high emissions115
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which would efficiently reduce the production of OA within the boundary layer.116

Our aim was to limit the analysis to the season where the contribution of BSOA would be strongest. Figure S16 shows that117

the correlation between BVOC emissions and OA mass concentration was strongest around the selected time period.118

S5 Regressions119

S5.1 Regression coefficients for temperature to OA and OA to Nx120

variable data source Fit a b c R2 r2

OA UKESM a · exp(bx) 5.86E-02 ± 1.97E-02 0.21 ± 0.35 0.58 0.79
OA Observations a · exp(bx) 0.12 ± 0.02 0.19 ± 0.30 0.45 0.73
OA NorESM a · exp(bx) 8.97E-02 ± 1.69E-02 0.18 ± 0.28 0.58 0.71
OA ECHAM-SALSA a · exp(bx) 1.71E-02 ± 2.22E-02 0.23 ± 0.39 0.53 0.71
OA EC-Earth a · exp(bx) 7.41E-02 ± 2.04E-02 0.20 ± 0.33 0.43 0.67
N50 UKESM ax+b 110.5 ± 10.5 72.2 ± 34.4 0.62 0.81
N50 UKESM a+b ln(c+ x) -121.9 ± 165.6 400.1 ± 71.0 1.12 ± 0.62 0.7 0.81
N50 Observations ax+b 274.8 ± 28.7 461.7 ± 96.3 0.01 0.51
N50 Observations a+b ln(c+ x) 974.8 ± 94.1 393.5 ± 65.9 -0.25 ± 0.18 0.33 0.51
N50 NorESM ax+b 703.5 ± 65.2 548.1 ± 155.9 0.82 0.91
N50 NorESM a+b ln(c+ x) -3486.3 ± 1452.9 3596.9 ± 552.7 2.73 ± 0.76 0.86 0.91
N50 ECHAM-SALSA ax+b 325.2 ± 32.7 235.5 ± 49.9 0.24 0.62
N50 ECHAM-SALSA a+b ln(c+ x) 535.5 ± 127.2 384.7 ± 92.8 0.30 ± 0.30 0.44 0.62
N50 EC-Earth ax+b 141.2 ± 14.0 176.7 ± 34.1 0.61 0.81
N50 EC-Earth a+b ln(c+ x) 180.7 ± 132.8 345.1 ± 67.7 0.49 ± 0.47 0.69 0.81
N200 UKESM ax+b 44.1 ± 4.0 22.3 ± 13.3 0.95 0.98
N200 Observations ax+b 53.6 ± 4.9 -11.5 ± 17.0 0.89 0.95
N200 NorESM ax+b 29.6 ± 2.8 -0.32 ± 6.59 0.79 0.89
N200 ECHAM-SALSA ax+b 35.5 ± 3.3 -0.98 ± 5.17 0.81 0.9
N200 EC-Earth ax+b 42.3 ± 4.0 13.8 ± 9.9 0.91 0.96
N100 UKESM ax+b 87.7 ± 8.3 68.6 ± 27.1 0.71 0.85
N100 UKESM a+b ln(c+ x) -242.8 ± 173.3 388.4 ± 68.6 1.75 ± 0.76 0.76 0.85
N100 Observations ax+b 176.5 ± 16.6 85.9 ± 57.2 0.69 0.85
N100 Observations a+b ln(c+ x) -483.6 ± 302.5 760.3 ± 122.2 1.56 ± 0.67 0.77 0.85
N100 NorESM ax+b 312.3 ± 28.5 -62.4 ± 68.6 0.94 0.97
N100 ECHAM-SALSA ax+b 158.5 ± 14.8 22.9 ± 23.2 0.74 0.87
N100 ECHAM-SALSA a+b ln(c+ x) -360.8 ± 251.8 518.6 ± 112.0 1.94 ± 0.73 0.78 0.87
N100 EC-Earth ax+b 93.9 ± 9.0 59.5 ± 22.2 0.82 0.91
N100 EC-Earth a+b ln(c+ x) -291.5 ± 186.4 401.2 ± 75.2 1.99 ± 0.79 0.85 0.91

Table S1. SMEAR-II: Overview over regression coefficients and properties. The parameters are presented with ± one
standard deviation.
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variable data source Fit a b c R2 r2

OA UKESM a · exp(bx) 2.38E-02 ± 3.00E-02 0.16 ± 0.91 -0.81 0.08
OA Observations a · exp(bx) 1.09E-06 ± 8.21E-02 0.52 ± 2.10 0.13 0.59
OA NorESM a · exp(bx) 1.14E-03 ± 5.05E-02 0.33 ± 1.27 0.33 0.69
OA ECHAM-SALSA a · exp(bx) 4.23E-03 ± 3.31E-02 0.20 ± 0.94 -0.08 0.44
OA EC-Earth a · exp(bx) 2.06E-03 ± 4.30E-02 0.27 ± 1.07 0.09 0.46
N50 UKESM ax+b 112.7 ± 18.9 123.3 ± 30.6 -0.28 0.36
N50 Observations ax+b 280.0 ± 42.9 67.6 ± 39.8 0.24 0.62
N50 NorESM ax+b 357.7 ± 50.5 1623.0 ± 39.5 0.82 0.91
N50 ECHAM-SALSA ax+b 172.6 ± 26.7 185.2 ± 53.6 0.19 0.59
N50 EC-Earth ax+b 76.7 ± 11.1 178.9 ± 24.2 0.61 0.8
N200 UKESM ax+b 48.1 ± 6.7 9.14 ± 10.95 0.95 0.98
N200 Observations ax+b 69.3 ± 11.0 -7.02 ± 10.17 -0.01 0.5
N200 NorESM ax+b 28.2 ± 3.9 -59.1 ± 3.1 0.93 0.97
N200 ECHAM-SALSA ax+b 25.0 ± 3.5 -9.62 ± 7.21 0.87 0.94
N200 EC-Earth ax+b 43.7 ± 6.1 -12.0 ± 13.3 0.94 0.97
N100 UKESM ax+b 79.5 ± 11.9 118.3 ± 19.5 0.38 0.69
N100 Observations ax+b 189.3 ± 28.9 20.4 ± 26.9 0.26 0.63
N100 NorESM ax+b 292.4 ± 40.5 289.9 ± 31.8 0.97 0.98
N100 ECHAM-SALSA ax+b 111.8 ± 17.8 -26.4 ± 35.4 0.02 0.51
N100 EC-Earth ax+b 62.6 ± 8.8 63.0 ± 19.2 0.85 0.93

Table S2. ATTO: Overview over regression coefficients and properties. The parameters are presented with ± one standard
deviation.

variable data source Fit a b c R2 r2

OA UKESM a · exp(bx) 3755.61 ± 0.07 -0.24 ± 1.99 -0.94 -0.04
OA Observations a · exp(bx) 2.98E-07 ± 1.28E-01 0.56 ± 3.25 0.16 0.66
OA NorESM a · exp(bx) 6.21E-04 ± 8.11E-02 0.36 ± 2.00 0.15 0.58
OA ECHAM-SALSA a · exp(bx) 7.87E-06 ± 1.02E-01 0.47 ± 2.67 0.38 0.68
OA EC-Earth a · exp(bx) 5.16E-03 ± 5.06E-02 0.24 ± 1.24 0.49 0.75

Table S3. ATTO without years 2015/2016: Overview over regression coefficients and properties. The parameters are
presented with ± one standard deviation.
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S6 Regression with linear lines for OA to Nx121
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Figure S17. SMEAR-II: Same as Fig. 3, but with linear fits. The relationship between daily median OA and the number
concentration of particles larger than 50 nm (N50), 100 nm (N100) and 200 nm (N200). The lines show the orthogonal distance
regression to a linear function (ax+b) (see Methods for details).
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S6.1 Residuals for fitted regressions122

S6.1.1 Temperature to OA123
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Figure S19. SMEAR-II: Residuals for relationship between temperature and organic aerosol mass concentration in models
and observations shown in Fig. 2. The regressions are given in the legend.
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Figure S20. ATTO: Residuals for Relationship between temperature and organic aerosol mass in models and observations
shown in Fig. 2. The regressions are given in the legend.
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S6.1.2 OA mass to Nx124
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Figure S21. SMEAR-II: Residuals for regression between organic aerosol mass (OA) and N50 in models and observations
shown in Fig. 3. The regressions are given in the legend.
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Figure S22. SMEAR-II: Residuals for regression between organic aerosol mass (OA) and N50 in models and observations
shown in Fig. S17. The regressions are given in the legend.
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Figure S23. SMEAR-II: Residuals for regression between organic aerosol mass (OA) and N100 in models and observations
shown in Fig. 3. The regressions are given in the legend.
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Figure S24. SMEAR-II: Residuals for regression between organic aerosol mass (OA) and N100 in models and observations
shown in Fig. S17. The regressions are given in the legend.
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Figure S25. SMEAR-II: Residuals for regression between organic aerosol mass (OA) and N200 in models and observations
shown in Fig. 3 and S17. The regressions are given in the legend.
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Figure S26. ATTO: Residuals for regression between organic aerosol mass (OA) and N50−500 in models and observations
shown in Fig. 3 and S17. The regressions are given in the legend. Note that the NorESM values are divided by 4 (both x-values
and y-values).
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Figure S27. ATTO: Residuals for regression between organic aerosol mass (OA) and N100−500 in models and observations
shown in Fig. 3 and S17. The regressions are given in the legend. Note that the NorESM values are divided by four (both
x-values and y-values).
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Figure S28. ATTO: Residuals for regression between organic aerosol mass (OA) and N200−500 in models and observations
shown in Fig. 3 and S17. The regressions are given in the legend. Note that the NorESM values are divided by 4 (both x-values
and y-values).

S7 Cloud properties125

S7.1 Overview cloud properties through the year at ATTO126

Figure S29. ATTO: Cloud properties and variability through the year as calculated from daytime mean values in the area of
consideration and the OA mass concentration measured at the site.
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S7.2 Cloud impacts of high versus low CCN (N50 and N100)127
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Figure S30. Difference in median cloud optical thickness (top) and cloud droplet effective radius (bottom) between high N100
(above 67th percentile) days and low N100 (below 34th percentile) days. The uncertainties marked by the bars and are the 2.5th
to 97.5th percentile of the median calculated by bootstrapping and the percentile method (see Methods section). The numbers
at the top signify the number of data points in low/high OA in each CWP bin.
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(b) ATTO: Feb–Apr.

Figure S31. Difference in median cloud optical thickness (top) and cloud droplet effective radius (bottom) between high N50
(above 67th percentile) days and low N50 (below 34th percentile) days. The uncertainties marked by the bars and are the 2.5th
to 97.5th percentile of the median calculated by bootstrapping and the percentile method (see Methods section). The numbers
at the top signify the number of data points in low/high OA in each CWP bin.
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S7.3 Distributions of cloud properties128
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Figure S32. Distribution of COT at SMEAR-II in July–August (left) and ATTO in February–April (right).
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Figure S33. Distribution of CWP at SMEAR-II in July–August (left) and ATTO in February–April (right).
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Figure S34. Distribution of reff at SMEAR-II in July–August (left) and ATTO in February–April(right).

S8 Detailed discussion on regression coefficients129

S8.1 Temperature to organic aerosol mass130

As mentioned in the main text, the relationship between temperature and OA mass is best described by an exponential function131

of the form OA = α exp(βT ) (see residuals in Figure S19 and S20). This is in line with the expected exponential relationship132

between temperature and emissions of BVOCs [4, 5] and with the assumption of the availability of BVOC precursors being133

a major factor controlling SOA formation at the two sites rather than e.g. temperature-dependent volatility of the oxidation134

products (see also [1] ). In the equation above, α incorporates factors for the baseline emission strength of BVOCs, mass135

yield of SOA, and the loss rates of SOA. This allows for evaluating the models with respect to both the SOA yields/baseline136

emissions/losses (combined in the α-term) and the strength of the temperature response (the β term, i.e. the slopes of the fits as137

they appear in linear-logarithmic space in Fig. 2). See Tab. S1–S2 for an overview of the regressions and their properties.138

At SMEAR-II, the models all underestimate OA mass concentration (see also Fig. S37 and S39), however, the exponential139

coefficient, β , (the slope of the line in Fig. 2) is surprisingly well represented in the models. Essentially this means that if140

the model SOA yields were increased with some factor, we would have a very good fit, all else equal. For ATTO, all models141

tend to overestimate the total OA mass concentrations: NorESM median is approximately an order of magnitude too high,142

UKESM and EC-Earth have too high concentrations and too narrow distributions, while ECHAM-SALSA might be said to be143

slightly better in terms of capturing the variability (wider distribution)(see also Fig. S49). NorESM and EC-Earth are close to144

representing the β term accurately, though still with an underestimation.145

ECHAM-SALSA and UKESM both have unrealistically high temperatures (see histogram on the top of Fig. 2, right panel),146

which could indicate that the models struggle with capturing the tropical forest environment and might not get the latent to147

sensible heat fluxes right. This is, however, unlikely to be the reason for the low increase in OA mass with temperature, because148

for EC-Earth the emissions are pre-calculated with LPJ-Guess and for ECHAM-SALSA, the soil moisture is not used in the149

emission calculation.150

Some underestimation of OA mass in the models would also be expected if there is a strong vertical gradient in the OA151

concentration close to the surface and the measurements are done close to the ground (the case at SMEAR-II, where the inlet is152

at 4 meters), given the vertical level closest to the surface is usually around 100 meters. If this was a major influence, however,153

one might expect the underestimation of OA to be stronger during night, when the atmosphere is more stratified, but evaluation154

of the diurnal variation in NorESM in particular, shows this to not be the case (see Fig. S38).155

S8.1.1 Yield tuning: An example with NorESM156

One way one might consider improving the models in terms of OA mass, is to tune the yields for isoprene and monoterpene157

respectively, so that OA might increase at SMEAR-II and decrease at ATTO (see Results section). However, a highly simplified158

investigation shows that this is unlikely to succeed for NorESM. In Fig. S35, the initial mean distribution (daily mean values)159
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Figure S35. Distribution of daily mean values of OA mass at SMEAR-II (top) and ATTO (bottom) for observations and
NorESM. The solid line is showing the distribution if the OA mass concentration is scaled down as estimated from a zero SOA
yield for isoprene.

at SMEAR-II (top) and ATTO (bottom) are shown for the observed and NorESM. The line plot shows the distribution when160

subtracting the estimated contribution to OA from isoprene, assuming (1) all the OA is biogenic, (2) the OA from IP can be161

estimated as OAIP = OAtot · fIPYIP
fIPYIP+ fMT YMT

where fIP and fMT are the mass fraction of IP and MT, respectively, to the total162

BVOC emissions (MT+IP), and YIP and YMT are the SOA mass yield of IP and MT, respectively. As can be seen, even for163

isoprene yields set to zero, there is a significant overestimation of OA mass at ATTO. This indicates that the issue cannot be164

solved by tuning the yields. There are several reasons why this might be. One could be that the high isoprene emissions in the165

Amazon are reducing the SOA production and that the model needs an interaction term in the yield calculation, as would be166

indicated by e.g. [6]. On the other hand, the flaw might very well also lie in the emissions where NorESM gives much higher167

values than the other models [7]) or the loss processes in the model.168
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S9 Basic aerosol evaluation: SMEAR-II169

S9.1 Organic aerosol mass170
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Figure S36. SMEAR-II: Time series of OA mass concentration from models and observations SMEAR-II. The modelled data
is shown only when there is not missing data in the observations. The data is in hourly resolution for observations and all
models except UKESM for which we had 3 hourly output.
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Figure S37. SMEAR-II: Distribution of OA mass concentration in models and observations at SMEAR-II in July and August.
The data is in hourly resolution for observations and all models except UKESM for which we had 3 hourly output. UKESM
values were repeated 3 times here to match the frequency of the other data sources (affects the frequency, but not the shape of
the distribution).
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Figure S38. SMEAR-II: Diurnal variability of OA mass concentration at SMEAR-II. Lines signify median deviation from
daily mean value and the shading signifies the 16th to 84th percentiles from data in hourly resolution. Model values included
only if the corresponding time exists in the observations. The data is in hourly resolution for observations and all models except
UKESM for which we had 3 hourly output.

1 2 3 4 5 6 7 8 9 10 11 12
Month

0

1

2

3

4

5

6

OA
  [

gm
3 ]

OA: Annual cycle
Obs
ECHAM-SALSA
NorESM
EC-Earth
UKESM

Figure S39. SMEAR-II: Monthly median OA mass concentration at SMEARII. Lines signify median as calculated from all
available data and shading signifies the 16th to 84th percentiles from data in hourly resolution (except UKESM which is in 3
hourly resolution). Model values included only if the corresponding time exists in the observations. This computation method
entails some more weight to years with more data available.
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resolution for observations and all models except UKESM for which we had 3 hourly output.

S9.2 Aerosol concentrations: N50, N100 and N200171
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not the shape of the distribution).
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Figure S42. SMEAR-II: Diurnal variability of N50 (top), N100 (middle) and N200 (bottom) concentration at SMEAR-II. Lines
signify median deviation from daily mean value and the shading signifies the 16th to 84th percentiles from data in hourly
resolution. Model values included only if the corresponding time exists in the observations. The input is in hourly resolution,
except for UKESM which has 3 hourly values.
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Figure S43. SMEAR-II: Monthly median N50 (top), N100 (middle) and N200 (bottom) concentration at SMEARII. Lines
signify median values as calculated from all available data (hourly resolution for all sources except UKESM which has 3 hourly
data) and shading signifies the 16th to 84th percentiles from data in hourly resolution. Model values included only if the
corresponding time exists in the observations. This computation method entails some more weight to years with more data
available.
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Figure S44. SMEAR-II: Distribution of observed (x-axis) versus modelled (y-axis) N50 (top row), N100 (middle row) and
N200 (bottom row), in hourly resolution. The color signifies the frequency. The data is in hourly resolution for observations and
all models except UKESM for which we had 3 hourly output.
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S9.3 Time series N50, N100, N200172
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Figure S45. SMEAR-II: Time series of models and observations of N50. The modelled data is shown only when there is not
missing data in the observations. The data is in hourly resolution for observations and all models except UKESM for which we
had 3 hourly output.
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Figure S46. SMEAR-II: Time series of models and observations of N100. The modelled data is shown only when there is not
missing data in the observations. The data is in hourly resolution for observations and all models except UKESM for which we
had 3 hourly output.
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Figure S47. SMEAR-II: Time series of models and observations of N200. The modelled data is shown only when there is not
missing data in the observations. The data is in hourly resolution for observations and all models except UKESM for which we
had 3 hourly output.
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S10 Basic aerosol evaluation: ATTO173

S10.1 Organic aerosol mass174
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Figure S48. ATTO: Time series of OA mass concentration from models and observations ATTO. The modelled data is shown
only when there is not missing data in the observations. The data is in hourly resolution for observations and all models except
UKESM for which we had 3 hourly output.
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Figure S49. ATTO: Distribution of OA mass in different seasons from hourly resolution. The data is in hourly resolution for
observations and all models except UKESM for which we had 3 hourly output. UKESM values are repeated for missing hours
to match the frequency of the other data sources because UKESM only has 3 hourly output.
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Figure S50. ATTO: Diurnal variability of OA mass concentration in different seasons. Lines signify median deviation from
daily mean value and the shading signifies the 16th to 84th percentiles from data in hourly resolution, except UKESM which
has 3 hourly values. Model values included only if the corresponding time exists in the observations.
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Figure S51. ATTO: Monthly median OA mass concentration. Lines signify median as calculated from all available data and
shading signifies the 16th to 84th percentiles from data in hourly resolution, except UKESM which has 3 hourly values. Model
values included only if the corresponding time exists in the observations. This computation method entails some more weight
to years with more data available.
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Figure S52. ATTO: Distribution of observed (x-axis) versus modelled (y-axis) OA mass in DJF (top row), MAM (second
row), JJA (third row) and SON (bottom row). The color signifies the frequency. The data is in hourly resolution for
observations and all models except UKESM for which we had 3 hourly output.
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S10.2 Aerosol concentrations: N50, N100 and N200175
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Figure S53. ATTO: Distribution of N50 (first row), N100 (second row) and N200 (third row) in DJF (first column), MAM
(second column), JJA (third column) and SON (last column). The data is in hourly resolution for observations and all models
except UKESM for which we had 3 hourly output. UKESM values were repeated 3 times here to match the frequency of the
other data sources (affects the frequency, but not the shape of the distribution).
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Figure S54. ATTO: Diurnal variation in N50 (first row), N100 (second row) and N200 (third row) in DJF (first column), MAM
(second column), JJA (third column) and SON (last column). The data is in hourly resolution for observations and all models
except UKESM for which we had 3 hourly output.
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Figure S55. ATTO: Monthly median N50 (top), N100 (middle) and N200 (bottom). Lines signify median as calculated from all
available data and shading signifies the 16th to 84th percentiles from data in hourly resolution, except UKESM for which we
use 3 hourly resolution. Model values included only if the corresponding time exists in the observations. This computation
method entails some more weight to years with more data available.
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Figure S56. ATTO: Distribution of modelled versus observed N50 (first row), N100 (second row) and N200 (third row) in
February–April. The data is in hourly resolution for observations and all models except UKESM for which we had 3 hourly
output.
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S10.3 ATTO: Time series N50, N100, N200176
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Figure S57. ATTO: Time series of models and observations of N50. The modelled data is shown only when there is not
missing data in the observations. The data is in hourly resolution for observations and all models except UKESM for which we
had 3 hourly output.
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Figure S58. ATTO: Time series of models and observations of N100. The modelled data is shown only when there is not
missing data in the observations. The data is in hourly resolution for observations and all models except UKESM for which we
had 3 hourly output.
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Figure S59. ATTO: Time series of models and observations of N200. The modelled data is shown only when there is not
missing data in the observations. The data is in hourly resolution for observations and all models except UKESM for which we
had 3 hourly output.

S11 Model descriptions177

S11.1 The Norwegian Earth System model178

The Norwegian Earth System model version 2 [NorESM2 8, 9, 10] is based on the Community Earth System Model [CESM2179

11], but has a different ocean model (Bergen Layered Ocean Model, BLOM) and significant changes to the atmospheric180

component, including a different chemistry and aerosol model ([12]). In the simulations in this paper, we use sea surface181

temperatures and sea ice data based on the Hadley Centre Sea Ice and Sea Surface Temperature data set [HADISST, 13]182

as described in [14], so the ocean component is not in use. The atmospheric component used in NorESM, CAM6-Nor, is183

based on the Community Atmospheric model version 6 [CAM6, see e.g 15]) but has a very different aerosol scheme called184

OsloAero6 [described below, see also 16] and also include improvements to the local dry and moist energy conservation,185

angular momentum conservation and in the computation of air-sea fluxes and deep convection. As in CAM6, the cloud186

macrophysics scheme in CAM6-Nor, is the Cloud Layers Unified by Binomials model [CLUBB; 15]. For the microphysics187

in shallow convection and stratiform clouds, the two-moment bulk scheme MG2, [17], is used. Finally, the representation188

of microphysics in deep convective clouds is based on [18]. Cloud droplet activation is calculated using the Abdul-Razzak189

scheme [19]. More details on the treatment of clouds in CAM6 and CAM6-Nor can be found in [15].190

OsloAero6 is a production-tagged aerosol and chemistry model which keeps track of the source and origin of the aerosols191

through their lifetime. The most notable difference to other aerosol schemes is how the aerosol tracers are divided into192
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NorESM ECHAM-SALSA EC-Earth UKESM

OH + IP → 5%LVOC
NO3 + IP → 5%LVOC
O3 + IP → 5%LVOC
OH+MT → 15%LVOC
NO3 + MT → 15%LVOC
O3 + MT → 15%ELVOC
Both LVOC and ELVOC
are treated as essentially
non-volatile, but ELVOC
can participate in
NPF and early growth.

3 VBS classes with saturation
vapor concentrations
at STP of 0, 1, and 10 µg/m3
denoted V0, V1, V10, respectively
(OH/O3/NO3) + MT →10%V0

+ 3.7%V1 + 8.5%V10
(OH/O3/NO3) + IP →2.95%V1
+ 4.53%V10.
OH + benzene → 37%V0
OH + toluene → 36%V0
OH + xylene →30%V0

OH+IP → 0.97%LVOC
+ 0.03%ELVOC

O3 + IP → 0.99%LVOC
+ 0.01%ELVOC

OH+MT → 14%LVOC
+ 1%ELVOC

O3+MT → 10%LVOC
+ 5%ELVOC

Both LVOC and ELVOC
are treated as essentially
non-volatile, but
ELVOC can participate in
NPF and early growth.

OH+MT → 26%LVOC
O3 + MT → 26%LVOC
NO3 + MT → 26%LVOC
Treated as essentially
non-volatile
during condensation.

Table S4. Overview of molar SOA yields in the models

NorESM ECHAM-SALSA EC-Earth UKESM

OH + IP → 12.33%LVOC
NO3 + IP → 12.33%LVOC
O3 + IP → 12.33%LVOC
OH+MT → 18.5%LVOC
NO3 + MT → 18.5%LVOC
O3 + MT → 18.5%ELVOC
Both LVOC and ELVOC
are treated as essentially
non-volatile, but ELVOC
can participate in
NPF and early growth.

3 VBS classes with saturation
vapor concentrations
at STP of 0, 1, and 10 µg/m3
denoted V0, V1, V10, respectively
(OH/O3/NO3) + MT →10%V0

+ 3.7%V1 + 8.5%V10
(OH/O3/NO3) + IP →5.9%V1
+ 9.06%V10.
OH + benzene → 76.2%V0
OH + toluene → 53.2%V0
OH + xylene →38.5%V0

OH+IP → 3.3%LVOC
+ 0.11%ELVOC

O3 + IP → 3.37%LVOC
+ 0.036%ELVOC

OH+MT → 23.8%LVOC
+ 1.8%ELVOC

O3+MT → 17%LVOC
+ 9.1%ELVOC

Both LVOC and ELVOC
are treated as essentially
non-volatile, but
ELVOC can participate in
NPF and early growth.

OH+MT → 28.7%LVOC
O3 + MT → 28.7%LVOC
NO3 + MT → 28.7%LVOC
Treated as essentially
non-volatile
during condensation.

Table S5. Overview of SOA mass yields in the models
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“background”- and “process” tracers. The background tracers determine the number of particles and form an initial size193

distribution of log-normal modes. The process tracers then alter this initial distribution and their chemical composition based194

on look-up-tables from the offline scheme AeroTab [see e.g. 16] – thus meaning that the resulting size distribution need not195

be log-normal. Examples of the background tracers are dust, sea salt, primary organics, black carbon, coated black carbon,196

primary sulphate and so on. Examples of process tracers are secondary organic condensate, secondary sulphate condensate and197

correspondingly coagulate of each of these. The mass of each of the tracers is tracked, and the optical properties and the size198

distributions for cloud activation are calculated using a look-up table [see 16].199

The land model used is the Community Land Model version 5 [CLM5, 20], in BGC (bio-geo-chemisty) model and with200

prognostic crop. This means that the vegetation is allowed to respond to meteorological conditions, soil moisture, nutrient201

availability and so on by growing more or less dense (leaf area index can change), but that the distribution (the land area202

covered by each vegetation type) of the vegetation remains set (not dynamic vegetation). The emissions of BVOCs in CLM5 are203

calculated using the Model of Emissions of Gases and Aerosols from Nature version 2.1[MEGAN2.1 4], which is incorporated204

into CLM5. The simulations for this study were run with nudged meteorology (horizontal wind and surface pressure) to205

ERA-Interim [21] using a relaxation time of 6 h [22].206

S11.2 EC-Earth207

The simulations were run with EC-Earth3-AERCHEM configuration of EC-Earth3.3.4. The model uses the Integrated208

Forecasting System (IFS) cycle 36r4 as the General circulation model (GCM), together with the surface-exchange land model209

H-TESSEL [23] and the chemistry model Tracer Model 5- Massively Parallel (TM5-MP) version 1.1, with modified chemistry210

from CB05 [24, 25, 26]. For this study, CB05 was modified so as to read daily 0.5 ◦ × 0.5 ◦ emissions of monoterpene and211

isoprene generated by the 2nd generation dynamical global vegetation model LPJ-GUESS (v4.1) [27], replacing the default212

MEGAN based monthly emission files in TM5 for the two BVOC precursors. The IFS model has a T255 (0.7 ◦) spectral213

truncation with N128 reduced Gaussian grid, on 91 vertical levels. TM5 has a 3 ◦ × 2 ◦ grid on 34 vertical levels with the same214

hybrid sigma-pressure levels as IFS but with lower resolution. The coupling between IFS and TM5 is processed though OASIS3215

[28]. Even though LPJ-GUESS 4.0 [27] is the dynamical vegetation model embedded in EC-Earth3, there isn’t currently a216

set-up for the coupling to the CTM TM5 within EC-Earth3.3.4. LPJ-GUESS 4.1 was instead run offline with daily ERA-Interim217

forcing to provide daily emissions. In EC-Earth3, the IFS output variables are instantaneous values with model time-step of 45218

minutes, and output is available only as 3 hourly. For TM5 we get instantaneous values with model timestep of 1 hour with219

1-hourly output. The simulations were nudged using ERA-Interim data for divergence, vorticity, and surface pressure, and the220

nudging was applied with a 6-hour relaxation time.221

S11.3 ECHAM-SALSA222

The latest stable version ECHAM-HAMMOZ (ECHAM6.3-HAM2.3-MOZ1.0) is a three-dimensional aerosol-chemistry-223

climate model [29, 30]. ECHAM-HAMMOZ consists of general circulation model (GCM) ECHAM version 6.3 (ECHAM6)224

[30], Hamburg Aerosol Module version 2.3 (HAM) [31, 32] and Model for Ozone and Related chemical Tracers version225

1.0 (MOZ) [33]. The GCM ECHAM6 solves equations for divergence, vorticity and surface pressure [34]. These variables226

were nudged towards ERA-Interim data from European Centre for Medium-Range Weather Forecasts (ECMWF) [35, 36].227

HAM is used to calculate all the aerosol processes within ECHAM-HAMMOZ. The processes included in the calculations228

are microphysics, radiation, emissions and deposition [32]. The aerosol size distribution in HAM can be represented using229

comprehensive parameterization using both modal and sectional methods [31, 32]. In this study the Sectional Aerosol module230

for Large Scale Application (SALSA) was used to represent the aerosol size distribution in the ECHAM-HAMMOZ simulations231

(hereafter referred to as ECHAM-SALSA) [31]. The vegetation model used in ECHAM-SALSA is JSBACH version 3 and they232

are coupled through surface exchange of heat, momentum and mass [37, 38]. JSBACH uses three non-dynamic vegetation pools233

for living vegetation and it simulates processes such as natural and anthropogenic disturbances, shedding of leaves, and grazing234

leading to losses from the vegetation pools [39]. The BVOC emissions in ECHAM-SALSA are calculated using MEGAN2.1235

and the treatment of organic compounds involved in SOA formation is based on Volatility Basis Set (VBS) approach [4, 40].236

The gas-particle partitioning of VBS species is calculated assuming non-equilibrium partitioning and solving condensation237

equations according to [41].238

S11.4 UKESM239

The United Kingdom Earth System Model (UKESM1, [42, 43]) is a global climate model based upon the HadGEM3-GC3.1240

core physical dynamical model of the atmosphere, land, ocean and sea ice systems [44, 45, 46] which constitute the UK’s241

contribution to the Coupled Model Intercomparison Project Phase 6 (CMIP 6) [47]. UKESM1 simulations are built using the242

atmosphere-only configuration of the Atmospheric Model Intercomparison Project (AMIP) that work with a time-evolving243

sea surface temperature, sea ice and prescribed marine biogenic emissions from a fully coupled model simulation. The244

N96L85 model configuration is used in this study, which is 1.875 ◦ × 1.25 ◦ longitude–latitude, corresponding to a near-equator245
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horizontal resolution of approximately 208 km. The vertical model levels are divided into 50 levels between Earth’s surface246

and 18 km and 35 levels between 18 and 85 km. The model output fields are extracted at high temporal resolution (3-hourly247

output) to reduce model sampling errors when evaluating against observations [48]. A nudged configuration was applied,248

where horizontal winds (but not temperature) in the model are relaxed towards fields from ERA-Interim reanalysis [49, 50].The249

nudging is applied between model levels 12 and 80 with a relaxation time constant of 6 hours (which is equal to the ERA-250

Interim reanalysis temporal resolution fields). Anthropogenic and biomass-burning emissions are taken from [51] and [52]251

while greenhouse gases concentrations derive from [51]. Atmospheric composition is simulated using the chemistry-aerosol252

component model of UKESM, the UK Chemistry and Aerosol model (UKCA) [53, 54, 55]. Within UKCA, the microphysical253

processes of new particle formation (NPF), condensation, coagulation, wet scavenging, dry deposition and cloud processing254

are determined by the Global Model of Aerosol Processes, GLOMAP model [43, 56]. The UKCA stratospheric–tropospheric255

(StratTrop) chemistry scheme is fully integrated with aerosol chemistry in UKESM1 [54, 55, 57] The chemical oxidants256

hydroxyl radical (OH), ozone (O3) and nitrate radical (NO3) are gas-phase aerosol precursors which are interactively simulated257

with the respective production and loss mechanisms. Isoprene and monoterpenes emission mechanisms are simulated using258

iBVOC, an interactive biogenic VOC (BVOC) terrestrial emission scheme [58, 59]. For isoprene the emission scheme in259

iBVOC is from [58] and for monoterpene they are from [60]. Isoprene is not included in the formation of SOA due to the more260

complex formation mechanism. The emissions of biogenic isoprene are based on a simplified mechanistic scheme of [58].261

The monoterpenes emission parameterisation follows [60]. Land-based monoterpenes are emitted via gas-phase and produce262

secondary organic aerosol (SOA) through gas-phase oxidation processes driven by OH, NO3 and O3. The molar yield of SOA263

from these reactions is 26 %, which amounts to mass yield of 28.7 % [43]. The UKESM1 terrestrial biogeochemistry and land264

surface are processed by the Joint UK Land Environment Simulator (JULES) model [61, 62].265

S12 Model data post-processing266

We use only CWP values below 800 gm−2 at ATTO because the distribution for UKESM has an unrealistically long tail (see267

Fig. S33b).268

S12.0.1 EC-Earth269

• Corrected particle number concentrations and OA mass concentrations to standard temperature and pressure (STP) for270

EC-Earth was done assuming standard pressure, since we do not have ambient pressure as a model output. The impact is271

maximally 2–3 percent. Additionally, temperature is from the IFS component and is only updates each 3 hour. In order272

to use temperature in the conversion to STP we therefore interpolate with quadratic interpolation the temperature for273

specifically this calculation.274

• We mask cloud data where the cloud top cloud fraction is less than 10 % to avoid skewing towards times with very little275

cloud.276

• To extract only the liquid clouds, we mask data points where ice water path is more than 5 % of the total cloud water path.277

• EC-Earth does not have cloud top values as default output, so these are extracted by taking the highest gridbox in each278

column where the cloud time is 1 and cloud fraction is above zero. We mask values where the cloud top fraction is below279

10% and select for liquid cloud by including only grid cells where the liquid cloud fraction of the cloud water path is280

more than 80%.281

S12.0.2 UKESM282

• Corrected particle number concentrations and OA mass concentrations to STP for UKESM was done assuming standard283

pressure, since we do not have ambient pressure as a model output. The impact will maximally be a 2–3 percent.284

• For UKESM, we use the second to bottom level at ATTO because it is more consistent with the height of the measurements.285

This is in contrast to the other models which have lower vertical resolution at the surface.286

• To extract only the liquid clouds, we mask data points where ice water path is more than 5 % of the total cloud water path.287

• We mask data points where cloud top cloud fraction is less than 10 % to avoid skewing towards times with very little288

cloud.289

S12.0.3 NorESM290

• We correct particle number concentrations to be STP, while OA mass concentrations are calculated from mass mixing291

ratios using STP.292
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• To extract only the liquid clouds, we mask data points where ice water path is more than 5 % of the total cloud water path.293

• We mask data points where cloud top cloud fraction is less than 10 % to avoid skewing towards times with very little294

cloud.295

• To compute the COT, we sum over total grid box cloud optical thickness in the column (TOT_CLD_VISTAU), and divide296

by the total cloud (CLDTOT) to get in-cloud COT.297

• Similarly, the model output total gridbox LWP is divided by CLDTOT to get in-cloud values.298

S12.0.4 ECHAM-SALSA299

• Particle number concentrations and OA mass concentrations are calculated from mass mixing ratios using STP.300

• To extract only the liquid clouds, we remove cases where the cloud top temperature is below −15 ◦C.301

• We only use values where there is a cloud more than 10% of the time in the column.302

• We mask cloud data where the cloud top cloud fraction is less than 10 % to avoid skewing towards times with very little303

cloud (this is performed on the hourly resolution).304

• In ECHAM-SALSA COT and CWP are both output as instantaneous values and we divide by the column maximum of305

the cloud time over the column (the fraction of time there has been a cloud in the column).306

S13 Supplementary references307
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