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We study the interaction between two charge regulating spherical macroions with dielectric
interior and dissociable surface groups immersed in a monovalent electrolyte solution. The charge
dissociation is modelled via the Frumkin-Fowler-Guggenheim isotherm, which allows for multiple
adsorption equilibrium states. The interactions are derived from the solutions of the mean-field
Poisson-Boltzmann type theory with charge regulation boundary conditions. For a range of conditions
we find symmetry breaking transitions from symmetric to asymmetric charge distribution exhibiting
annealed charge patchiness, which results in like-charge attraction even in a univalent electrolyte –
thus fundamentally modifying the nature of electrostatic interactions in charge-stabilized colloidal
suspensions.

I. INTRODUCTION

Electrostatic interactions are a fundamental component
of molecular forces in the colloid and nanoscale domains
[1], dominating in particular various phenomena in bio-
logical and biomolecular context, as exemplified by their
role in the physics of DNA [2] as well as other macro-
molecules [3], physics of polyelectrolytes [4–7] and poly-
electrolyte brushes [8–10], protein physics [11], membrane
physics [12–15], physics of nucleic acids [16] and physics
of viruses [17, 18], with many outstanding contributions
of Fyl Pincus. The nanoscale electrostatics has been mod-
eled on various levels [19], being standardly based on the
Deryagin-Landau-Verwey-Overbeek (DLVO) paradigm
[20], and in particular on the mean-field formulation of
the Poisson-Boltzmann (PB) theory [21–23], which has
well defined limits of applicability, some pertaining to
the model and some to the methodology [24, 25]. A very
common variety of the PB theory is its linearized version,
the Debye-Hückel (DH) theory [26], that in many cases
allows for analytic calculations of interactions between
macromolecular ions [26–29].

Within the mean-field PB descriptions of the electro-
static interaction between two charged surfaces [30–33],
one usually assumes a constant surface charge density or
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constant surface potential boundary conditions [21, 34],
unless the surface charges are inhomogeneous [35, 36].
Although this simplifies the problem, most common natu-
rally occurring nanoparticle and macromolecular surfaces
of interest, e.g., hard colloidal particles [37], soft biolog-
ical molecules including proteins [38], membranes, and
lipid vesicles [39, 40], rarely satisfy either of them [41, 42].
They respond to their environment, especially to the pres-
ence of each other, in a way that modifies both the charge
density as well as the surface potential, adjusting them
according to the separation between them and the bathing
solution conditions [43, 44]. This conceptual framework
with a long history is formally referred to as the charge
regulation [45].

Electrostatic interactions of two charge-regulated
macroions in the case of the Langmuir adsorption isotherm
[46] have been studied for two small point-like particles
and their connection with the Kirkwood-Shumaker attrac-
tive fluctuation interactions has been elucidated [47–49].
In addition, charge regulation framework has been ap-
plied to planar, chemically identical macroion surfaces
with equal adsorption/desorption properties [50–53], to
chemically non-identical surfaces with different adsorp-
tion/desorption properties [54–57], and to patchy surfaces
with inhomogeneous charge distribution [58]. Interac-
tions in non-planar systems have been studied to a lesser
extent [59, 60] because the electrostatic potential inho-
mogeneities induced on curved surfaces need to be ap-
proached either by additional analytical approximations
[61–63] or by intensive numerical schemes.

The important point of departure for us is that for
chemically identical surfaces the surface charge densities
have been without exception assumed to be equal on both
surfaces based upon general symmetry considerations [64–
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66]. However, the underlying physical reasoning for such
an assumption is not general and not based upon the
detailed chemical nature of the surfaces bearing charge.
The fact that two surfaces are chemically identical and,
therefore, interact in the same way with the adjacent liq-
uid, is not sufficient to infer equal surface charge densities.
In fact, the nature of the electrostatic fields follows from
the minimization of the relevant thermodynamic poten-
tial in the equilibrium state, yielding the surface charge
densities without any additional symmetry assumptions
[67]. Whether this minimum implies an equal or unequal
surface charge densities of the interacting macroions may
and, as will be shown below, does depend on the system
under consideration.

Recently, the consequences of charge regulation in sim-
ple geometries, where the electrostatic potential depends
only on a single coordinate and the corresponding elec-
trostatic charges are homogeneous, were studied in de-
tail [39, 67–69]. The conclusion that emerged was that
there exists a charge symmetry breaking between the two
interacting surfaces that can result in attractive inter-
actions between nominally chemically identical surfaces.
The sufficient condition for this symmetry breaking was
identified as the existence of multiple (at least two) equi-
librium states with different sign of the charges in the
adsorption/desorption model, such as in the zwitterionic
Frumkin-Fowler-Guggenheim model [34, 70]. The cou-
pling between electrostatic interaction and the two surface
dissociation minima can lead to a global minimum of the
free energy, which shows a broken charge symmetry be-
tween the two interacting surfaces [67].

Here we study the electrostatic interaction between two
identical spherical dielectric macroions with zwitterionic
surface dissociable groups, immersed in a monovalent elec-
trolyte. The surface charge of the macroions is regulated
by a dissociation process modeled by the Frumkin-Fowler-
Guggenheim isotherm or, equivalently, the corresponding
adsorption free energy. We use the total free energy to de-
rive the Euler-Lagrange equations, which are the Poisson-
Boltzmann (PB) equation with charge-regulation (CR)
boundary conditions. We obtain the solution with the
numerical package COMSOL Multiphysics and evaluate
the electrostatic potential, the total free energy and the
corresponding force between the macroions. We explore
the nature of the macroion interactions, and particularly
under what conditions the charge distribution on the two
macroions can be asymmetric [69] and/or spatially in-
homogeneous [60]. The latter is important for spherical
macroions with a dielectric core, where, unlike in the
planar case, the electrostatic potential along the surface
is not constant.

We find that due to the interplay between the ion ad-
sorption and the spherical geometry of the macroions,
solutions with inhomogeneous and asymmetric surface
charge densities are possible, even at separations that
are much larger than the Debye length. The equilibrium
surface charge densities on the two macroions can there-
fore differ in magnitude, sign and angular profile. The

FIG. 1. Schematics of the problem of two spherical, charge
regulated macroions of radii r1 = r2 = R = 50nm. The
separation is D and the dielectric constant values are εW = 80
and εp = 4 for the aqueous solution and the dielectric interior,
respectively. In all calculations the ionic strength is taken as
10mM, corresponding to the Debye screening length of 3 nm.

nature and extent of the inhomogeneities varies with the
macroion separation, which can give rise to an overall
attraction between the macroions. The mechanism for
the onset of attraction is rationalized by an analytical
treatment of a much simpler system of point particles
immersed in an electrolyte bathing solution.

II. SURFACE DISSOCIATION MODEL

As shown in Fig. 1, we consider two spherical macroions
of radius R - whose surface charge depends on the charge-
regulation model as introduced in [67, 71] - that are
suspended in a monovalent electrolyte solution. Each
macroion surface contains a fixed number of dissociable
zwitterionic surface groups, whose charge can be positive
or negative. In addition, the charge on the spherical
surface of the macroions is not necessarily homogeneous,
but is a result of the dissociation equilibrium at each point
along the surfaces.

The surfaces are charge regulated through a dissociation
process, characterized by an annealed surface degree of
freedom within the model, ϕ. By construction, ϕ ∈ [0, 1].
If the area per site is a2, with n0 = 1/a2, then the charge
density σ is identified as

σ = en0

(
ϕ− 1

2

)
, (1)

implying that as ϕ varies in the interval 0 ≤ ϕ ≤ 1,
the charge density varies within a symmetric interval
− 1

2en0 ≤ σ ≤ 1
2en0, with e > 0 being the elementary

charge. This surface dissociation process is applicable to
symmetric zwitterionic colloids with weak surface bound
acids and bases that can be charged either positively or
negatively [72], and in this case ϕ measures a dissociation
imbalance between the acidic and basic moieties, in the
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sense that ϕ = 0 pertains to negative sites being dissoci-
ated, while ϕ = 1 to positive sites being dissociated. A
more realistic model would need to take into account the
fact that the charge interval in zwitterionic colloids need
not be symmetric.

This zwitterionic colloid model is particularly relevant
for lipid membranes composed of a mixture of cationic and
anionic lipids [39, 73, 74] and even more so for polypep-
tides [69, 75], where the dissociation can produce posi-
tively or negatively charged moieties, corresponding to
cationic and anionic amino acid residues [38, 76].

The dissociation isotherm for the charge regulation pro-
cess can be obtained either from the chemical equilibrium
mass action law equations or directly from the free energy

corresponding to the dissociation, the path pioneered by
Marcus [77] in the context of the reversible charging of
macroions. The general connection between charge reg-
ulation and surface (dissociation) free energy has been
elucidated in Ref. [78].

Following Refs. [67–69, 71], we base our macroion CR
model on the Frumkin-Fowler-Guggenheim isotherm [70]
of the macroion surface. This adsorption isotherm model
pertains to a series of different phenomenological mod-
els invoked in the context of adsorption phenomena [79]
and generalizes the Langmuir adsorption model by in-
troducing the nearest neighbor interaction in addition
to the mere adsorption energy. The Frumkin-Fowler-
Guggenheim model is defined with the phenomenological
surface free energy density

∫
S

d2r fCR(ϕ) = n0kBT

∫
S

d2r
(
− αϕ− 1

2
χϕ2 + ϕ ln(ϕ) + (1− ϕ) ln(1− ϕ)

)
. (2)

The parameters α and χ are phenomenological and de-
scribe the non-electrostatic part of the ionic interactions
at the macroion surface, the former quantifying the in-
teraction of the ion with the surface, and the latter the
interaction between ions already adsorbed to the surface.
α ≤ 0 favours the adsorption of ions to the macroion
surface, while χ ≥ 0 describes the correlation of adsorbed
ions on the macroion surface inducing them to separate
into domains. The parameter χ, which separates the Lang-
muir and the Frumkin-Fowler-Guggenheim models, has
in fact the same meaning as in the related regular lattice
solutions theories (e.g., the Flory-Huggins theory [80]),
describing the short-range interactions between nearest
neighbor adsorption sites on the macroion surface [81]. In
the case of χ = 0 the Frumkin-Fowler-Guggenheim model
is reduced directly to the Langmuir model.

The surface dissociation products can be either elec-
trostatic potential determining electrolyte ions, or the
pH determining protons as in the case of the protein

and lipid (de)protonation dissociation. In the case of
(de)protonation reaction, the dependence of α on the bulk
pH is model specific [82], but on the mean-field level
one can explicitly identify α = (pK − pH) ln 10, where
pH = − log10[H

+], with [H+] being the proton concentra-
tion in the bulk and pK is the dissociation constant of
the deprotonation reaction [83]. For the (de)protonation
dissociation reaction the dissociation isotherm in the
Frumkin-Fowler-Guggenheim model would reduce to the
Henderson-Hasselbalch equation if one takes χ = 0. In
general, the proton concentration needs to be identified
as the proton activity [84–87].

The model free energy Eq. (2) describes only the non-
electrostatic interactions at the macroion surface and
thus cannot describe the dissociation equilibrium. In
order to incorporate the electrostatic interactions on the
continuum level one needs to add the electrostatic surface
free energy density, that has the simple form σψ, ψ being
the surface electrostatic potential, and consequently the
total surface free energy density can be written as

σψ + fCR(ϕ) = n0kBT
(
βe(ϕ− 1

2 )ψ − αϕ− 1

2
χϕ2 + ϕ lnϕ+ (1− ϕ) ln(1− ϕ)

)
, (3)

with σ defined in Eq. (1). The surface dissociation cor-
responding to the above model describes also the charge
regulation (CR) after being coupled to the free energy of
the mobile ions in the bathing solution, as we do next.

The Frumkin-Fowler-Guggenheim isotherm model of
macroion surface dissociation Eq. (3) was applied to
lamellar-lamellar phase transition in a charged surfactant
system [71] and a good correspondence with experiments

was obtained for the didodecyldimethylammonium chlo-
ride (DDACl) data with α = −3.4, χ = 14.75, and for
the didodecyldimethylammonium bromide (DDABr) data
with α = −7.4 and χ = 14.75, see Ref. [71] for details.
The same model was successfully applied also to other
systems, see e.g., [88, 89].

In what follows we will use both α as well as χ as purely
phenomenological interaction parameters, quantifying the
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adsorption energy in the surface (de)protonation reactions
and the nearest-neighbor surface energy of filled surface
adsorption sites.

III. TOTAL FREE ENERGY

The total free energy of the system, E , is assumed
to be composed of three parts stemming from: (i) the
electrostatic free energy of the mobile ions in the space
outside the macroions, V , (ii) the electrostatic energy of
the dielectric interior of the macroions, V1 and V2, and
(iii) the surface free energies of charge dissociation on the

surfaces of the two macroions, S1 and S2, thus

E = FES [V ] + FES [V1] + FES [V2] + FCR[S1] + FCR[S2],

(4)

with V1 the volume of the first sphere with surface area S1

and V2 the volume of the second sphere with surface area
S2. V is the volume in between the two spheres. FCR is
given by the model Eq. (3).

The Helmholtz free-energy of a monovalent electrolyte
is given by the standard mean-field Poisson-Boltzmann
expression [21]

FES [V ] =

∫
V

d3r

[
−1

2
ε0εw (∇ψ(r))2 +

2∑
i=1

qini(r)ψ(r) + kBT

2∑
i=1

(
ni(r) ln

[
ni(r)a

3
]
− ni(r)

)
+ ρ0(r)ψ(r)

]
, (5)

where n1,2 are the cation, q1 = e0, and anion, q2 = −e0,
densities, a is their size, with ρ0 being the external charge
density. In the case considered, ρ0 corresponds to the
surface charge density resulting from the dissociation pro-
cess as described by the zwitterionic dissociation model,
Eq. (1).

The sum of the first two terms in the above equation
is equal to the electrostatic energy and the third one is
the ideal gas entropy. In writing the above free energy
we assumed that the concentration of H+ and OH− ions,
resulting from acid/base dissociation and related to the
bulk pH value, is (much) smaller than the concentration
of electrolyte ions.

In addition, the electrostatic free energy inside the
dielectric cores of both macroions

FES [V1,2] =
∫
V1,2

d3r
[
− 1

2
ε0εP (∇ψ(r))2 + ρ0(r)ψ(r)

]
(6)

is given by the electrostatic energy term only, where εw,P
are the dielectric constants of water and the macroion
dielectric interior, respectively. The following should be
noted in connection with the above expressions [90]: the
electrostatic field energy, proportional to the square of the
field, comes with a minus because after the minimization
the sum of this term and the external charge density term
gives back correctly the positive definite free energy, see
[91].

The above electrostatic free energy can be written in
many equivalent forms [51, 92–95] and we chose the one
that seems the best suited for our calculation and ex-
presses the free energy entirely as a functional of the local
electrostatic potential [91], containing two terms: the
field energy proportional to (∇ψ)2 and osmotic pressure
of mobile ions, proportional to coshβe0ψ. The total free
energy then assumes the form

E [ψ(r), ϕ(r)] = −
∫
V

d3r

(
1

2
ε0εw (∇ψ(r))2 + kBT κ2D

4πℓB
coshβe0ψ(r)

)
−

−1

2
ε0εP

∫
V 1

dr (∇ψ(r))2 +
∫
S1

d2r fCR(ψ, ϕ)−
1

2
ε0εP

∫
V 2

dr (∇ψ(r))2 +
∫
S2

d2r fCR(ψ, ϕ). (7)

Above we also introduced the inverse Debye screening
length squared as

κ2D ≡ 4πℓBn, (8)

implying that the screening length is λD = κ−1
D =

0.304/
√
n in nm and n in molar units. ℓB is the Bjer-

rum length, equal to the distance at which two unit
charges interact with thermal energy kBT and given by
ℓB = e20/4πεwε0kBT (in water at room temperature, the
value is ℓB ≈ 0.7 nm) while n is the bulk concentration of

the electrolyte ions. The above form of the Debye screen-
ing length first of all implies a grand canonical equilibrium
with a fixed chemical potential of ions equal to its value
in the bulk salt reservoir, as well as a negligible concentra-
tion of the surface dissociation products, be it potential
determining ions or (de)protonation products. In case
this constraint is not met, a more detailed description of
the various charged species would be needed [96].

Minimization of the free energy with respect to the
electrostatic potential and with respect to the surface dis-
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sociation fraction then gives six Euler-Lagrange equations:
the PB equation in V , the Poisson equation in V1 and V2,
plus two Gaussian boundary conditions and two charge
regulation equations on the surfaces of the two macroions
S1 and S2. For the electrostatic potential minimization
this yields the PB equation in V

∇2 (βe0ψ(r)) = κ2D sinhβe0ψ(r) (9)

and the Poisson equation in V1 and V2

∇2ψ1,2(r) = 0, (10)

with the Gaussian boundary conditions at S1 and S2

amounting to

∂fCR(ψ, ϕ)

∂ψ

∣∣∣∣
S1

= ε0n1 · (εw∇ψ − εP∇ψ1) =

= σ1 = n0e

(
ϕ1 −

1

2

)
∂fCR(ψ, ϕ)

∂ψ

∣∣∣∣
S2

= ε0n2 · (εw∇ψ − εP∇ψ2) =

= σ2 = n0e

(
ϕ2 −

1

2

)
, (11)

where n1 points into volume 1 and n2 into volume 2, while
the minimization with respect to the two dissociation

fractions yields two charge regulation equations

∂fCR(ψ, ϕ)

∂ϕ

∣∣∣∣
S1

= 0 and
∂fCR(ψ, ϕ)

∂ϕ

∣∣∣∣
S2

= 0 (12)

which taking into account the form of the CR surface free
energy Eq. (3) yields the following two Frumkin-Fowler-
Guggenheim charge dissociation isotherms

ϕ1 =
(
1 + e+βeψ1−χ1ϕ1−α1

)−1

and ϕ2 =
(
1 + e+βeψ2−χ2ϕ2−α2

)−1
. (13)

Clearly these two equations reduce to the surface Lang-
muir charge dissociation isotherms [83] if the interaction
parameter χ vanishes for both surfaces. Finally com-
bining the PB equation Eq. (9) and the Poisson equa-
tions Eq. (10) with the Gaussian boundary condition
Eqs. (11) and the charge regulation dissociation equilib-
rium Eqs. (13) yields a self-consistent system of equations
that needs to be solved.

In addition one has to take into account that the elec-
trostatic potential ψ is of course continuous across the
two boundaries S1 and S2 of the macroions.

Alternatively the electrostatic part of the free energy
can be equivalently written in the form of a Casimir
charging process that reduces the free energy to surface
integrals [97]:

FES [ψ(r)] = −
∫
V

d3r

(
1

2
ε0εw (∇ψ(r))2 + kBT κ2D

4πℓB
coshβe0ψ(r)

)
+

∫
S1

d2r σ1ψ1 +

∫
S2

d2r σ2ψ2 =

=

∮
S1

d2r

∫ σ1

0

ψ(σ1)dσ1 +

∮
S2

d2r

∫ σ2

0

ψ(σ2)dσ2 =

∮
S1

d2rfES(σ1) +

∮
S2

d2rfES(σ2), (14)

where the Casimir charging process at the surfaces, cor-
responding to the second line and described first in the
Verwey-Overbeek classic [20, 92], yields a particularly
simple - if implicit - form of the electrostatic free en-
ergy. Above, ψ(σ1) = ψ1 and ψ(σ2) = ψ2 represent the
solutions of the PB equation at the surfaces of the two
macroions. We will see that this form of the electrostatic
free energy allows for some further simplifications.

Using the Casimir charging form of the electrostatic
free energy then yields the complete free energy in the
form

E [ψ(r), ϕ(r)] =
∮
S1

d2r

∫ σ1

0

ψ1dσ1 +

∫
S1

d2rfCR(ϕ)

∣∣∣∣
S1

+

+

∮
S2

d2r

∫ σ2

0

ψ2dσ2 +

∫
S2

d2r fCR(ϕ)

∣∣∣∣
S2

, (15)

where we recall the definition in Eq. (2). Note that fCR(ϕ)
and fCR(ψ, ϕ) in Eq. (3) differ in the electrostatic term
included in the latter but not the former. The free energy
in the Casimir form contains the complete free energy

including the PB terms for the electrooyte ions, and not
only the surface CR interactions.

Minimization of free energy Eq. (15) can then be cast
in an alternative form

∂fES(σi)

∂σi

∂σi
∂ϕi

+
∂fCR(ϕi)

∂ϕi
= 0 (16)

wherefrom

βeψi − χiϕi + ln
ϕi

1− ϕi
− αi = 0 (17)

for i = 1, 2, which is completely equivalent to the Frumkin-
Fowler-Guggenheim isotherm in Eqs. (13) above, thus jus-
tifying the alternative formulation of the free energy. The
above charge dissociation isotherm is only valid within the
mean-field approximation limit. We note that in Eq. (15)
the electrostatic part also contains terms dependent on
ϕ and thus to the lowest order renormalizes the purely
non-electrostatic parameters α, χ.

The free energy derived above is in a form that is not
fully suitable for numerical calculations for the reason that
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it contains derivatives of the electrostatic potential which,
in standard numerical software, are less accurate than the
electrostatic potential values themselves. In Appendix A
we thus derive an alternative expression containing only
the values of the electrostatic potential that we use in the
actual numerical calculations.

In addition to the free energy we can also calculate the

interactions in the system via the stress tensor [98, 99],
that can be obtained in the standard form

σij = σij(Maxwell) + δij p(van
′t Hoff) (18)

where the two components refer to the Maxwell electro-
static stress tensor and the van’t Hoff expression for the
osmotic pressure of the electrolyte ions. Explicitly this
yields

σij(r) = ε0

(
∇iψ(r)∇jψ(r)−

1

2
δij (∇ψ(r))2

)
− δij 2kBTn (coshβeoψ(r)− 1) . (19)

The force on a volume enclosed by a surface S with a
local normal n ≡ ni is then given by

Fi =
∮
S

σijnj dS. (20)

The most convenient choice of the surface S for two iden-
tical macroions is the midplane that encloses one of the
macroions at infinity, so that the above surface integral
would yield the force on that macroion. The most impor-
tant feature of the force calculation via the stress tensor
for an appropriate choice of the integration surface is
that it does not contain any surface terms and its form is
universal.

This concludes our formal derivations and we now turn
our attention to numerical results.

IV. RESULTS

Numerical solution of the problem of two spherical CR
macroions with free energy given by Eq. (7), which is
reduced to solving equations Eq. (9) to Eq. (13), with
the interaction forces evaluated with the help of Eq. (20),
is computed with finite-element software package COM-
SOL Multiphysics. The geometry is shown on Fig. 1.
We fix the macroion radii r1 = r2 = R = 50nm and
vary their separation D. The dielectric constant values
for the aqueous solution and the dielectric interior are
εW = 80 and εp = 4, respectively. In all calculations the
ionic strength is taken as 10mM, corresponding to the
Debye screening length of 3 nm. The parameter space of
our problem is spanned by χ and α characterizing the
surface adsorption/dissociation process, and by macroion
separation. We do not intend to exhaustively explore the
entire parameter space but choose to focus on the subset
of the parameters and discuss the onset of asymmetry
and inhomogeneity in the solutions.

A. Single surface with CR

We first briefly analyze the "equation of state" of the
zwitterionic dissociation model, i.e., the dependence of
the equilibrium value of ϕ on the parameters of the sys-
tem for a single planar surface without considering the
electrostatic effects, i.e., obtained by minimizing the CR
Frumkin-Fowler-Guggenheim free energy, Eq. (2). Clearly,
for χ = 0, the problem reduces to the standard Langmuir
adsorption, while introducing the adsorbed ion correla-
tions (χ > 0) qualitatively changes the behaviour. As
shown in Fig. 2, the CR free energy develops a second
minimum for non-zero χ, meaning that there are two
locally stable states corresponding to two charged states
via Eq. (1), one with ϕ ≈ 0 corresponding to a predom-
inantly negatively charged surface, and one with ϕ ≈ 1,
corresponding to a predominantly positively charged sur-
face. The relative stability of these two states depends
on the values of α and χ, with the "critical dissociation
isotherm" corresponding to α = − 1

2χ, with a discontinu-
ous transition between the two minima in the "subcritical
region" α ≥ −1

2χ , and a continuous dependence in the
"supercritical region" α < − 1

2χ.
One could consider a slightly less complex version of

the problem by adding an approximate description of
the electrostatic effects in the minimization [67], how-
ever, we prefer to address the full PB CR problem. The
important feature of this analysis is that the Frumkin-
Fowler-Guggenheim CR model exhibits multiple free en-
ergy minima and electrostatic interaction then modifies
these minima and couples the interacting CR surfaces.
This leads to a rich separation dependence of the equilib-
rium state that was noticed on a more phenomenological
level not involving charge regulation before [100, 101]. We
analyze the details of this coupling next.

B. Interactions and surface charge density

We first analyse the simplest limiting case of the Lang-
muir isotherm with χ = 0 and α = 3, see Fig. 3, for two
identical spherical macroions with dielectric cores.
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FIG. 2. (a) The CR free energy of the zwitterionic surface dissociation model Eq. (2) at α = −2 for three different values
of χ = 3, 4, 5 (top to bottom curves), showing a discontinuous transition between two minima at ϕ ≃ 0 and ϕ ≃ 1. (b) The
corresponding equilibrium ϕ as a function of χ for different choices of α = −1.8,−2,−2.2,−2.4 (left to right curves). There
obviously exists a "critical point" given by the combination α = −2. and χ = 4., therefore α = − 1

2
χ, delimiting the "subcritical

region" α ≥ − 1
2
χ with a discontinuous dependence of ϕ, and a continuous dependence in the "supercritical region" α < − 1

2
χ.

In this case the problem reduces to the Langmuir ad-
sorption of correlated microions with correlations gov-
erned by the PB equation. The surface charge density
is strongly inhomogeneous and has a mirror symmetry
with respect to the mid-plane between the macroions
(Fig. 3a) and shows a pronounced angular dependence
(Fig. 3b), varying with the separation between them, with
the smallest charge density at the two proximal regions.
The free energy (Fig. 3c) is a decaying function of the sep-
aration D and corresponds to repulsive (positive) forces
(Fig. 3d). The total surface charge (Fig. 3e) on the two
macroions is identical and increases with separation D.
The angular charge density inhomogeneity engenders also
a non-vanishing anti-symmetric dipolar moment whose
dependence on the separation is depicted in Fig. 3f.

A detailed look at the separation dependence of the
interaction force, see Fig. 4, in the limiting case of the
Langmuir isotherm clearly shows that the most important
functional dependence is well described by an exponential
dependence on the separation between macroions, with
the standard Debye screening length. The dependence
is actually characterized by a screened Yukawa potential
e−κDD/D with a standard Debye screening length, Eq.
(8), but the deviations from a linear dependence in the
log-lin plot is not seen in the indicated range of macroion
separation values.

We next analyze the full Frumkin-Fowler-Guggenheim
model with α = −10 and χ = 20. The numerical pro-
cedure to solve the PB equation with the CR boundary
conditions starts with an initial guess for the distribution
of the electrolyte ions and charges on macroion surfaces.
We find that, unlike in the Langmuir case, the numerical
procedure in COMSOL Multiphysics package is bi-stable:
depending on the initial guess, it settles into one and
exactly one of two distinct solutions corresponding to ei-
ther asymmetric (Fig. 7a) or symmetric (Fig. 7b) surface

charge distribution on macroions – referring to the mirror
symmetry over the mid-plane. We stress that the func-
tional form of each of the two solutions of the PB equation
plus boundary conditions does not depend on the details
of the initial configuration, but only on which "basin of
attraction" the initial values are chosen from. The ther-
modynamically stable solution is then picked according to
which one of the two corresponds to a lower free energy,
itself a functional of the electrostatic potential. This is a
simple consequence of the fact that numerically we are
solving the PB equation, corresponding to the extremal
problem, while the correct minimum has to be obtained
from assessing the free energy itself.

We therefore analyze both solutions of the PB equation
with CR boundary conditions separately and compare
their stability by evaluating the corresponding free ener-
gies, see Fig. 7. The dependence of the free energy E on
separation D is different for the two types of solutions,
see Fig. 7c: it increases with D (attractive forces) for
asymmetric solution (shown in Fig. 7a for D = 105nm)
and it decreases with D (repulsive forces) for the sym-
metric solution (shown in Fig. 7b for D = 105nm). At
the critical separation, Dc = 110 nm (for this particular
values of α and χ), both free energies are the same, the
two curves in Fig. 7c cross. The asymmetric solution
implying attractive interaction is stable for separations
D < Dc, while for large separations the symmetric so-
lution featuring repulsive forces prevails, in accordance
with the intuitive expectation that at larger spacing the
effect of charge regulation becomes small and the DLVO
paradigm prevails. At the critical separation there is a
small but finite discontinuous jump in the interaction
force, an attraction-repulsion crossover, see Fig. 7d.

The symmetric solution corresponds to equal total
charges of the macroions, while the asymmetric solution
corresponds to opposite total charges of the two macroions,
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FIG. 3. Interactions in the Langmuir isotherm dissociation limit with χ = 0 and α = 3. Numerical solutions in this case are
only symmetric. Surface charge density side view (a), and top view (b), exhibiting a pronounced angular inhomogeneity of the
surface charge density stemming from the spherical shape of the macroions. Total interaction free energy (c) and force (d) as
functions of the separation D, net charge (e) and dipolar moment (f) for the right (R) and left (L) sphere as functions of the
separation D. The dipolar moment is a consequence of the nonhomogeneous charge distribution along the macroion surfaces.

see Fig. 7e. The total dipolar moment, see Fig. 7f, is the
same but oppositely oriented for the symmetric solution,
and equal for the asymmetric solution, see Fig. 7f. This
implies that the asymmetric solution is therefore actually
antisymmetric. In both cases the inhomogeneity of the
macroion surface charge distribution, giving rise to the
total dipolar moment, decreases with separation D and
actually fast becomes too small to be detected.

The existence of an asymmetric solution, at odds with
the standard DLVO paradigm [20], but ubiquitous in CR
models [67–69], is a consequence of the minimization not
only of the PB free energy with fixed boundary conditions
which always yields symmetric solutions, but also the
surface CR contributions, characterized by multiple CR
minima. This feature of CR models directly leads to states
with broken charge symmetry, and thus to asymmetric
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FIG. 4. The interaction force between two identical macroions of radius 50 nm, as a function of D for α = 3, χ = 0 in the linear
(a) and log-lin scales (b) for different ionic strengths, 0.1, 1, 10 and 100mM. The dependence is well characterized by a screened
Yukawa potential e−κDD/D with a standard Debye screening length, Eq. (8). The deviations from a linear dependence in the
log-lin plot is not seen in the indicated limited range of D values.

solutions.
The transition from attraction at smaller separations

D < Dc to repulsion for larger separations is a feature al-
ready observed in interacting planar surfaces [67, 68] and
in the binary spherical cell model [69] with the important
difference that in the binary spherical cell model, there
cannot be any inhomogeneity of the surface charge density
as observed in the present calculation of two spherical
macroions. In what follows, we make two additional as-
sumptions which will simplify our model and elucidate
the reason for the discontinuous change in the interac-
tion force: we approximate the two macroions as point
charges, and we evaluate the electrostatic free energy in
the DH approximation by linearizing the PB equation (see
Appendix B for details). With these additional provisos
certain features of the numerical solution, such as the
inhomogeneous charge distribution and finite size of the
macroions of course cannot be reproduced, but the key
charging mechanism can be treated in this semi-analytical
theory – providing a further insight into the attraction–
repulsion crossover.

As detailed in Appendix B the simple point charge
model nicely reproduces the symmetry breaking transi-
tion, where, depending on (α, χ), the interaction force
is repulsive in the symmetric and attractive in the sym-
metry broken regime. For α = −2 and large enough χ,
the interaction force is a monotonic decaying function of
D, corresponding to repulsive interactions and symmetric
charging of the macroion pair. For intermediate χ the
interaction force is a non-monotonic function of D, with a
discontinuous transition from a repulsive to an attractive
branch at smaller separations D – corresponding also to
a discontinuous transition between symmetric and asym-
metric charging of the macroion pair. The position of this

symmetry breaking transition depends on χ. Clearly at a
fixed α as χ decreases the transition between the attrac-
tive/repulsive interaction regimes is displaced towards
increasingly larger values of the separation D.

C. Details of the interactions and the charging
phenomenology

So far we presented only the salient features of the
interaction between the CR spherical macroions. There
are, however, other important details that we address
next.

First we take a closer look at the surface charge distri-
bution. The inhomogeneous charge distribution along the
two macroion surfaces is connected with their spherical
shape and the parameters of the CR model. Notably, in
the spherical cell model [69] analysed within the same
Frumkin-Fowler-Guggenheim model framework, the equi-
librium state has no charge inhomogeneity because in the
spherical cell model the presence of the other macroion(s)
is "simulated" by the boundary condition on the outer
boundary of the cell. Since this boundary is also spherical,
the equilibrium state can exhibit a homogeneous charge.
However, with two spherical macroions in the interaction
geometry of Fig. 1, the electrostatic potential is never
constant along the surface of the macroion, and since via
the CR isotherm it determines also the surface charge
density it also exhibits inhomogeneity along the macroion
surface.

In Fig. 5 we first show the surface charge distribution
for three sets of (α, χ) values pertaining to the "critical"
regime, α = − 1

2χ, the "subcritical" regime of α ≥ − 1
2χ,

and the "supercritical" regime, α ≤ − 1
2χ, always at the
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FIG. 5. (Left panel) Equilibrium surface charge distribution on the left and right macroion in the axial projection at D = 105
nm for three different sets of CR parameters values: "critical" regime (α, χ) = (−10, 20) "subcritical" regime (α, χ) = (−7, 20)
and "supercritical" regime (α, χ) = (−13, 20). In the "critical" regime the solution is antisymmetric, the charge densities on the
two macroions being mirror images. The inhomogeneity is confined to the proximal space between them. In the "supercritical"
regime the charge densities are overall negative, with the asymmetry confined to the proximal region. In the "subcritical" regime
the charge densities are overall positive, with the asymmetry confined to the proximal region. (Right panel) The separation D
dependence of the total free energy and the interaction force between the macroions for the same choices of (α, χ) CR parameters.
The separation at which the symmetric and asymmetric solution free energies cross is the critical separation Dc where the
corresponding force changes discontinuously from attraction to repulsion. In the "supercritical" regime Dc is displaced way out
towards large values of separation.

same value of spacing D = 105 nm. We only describe
the equilibrium state, corresponding to the minimal free
energy.

For the set with χ = 20, in the "supercritical" regime
(−13, 20), we see that while the total charge on both
macroions is predominantly negative, the surface charge
density is nevertheless asymmetric, with an inhomogeneity
confined to the proximal region of the macroions facing
one another. In the "subcritical" regime (−7, 20) the total
charge on both macroions is positive, with asymmetric
inhomogeneity again confined to the proximal region of
the macroions facing one another. Contrary to these two
cases in the "critical" regime the two total charges of the
macroions are of opposite sign, with the inhomogeneity
of the proximal regions being not only asymmetric but

actually antisymmetric.

The dependence of the free energy and the interaction
force on the separation D provides insights into the force
equilibrium. For all cases shown in Fig. 5 at large enough
separation the symmetric charging state, corresponding
to the standard PB solution, appears to be universally the
stable one, leading to repulsive forces between macroions.
This implies that in this regime the CR dissociation pro-
cess would not affect the sign of the macroion-macroion
interactions, which would then appear as the standard
electrostatic repulsion between two identically charged
macroions, albeit with an CR dependent net charge. For
the set χ = 20 we note that in the "supercritical" regime
(−13, 20) the surface charge density inhomogeneity in-
duces a dipolar-like, small in magnitude, attraction in the
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whole range of separations. In the "subcritical" regime
(−7, 20) except at the very small separations the interac-
tion is predominantly repulsive and the dipolar surface
charge inhomogeneity cannot change the sign of the inter-
action. In terms of the interactions, the "critical" regime
(−10, 20) stands in between the "sub" and "supercritical"
cases. For intermediate values of the separation, in the
"subcritical" regime, there always exists a discontinuous
transition into an asymmetric charging state that implies
an attractive interaction at smaller separations, turning
into a repulsion at larger separations, with a substantial
change in the interaction force across the jump. The ex-
act position of this transition depends on the parameter
values (α, χ). Notably, at a fixed α the transition moves
towards larger separation values as χ is increased but
eventually saturates for large enough values.

Clearly the CR dissociation process substantially modi-
fies the interaction phenomenology and cannot be fully
understood in terms of the standard electrostatic interac-
tion. This is especially true for the emergent attraction
in the "supercritical" regime.

D. Interaction "phase diagram"

A more concise representation of the nature of elec-
trostatic interactions in this complicated CR system is
provided by the "phase diagram" of Fig. 6, showing the
asymmetric and symmetric branches of the free energy
surface as a function of (α, χ,D), in the (D,α, χ), (D,χ)
and (α, χ) cuts, the latter for two different values of D.
These free energy surfaces can either cross one another,
implying the change in the charge symmetry/nature of
the interaction, or remain separate implying that either
the symmetric or the asymmetric solution branches stay
stable in the indicated range of parameters.

We first analyze the interaction as a function of the sep-
aration between the macroions D in the cuts (D,α) and
(D,χ) through the interaction "phase diagram", Fig. 6 (a)
and (b). For fixed χ = 10, the (D,α) cut shows that the
two branches cross along a critical line D = Dc(α). For
D ≤ Dc the asymmetric (A) branch is stable correspond-
ing to lower free energy and attractive interactions, while
for D > Dc the stability is conferred to the symmetric
(S) branch corresponding to repulsive interactions. For
fixed α = −5, the (D,χ) cut indicates that the stability of
the two branches changes at the critical line D = Dc(χ),
so that again for D ≤ Dc the asymmetric branch is sta-
ble, while for D > Dc the stability is conferred to the
symmetric branch.

The (α, χ) cut through the "phase diagram" at fixed
D, Fig. 6 (c,d), for two different values of the separa-
tion, D = 106, 110 nm, provides additional insight into
the behavior of this CR interacting system. Confining
ourselves to the range −10 ≤ α ≤ 0 and 0 ≤ χ ≤ 20, it
appears that within this range of parameter values the
asymmetric solution is the stable one at smaller separa-
tions, D = 106 nm, while the intersection between the

symmetric and the asymmetric solution free energy sur-
faces at larger separations, D = 110 nm, delimits the
"subcritical" regime α ≥ − 1

2χ, and the "supercritical"
regime, α ≤ − 1

2χ, corresponding to attractive and re-
pulsive forces. Clearly the intersection is located at the
"critical" separatrix α = − 1

2χ.
The detailed nature of the interactions as well as the

nature of the electrostatic fields between the macroions
therefore depends crucially not only on the separation D
but also on the position in the (α, χ) parameter space.
For any finite range of parameter values there can thus
either exist a "critical" separatrix or not, meaning that
there can exist a transition between the attractive and
repulsive branches of the macroion interaction or it can
be absent. While the "critical" separatrix always exists
somewhere in the (α, χ) parameter space only a finite
range of these parameters corresponds to a physically
meaningful CR model.

V. DISCUSSION

Electrostatic interactions between colloidal macroions
immersed in a bathing electrolyte solution described
within different model frameworks [3] have been studied
on various levels of approximations, as recently reviewed
in detail by Siryk et al. [28, 29]. The weak-coupling
[25] PB equation [93], implying the electric double layer
phenomenology [102–104], is usually taken as a point of
departure and the correlation effects extending beyond
the mean-field have been addressed either via more so-
phisticated theoretical formulations [105] or directly in
simulations [19].

While still remaining within the mean-field level of
approximation, a recently growing research direction has
focused on a more detailed description of the processes
of charge generation itself. In fact, charge dissociation
as detailed in the charge regulation paradigm [45, 81, 82]
implies that the charges on the macroions are not constant
but respond to all the environmental parameters including
the separation between the macroions. In this respect we
should mention the seminal works of Shklovskii [106] and
Lekner [107] in the limit of extreme charge regulation,
where the interacting macroions are considered to be
conductors with a fixed surface potential. In that case
the ubiquitous electrostatic repulsion is almost always
turned into attraction at short separations. This leads one
straightforwardly to the general question of the possible
role of detailed charge regulation in colloid interactions.

Among the interesting phenomena uncovered recently
and also directly related to charge regulation is the charge
symmetry breaking and its consequences for colloidal in-
teractions [67–69]. Here, generalizing the previous charge
regulation models [46], we have applied a Frumkin-Fowler-
Guggenheim dissociation isotherm model to evaluate the
interactions between two spherical, dielectric macroions
with dissociable surface groups, superceding the usual
modelling of colloids with fixed surface charge distribu-
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FIG. 6. Interaction "phase diagram" representation of the nature of interactions between the two colloidal macroions showing
free energy as a function of D and α for a fixed χ = 10 (a) and as a function of D and χ for a fixed α = −5 (b). The line
between the "supercritical" and "subcritical" regimes is indicated in red. In the "supercritical" regime the symmetric solution
branch (marked by "S") is always the stable one, while in the "subcritical" regime at small enough separations there exists a
discontinuous transition into an asymmetric solution branch (marked by "A") that implies an attractive interaction at small
separations. The (α, χ) "phase diagram" for two different values of the separation, D = 106 nm (c), and D = 110 nm (d). At
the smaller separation D = 106 nm the asymmetric solution (upper surface) is always the stable one (c), whereas at the larger
separation D = 110 nm there is a crossover between the symmetric and asymmetric solution, implying also a change between
repulsion and attraction, at the "critical line" α = − 1

2
χ indicated as the red line (d).

tions. We have uncovered fundamental modifications in
the electrostatic interactions between colloidal macroions
and demonstrated that these can strongly depend on
the details of the charge generation on macromolecular
surfaces immersed in electrolyte solutions.

Our approach is based on a full zwitterionic charge
regulation model of macroion surface dissociable groups
that allows for positively or negatively charged surface
groups, formalized in the framewrok of the Frumkin-
Fowler-Guggenheim dissociation isotherm [45, 81, 82].
The corresponding CR free energy allows for several lo-
cal minima which, when coupled to electrolyte mediated

electrostatic interactions, leads to possible symmetry
breaking transitions in the charging of the two spheri-
cal macroions [67–69], implying also a sign change in the
forces between the macroions, similar to the case of in-
teractions between CR planar macroions [67–69]. What
separates the spherical macroions from planar ones is
the emergence of inhomogeneous charging states, with
surface charge density depending on the position along
the interacting surfaces, leading consequently to higher
order charge multipoles. While the symmetry broken
charge configurations are not universal in this interaction
geometry and their emergence hinges on the values of
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FIG. 7. Numerical solution for the full Frumkin-Fowler-Guggenheim model with α = −10 and χ = 20. Depending on the initial
conditions, the numerical solutions in this case are symmetric and asymmetric. (a) surface charge density of the asymmetric
solution, side (top) and axis (bottom) view. (b) surface charge density of the symmetric solution, side (top) and axis (bottom)
view. Both solutions can be obtained at separation D = 105 nm but the equilibrium solution corresponds to the smaller free
energy. Panels (c), (d), (e) and (f) show free energy, force, total charge, and dipolar moment of the symmetric (S)/asymmetric
(A) solutions as functions of the separation. Note that the asymmetric solution has a lower free energy for D ≤ 110 nm, whereas
the symmetric solution has a smaller free energy for D > 110 nm. The free energies cross at a finite separations (D = Dc),
denoting a change in the stability of the two solutions, consequently creating a regime of attractive (D ≤ Dc) and repulsive
(D > Dc) interactions, with Dc = 110 nm. The force is therefore non-monotonic and on increase of D changes abruptly from
attraction to repulsion as a function of the separation, indicated by dotted line on panel (d). For the symmetric solution the total
charges of both macroions are the same (and consequently cannot be differentiated on the graph), while the dipolar moments
are anti-parallel. For the asymmetric solution the two total charges are equal and opposite, while the dipolar moments are
identical. The dipolar moments and consequently the inhomogeneity of the surface charge density in general decrease with
separation, implying that the inhomogeneity of the surface charge density vanishes for large enough separations.

the model CR parameters, the inhomogeneous charging states are ubiquitous in complex CR systems.
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Similar to the case of planar interacting macromolec-
ular surfaces [67, 68] we found out that the model CR
parameter space is partitioned into two regions, the ”sub-
critical” regime of α > 1

2χ and the "supercritical” regime
of α < 1

2χ, separated by a critical "isotherm" α = 1
2χ.

In the subcritical regime at D < Dc macroion separa-
tions, the asymmetric charge distribution is the stable
one, leading to an attractive interaction, followed by a
discontinuous change of stability at D = Dc with the
symmetric charge distribution becoming the stable one
for all D > Dc, where Dc = Dc(α, χ) is dependent on
the parameters of the system. In both the symmetric
as well as the asymmetric states the macroion charge
distribution is inhomogeneous, described by a net charge
and the dipolar moment, to the lowest multipolar order.

We note at this point that the general connection be-
tween the surface charging transitions and the nature of
interactions between the macroions bears some similarity
with the effect that surface ordering transitions have on
hydration forces between two surfaces, where the surface
free energy exhibits multiple minima, corresponding to
different surface ordering states [100]. Since the Frumkin-
Fowler-Guggenheim dissociation isotherm implies a first
order dissociation transition, a discontinuous crossover
from repulsion to attraction is also consistent with a
general theory of the interplay between surface phase
transitions and inter-surface forces as formulated for the
case of hydration interactions [101] as well as simulations
within a more simplified model of surface ion adsorption
transitions [108].

The possibility of asymmetric CR solutions discussed in
the present work can be viewed as a novel and alternative
source of colloidal attractive interactions in monovalent
electrolyte solutions, distinct from either solvation mecha-
nisms [46] or strong coupling electrostatics [25], bringing
a new paradigm into the study of colloidal interactions be-
tween of CR macroions in monovalent electrolyte solutions.
This alternative machanism can be valid in certain param-
eter regimes and could shed additional light onto the inter-
play of observed attractive interactions and charge regula-
tion processes in complex colloids. The proper assessment
of the role of this mechanism in colloidal interactions, and
its relation to attractive interactions between like-charged
macromolecules and surfaces in monovalent electrolyte
solutions interpreted as a result of hydration behavior of
molecular water at macromolecular interfaces [46, 109],
would require a separate probing of the charge density as
well as interaction force in order to connect with the CR
the theory. Experiments showing anomalous interactions
in monovalent electrolyte solutions [73, 74, 110] provide
enough motivation to more closely explore the connection
between surface charging transitions and interactions.

As for simulations, the CR effects in proteins have a
long history [42, 111, 112], and proceed from a model
of the amino acid charge dissociation usually coupled
to a model of water self-dissociation. Recently, there

has been an additional surge in new methodologies for
dealing with charge regulated systems usually based on
different types of pH ensembles that are being developed
and are available [84, 87, 96, 113–117]. A specific set
of simulations centered around the interaction between
charge regulated colloid particles in an electrolyte
[114, 118], is particularly relevant in the context of
our work. Even more specifically, interaction between
charge regulated zwitterionic colloid particles [72] in
a dilute suspension, that showed a conformational
transition from an open assembly of strings or bundles to
compact clusters along with the variation in pH, would
be important to investigate in detail to detect possible
symmetry changes in the charge distribution. This
simulated system could be straightforwardly generalized
to include the interaction between two CR macroions as
analyzed above.
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Appendix A: Alternative forms of the free energy

In this appendix we derive alternative forms of the
free energy that do not contain the derivatives of the
electrostatic potential.

Inserting the Euler-Lagrange equations back into the
free energy Eq. (7) we obtain the equilibrium free energy
as
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E [ψ(r), ϕ(r)] =
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This can be rewritten in a fully symmetric form that as far
as we know has not yet been derived in the PB literature.
In fact, introducing

fPB(ψ) = −kBT κ2D
4πℓB

coshβe0ψ(r) (A2)

which is proportional to the (negative) osmotic pressure
of the mobile ions, we obtain

F [ψ(r)] =
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)
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(A3)

This form of the free energy is particularly apt for numer-
ical calculations since it contains only the electrostatic

potential and the surface charge fraction, but does not
contain any derivatives of these fields. We can rework
this form of the free energy further by inserting the result
of Eqs. (12) that yields

fCR(ψ, ϕ) = n0kBT
(
− 1

2
βeψ +

1

2
χϕ2

− ln
(
1 + e−βeψ+χϕ+α

))
, (A4)

a form valid at each of the macroion surfaces 1, 2. From
here it also follows that

−1

2
ψi
∂fCR(ψ, ϕ)

∂ψ
= −1

2
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2
en0 ψ

(
ϕ− 1

2

)
(A5)

valid at each of the macroion surfaces 1, 2 and therefore
combining the two together we remain with
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1

2
χϕ2 − ln

(
1 + e−βeψ+χϕ+α

)
− 1

2
βeψ

(
ϕ− 1

2

))
. (A6)

again valid at each of the macroion surfaces 1, 2. Inserting this into Eq. (A1) we finally obtain the form of the free
energy most suitable for numerical calculations

E [ψ(r), ϕ(r)] =kBT κ2D
4πℓB

∫
V

d3r
(1
2
βe0ψ(r) sinhβe0ψ(r)− coshβe0ψ(r)

)
+ n0kBT

∑
i=1,2

∮
Si

d2r
(
− 1

4
βeψ +

1

2
χϕ2 − ln

(
1 + e−βeψ+χϕ+α

)
− 1

2
βeψϕ

)
. (A7)

This is a rather simple free energy expression that can be
straightforwardly used in numerical calculations specifi-
cally in the context of charge regulation. It remains valid
with or without the χ term, and therefore also in the case
of the Langmuir dissociation isotherm for χ = 0. Again,

we note that since this free energy contains no derivatives,
it is a practical formulation for numerical computation.

Note that in the absence of CR – for constant values of
the surface charge densities σ1,2 – the above free energy
reduces to the form equivalent to the one derived by
Overbeek [59, 92]

E [ψ(r), ϕ(r)] =
kBT κ2D
4πℓB

∫
V

d3r
(1
2
βe0ψ(r) sinhβe0ψ(r)− coshβe0ψ(r)

)
+

1

2

∑
i=1,2

∮
Si

d2r σiϕi. (A8)

Appendix B: Point charge limit

We proceed by casting the electrostatic part of the free
energy of the two macroions in the limit of point charges

into a much simplified form that can be derived from the
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FIG. 8. (a) Plot of the charge asymmetry |ϕ1 − ϕ2| for A = κDℓB/(4π)
e−κDD

κDD
= 3 as a function of α and χ for two point

macroions. The case |ϕ1 − ϕ2| = 0, corresponds to a symmetric branch of the solution, while the charge symmetry broken state
corresponds to |ϕ1 − ϕ2| ̸= 0. The line represents the critical dissociation "isotherm" α = − 1

2
χ. (b) Plot of the force −∂DF(D)

in the units of κ2
DℓB/(4π) as a function of u = κDD. α = −2 and χ = 10, 7, 6, 5, 4 (top to bottom curves). The charge symmetry

transitions between the symmetric and asymmetric branches of the solution are now translated into a discontinuous jump in the
interaction force from repulsion to attraction. Note that this discontinuity moves to larger spacing as χ decreases.

Casimir charging process

lim(∮
S1
d2r−→4πa2

)FES [e1, e2] =
∫ e1

0

ψ(e1)de1 +

∫ e2

0

ψ(e2)de2,

(B1)

where the limit indicates the point-like macroion approxi-
mation, with e = e0 (ϕ− 1

2 ), and the electrostatic potential
is given by the DH expression for two point charges sepa-
rated by D, yielding finally the electrostatic free energy
in the form

FES [ψ(r)] ≃
e20(ϕ1 − 1

2 )
2

4πε0εwa
+
e20(ϕ2 − 1

2 )
2

4πε0εwa

+
e20(ϕ1 − 1

2 )(ϕ2 − 1
2 )

4πε0εw

e−κDD

D
. (B2)

Clearly, the terms linear in ϕ1,2 simply renormalize α
and the terms quadratic in ϕ1,2 renormalize χ in the
expression for the total free energy, Eq. (15),

α1,2 −→ α̃1,2 = α1,2 −
e20

8πε0εwa
− e20

4πε0εw

e−κDD

D

χ1,2 −→ χ̃1,2 = χ1,2 +
e20

8πε0εwa
, (B3)

A renormalized and rescaled free energy is then of the
form

F [ϕ1, ϕ2] ≃
κDℓB
4π

e−κDD

κDD

(
ϕ1 −

1

2

)(
ϕ2 −

1

2

)
−

− α̃1ϕ1 −
1

2
χ̃1ϕ

2
1 + ϕ1 lnϕ1 + (1− ϕ1) ln(1− ϕ1)−

− α̃2ϕ2 −
1

2
χ̃2ϕ

2
2 + ϕ2 lnϕ2 + (1− ϕ2) ln(1− ϕ2), (B4)

where ℓB is again the Bjerrum length. One should note the
difference between the above free energy and the Langmuir
isotherm model used in [47–49]. The equilibrium state
is obtained numerically – by minimizing F [ϕ1, ϕ2] with
respect to ϕ1,2:

∂F [ϕ1, ϕ2]

∂ϕ1,2(D)
= 0. (B5)

The equilibrium free energy exhibits a separation depen-
dence F [ϕ1(D), ϕ2(D)] −→ F(D), and the interaction
force is f = −∂DF(D).

The dependence of free energy on the (dimensionless)
separation κDD is shown in Fig. 8. Fig. 8a displays the
charge asymmetry proportional to |ϕ1 − ϕ2| as a function
of (α, χ) at fixed D. In fact the case |ϕ1 − ϕ2| = 0, cor-
responds to a symmetric branch of the solution, while
the |ϕ1 −ϕ2| ≠ 0 corresponds to charge symmetry broken
state. The line in Fig. 8a represents the critical dissocia-
tion "isotherm" α = − 1

2χ. Clearly, there is an island of
asymmetry in the see of symmetric charge partitioning.
The boundary of this island of asymmetry exhibits either
a continuous or discontinuous transition from the sym-
metric to an asymmetric state, which is reflected in the
behavior of F(D) in Fig. 8b that shows the interaction
force dependence on κDD for fixed (α, χ).
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