Supplementary Materials for

Observed winter Barents Kara Sea ice variations induce prominent sub-decadal variability and a multi-decadal trend in the Warm Arctic Cold Eurasia pattern

Rohit Ghosh^{*1,2,3}, Elisa Manzini¹, Yongqi Gao^{4 †}, Guillaume Gastineau⁵, Annalisa Cherchi^{6,7}, Claude Frankignoul^{5,8}, Yu-Chiao Liang^{9,8}, Young-Oh Kwon⁸, Lingling Suo⁴, Evangelos Tyrlis¹⁰, Jennifer V. Mecking^{11,12}, Tian Tian¹³, Ying Zhang¹⁴, Daniela Matei¹

*Corresponding author. Email: rohit.ghosh@awi.de

¹ Max-Planck-Institute for Meteorology, Hamburg, Germany

² Department of Meteorology, University of Reading, Reading, United Kingdom

³*Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

⁴ Nansen Environmental and Remote Sensing Center and Bjerknes Center for Climate Research, Bergen, Norway

⁵ UMR LOCEAN, Sorbonne Université, CNRS/IRD/MNHN, Paris, France

⁶ National Research Council of Italy, Institute of Atmospheric Science and Climate (CNR-ISAC), Bologna, Italy

⁷ Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy

⁸Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, U.S.A

⁹ Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

¹⁰ Department of Physics, National and Kaposdistrian University of Athens, Athens, Greece

¹¹Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton,

Southampton, United Kingdom

¹² National Oceanography Centre Southampton, University of Southampton, Southampton, United

Kingdom

¹³ Danish Meteorological Institute, Copenhagen, Denmark

¹⁴ Nansen-Zhu International Research Center, Institute of Atmospheric Physics,

Chinese Academy of Sciences, Beijing 100029, People's Republic of China

*Current affiliation

⁺ Deceased, 23rd July 2021

This PDF file includes the following:

Table S1, Figs. S1 to S6, References (to)

Model	CESM	LMDZO	CAM6-	EC-	CMCC-	ECHAM	HadGE	IAP4	Multi-model
Name	2-	R6	Nor	Earth3	CM2-	6.3	M3		ensemble
	WACC				HR4				
	M6								
Institution	WHOI-	LOCEA	NERS	DMI	CMCC	MPI-M	UoS	NZC/IA	
	NCAR	N-IPSL	С					Р	
Horizontal	0.95° x	1.26° x	0.94° x	T255	0.9° x	T127	0.83° x	~1.4 ° x	Interpolated
resolution	1.25°	2.5°	1.25°	(~80	1.25°	(~100km	0.55°	1.4 °	to 1.26° x
(lat x lon)	(~100	(~150	(~100	km)	(~100)	(~60 km)		2.5° (~150
	km)	km)	km)		km)				km)
# of vertical	70	79	32	91	30	95	85	30	
levels	(0.001	(0.01	(3.4	(0.01	(2 hPa)	(0.01hPa	(85 km)	(2.2hPa)	
(top level)	hPa)	hPa)	hPa)	hPa))			
# of	30	30	20	20	10	10	10	15	145
ensemble									
members									
Adjustment	Yes	Yes	Yes	Yes	No	Yes	No	Yes	
of SST/SIC									
CMIP6	CMIP6	HighRes	CMIP6	CMIP6	HighRes	CMIP6	HighRes	1979-	
External		MIP			MIP		MIP	2005:	
Forcing								CMIP5	
used								historical	
								2006-	
								2015:	
								CMIP5	
								RCP8.5	
Reference	Gettel	Hourdin	Bentse	Haarsm	Cherchi	Stevens	Walters	Sun, H.	Liang et al.,
	man et	et al.,	n et al.,	a et al.,	et al.,	et al.,	et al.,	C., G. Q.	2020
	al.,	2020	2013	2020	2019	2013	2019	Zhou,	
	2019					Müller et		2012	
						al., 2018			

 Table S1: Details of the Eight Atmospheric models used for the analysis

Fig S1 In the ERA5 reanalysis for the period 1980 to 2022 **a)** The EOF1 of observed winter (December-to-February) Northern Hemisphere (NH, 20 N-90 N, 180 W-180 E) SLP variability (known as Arctic Oscillation, AO) in hPa. **b)** the EOF1 of the observed winter Eurasian SAT variability in Kelvin (in shading) and contours show the associated sea level pressure anomaly, representing the AO. The top right of the figures mentions the explained variances. **c)** Associated time series of the PC1 NH SLP variability (in black) and the PC1 of the Eurasian SAT variability (in blue). The thin smoother time series represent the respective 5-year running means.

Fig S2 a) In ERA5, DJF SAT trend for the period 1980 to 2014 (35 years) and **b)** 1980 to 2022 (43 years) in K/year. The trends in the yellow stippled regions are significant at a 5% level.

Fig S3 The spatial patterns (in shading) of the **a**) EOF1 and **b**) EOF2/WACE of winter (DJF) SAT variability over Eurasia ($20^{\circ}-90^{\circ}N, 0-180^{\circ}E$) in the ERA5 (1980-2014). The upper right corners of each panel show the explained variance. The EOF patterns are scaled to correspond to the one standard deviation variation of the respective PC time series and thus have units in K. The black contours are the SLP (in hPa) fields associated with the respective EOFs, derived by regression of the SLP field on the respective normalised PC time series.

EOF2 SAT ALL

Fig S4 The EOF2 SAT/WACE pattern of variability (in shading) and its associated SLP pattern (in contours) in each model for **ALL** and **SICclim** experiments. The explained variance in each model are mentioned at the top right.

Fig S5 Power spectrum of the winter BKS SIC anomaly (in blue) from HadISST1 from 1980 to 2014. The 95% confidence bound of the associated Markov spectrum is shown in a blue dashed line.

Fig S6 Distribution of the correlation coefficient between Eurasian winter PC1 SAT and Arctic Oscillation (AO) in the multi-model large ensemble members for experiments ALL and SICclim. The multi-model ensemble median (orange line), interquartile range (green box) and full spread (whiskers) are shown through a box plot. The green triangles show the multi-model ensemble mean of the correlation. The horizontal black line indicates the same correlation in ERA5. The open circles show the outliers.

Fig S7: The distribution of the **a**) Northern Hemisphere (0°-90°N, 0°-360°E) mean surface temperature (NHMST) trend and **b**) Central Eurasian (black box region in figure 2c,d, 45°N-65°N, 70°E-120°E) mean surface temperature trend in the multi-model large ensemble (145) members for **ALL** and **SICclim**. The multi-model ensemble median (orange line), interquartile range (green box) and full spread (whiskers) are shown through a box plot. The green triangles show the multi-model ensemble mean. The circles show the outliers. The horizontal black line indicates the same in ERA5 with its 95% confidence interval (light-shaded area). The units are in K/year.

References:

- Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., & Kristjánsson, J. E. (2013). The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate. *Geoscientific Model Development*, 6(3), 687–720. https://doi.org/10.5194/gmd-6-687-2013
- Cherchi, A., Fogli, P. G., Lovato, T., Peano, D., Iovino, D., Gualdi, S., Masina, S., Scoccimarro, E., Materia, S., Bellucci, A., & Navarra, A. (2019). Global Mean Climate and Main Patterns of Variability in the CMCC-CM2 Coupled Model. *Journal of Advances in Modeling Earth Systems*, 11(1), 185–209. https://doi.org/10.1029/2018MS001369
- Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K., Marsh, D. R., Tilmes, S., Vitt, F., Bardeen, C. G., McInerny, J., Liu, H. L., Solomon, S. C., Polvani, L. M., Emmons, L. K., Lamarque, J. F., Richter, J. H., Glanville, A. S., Bacmeister, J. T., Phillips, A. S., ... Randel, W. J. (2019). The Whole Atmosphere Community Climate Model Version 6 (WACCM6). *Journal of Geophysical Research: Atmospheres*, *124*(23), 12380–12403. https://doi.org/10.1029/2019JD030943
- Haarsma, R., Acosta, M., Bakhshi, R., Bretonnière, P. A., Caron, L. P., Castrillo, M., Corti, S., Davini, P., Exarchou, E., Fabiano, F., Fladrich, U., Franco, R. F., Garciá-Serrano, J., Von Hardenberg, J., Koenigk, T., Levine, X., Meccia, V. L., Van Noije, T., Van Den Oord, G., ... Wyser, K. (2020). HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR Description, model computational performance and basic validation. *Geoscientific Model Development*, *13*(8), 3507–3527. https://doi.org/10.5194/GMD-13-3507-2020
- Hourdin, F., Rio, C., Grandpeix, J.-Y., Madeleine, J.-B., Cheruy, F., Rochetin, N., Jam, A., Musat, I., Idelkadi, A., Fairhead, L., Foujols, M.-A., Mellul, L., Traore, A.-K., Dufresne, J.-L., Boucher, O., Lefebvre, M.-P., Millour, E., Vignon, E., Jouhaud, J., ... Ghattas, J. (2020). LMDZ6A: the atmospheric component of the IPSL climate model with improved and better tuned physics. *Journal of Advances in Modeling Earth Systems*, e2019MS001892. https://doi.org/10.1029/2019ms001892
- Liang, Y. C., Kwon, Y. O., Frankignoul, C., Danabasoglu, G., Yeager, S., Cherchi, A., Gao, Y., Gastineau, G., Ghosh, R., Matei, D., Mecking, J. V., Peano, D., Suo, L., & Tian, T. (2020). Quantification of the Arctic Sea Ice-Driven Atmospheric Circulation Variability in Coordinated Large Ensemble Simulations. *Geophysical Research Letters*, 47(1), 1–10. https://doi.org/10.1029/2019GL085397
- Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M., Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H., Ilyina, T., Kleine, T., Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., Roeckner, E., Stemmler, I., ... Marotzke, J. (2018). A Higher-resolution Version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). *Journal of Advances in Modeling Earth Systems*, *10*(7), 1383–1413. https://doi.org/10.1029/2017MS001217
- Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I., Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., & Roeckner, E. (2013). Atmospheric component of the MPI-M earth system model: ECHAM6. *Journal of Advances in Modeling Earth Systems*, 5(2), 146–172. https://doi.org/10.1002/jame.20015
- Sun, H. C., G. Q. Zhou, and Q. C. Z. (2012). Assessments of the climate system model (CAS-ESM-C) using IAP AGCM4 as its atmospheric component. *Chin. J. Atmos. Sci*, *36*, 215–233.
- Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., ... Zerroukat, M. (2019). The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. *Geoscientific Model Development*, *12*(5), 1909–1963. https://doi.org/10.5194/gmd-12-1909-2019