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In classical stochastic theory, the joint probability distributions of a stochastic process obey by
definition the Kolmogorov consistency conditions. Interpreting such a process as a sequence of
physical measurements with probabilistic outcomes, these conditions reflect that the measurements
do not alter the state of the underlying physical system. Prominently, this assumption has to be
abandoned in the context of quantum mechanics, yet there are also classical processes in which
measurements influence the measured system. Here, we derive conditions that characterize uniquely
classical processes that are probed by a reasonable class of invasive measurements. We then analyse
under what circumstances such classical processes can simulate the statistics arising from quantum
processes associated with informationally-complete measurements. We expect that our investigation
will help build a bridge between two fundamental traits of non-classicality, namely, coherence and
contextuality.
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I. INTRODUCTION

Since the inception of quantum physics a very funda-
mental question driving both its theoretical development
and some of its most impressive applications is the dif-
ference between this theory and the classical description
of the physical world. In recent years, there has been
a great advancement in the understanding of two top-
ics at the heart of this question, coherence theory and
contextuality (see [1] and [2] for reviews).

Coherence theory formalises the intuition that super-
position in the number states is a signature of non-
classicality [1, 3]. What started as a parallel development
to entanglement theory [3, 4] has since proven useful to
develop deep quantitative connections between coherence
and a wide range of topics, such as fringe visibility [5, 6],
state and sub-channel discrimination tasks [7–11], power
of quantum computation [12–14], state conversion in the
resource theory of thermodynamics [15, 16], quantum dis-
cord and entanglement [17–21], quantum steering [22],
and, crucially for the present work, non-classical corre-
lations in time [23–25] such as those at the basis of the
Leggett-Garg inequalities [26].

Contextuality sprang to live with the no-go theorem
of Kochen and Specker, proving that one cannot build a
hidden variable theory that assigns truth values to proper
finite collections of projective measurements of a quan-
tum system of dimension greater than two [27]. The topic

∗ moritz.ferdinand.richter@physik.uni-freiburg.de
† andrea.smirne@unimi.it
‡ walter.strunz@tu-dresden.de
§ d.egloff@uniandes.edu.co

has seen a great development in recent years, for instance,
showing how contextuality is a strictly stronger quantum
feature than Bell-non-locality [28–30], is important for
magic state quantum computation [31, 32] as well as for
quantum channel capacity and quantum state discrimi-
nation [33, 34], and is related to non-classical correlations
in time [35, 36].

Among the different definitions of (non)contextuality,
here we rely on the identification of noncontextual statis-
tical models as those for which there exists a joint prob-
ability distribution for all the measurements involved
in the statistics [37–39], which takes root in the Kol-
mogorov consistency conditions of the classical statistical
theory [40]. Explicitly, the Kolmogorov consistency con-
ditions state that probabilities are positive, sum to one,
and that the joint probabilities satisfy a constraint on
the marginalization that reads, taking for simplicity the
joint probability associated with two values x1 and x2,∑
x1
P (x2, x1) = P (x2), where P (x2) is the probability

that the stochastic process assigns to the value x2 only.
These conditions are fundamental in physics, because, by
virtue of the Kolmogorov extension theorem, they guar-
antee the existence of an overall classical description of
the statistics satisfying them. In particular, we investi-
gate the multi-time statistics associated with sequential
measurements at different times, for which a clear-cut
connection has been established between quantum co-
herence and discord on one side and the breaking of the
Kolmogorov consistency conditions in the quantum set-
ting on the other [23–25]; see also the recent review [41].

The validity of the Kolmogorov consistency conditions
in classical models refers to the possibility, at least in
principle, to perform noninvasive measurements that ac-
cess the actual value possessed by physical quantities
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without disturbing the subsequent statistics. While this
is indeed generally not possible in the quantum realm, as
measurements modify the state of the system, it is also
true that even classically one can think of measurements
modifying the system state. As a specific example, one
can think of the measurement of the position of a parti-
cle undergoing Brownian motion due to the interaction
with, possibly very small, surrounding particles. Such
a measurement might in fact modify the positions of all
the particles involved and then the following statistics of
the particle’s position would be different depending on
whether the measurement has been performed or not. A
visualisation is given in Fig. 1.

FIG. 1. Sketch of a possible setup for an invasive stochastic
measurement: A system particle (large violet sphere) moves
randomly according to Brownian motion due to collisions with
environmental particles (small green spheres). In order to
measure its position at a certain time one shoots a smaller
probe particle (small gold sphere) at it, which is detected
later on a screen. By using the position and angle from which
it is shot and the position and angle at which it is detected
on the screen one can compute the position of the Brownian
particle.
However, due to the impact of the probe particle the system
particles momentum is changed. Thus, the probabilities for
subsequent positions and paths (violet arrows pointing away
from the particle) are altered from what they would be with-
out having performed the position-measurement via the probe
particle (black arrows).

On the one hand, considering classical invasive mea-
surements opens the door to possible loopholes when try-
ing to certify experimentally the nonclassicality of a given
statistics, such as the so-called clumsiness loophole in the
context of Leggett-Garg inequalities [42]. On the other
hand, it allows an extended notion of classicality, where
the Kolmogorov consistency conditions no longer hold
[43] and contextuality is accounted for by classical mod-
els of invasiveness [2, 44, 45].

In this paper, we introduce a class of invasive sta-
tistical models, starting from a canonical classical pro-

cess that satisfies the Kolmogorov consistency conditions
and including invasiveness via an operational character-
isation of the disturbance on the statistics induced by
the measurements, along with a restriction on the acces-
sible multi-time probabilities. We derive concrete and
experimentally verifiable conditions that uniquely char-
acterise such invasive classical processes, for the case
of up to two (informationally complete) measurements
and preparations for arbitrary finite-dimensional sys-
tems. Furthermore, we provide a general microscopic
description of the statistics that satisfy such conditions
in terms of a system plus environment model. Lastly,
we determine when a quantum statistics can be simu-
lated via the introduced classical invasive model, focus-
ing on informationally-complete POVMs and identifying
the key property of the dynamics that is linked to this
extended notion of classicality.

II. CLASSICAL INVASIVE MODEL

In this section, we are going to define what type of
invasive models we consider to be classical. This is anal-
ogous to the classicality conditions of Bell [46], but here
we do not consider local observables. Instead, similarly
as in [47], we consider a system probed multiple times
by a measurement. However, differently from [47], we do
not consider that our measurement is in some way de-
terministic, but only ask that it is invasive in a specific
way.
To deal with multi-time statistics in the presence of

invasive interventions – such as invasive measurements –
we use the notion of contextual probabilities [48]. Intu-
itively, contextuality means that the observations of an
experiment can depend on the setting of the experiment
that one does not consider to be part of the actual exper-
iment. In quantum mechanics, for instance, whether one
performs a measurement at a given time can affect the
outcomes at a later time. In this way, each invasive in-
tervention defines a different context and, within a given
context, the Kolmogorov consistency conditions (KCCs)
hold. We can restate this using the Kolmogorov exten-
sion theorem [40]: there is a classical stochastic process
that gives rise to the observable probabilities if one does
not change the context. However, the collective proba-
bility distribution does not respect the KCC; taking the
marginal over the outcomes of one invasive measurement
does not generally tell us what would happen if that spe-
cific measurement was not performed. Again restating
this last sentence using the Kolmogorov extension theo-
rem, we find that, in general, there is no classical stochas-
tic process that gives rise to the observable probabilities
if one changes the context.
Note that contextual probabilities provide a general

formalism to describe contextual theories and, if defined
broadly enough, they encompass all the predictions of
quantum mechanics [48]. In the following, however, we
are going to use them to define a specific class of con-
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textual theories, which we still understand as classical in
view of the kind of invasiveness allowed.

Besides measurements, we describe explicitly the pos-
sibility to re-prepare the system after any measurement
and before the following evolution (and further measure-
ment); indeed, also such an intervention can, in general,
be invasive. Note that the formalism can be used even if
no re-preparations are done. Hence, in the framework we
consider here, contexts are defined by the sequence of in-
vasive measurements chosen at different times, together
with the possible re-preparation of the system after the
measurements. In each context there are non-invasive
measurements (at different times) that correspond to the
canonical classical model, where probability distributions
referring to the same sequence of times are related by
KCCs. The basic idea is that such ideal measurements
cannot be performed, so that only probabilities involving
invasive measurements and re-preparations are actually
observable. On the other hand, invasive measurements
can be characterised with respect to the non-invasive
ones, which defines the classical invasive model at hand.
In this way, we separate explicitly the part of the model
that is affected by the invasiveness of the measurement
and preparation, from the part that is thought to be only
due to the dynamical evolution of the system.

A. Instantaneously-invasive measurements

Our first aim is to derive consistency conditions
referring to different contexts, characterized by which
invasive measurements and state re-preparations are
performed. Our model includes the possibility of re-
preparing the system after each invasive measurement,
such that a non-invasive measurement would give a
definite outcome with certainty. This means that we can
have optimal control of the states even after the invasive
measurements. As we assume that the re-preparation
is deterministic, we condition on the specific choice,
in order not to carry in the statistics information that
depends solely on a fully controllable choice in the ex-
periment. All in all, we will consider probabilities of the
form PRn−1,An−1;...;R1,A1(an, ℓn; . . . ; a1, ℓ1|rn−1; . . . ; r1),
that is, the hypothetical probability of getting outcomes
{ℓ1, a1} for a non-invasive measurement L1 (that cannot
be performed in a real experiment) followed by the inva-
sive one A1 at time t1 and so on until {ℓn, an} at time tn,
with tn ≥ . . . ≥ t1, conditioned on the re-preparations
R1, . . . Rn−1 of the system in, respectively, r1, . . . , rn−1

instantly after A1, . . . , An−1. As we are interested in
the effect of the measurements, we only consider the
possibilities of either a specific measurement Ai (or
re-preparation Ri) being performed at time ti or not. In
the second case, the letter Ai is omitted in the super-
script of P . Whenever A1, R1, . . . , An−1, Rn−1 are fixed,
the standard KCCs apply, so that we have, for example,∑
ℓ1
PR1,A1(a2, ℓ2; a1, ℓ1|r1) = PR1,A1(a2, ℓ2; a1|r1),

while, in general,
∑
a1
PA1(a2; a1) ̸= P (a2), since the

probabilities at the left and right hand sides of the previ-
ous expression refer to two different contexts, one where
the invasive measurement A1 at time t1 is performed
and the other where it is not. Also note that we write
PRn−1,An−1;...;R1,A1(an, ℓn; . . . ; a1, ℓ1|rn−1; . . . ; r1) rather
than PAn;Rn−1,An−1;...;R1,A1(an, ℓn; . . . ; a1, ℓ1|rn−1; . . . ; r1),
that is, we do not define a context for the last mea-
surement An. This simplification can be done assuming
causality (see Cnd. 5), as there is no subsequent
probability that could depend on whether or not the last
measurement was performed. Consequently, there is no
need to define a context for the last measurement.
We now enumerate the conditions that characterise

the class of invasive theories we take into account.
Firstly, we specify the operational definition of the
invasive measurements, in terms of the hypothetical
non-invasive measurements.

Condition 1. Whatever the previous (or subsequent) se-
quence of measurements, if a non-invasive measurement
L would give the outcome ℓ with certainty, then the prob-
ability to get an outcome a when performing instead an
invasive measurement A is

Prob(inv A 7→ a|non-inv L 7→ ℓ) =Ma;ℓ. (1)

The so defined matrix M will be called Invasive Mea-
surement Matrix or just IMM and it is indeed a stochas-
tic matrix.
A practical interpretation of this condition is the fol-

lowing. Assume for a moment that in principle we were
able to perform a hypothetical non-invasive measure-
ments on the system. Further assume that if we prepared
the system in a fixed way, when measuring we always get
the same outcome ℓ determined by the system state. In
such a situation, the condition states that the probabil-
ity of the invasive measurement to result in outcome a
will be P (a) = Ma;ℓ. This means that while the inva-
sive measurement measures the same physical quantity
as a hypothetical non-invasive one, it might disturb the
measured state. Therefore, even a well-defined state will
not necessarily give always the same outcome, when mea-
sured by such an invasive measurement.
More specifically, Cnd. 1 implies that we consider inva-

sive theories where the influence of the measurement on
the subsequent statistics is “instantaneous”, i.e., it does
not depend on the previous (neither on the following) se-
quence of measurement outcomes. This is indeed a fully
motivated restriction from a physical point of view and
can be seen as the counterpart of the use of a sequence
of quantum instruments to describe subsequent measure-
ments on a quantum system (see also the next section).
A simple example where this condition is not satisfied,

is the following. Suppose that the same measurement
device is used in two subsequent measurements and in the
second one the device does not measure the system at all,
but simply shows the outcome of the first measurement.
In this case, the probability distribution of the second
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measurement will depend on the first one and in general
cannot be described solely by the state of the system
just before the second measurement. This condition thus
formalises the confidence of a careful experimentalist that
such unwanted dependencies between measurements do
not happen in the experiment.

Explicitly, Cnd. 1 means that ∀k = 2, . . . n,

P (ak, ℓk) =Mak;ℓkP (ℓk), (2)

PRk−1,Ak−1;...;R1,A1(ak, ℓk; . . . ; a1, ℓ1|rk−1; . . . ; r1) (3)

=Mak;ℓkP
Rk−1,Ak−1;...;R1,A1(ℓk; . . . ; a1, ℓ1|rk−1; . . . ; r1)

which clarifies the role of Mak,ℓk as the conditional prob-
ability relating a sequence of measurements ending with
ℓk with the one obtained by adding ak. The IMMM can
be fully reconstructed from the probabilities associated
with the invasive measurement. In fact, if we can prepare
the system in a way such that a subsequent non-invasive
measurement (for example, at time t1) would result in
P (ℓ1) = δℓ1,ℓ for any of the possible outcomes ℓ, Eq. (2)
then gives us

Ma1;ℓ
= P (a1|ℓ1 = ℓ), (4)

i.e.,Ma1;ℓ1 can be reconstructed by preparing the state ℓ1
and registering the probability associated with the sub-
sequent invasive measurement with outcome a1.
The second condition about the invasive measurement

concerns its completeness.

Condition 2. The invasive measurement is informa-
tionally complete (IC) (but not over-complete), i.e.,
{P (a)}a allows us to infer the one-step statistics of any
other measurement (invasive or not) performed at the
same time.

The informational completeness of the measurements,
both invasive ones as well as the (actually not per-
formable) non-invasive ones, implies that the probability
distributions PAk(ak) and P (ℓk) both represent the same
abstract underlying state - in the first case measured
invasively and in the second case hypothetically non-
invasively. This implies a one-to-one correspondence, i.e.
a bijection, between both representations given by the
IMM M and thus M must be invertible. This condition
basically says that while our measurements are not ideal,
in the sense that they do alter the measured system, they
at least give us full information. Informational complete-
ness corresponds to the well-known situation in quantum
mechanics where one performs a (minimal) tomography:
any prediction of the statistics of any possible measure-
ment can be inferred from that information. In future
work, we plan to investigate what happens when such
an assumption is weakened to include, on the one hand,
also the case of orthogonal projective measurements in
quantum mechanics (which are not complete), or, on the
other hand, situations where the measurements are over-
complete. Over-complete just means that the measure-
ment gives at least the necessary information to recover
the state.

The next two conditions characterize the influence
that re-preparing the system may have on the statistics.
The first one fixes the interplay between the different in-
terventions (invasive and non-invasive ones), in this way
connecting probabilities referring to different contexts.

Condition 3. Given a sequence of a non-invasive mea-
surement, an invasive one and a re-preparation proce-
dure, all at the same time, the invasive measurement does
not affect the subsequent statistics; explicitly, if said se-
quence occurs at all times t1, . . . tn−1, one has

PRn−1,An−1;...;R1,A1(ℓn; . . . ; a1, ℓ1|rn−1; . . . ; r1) (5)

=Man−1;ℓn−1
. . .Ma1;ℓ1P

Rn−1;...;R1(ℓn; . . . ; ℓ1|rn−1; . . . ; r1).

Intuitively, after a system is re-prepared to a given
state, the evolution should not depend on the outcome
of the measurement before the re-preparation. That
is because the outcome has been discarded in the re-
preparation. Cnd. 3 reflects this thought. However, the
condition is not trivial. Essentially, it means that the
invasive measurement only affects the degrees of freedom
of the measured system. We will come back to this after
introducing a picture of the statistics based on the inter-
action of the measured system with an environment.
The next condition concerns our ability to prepare the

system in a way such that if we do not alter the system’s
state (that has a meaningful definition due to Cnd. 2),
we do not alter the subsequent evolution.

Condition 4. The statistics stemming from re-preparing
the system in a state labeled by a1 after getting the mea-
surement outcome a1 cannot be distinguished from only
measuring a1; for instance:

PA1(a2; a1) = PR1,A1(a2; a1|r1 = a1). (6)

To be explicit, this condition is in general not valid, if
the re-preparation affects the setting of the experiment.
In other words, it formalises the experimentalist capabil-
ity to affect only the intended degrees of freedom in the
re-preparation.
Finally we also assume the following.

Condition 5. Actions later in time do not affect earlier
actions, meaning that one can always take the marginal
over later actions to get the former ones; for instance:∑

ℓ2

PR1(ℓ2; ℓ1|r1) = P (ℓ1) ∀r1. (7)

This condition is nothing else than the causality con-
dition, which is usually required in general probability
theories, and has been named arrow-of-time condition in
the framework of sequential measurements at different
times [49].
Although some of the conditions presented here might

seem trivial, we need to assume them explicitly. This is
because the object we want to analyse is the statistics,
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that per se does not need to satisfy any of the conditions:
in fact, we do not assume any background theory that
may have some of these conditions already incorporated.
Instead, given a statistics, we ask whether it is possible
that it stems from a classical invasive process with instan-
taneous invasive and informationally-complete measure-
ments. Hence, we ask whether the given statistics fulfills
all the conditions presented above and is consistent with
a classical stochastic process. Moreover, we stress that
the class of invasive theories defined by the conditions
above does not cover any possible description that can
be considered as a classical simulation of temporal cor-
relations appearing in quantum mechanics. In particular
and quite significantly, compared for example to the ap-
proach put forward in [50, 51], in the classical invasive
models we consider invasiveness is fully encoded into the
IMM, whose dimensionality is limited by the number of
the possible measurement outcomes.

B. Necessary and sufficient conditions for the
existence of the invasive-measurement description

Before proceeding, we clarify which probabilities are
directly accessible in the invasive theories we describe.
From here on, we restrict ourselves to the case where one
can perform (or not) invasive measurements A1 and A2

only at two different fixed instants of time t1 and t2 ≥ t1,
i.e., n = 2, leaving for future investigation the extension
to a generic number n of invasive measurements at n
subsequent times.

The very notion of invasive theory we are using means
that statistics referring to non-invasive measurements
cannot be accessed directly, so that, for example, one can-
not obtain the probability PR1,A1(a2, ℓ2; a1, ℓ1|r1) from
empirical data. On the contrary, one can indeed access
the probabilities where only invasive measurements are
involved, such as P (ai) and P

A1(a2; a1). In addition, also
probabilities involving only invasive measurements and
re-preparations can be accessed, as in PR1,A1(a2; a1|r1),
that is the probability of getting the outcome a2 for an in-
vasive measurement at time t2 and a1 for an invasive mea-
surement at time t1, conditioned on having re-prepared
the system in the state r1 after the first invasive measure-
ment. Analogously, we can also simply perform a state
preparation at time t1, but without any invasive mea-
surement at that time, in this way accessing PR1(a2|r1).
Finally, we stress that there are probabilities that can-

not be accessed directly, but that can still be recon-
structed from observable probabilities. Indeed, P (ℓ1)
is an example of this due to the Cnd. 2; denoting as
(M−1)ℓ;a the matrix elements of the inverse of M , we
have in fact (from the sum over ℓ1 of Eq. (2))

P (ℓ1) =
∑
a1

(M−1)ℓ1;a1P (a1), (8)

i.e., the statistics associated with the non-invasive mea-
surement at time t1 can be inferred from the statistics

associated with the invasive measurement at the same
time. Note that the possibility to do so depends on the
invertibility of the IMM M and is thus a consequence
of the informationally completeness of the measurement.
Similarly, we have

PR1,A1(ℓ2; a1|r1) =
∑
a2

(M−1)ℓ2;a2P
R1,A1(a2; a1|r1).

Cnd. 3 is the key element that allows us to connect
probabilities referring to different contexts, i.e., to sit-
uations where there is or there is not the intermediate
invasive measurement at time t1. In particular, Eq. (5)
for n = 2, along with

∑
a1
Ma1,ℓ1 = 1 (M is a stochastic

matrix), Eq. (3) and the KCCs with respect to ℓ1 and ℓ2
imply

PR1(a2|r1) =
∑
a1

PR1,A1(a2; a1|r1), (9)

that is, one can apply the standard KCC with respect
to A1 when both the invasive measurement and the re-
preparation are involved at time t1. Moreover, as shown
in Appendix A, Eq. (5) also implies

P (a2) =
∑
a1,r1

(M−1)r1;a1P
R1,A1(a2; a1|r1). (10)

Crucially, these relations involve only probabilities that
are referring to invasive measurements and a state re-
preparation and are thus accessible (see the remark at
the beginning of this paragraph and Eq. (4) for the as-
sessment of M).
We have now all the ingredients we need to formulate

the first main result of the paper.

Theorem 1. Let the probabilities P (a1), P (a2),
PR1(a2|r1) and PR1,A1(a2; a1|r1), as well as an invert-
ible matrix of transition probabilities M , be given. Then,
i) P (ℓ1) :=

∑
ai
(M−1)ℓi;aiP (ai) and PR1(ℓ2; ℓ1|r1) :=∑

a1,a2
(M−1)ℓ2;a2(M

−1)ℓ1;a1P
R1,A1(a2; a1|r1) are prob-

ability distributions, and ii) Eqs. (6), (7), (9) and (10)
hold, if and only if there exists a probability distribution
PR1,A1(a2, ℓ2; a1, ℓ1|r1), from which the probabilities
above can be obtained by Cnds. 1 to 5 together with the
KCCs over the corresponding ℓis.

In other terms, we have some definite conditions
on experimentally accessible probabilities that, if satis-
fied, guarantee the existence of an underlying contextual
model that accounts for the given statistics and, by sat-
isfying Cnds. 1 to 5, describes instantaneously-invasive
informationally-complete measurements.

Quite interestingly, the proof of the statement, see Ap-
pendix A, is constructive and consists in the introduc-
tion of further degrees of freedom (an environment) in-
teracting with the system the statistics is referring to.
As depicted in Fig. 2, the global evolution on the sys-
tem together with the environment can be modelled as
a stochastic evolution, where one needs to account for
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the stochastic intervention of the measurements on the
system whenever one performs them. As shown in Ap-
pendix A, such a model exists, whenever the conditions
i) and ii) stated in the theorem are satisfied. It is then
easy to verify that the reduced dynamics on the system
gives a contextual model that describes instantaneously-
invasive informationally-complete measurements, repro-
duces the statistics and satisfies the conditions stated in
the theorem. Thus, the equivalence of the two models
with conditions i) and ii) of the theorem is shown.

As a further remark, we comment on the question,
“What if the statistics stems from an experiment where
no re-preparations have been done?” In this case, one can
still apply the theorem to tell whether the statistics could
be reproduced by a classical stochastic process probed by
instantaneously-invasive informationally-complete mea-
surements. One still just needs to check Eqs. (6), (7), (9)
and (10) together with the KCCs over the corresponding
ℓis for the statistics one has. However, Eq. (6) is trivial in
that case and Eqs. (7) and (9) get substantially weakened
(as one cannot check whether they are fulfilled for any re-
preparation). However one could still check whether the
probabilities without re-preparation can be embedded in
a statistics including re-preparation and such that the
assumptions of the Theorem hold.

Finally, note that the proof also shows that if P (ℓ1) and
PR1(ℓ2; ℓ1|r1) are quasi probability distributions (i.e.,
they can have negative entries), the theorem holds up
to PR1,A1(a2, ℓ2; a1, ℓ1|r1) having negative entries.

E

S

R

FIG. 2. This figure shows the stochastic model of system
S plus environment E that can explain the statistics gath-
ered in the register R, exactly if there is a correspond-
ing contextual model that describes instantaneously-invasive
informationally-complete measurements. The model starts
with a hypothetical system state s0 at time t0 that evolves
to the (not measurable) state ℓ1 on the system and e1 on the
environment under the action of the stochastic map Vℓ1,e1;s0
at time t1. Then there is a measurement on the system
side, which changes the system’s state under the action of the
stochastic map Ma1;ℓ1 to a1. If the system is re-prepared in
the state r1, the state a1 is lost. The evolution then continues
analogously during time t2. The model is able to reproduce
the statistics if the stochastic matrices of the evolutions V
are independent of whether one measures or re-prepares the
system at any time.

III. QUANTUM PROCESSES WITH
INFORMATIONALLY-COMPLETE QUANTUM

MEASUREMENTS

In the following we discuss the application of the con-
cepts developed above to the statistics of quantum se-
quential measurements at different times, i.e., we investi-
gate to what extent the predictions of quantum mechan-
ics can be reproduced via classically invasive models as
those defined in the previous section.
In contrast to the classical case, mutually exclusive

outcomes in quantum mechanics – i.e. an orthogonal
measurement set-up – cannot reveal the full information
about the state of a quantum system, and information-
ally complete quantum measurements have overlapping
outcomes. The idea is then to interpret this overlap
as stochastic invasiveness of the kind introduced above.
Consequently, we will define conditions for a quantum
stochastic process associated with informationally com-
plete measurements to provide statistics that obey the
properties and conditions of consistency as discussed
above. Furthermore, we will connect the fulfillment of
such conditions to a definite property of the evolution of
a quantum system interacting with an environment and
realizing the process at hand.

A. IC-POVM

We start by recalling the definition of informationally
complete quantum measurements [52, 53]. A rank-one
Informationally Complete Positive Operator Valued Mea-
sure (IC-POVM) is a set of positive operators {Eψ =

K†
ψKψ = 1

cψ
|ψ⟩⟨ψ|} where {|ψ⟩⟨ψ|} =: F is a frame on

the space of bounded operators B(H) (called a quantum
frame [52, 54]), i.e. any operator, like density operators,
have a decomposition

ρ̂ =
∑
ψ

fψ|ψ⟩⟨ψ|,

and cψ is chosen such that
∑
ψ Eψ = 1. For simplicity

we assume the quantum frame (and IC-POVM) to be
minimal, that is, a (non-orthogonal) basis.
Under this assumption, the frame decomposition co-

efficients (FDCs) fψ of density operators representing
mixed quantum states are fψ ∈ R due to hermiticity of
ρ̂ and

∑
ψ fψ = 1 since ρ̂ is trace-one. Thus, using a

quantum frame one can express any quantum state ρ̂ as
an at least quasi-stochastic mixture of a fixed set of pure
quantum states {|ψ⟩⟨ψ|}. In the case of an open quantum
system HS coupled to an environment HE, i.e. giving a
global space H = HS ⊗ HE, it is possible to combine a
system quantum frame FS := {|ψ⟩⟨ψ|S} and an environ-
mental frame FE := {|ϵ⟩⟨ϵ|E} to an overall multi-partite
quantum frame F := FS ⊗FE = {|ψ⟩⟨ψ|S ⊗ |ϵ⟩⟨ϵ|E} s.t.

ρ̂ =
∑
ψ,ϵ

f(ψ,ϵ)|ψ⟩⟨ψ|S ⊗ |ϵ⟩⟨ϵ|E =
∑
ψ

fSψ|ψ⟩⟨ψ| ⊗ ϵ̂ψ (11)
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where fSψ are the FDCs of ρ̂S := TrE [ρ̂] and the operators

ϵ̂ψ ∈ B(HE) are hermitian, trace-one but not necessarily
positive semi-definite. Consider performing a measure-
ment, given by an IC-POVM on HS. If the system HS

before the measurement was in the state ρ̂ and the out-
come is ψ, the state after the measurement is given by

Kψ(ρ̂) = (Kψ ⊗ 1)ρ̂(Kψ ⊗ 1)†. (12)

As in this example we are considering the Kraus opera-
tors to be rank one, the state after the measurement can
also be expressed as

Πψ(ρ̂) = |ψ⟩⟨ψ|S ⊗ ρ̂E. (13)

Moreover, we consider an intermediate evolution between
subsequent measurements, as given by a unitary map V
acting on system and environment (V(ρ̂) = V ρ̂V †, with
V ∈ U(H) a unitary operator). Let us assume, with-
out loss of generality, that the input state at time t1 is
generated by a unitary V0 out of an initial state ρ̂0 at
a time t0, while the unitary between time t1 and t2 is
denoted by V1. That we assume an already evolved state
V0(ρ̂0) entering the very first measurement is motivated
by typical assumption from open quantum theory. Using
this construction we can initially assume e.g. product
states ρ̂0 = ρ̂S⊗τ with a certain system state ρ̂S coupled
to some thermal state τ of some bath as environment
and nevertheless allow for entering arbitrarily correlated
states at the moment of the first measurement.

B. Correspondence between classical invasive and
quantum models

All probabilities that define the observable quantities
in the invasive model defined in Section II can be ex-
pressed via the Born’s rule applied to the proper sequence
of maps – note that the indices ai, ℓi, ri now refer to the
elements of the quantum frame indexed by {ψ}, where
|ψ⟩⟨ψ| labels the projectors defining the IC-POVM. For
instance,

PR1,A1(a2; a1|r1) = Tr [Ka2V1Πr1Ka1V0(ρ̂0)]

=
Tr [Ka2V1Πr1Ka1V0(ρ̂0)]

Tr [Πr1Ka1V0(ρ̂0)]
Tr [Ka1V0(ρ̂0)] ,

(14)

where Ka describes the state transformation due to a
measurement with outcome a according to Eq. (12), while
Πr is the re-preparation in the state one gets after a mea-
surement with outcome r according to Eq. (13). From
P (a1) = Tr [Ka1V0(ρ̂0)] and setting

Ma;ℓ := Tr [Ea|ℓ⟩⟨ℓ|] = Tr
[
Ka|ℓ⟩⟨ℓ|K†

a

]
(15)

one can derive (see Appendix B)

P (ℓ1) = fSℓ1 . (16)

Thus, the (inaccessible) probability of measuring out-
come ℓ1 in a (hypothetically) non-invasive measurement
L1 (see Eq. (8)) in the invasive-stochastic model is given
by the FDC fSℓ1 of the reduced system state (see Eq. (11)).
The frame decomposition at time t1 reads

V0(ρ̂0) :=
∑
(ψ,ϵ)

(
V0f⃗0

)
(ψ,ϵ)

|ψ⟩⟨ψ|S ⊗ |ϵ⟩⟨ϵ|E, (17)

where we understand f⃗0 as a vector like representation of
ρ̂0 based on its FDCs and V0 accordingly as a matrix like
representation of V0 as similarly suggested e.g. by [55,
56]. Consequently, we will neglect the indices S and E and
use the convention that the first factor of a tensor product
refers to HS and the second one to HE. In Appendix B,
the following lemma is shown.

Lemma 2. A quantum stochastic pro-
cess using IC-POVMs with probabilities as
defined above fullfils Eqs. (6), (7), (9)
and (10). Furthermore, PR1(ℓ2; ℓ1|r1) :=∑
a1,a2

(M−1)ℓ2;a2(M
−1)ℓ1;a1P

R1,A1(a2; a1|r1) and

P (ℓ1) are quasi probability distribution (they sum to one,
but are not necessarily positive).

Lemma 2shows that a probability distribution pro-
duced by such a quantum process using IC-POVMs is
at least quasi-stochastic, i.e. consistency holds and even
objects like P (ℓ1) are real and sum up to one but might
be negative. To characterise the cases in which all enti-
ties really behave like proper – positive – probabilities,
we introduce the following definitions.

Definition 1. A quantum state ρ̂ on H = HS ⊗ HE is
called FS-separable if and only if it has a decomposition
ρ̂ =

∑
ψ f

S
ψ |ψ⟩⟨ψ| ⊗ ϵ̂ψ with fSψ ≥ 0 and ϵ̂ψ is a proper

environmental quantum state ∀|ψ⟩⟨ψ| ∈ FS. A unitary
evolution V ∈ U(H) is called FS-separable if and only
if it maps FS-separable states to such states again.

The following theorem, which is proved in Appendix C,
characterises FS-separability as the key property that al-
lows us to reproduce the predictions of quantum mechan-
ics via the classical invasive models introduced in the
previous section.

Theorem 3. A quantum process using an FS-based IC-
POVM on HS as measurement, FS-separable initial state
ρ̂0 and FS-separable unitaries V0,V1 ∈ U(H) as initial
and intermediate evolutions produce a proper stochastic
probability distribution for all contexts.

C. Markovian and non-Markovian processes

Theorem 3 states that a process at hand can be sim-
ulated via invasive stochastic probabilities whenever the
condition of FS-separability is ensured. Analogously to
what happens in the case of ideal projective measure-
ments [23, 43], there is an important class of processes
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for which FS-separability reduces to a simpler condition,
expressed in terms of the dynamical maps acting on the
open system only; namely, this is the case for Markovian
processes.

Here, what we mean with Markovianity is that the
whole hierarchy of probability distributions, and hence
in particular the probabilities involved in our analysis, is
fixed by the completely positive trace preserving (CPTP)
dynamical maps between two subsequent measurements
i and i+ 1 defined as

Λi(ρ̂) = TrE

[
Vi(ρ̂⊗ τ̂i)V†

i

]
(18)

where τ̂i is a reference state of the environment (possibly
different at different times). Hence, Markovianity is here
understood in terms of a property of multi-time probabil-
ity distributions, analogously to the definition for classi-
cal stochastic processes; for a comparison among different
notions of quantum Markovianity, we refer the reader to
[57]. This setting means that for any measurement time
all relevant information for the subsequent statistics is
stored in the system state ρ̂S ∈ B(HS) only and can hence

be encoded in a simple frame vector f⃗ for the system
frame FS corresponding to the IC-POVM at hand. In
turn, the frame-representation of a CPTP map is simply
a matrix VΛ which maps the frame vector of the input
state to the frame vector of the output state. As a con-
sequence, VΛ has to be a quasi-stochastic matrix, i.e. all
entries are real and each column sums up to one.

Now, if a quantum state has non-negative FDCs only

(i.e. f⃗ has non-negative entries), we say that it is FS-
positive and, accordingly, we define FS-positivity of a
CPTP map by requiring that it maps FS-positive states
to FS-positive states again; indeed, this is equivalent to
the requirement that the corresponding VΛ is a proper
stochastic matrix (all entries are non-negative). Even
more, when the quantum process is Markovian, this is
enough to ensure the simulability via invasive processes.
It is in fact easy to see that requiring an FS-separable
initial quantum state ρ̂0 in Theorem 3 reduces for prod-
uct states to the necessity of an FS-positive quantum
state ρ̂S on the system side and that FS-positivity is the
Markovian reduction of FS-separability of Definition 1.
An equivalent characterisation of FS-positivity is that
such a state ρ̂ is in the convex hull conv [FS] of the frame
and that such a CPTP map sends its convex hull into its
convex hull again. For an illustration of a convex hull of a
quantum frame for a qubit see Fig. 3. Thus, the probabil-
ity distribution of any quantum Markovian process using
an FS based IC-POVM, an initial state ρ̂ ∈ conv [FS] and
an intermediate CPTP map Λ : conv [FS] → conv [FS]
fulfils all conditions for a stochastically invasive statistic.

In the non-Markovian case, the dynamical maps are no
longer enough to infer the multi-time probabilities [43],
and thus the possibility to simulate them via an invasive
classical stochastic model. Consider the following simple
example of a non-Markovian process that, despite being

|α> α|<

|β>
 
β|<

|γ> γ|<
|δ> δ|<

ρ̂

1
2
-
1

FIG. 3. A quantum frame FSIC = {|α⟩⟨α|, ..., |δ⟩⟨δ|} cor-
responding to a symmetric-informationally-complete-POVM
(or SIC-POVM ) on a qubit represented by the Bloch ball. In
grey the convex hull of FSIC is given as regular tetrahedron.
All quantum states ρ̂ inside this tetrahedron are FSIC-positive
states and any CPTP map mapping this tetrahedron into it-
self are FSIC-positive dynamical maps.

associated with an FS-positive dynamical map, cannot
be simulated via the stochastic representation based on
invasive measurements defined in Section II. We have a
two-level open quantum system, HS , interacting with a
two-level environment, HE , so that the global evolution
is fixed by the unitary map which acts between any con-
sidered time interval, i.e. from t0 to t1 as well as from t1
to t2,

V = e−
i
2 (σx⊗σx+σy⊗σy+2σz⊗σz), (19)

and the initial environmental state τ0 = 1/2. The re-
sulting open-system CPTP map defined via Eq. (18)
is easily seen to be a contraction of the Bloch ball,
isotropic along the x−y plan by an amount cos(1) cos(2)
while along the z-axis by an amount cos(1)2, so
that the convex hull of the IC-POVM defined by

the pure states
{
|0⟩, 1√

3
|0⟩+

√
2
3e
i2kπ/3|1⟩

}
k=1,2,3

is

mapped into itself, i.e., the map is FS-positive. On the
other hand, a direct evaluation of PR1,A1(a2; a1|r1) via
Eq. (14), shows that the quantity PR1,A1(ℓ2; a1|r1) =∑
a2
(M−1)ℓ2;a2P

R1,A1(a2; a1|r1) is not a probability dis-
tribution, since it takes on negative values, see Ta-
ble I; more details are given in Appendix D. Thus, be-
cause of Theorem 1 there is no instantaneously-invasive
informationally-complete stochastic process accounting
for the same statistics; indeed, Theorem 3 implies that
this is due to the lack of FS-separability of the overall
evolution.
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TABLE I. Values of
∑
a1
PR1,A1(ℓ2; a1|r1) for different ℓ2

(rows) and r1 (columns); indeed the negative values (in bold-
face) for fixed r1, ℓ2 mean that at least one of the correspond-
ing PR1,A1(ℓ2; a1|r1) is negative, and it cannot be thus asso-
ciated with a probability distribution.

0.34 0.05 0.25 -0.15

0.61 0.56 0.78 0.78

0.18 0.08 -0.15 0.28

-0.13 0.31 0.12 0.09

IV. CONCLUSION

In this paper, we have fully characterized a class of
stochastic models that are invasive, but whose invasive-
ness can still be interpreted as having a classical origin.
In particular, we have provided definite conditions that
allow one, by looking at the statistics of the measurement
outcomes, to tell whether such a classical model exists or
not. Additionally, as our proof is constructive, one can
use it to construct an explicit model, if it exists. We then
identified a significant class of quantum processes that
can be simulated by such a classical model. The analysis
is focused on processes associated with sequential mea-
surements of rank-one informationally-complete POVMs,
deriving a sufficient condition to represent them via an
invasive classical model that is connected with a definite
property of the dynamics of the measured system. Fur-
thermore, we have also shown, by means of an explicit
example, that there are indeed quantum processes that
cannot be simulated via the invasive models defined here.

This point deserves special attention since the fact that
in quantum mechanics the measurement of a system al-
ters its state is often understood as a major difference
to classical physics or even the peculiarity of quantum
physics. However, our model and example suggests that
the difference between classical and quantum physics is
much more subtle than just the invasive character of mea-
surements in the latter one. In this connection, it is also
interesting to consider recent results that show how quan-
tum mechanics can be modeled by a classical stochastic
model, such as those presented in [50, 51].

In this respect, a crucial constraint of our approach is
the dimensionality of the classical invasive models taken
into account. The very definition of the invasive mea-
surement matrix in Cnd. 1, along with the completeness
of the measurement expressed by Cnd. 2 and the connec-
tion with the multi-time statistics in Cnd. 3 essentially
make the dimensionality of the classical model limited by
the number of outcomes of the measured quantity. On

the other hand, in [50, 51] the internal state of the system
that fixes the classical invasive model is not a-priori lim-
ited in dimensionality, which leads to the possibility to
simulate all distributions that satisfy temporal ordering,
thus including all quantum ones.

It will be an interesting task to generalise our results
in various ways and deepen their connection to the ex-
isting literature. Recently, for instance, a generaliza-
tion of the Kolmogorov consistency conditions has been
brought forward with the idea to characterise quantum
processes [43]. As the conditions presented here char-
acterise an extended class of stochastic processes – and
hence are also direct generalisations of the same consis-
tency conditions – it will be interesting to study how
these generalisations differ. In addition, we hope that
the recent results on the dynamics of basis-dependent
discord and coherence [23–25], in relation to the non-
classicality of time-correlations, can be seen as a limit-
ing case of what we have investigated here. Indeed, the
main difference consists in the type of measurement ap-
plied, as there orthogonal (but not complete) measure-
ments were considered, while here we analyse complete
(but not orthogonal) measurements. A further connec-
tion that is certainly worth investigating is with the the-
ory of epsilon-transducers [2, 44], which has been used
to calculate the memory needed to simulate a contextual
experiment by a non-contextual one [58].

Finally, we note that the statistics considered in this
paper refer to experiments and measurements that al-
ter the state of a given system in a stochastic way, such
that the result does not show the state before the mea-
surement, but the state after it. Such measurements do
not only appear in quantum mechanics, but may be im-
portant also in different scenarios [59], where the fact
that one does a measurement or experiment changes the
outcomes. This is for instance a common problem in be-
havioural experiments, where the experiment does not
show the natural behaviour of the subjects, but their be-
haviour under the experimental conditions.
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Appendix A: Extended statement and proof of Theorem 1

We begin by defining the two-time measurement-and-prepare statistics as the statistics that contains all (in principle)
experimentally accessible probability distributions as laid out in the main text.

Definition 2. A two-time measurement-and-prepare statistics from invasive measurements is the collection of prob-
ability distributions: (P (a1), P (a2), P

A1(a2; a1), P
R1(a2|r1), PR1,A1(a2; a1|r1),Ma1;ℓ1 = P (a1|ℓ1),Ma2;ℓ2 = P (a2|ℓ2)),

where the meaning of the different labels is explained in detail in the main text.

Having clarified what quantities are considered, we now proceed by defining two models which may be used to
explain the observed statistics. The first model is more in line with statistical descriptions, like the one used in
Kolmogorov’s theorem, while the second is directly defined in terms of an open system, an environment and their
interaction.

Definition 3. We say that a two-time measurement-and-prepare statistics from invasive measurements can be sim-
ulated by a contextual model with instantaneously-invasive informationally-complete (IIIC) measurements if and only
if there is a probability distribution PR1,A1(a2, ℓ2; a1, ℓ1|r1) that is consistent with the conditions 1-5 in the main text
and from which the probabilities above can be obtained by Eq. (5) together with the KCCs over the corresponding ℓis.

Definition 4. We say that a two-time measurement-and-prepare statistics from invasive measurements can be sim-
ulated by an open system stochastic evolution with IIIC measurements if and only if there are stochastic matrices
T1((e1, ℓ1); ℓ0) (with

∑
e1,ℓ1

T1((e1, ℓ1); ℓ0) = 1∀ℓ0) and T2(ℓ2; (e1, ℓ1)) (with
∑
ℓ2
T2(ℓ2; (e1, ℓ1)) = 1∀e1, ℓ1), and a

probability distribution P (ℓ0) such that all the above probabilities can be calculated from the corresponding evolutions
from P (ℓ0) under the action of T1 and T2 by applying the measurements Ma1,ℓ1 and Ma2,ℓ2 . That is:

PR1,A1(a2; a1|r1) =
∑

ℓ2,ℓ1,e1,ℓ0

Ma2;ℓ2T2(ℓ2; (e1, r1))Ma1;ℓ1T1((e1, ℓ1); ℓ0)P (ℓ0), (A1)

PR1(a2|r1) =
∑

ℓ2,ℓ1,e1,ℓ0

Ma2;ℓ2T2(ℓ2; (e1, r1))T1((e1, ℓ1); ℓ0)P (ℓ0), (A2)

P (a2) =
∑

ℓ2,ℓ1,e1,ℓ0

Ma2;ℓ2T2(ℓ2; (e1, ℓ1))T1((e1, ℓ1); ℓ0)P (ℓ0), (A3)

PA1(a2; a1) =
∑

ℓ2,ℓ1,e1,ℓ0

Ma2;ℓ2T2(ℓ2; (e1, a1))Ma1;ℓ1T1((e1, ℓ1); ℓ0)P (ℓ0), (A4)

P (a1) =
∑

ℓ1,e1,ℓ0

Ma1;ℓ1T1((e1, ℓ1); ℓ0)P (ℓ0). (A5)

The above two models certainly feel very much related. Indeed one can test either of the two models by simply
checking four conditions as stated in the following theorem which entails Theorem 1 of the main text

Theorem. Let S = (P (a1), P (a2), P
A1(a2; a1), P

R1(a2|r1), PR1,A1(a2; a1|r1),Ma1;ℓ1 = P (a1|ℓ1),Ma2;ℓ2 = P (a2|ℓ2))
be a two-time measurement-and-prepare statistics from invasive measurements. Furthermore, let M be invertible.
Let P (ℓ1) :=

∑
a1
(M−1)ℓ1;a1P (a1) and PR1(ℓ2; ℓ1|r1) :=

∑
a1,a2

(M−1)ℓ2;a2(M
−1)ℓ1;a1P

R1,A1(a2; a1|r1). Then, the
following three statements are equivalent.

1. The probability distributions associated with S satisfy

P (ℓ1) ≥ 0 and
∑
ℓ1

P (ℓ1) = 1, (A6)

PR1(ℓ2; ℓ1|r1) ≥ 0 and
∑
ℓ2,ℓ1

PR1(ℓ2; ℓ1|r1) = 1 (A7)

∑
ℓ2

PR1(ℓ2; ℓ1|r1) = P (ℓ1) ∀r1. (A8)

PR1(a2|r1) =
∑
a1

PR1,A1(a2; a1|r1) (A9)

P (a2) =
∑
a1,r1

(M−1)r1;a1P
R1,A1(a2; a1|r1), (A10)

PA1(a2; a1) = PR1,A1(a2; a1|r1 = a1) (A11)
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2. S can be simulated by an open system stochastic evolution with IIIC measurements.

3. S can be simulated by a contextual model with IIIC measurements.

In the case that P (ℓ1) and P
R1(ℓ2; ℓ1|r1) are quasi probability distributions (and can have negative entries), the theorem

holds up to PR1,A1(a2, ℓ2; a1, ℓ1|r1) having negative entries and the corresponding evolutions can be quasi-stochastic.

We will prove this theorem by the steps 1. ⇒ 2., 2. ⇒ 3., and 3. ⇒ 1. For the first step, we will take a simple
initial state P0(ℓ0) :=

∑
a1
P (a1)δa1,ℓ0 (which is basically the same as the state P (a1)) and explicitly construct the

matrices T1 and T2. We then proceed to show that these are indeed stochastic matrices and that all the conditions in
statement 2. are satisfied. By construction, the probabilities one can generate from these maps satisfy conditions 1
to 5 in the main text, and directly from the conditions we get the right probabilities. The last step is outlined in the
main text to motivate the conditions of statement 1. and here we will provide the details.

Proof. ”1.⇒ 2.”:
We define

P0(ℓ0) :=
∑
a1

P (a1)δa1,ℓ0 , (A12)

T1((e1, ℓ1); ℓ0) := δe1,ℓ0δℓ1,ℓ0 , (A13)

T2(ℓ2; (e1, r1)) :=

∑
a1,a2

(M−1)ℓ2;a2(M
−1)e1;a1P

R1,A1(a2; a1|r1)∑
a1
(M−1)e1;a1P (a1)

=
PR1(ℓ2; ℓ1 = e1|r1)

P (ℓ1 = e1)
(A14)

with the convention that 0/0 = 1/nL2, with nL2 the dimension of the space labelled by ℓ2. It directly follows from
the definition that T1 is a stochastic matrix and from condition (A6) that P0(ℓ0) is a probability distribution. T2 is
a stochastic map; it is positive, if both the nominator and denominator are positive, which is true by conditions (A6
and A7). Furthermore, by conditions (A8) and (A6) T2 is a conditional probability and as such a stochastic map.
From the above definitions we get that∑

ℓ2,ℓ1,e1,ℓ0

Ma2;ℓ2T2(ℓ2; (e1, r1))Ma1;ℓ1T1((e1, ℓ1); ℓ0)p(ℓ0)

=
∑

ℓ2,ℓ1,e1,ℓ0

Ma2;ℓ2

∑
a′1,a

′
2
(M−1)ℓ2;a′2(M

−1)e1;a′1P
R1,A1(a′2; a

′
1|r1)∑

a′1
(M−1)e1;a′1P (a

′
1)

Ma1;ℓ1

∑
a′′1

δe1,ℓ0δℓ1,ℓ0(M
−1)ℓ1;a′′1 P (a

′′
1)

=
∑
ℓ1

∑
a′1,a

′
2
δa2,a′2(M

−1)ℓ1;a′1P
R1,A1(a′2; a

′
1|r1)∑

a′1
(M−1)ℓ1;a′1P (a

′
1)

Ma1;ℓ1

∑
a′′1

(M−1)ℓ1;a′′1 P (a
′′
1)

=
∑
ℓ1

∑
a′1
(M−1)ℓ1;a′1P

R1,A1(a2; a
′
1|r1)

P (ℓ1)
Ma1;ℓ1P (ℓ1)

=
∑
ℓ1

∑
a′1

(M−1)ℓ1;a′1P
R1,A1(a2; a

′
1|r1)Ma1;ℓ1 =

∑
a′1

δa1,a′1P
R1,A1(a2; a

′
1|r1) = PR1,A1(a2; a1|r1).

This proves the first condition of Definition 4. The second condition then easily follows by using condition (A11),

PA1(a2; a1) = PR1,A1(a2; a1|r1 = a1) =
∑

ℓ2,ℓ1,e1,ℓ0

Ma2;ℓ2T2(ℓ2; (e1, a1))Ma1;ℓ1T1((e1, ℓ1); ℓ0)p(ℓ0).

For the third condition, we can insert the identity
[∑

a1
(M−1)r1;a1Ma1;ℓ1

]
= δr1,ℓ1 , to get∑

ℓ2,ℓ1,e1,ℓ0

Ma2;ℓ2T2(ℓ2; (e1, ℓ1))T1((e1, ℓ1); ℓ0)p(ℓ0)

=
∑

ℓ2,ℓ1,e1,ℓ0,r1

Ma2;ℓ2T2(ℓ2; (e1, r1))

[∑
a1

(M−1)r1;a1Ma1;ℓ1

]
T1((e1, ℓ1); ℓ0)p(ℓ0)

=
∑
a1,r1

(M−1)r1;a1P
R1,A1(a2; a1|r1) = P (a2),
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where the last line follows from condition (A10). The condition P (a1) =
∑
ℓ1,e1,ℓ0

Ma1;ℓ1T1((e1, ℓ1); ℓ0)p(ℓ0) is trivially
satisfied.

For the second last identity, we have that∑
ℓ2,ℓ1,e1,ℓ0

Ma2;ℓ2T2(ℓ2; (e1, r1))T1((e1, ℓ1); ℓ0)p(ℓ0)

=
∑

ℓ2,ℓ1,e1,ℓ0

Ma2;ℓ2

∑
a′1,a

′
2
(M−1)ℓ2;a′2(M

−1)e1;a′1P
R1,A1(a′2; a

′
1|r1)∑

a′1
(M−1)e1;a′1P (a

′
1)

∑
a′′1

δe1,ℓ0δℓ1,ℓ0(M
−1)ℓ1;a′′1 P (a

′′
1)

=
∑
ℓ1

∑
a′1,a

′
2
δa2,a′2(M

−1)ℓ1;a′1P
R1,A1(a′2; a

′
1|r1)∑

a′1
(M−1)ℓ1;a′1P (a

′
1)

∑
a′′1

(M−1)ℓ1;a′′1 P (a
′′
1)

=
∑
ℓ1

∑
a′1

(M−1)ℓ1;a′1P
R1,A1(a2; a

′
1|r1) =

∑
a′1

PR1,A1(a2; a
′
1|r1) = PR1(a2|r1),

where we have used that M is a stochastic matrix and hence the columns of its inverse sum to one and Eq. (A9). The
last identity follows directly from the definitions. With this we have proven ”1.⇒ 2.”

The proof of ”2. ⇒ 3.” is relatively straightforward. We define PR1,A1(a2, ℓ2; a1, ℓ1|r1) :=∑
e1,ℓ0

Ma2;ℓ2T2(ℓ2; (e1, r1))Ma1;ℓ1T1((e1, ℓ1); ℓ0)p(ℓ0). The statistics is then consistent with conditions 1, 2, 3 and
5 by construction, while condition 4 directly follows from M being invertible. Finally, we get all of the probability
distributions of Definition 3 directly from the ones of Definition 4. In detail:

PR1,A1(a2; a1|r1) =
∑

ℓ2,ℓ1,e1,ℓ0

Ma2;ℓ2T2(ℓ2; (e1, r1))Ma1;ℓ1T1((e1, ℓ1); ℓ0)P (ℓ0) =
∑
ℓ2,ℓ1

PR1,A1(a2, ℓ2; a1, ℓ1|r1),

meaning that the marginal over the unknown states ℓ1 and ℓ2 yields the measured probability distribution for the
case of doing all interventions.

PA1(a2; a1) =
∑

ℓ2,ℓ1,e1,ℓ0

Ma2;ℓ2T2(ℓ2; (e1, a1))Ma1;ℓ1T1((e1, ℓ1); ℓ0)P (ℓ0) =
∑
ℓ2,ℓ1

PR1,A1(a2, ℓ2; a1, ℓ1|a1),

meaning that not re-preparing yields the same result as re-preparing in the measured state.

PR1(a2|r1) =
∑

ℓ2,ℓ1,e1,ℓ0

Ma2;ℓ2T2(ℓ2; (e1, r1))T1((e1, ℓ1); ℓ0)P (ℓ0)

=
∑

ℓ2,ℓ1,e1,ℓ0

Ma2;ℓ2T2(ℓ2; (e1, r1))

(∑
a1

Ma1;ℓ1

)
T1((e1, ℓ1); ℓ0)P (ℓ0) =

∑
a1,ℓ2,ℓ1

PR1,A1(a2, ℓ2; a1, ℓ1|r1),

which means that we can take the marginal over a1 in the usual way, as we delete the correlations with the environment
by re-preparing the system.

P (a2) =
∑

ℓ2,ℓ1,e1,ℓ0

Ma2;ℓ2T2(ℓ2; (e1, ℓ1))T1((e1, ℓ1); ℓ0)P (ℓ0)

=
∑

ℓ2,ℓ1,e1,ℓ0,r1

Ma2;ℓ2T2(ℓ2; (e1, r1))δr1,ℓ1T1((e1, ℓ1); ℓ0)P (ℓ0)

=
∑

ℓ2,ℓ1,e1,ℓ0,r1

Ma2;ℓ2T2(ℓ2; (e1, r1))

(∑
a1

(M−1)r1;a1Ma1;ℓ1

)
T1((e1, ℓ1); ℓ0)P (ℓ0)

=
∑

a1,r1,ℓ2,ℓ1

(M−1)r1;a1
∑
e1,ℓ0

Ma2;ℓ2T2(ℓ2; (e1, r1))(Ma1;ℓ1T1((e1, ℓ1); ℓ0)P (ℓ0)

=
∑

a1,r1,ℓ2,ℓ1

(M−1)r1;a1P
R1,A1(a2, ℓ2; a1, ℓ1|r1),
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where we do need to take into account the correlations with the environment at time 1. Finally,

P (a1) =
∑

ℓ1,e1,ℓ0

Ma1;ℓ1T1((e1, ℓ1); ℓ0)P (ℓ0)

=
∑

ℓ1,e1,ℓ0

(∑
a2

Ma2;ℓ2

)(∑
ℓ2

T2(ℓ2; (e1, r1))

)
Ma1;ℓ1T1((e1, ℓ1); ℓ0)P (ℓ0)

=
∑

a2,ℓ2,ℓ1

PR1,A1(a2, ℓ2; a1, ℓ1|r1),

which is just causality.

We are left with showing ”3.⇒ 1.”. First note that Eq. (A7) implies Eq. (A6) by virtue of condition 5, and Eq. (A6)
follows from the fact that

PR1(ℓ2; ℓ1|r1) =
∑
a1,a2

PR1,A1(a2, ℓ2; a1, ℓ1|r1),

with PR1,A1(a2, ℓ2; a1, ℓ1|r1) a probability distribution by assumption.

Eq. (A8) is a direct consequence of causality (condition 5). Eq. (A9) follows directly from condition 3 and the fact
that the columns ofM−1 sum to one (being the inverse of a stochastic matrix), while Eq. (A11) follows from condition
4. The only condition left to check is Eq. (A10).∑

a1,r1

(M−1)r1;a1P
R1,A1(a2; a1|r1) =

∑
a1,r1,ℓ1

(M−1)r1;a1P
R1,A1(a2; a1, ℓ1|r1)

=
∑

a1,r1,ℓ1

(M−1)r1;a1Ma1;ℓ1P
R1(a2; ℓ1|r1) =

∑
r1,ℓ1

δr1,ℓ1P
R1(a2; ℓ1|r1)

=
∑
ℓ1

PR1(a2; ℓ1|r1 = ℓ1) =
∑
ℓ1

P (a2; ℓ1) = P (a2),

where the first equation follows from the KCC, the second equation from condition 3, the fifth from condition 5 and
the last from the KCC.

It follows directly from the proof, that quasi probability distributions P (ℓ1) and PR1(ℓ2; ℓ1|r1), correspond to a
quasi probability distribution PR1,A1(a2, ℓ2; a1, ℓ1|r1) and quasi-stochastic evolutions.

Appendix B: Proof of Lemma 2

For convenience we reiterate the lemma here:

Lemma (2). A quantum stochastic process using IC-POVMs with probabilities as defined in the main text fulfils
Eqs. (6), (7), (9) and (10). Furthermore, PR1(ℓ2; ℓ1|r1) :=

∑
a1,a2

(M−1)ℓ2;a2(M
−1)ℓ1;a1P

R1,A1(a2; a1|r1) and P (ℓ1)

are quasi probability distribution (they sum to one, but are not necessarily positive).

Proof. To start, note that

Ka1V0(ρ̂0) =
∑
ψ,ϵ

(
V0f⃗0

)
(ψ,ϵ)

Ka1 |ψ⟩⟨ψ|K†
a1 ⊗ |ϵ⟩⟨ϵ|

=
∑
ψ,ϵ

Ma1;ψ

(
V0f⃗0

)
(ψ,ϵ)

|a1⟩⟨a1| ⊗ |ϵ⟩⟨ϵ| (B1)

and hence

Πr1Ka1V0(ρ̂0) =
∑
ψ,ϵ

Ma1;ψ

(
V0f⃗0

)
(ψ,ϵ)

|r1⟩⟨r1| ⊗ |ϵ⟩⟨ϵ|. (B2)
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Furthermore, with the quantum mechanical model given in the main text, we get the following expressions for the
probabilities of interest:

P (a1) = Tr [Ka1V0(ρ̂0)] (B3)

P (a2) = Tr [Ka2V1V0(ρ̂0)] (B4)

PA1(a2; a1) = Tr [Ka2V1Ka1V0(ρ̂0)] (B5)

PR1(a2|r1) = Tr [Ka2V1Πr1V0(ρ̂0)] (B6)

PR1,A1(a2; a1|r1) = Tr [Ka2V1Πr1Ka1V0(ρ̂0)] . (B7)

For the lemma we have to proof that for a quantum process using an IC-POVM as quantum measurement the
equations

PA1(a2; a1) = PR1,A1(a2; a1|r1 = a1) (B8)∑
ℓ2

PR1(ℓ2; ℓ1|r1) = P (ℓ1) ∀r1. (B9)

PR1(a2|r1) =
∑
a1

PR1,A1(a2; a1|r1), (B10)

P (a2) =
∑
a1,r1

(M−1)r1;a1P
R1,A1(a2; a1|r1). (B11)

hold.

For Eq. (B8), we have that

PR1,A1(a2; a1|r1 = a1) = Tr [Ka2V1Πa1Ka1V0(ρ̂0)] = Tr [Ka2V1Ka1V0(ρ̂0)] = PA1(a2; a1),

since Πa1Ka1 = Ka1 , as the preparation simply discards any former state on the system and prepares the new one,
but here both are identical.

For Eq. (B9), we have that

∑
ℓ2

PR1(ℓ2; ℓ1|r1) =
∑

ℓ2,a1,a2

(M−1)ℓ2;a2(M
−1)ℓ1;a1P

R1,A1(a2; a1|r1)

=
∑

ℓ2,a1,a2

(M−1)ℓ2;a2(M
−1)ℓ1;a1 Tr [Ka2V1Πr1Ka1V0(ρ̂0)]

To continue, we will introduce some notation to help the reader following our next steps. Let V1Πr1Ka1V0(ρ̂0) =∑
(ψ,ϵ) f

′
(ψ,ϵ)|ψ⟩⟨ψ| ⊗ |ϵ⟩⟨ϵ|. Accordingly we find

Ka2V1Πr1Ka1V0(ρ̂0) =
∑
(ψ,ϵ)

Ma2;ψf
′
(ψ,ϵ)|a2⟩⟨a2| ⊗ |ϵ⟩⟨ϵ|.

Within the trace operation this gives

Tr [Ka2V1Πr1Ka1V0(ρ̂0)] = Tr

∑
(ψ,ϵ)

Ma2;ψf
′
(ψ,ϵ)|a2⟩⟨a2| ⊗ |ϵ⟩⟨ϵ|


=
∑
(ψ,ϵ)

Ma2;ψf
′
(ψ,ϵ)Tr [|a2⟩⟨a2| ⊗ |ϵ⟩⟨ϵ|]︸ ︷︷ ︸

=1

=
∑
(ψ,ϵ)

Ma2;ψf
′
(ψ,ϵ)Tr [|ψ⟩⟨ψ| ⊗ |ϵ⟩⟨ϵ|]︸ ︷︷ ︸

=1

=
∑
(ψ,ϵ)

Ma2;ψ Tr
[
f ′(ψ,ϵ)|ψ⟩⟨ψ| ⊗ |ϵ⟩⟨ϵ|

]
,

where we have used that Tr [|a2⟩⟨a2| ⊗ |ϵ⟩⟨ϵ|] = 1 = Tr [|ψ⟩⟨ψ| ⊗ |ϵ⟩⟨ϵ|] and hence we can exchange both expressions
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with each other. Thus, going back to the main calculation,∑
ℓ2

PR1(ℓ2; ℓ1|r1) =
∑

ℓ2,a1,a2,(ψ,ϵ)

(M−1)ℓ2;a2(M
−1)ℓ1;a1Ma2;ψ Tr

[
f ′(ψ,ϵ)|ψ⟩⟨ψ| ⊗ |ϵ⟩⟨ϵ|

]

=
∑

ℓ2,a1,(ψ,ϵ)

(∑
a2

(M−1)ℓ2;a2Ma2;ψ

)
︸ ︷︷ ︸

= (1)ℓ2;ψ = δℓ2;ψ

(M−1)ℓ1;a1 Tr
[
f ′(ψ,ϵ)|ψ⟩⟨ψ| ⊗ |ϵ⟩⟨ϵ|

]

=
∑
a1

(M−1)ℓ1;a1 Tr

∑
(ψ,ϵ)

f ′(ψ,ϵ)|ψ⟩⟨ψ| ⊗ |ϵ⟩⟨ϵ|


=
∑
a1

(M−1)ℓ1;a1 Tr [V1Πr1Ka1V0(ρ̂0)] =
∑
a1

(M−1)ℓ1;a1 Tr [Ka1V0(ρ̂0)] =
∑
a1

(M−1)ℓ1;a1P (a1) = P (ℓ1)

and to solve the sum over a1 we have used the same procedure as for the sum over a2 described above.
Eq. (B10) is straightforward:∑

a1

PR1,A1(a2; a1|r1) =
∑
a1

Tr [Ka2V1Πr1Ka1V0(ρ̂0)]

= Tr

[
Ka2V1Πr1

∑
a1

Ka1V0(ρ̂0)

]
= Tr [Ka2V1Πr1V0(ρ̂0)] = PR1(a2|r1),

where we have used
∑
a1

Ka1 = 1.

Finally, to prove Eq. (B11), note that∑
a1,r1

(M−1)r1;a1P
R1,A1(a2; a1|r1) =

∑
a1,r1

(M−1)r1;a1 Tr [Ka2V1Πr1Ka1V0(ρ̂0)]

= Tr

[
Ka2V1

(∑
a1,r1

(M−1)r1;a1Πr1Ka1V0(ρ̂0)

)]
,

which is equal to P (a2) = Tr [Ka2V1V0(ρ̂0)], if
∑
a1,r1

(M−1)r1;a1Πr1Ka1V0(ρ̂0) = V0(ρ̂0). This last equation can be
seen by applying the frame decomposition:∑

r1,a1

(M−1)r1;a1Πr1Ka1V0(ρ̂0) =
∑
ψ,ϵ

∑
r1

(∑
a1

(M−1)r1;a1Ma1;ψ

)
︸ ︷︷ ︸

=δr1,ψ

(
V0f⃗0

)
(ψ,ϵ)

|r1⟩⟨r1| ⊗ |ϵ⟩⟨ϵ|

=
∑
ψ,ϵ

(
V0f⃗0

)
(ψ,ϵ)

|ψ⟩⟨ψ| ⊗ |ϵ⟩⟨ϵ| = V0(ρ̂0).

That PR1(ℓ2; ℓ1|r1) :=
∑
a1,a2

(M−1)ℓ2;a2(M
−1)ℓ1;a1P

R1,A1(a2; a1|r1) and P (ℓ1) :=
∑
a1
(M−1)ℓ1;a1P (a1) are quasi

probability distributions, follows directly from the fact that P (a1) and PR1,A1(a2; a1|r1) are probability distribu-
tions, while Mai;ℓi = Tr [Eai |ℓi⟩⟨ℓi|] = Tr

[
Kai |ℓi⟩⟨ℓi|K†

ai

]
are stochastic matrices due to the normalization condition∑

ai
Tr
[
Kai |ℓi⟩⟨ℓi|K†

ai

]
= Tr

[∑
ai
K†
aiKai |ℓi⟩⟨ℓi|

]
= Tr [|ℓi⟩⟨ℓi|] = 1 (and hence their inverse are quasi-stochastic

matrices).

Appendix C: Proof of Theorem 3

Theorem (3). A quantum process using an FS-based IC-POVM on HS as measurement, a FS-separable initial state ρ̂0
and FS-separable unitaries V0,V1 ∈ U(H) as initial and intermediate evolutions produce a proper stochastic probability
distribution for all contexts.

To prove the theorem, we need to show that PR1(ℓ2; ℓ1|r1) :=
∑
a1,a2

(M−1)ℓ2;a2(M
−1)ℓ1;a1P

R1,A1(a2; a1|r1) and

P (ℓ1) :=
∑
a1
(M−1)ℓ1;a1P (a1) are proper probability distributions with only positive entries. The theorem then

follows directly from the lemma and Theorem 1.
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As explained in the main text, we can decompose a generic probability distribution in its frame decomposition

ρ̂ =
∑
(ψ,ϵ)

f(ψ,ϵ)|ψ⟩⟨ψ| ⊗ |ϵ⟩⟨ϵ| =
∑
ψ

fSψ|ψ⟩⟨ψ| ⊗ ϵ̂ψ. (C1)

If ρ̂ is FS-separable f
S
ψ ≥ 0 and ϵ̂ψ is a proper quantum state (in general ϵ̂ψ is trace-one and hermitian for a minimal

frame FS, but might be a indefinite or negative operator). Let us now define, for simplicity,

ρ̂ :=
∑
ψ

fSψ|ψ⟩⟨ψ| ⊗ ϵ̂ψ := V0(ρ̂0) (C2)

ρ̂′a1,r1 :=
∑
ψ

f ′Sψ (a1, r1)|ψ⟩⟨ψ| ⊗ ϵ̂′ψ(a1) :=
V1Πr1Ka1V0ρ0
Tr [Ka1V0ρ0]

. (C3)

If ρ̂0, V0 and V1 are FS-separable the states ρ̂ and ρ̂′a1,r1 are as well and hence, fSψ, f
′S
ψ (a1, r1) ≥ 0 and ϵ̂ψ, ϵ̂

′
ψ(a1) are

proper quantum states.
With Mai;ℓi = Tr [Eai |ℓi⟩⟨ℓi|] = Tr

[
Kai |ℓi⟩⟨ℓi|K†

ai

]
, we get that

P (ℓ1) :=
∑
a1

(M−1)ℓ1;a1P (a1) =
∑
a1

(M−1)ℓ1;a1 Tr [Ka1V0ρ0]

=
∑
a1

(M−1)ℓ1;a1 Tr

Ka1 ∑
ψ

fSψ|ψ⟩⟨ψ| ⊗ ϵ̂ψ


=
∑
a1

(M−1)ℓ1;a1
∑
ψ

Ma1;ψf
S
ψ =

∑
ψ

δℓ1,ψf
S
ψ = fSℓ1 ≥ 0

and therefore

PR1(ℓ2; ℓ1|r1) :=
∑
a1,a2

(M−1)ℓ2;a2(M
−1)ℓ1;a1P

R1,A1(a2; a1|r1)

:=
∑
a1,a2

(M−1)ℓ2;a2(M
−1)ℓ1;a1 Tr [Ka2V1Πr1Ka1V0ρ0]

=
∑
a1,a2

(M−1)ℓ2;a2(M
−1)ℓ1;a1 Tr

Ka2 ∑
ψ

f ′Sψ (a1, r1)|ψ⟩⟨ψ| ⊗ ϵ̂′ψ(a1) Tr [Ka1V0ρ0]


=
∑
a1,a2

(M−1)ℓ2;a2(M
−1)ℓ1;a1

∑
ψ

Ma2;ψf
′S
ψ (a1, r1)P (a1) =

∑
a1

f ′Sℓ2 (a1, r1)(M
−1)ℓ1;a1P (a1) ≥ 0,

which ends the proof.

Appendix D: Classically non-simulable process

We report here more details on the process that cannot be simulated via classical invasive measurements discussed
in the main text.

Both the system and the environment are two-level systems, HS = HE = C2, and the global evolution is fixed by
the unitary

V = e−
i
2 (σx⊗σx+σy⊗σy+2σz⊗σz), (D1)

while the initial environmental state is τ0 = 1/2. The CPTP dynamical maps that fix the open-system evolution in
the absence of any intervention are thus given by – compare with Eq. (18) –

Λ(ρ̂) = TrE
[
V(ρ̂⊗ 1/2)V†] = 1

2

(
Tr [ρ̂]1+ cos(1) cos(2)(σxTr [σxρ̂] + σy Tr [σyρ̂]) + cos(1)2σz Tr [σz ρ̂]

)
, (D2)

which corresponds to a contraction of the Bloch ball, isotropic along the x − y plan by an amount cos(1) cos(2) and
by an amount cos(1)2 along the z-axis; here σj , j = x, y, z, are indeed the Pauli matrices and 1 is the identity on C2.
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TABLE II. For the IC-POVM fixed by the pure states {|ψ⟩} =
{
|0⟩, 1√

3
|0⟩+

√
2
3
ei2kπ/3|1⟩

}
k=1,2,3

this table lists the FDCs –

according to F = {|ψ⟩⟨ψ|} – of the frame elements evolved by the CPTP map Λ, i.e. fψ [ Λ(|ψ′⟩⟨ψ′|) ]. The rows are indexed
by ψ and the columns by ψ′ using the abbreviations a = cos(1) cos(2) ≈ −0.22 and b = cos(1)2 ≈ 0.29.

1
4
(1 + 3b) 1

4
(1− b) 1

4
(1− b) 1

4
(1− b)

1
4
(1− b) 1

12
(3 + 8a+ b) 1

12
(3− 4a+ b) 1

12
(3− 4a+ b)

1
4
(1− b) 1

12
(3− 4a+ b) 1

12
(3 + 8a+ b) 1

12
(3− 4a+ b)

1
4
(1− b) 1

12
(3− 4a+ b) 1

12
(3− 4a+ b) 1

12
(3 + 8a+ b)

Considering the IC-POVM fixed by the pure states {ψ} =
{
|0⟩, 1√

3
|0⟩+

√
2
3e
i2kπ/3|1⟩

}
k=1,2,3

, the map in Eq.(D2)

is FS-positive with respect to the corresponding frame, i.e., it maps the regular tetrahedron corresponding to the
convex hull of {|ψ⟩⟨ψ|} into itself. This can be verified by evaluating the FDCs of each of the four states given by
Λ(|ψ⟩⟨ψ|). Using frame theory, for any state ρ̂ the corresponding FDCs can be evaluated via the relation

fψ(ρ̂) = ⟨ψ|S−1[ρ̂]|ψ⟩, (D3)

where S−1 is the inverse of the map

S(ρ̂) =
∑
ψ

Tr [|ψ⟩⟨ψ|ρ̂] |ψ⟩⟨ψ|. (D4)

Using the Pauli matrices {1, σx, σy, σz} as orthonormal basis for the space of Hermitian 2 × 2 matrices we know
ρ̂ = 1

2 (Tr [ρ̂] + Tr [σxρ̂] + Tr [σyρ̂] + Tr [σz ρ̂]) and we ca represent ρ̂ by a vector ρ⃗σ = 1
2 (1,Tr [σ⃗ρ̂])

T . One can show
that in this orthonormal basis the super operator S takes the form

S =


2 0 0

0 2
3 0 0

0 0 2
3 0

0 0 0 2
3

 and S
−1 =


1
2 0 0

0 3
2 0 0

0 0 3
2 0

0 0 0 3
2

 . (D5)

Accordingly we find

S(ρ̂) = Tr [ρ̂]1+
1

3
(σxTr [σxρ̂] + σy Tr [σyρ̂] + σz Tr [σz ρ̂]σz) (D6)

so that

S
−1(ρ̂) =

1

4
Tr [ρ̂]1+

3

4
(σxTr [σxρ̂] + σy Tr [σyρ̂] + σz Tr [σz ρ̂]σz) (D7)

and the FDCs coefficients of the four evolved states {Λ(|ψ⟩⟨ψ|)} are reported in Table II, from which one can see
their positivity.

From the global unitary evolution in Eq. (D1), we can indeed also evaluate all the multi-time probabilities asso-
ciated with possible measurements and re-preparations at intermediate times. In particular, from Eq. (14) we get
PR1,A1(a2; a1|r1); moreover, the matrix M with elements Ma;ℓ = Tr

[
Ka|ℓ⟩⟨ℓ|K†

a

]
for the chose IC-POVM reads

M =
1

6


3 1 1 1

1 3 1 1

1 1 3 1

1 1 1 3

 , (D8)

and then one gets the values of
∑
a1
PR1,A1(ℓ2; a1|r1) =

∑
a2
(M−1)ℓ2;a2P

R1,A1(a2; a1|r1) reported in Table I in the
main text.
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