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Abstract

Commitment devices are powerful tools that can influence and incentivise cer-
tain behaviours by linking them to rewards or punishments. These devices are par-
ticularly useful in decision-making, as they can steer individuals towards specific
choices. In the field of game theory, commitment devices can alter a player’s pay-
off matrix, ultimately changing the game’s Nash equilibria. Interestingly, agents,
whom we term game manipulators and who can be external to the original game,
can leverage such devices to extract fees from players by making them contingent
offers that modify the payoffs of their actions. This can result in a different Nash
equilibrium with potentially lower payoffs for the players compared to the original
game. For this scheme to work, it is required that all commitments be binding,
meaning that once an offer is made, it cannot be revoked. Consequently, we analyse
binding contracts as the commitment mechanism that enables game manipulation
scenarios. The main focus of this study is to formulate the logic of this setting,
expand its scope to encompass more intricate schemes, and analyse the behaviour
of regret-minimizing agents in scenarios involving game manipulation.

Keywords: Game manipulation - Commitment devices - Binding contracts - Regret
minimization - Online learning - Blockchain contracts - Algorithmic game theory -
Evolutionary game theory
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1 Introduction

Commitment devices are tools that influence decision-making by linking actions to
rewards or punishments. In the realm of game theory, the introduction of commitment
devices leads to a distortion of payoff matrices, which in turn might result in the
modification of the game’s equilibrium [Schelling (1956), Sobel (1981), Vickers (1985)].
For commitment devices to be effective, the offer made to modify a payoff matrix
must be credible. That is, the commitment to deliver punishments or rewards is either
strategically self enforced [Aumann, R.J. (1974)], or it is binding — meaning that once
an offer is made, it cannot be revoked and it must be executed once the established
conditions are met [Bono and Wolpert (2014)].

In this paper, we explore the logic of binding commitments in game theory. Thus, in the
sequel, all offers made by the original players or additional actors, which we call game
manipulators, are binding. In contrast to previous literature, discussed methodically in
Section 11.2, we concentrate on analysing the strategic implications of such commitment
schemes.

For this, we assume that offers and actions are common knowledge to all participants.
From a classical game theory perspective, it is also assumed that all players are rational.
This implies that each player is driven by their individual self-interest, leading them
to seek to maximise their own payoffs. Consequently, players select actions that align
with the Nash equilibrium in an attempt to unilaterally maximise their payoffs.1

In such a framework, an actor, referred to as the game manipulator, could enter and
obtain a fee. The game manipulator simply needs to present the following binding
offer to the players: pay me a fee, or I will distort the payoff matrices by benefiting
or punishing a certain action. In other words, the manipulator obtains a profit in
exchange for not distorting the game structure, effectively exploiting the game.

In this study, we systematically analyse the game-theoretical logic of obtaining fees
from players by offering binding contracts. This provides fundamental insight into the
potential actions within the realm of blockchain, where intricate systems have been
established to guarantee the enforceability of contracts. Moreover, in such blockchain
environments binding contracts, like smart contracts, have become the backbone of
numerous decentralised activities.

We analyse diverse game manipulation scenarios, including cases where one player
makes an offer to its co-player in Section 5, cases where an external manipulator makes
the offer in Section 6, scenarios where the co-player responds with a counteroffer in
Section 7, and finally, in Section 8, scenarios where a second external manipulator
makes an offer to the first one according to the same principle.

In each scenario, we complement the simple theoretical analysis with a learning the-
ory approach [Fudenberg and Levine (1998), Hart and Mas-Colell (2000)] to investi-
gate how agents learn to play games altered by binding contracts. Particularly, we

1Our analysis focuses on games with a single equilibrium. There are, however, cases where multiple
equilibria arise in the manipulated game, in which case rationality does not resolve the equilibrium
selection problem. In these cases, we study the convergence of no-regret dynamics via simulations.
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use the multiplicative weights update algorithm [Arora et al (2012)] and the replica-
tor dynamics [Hofbauer and Sigmund (1998)] to explore how regret-minimizing agents
[Blum and Mansour (2007)] behave under game manipulation. The purpose of this is to
understand how agents, presumed to possess hindsight rationality [Morrill et al (2021)],
act in such scenarios. This assumption is relevant to machine learning-driven agents
[Blum (2005)] and can serve as an initial model for human behaviour.

Overall, we observe that depending on the game structure, the dynamics may or may
not converge to the predicted subgame perfect equilibria (SPE). This affects the overall
contract incentives to the extent that a failure to reach the SPE suggests that external
manipulators would have been better off refraining from offering the contracts initially.
Thus, to effectively propose and profit from binding contracts, it is necessary to care-
fully examine the resulting game dynamics along with its strategic implications.

Morever, the results show that even though regret-minimizing agents effectively avoid
dominated strategies, it is not guaranteed for them to converge to subgame per-
fect equilibria. Therefore, such refinement of the Nash equilibrium, is not neces-
sarily in agreement with the evolutionary stable strategy of the replicator dynamics
[Selten (1965), Smith (1982)]. This implies that backward induction fails once again
to predict evolutionary stable strategies [Ramı́rez et al (2023)].

2 How to manipulate a game?

A game manipulation scenario requires the following conditions:

• Players have the potential to engage with one another through a game, called the
original game or “base game.”

• An actor, known as the “game manipulator”, has the ability to request a fee for
allowing such interaction to happen freely (without constraints on the players’
actions), if the fee is paid.

• Otherwise, the manipulator has the power to distort the payoff matrices by pro-
viding an incentive to a player for choosing a specific action.

• Once an offer is made by the game manipulator, it cannot be revoked and it should
be followed through. To be more precise, the offers are binding commitments.

For simplicity, we study the case where a binding offer is proposed to only one player in a
2×2 asymmetric game. (For a general formulation, we refer the reader to Section 11.1).
As a result, game manipulation gives rise to a sequential game with the following steps:

1. An offer, which is a binding commitment, is proposed to player i.

2. Player i must decide to Accept or Decline to pay the fee. If player i Declines,
then the player’s payoff matrix is distorted as stated by the game manipulator.

3. Player i plays the chosen game (given Accept or Decline) with its co-player.

Essentially, player i is faced with the alternative to either pay a fee, or have the game
modified in such a way that the Nash equilibrium is shifted.
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If the game is distorted to player i’s disadvantage, then player i should pay the fee
when the fee is smaller than that disadvantage. In such case, the manipulator is able
to obtain “free money” by only posing the threat to distort the payoff matrix by paying
the players additional rewards. More precisely, the subgame perfect equilibrium in a
game manipulation setting encourages player i to Accept to pay the fee.

2.1 Offer of a binding contract

In this analysis, the offers are formulated according to the following format: Either you
pay a fee, or if you decline, I distort the game.

For example, the offer could be stated as: Either you give me K1 (euros), or if you
decline, I give you K2 whenever you play X.

In this formulation, X refers to an element of the offeree’s action set. For example, in
a 2 × 2 game, if the offer is proposed to the row player, X is either Top or Bottom.
Likewise, if the offer is proposed to the column player, X is either Left or Right. It
should be noted that the offeror can be either a player or an external actor.

2.1.1 Importance of binding commitments

It is important to note that the offers must be proposed as binding contracts, that is,
there must be a mechanism in place to ensure that the offeror hands over K2 when the
request for K1 is declined.

In traditional legal scenarios, the offeror could deposit K2 with a notariser, who would
return it to the offeror if the offeree’s Accepts, but otherwise give it to offeree. However,
in blockchain environments, such commitments can be made through smart contracts
without the need of a third-party. As a result, game manipulation scenarios could
proliferate more easily in blockchain platforms.

All the offers analysed in this study use the following “base game”.

3 The base game

Let us start with the following game

L R

T 4,14 9,13

B 5,6 10,10 (I)

The players are called Row (Row, he) and Column (Col, she). The unique Nash is
(Bottom,Right) with the payoff of (10, 10), which is Pareto-efficient. Furthermore,
Bottom strictly dominates Top for the row player. Right is an iterated dominant
strategy for the column player. Thus, the game is a one-sided dominant game.
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3.1 Motivation

For simplicity and tractability, we explore a 2×2 asymmetric game, where the binding
offers are proposed to only one player. It should be noted that the game must be
asymmetric such that the threat to distort the game is done by modifying only player
i’s payoff matrix, as described in Section 2.1. This implies that the game manipulator
has agency exclusively on player i and not its co-player. Possible modifications of this
formulation are discussed in section Section 11.1 and Section 10.

In particular, we propose game (I) as a base game because it is an asymmetric
2 × 2 that allows a tractable analysis of the multiple game manipulation scenar-
ios presented in further sections. Game (I) is also suitable to describe the buyer-
supplier strategic interaction around demerit goods. This type of good is characterised
by having negative effects on its consumers, i.e. demerit goods are considered to
be unhealthy, demeaning or to have socially undesirable externalities, like pollution
[Robbins (1932), Boadway and Bruce (1984)]. As a result, buyers, and society, would
be better off if demerit goods are produced and consumed in low quantities, or not
at all. To the contrary, suppliers/sellers are better off when they produce large, un-
restricted, amounts of the demerit good in order to make sure they always meet the
existent demand.

In particular, we assume that the buyers behave according to the supply and demand
microeconomic model, such that the demand aims to match the quantity supplied.
Precisely, economic equilibrium is reached once the demand coordinates with the sup-
ply. Following the interpretation of game (I), the supply is better off by producing
large amounts of the good to coordinate with the demand at high production levels.
On the other hand, the demand prefers to coordinate with the supply at low levels of
production, due to the negative effects of the transacted good.

Consequently, game (I) represents the buyer-supplier interaction for demerit goods,
where Row is the supply and Column the demand, as follows.

Low consumption High consumption

Low production 4,14 9,13

High production 5,6 10,10 (II)

The Nash equilibrium is (High production, high consumption). In particular, High
production is a strictly dominant strategy for the supply. On the other hand, the
demand needs to best reply with high consumption, although it would strictly prefer
Low production yielding always higher payoffs.

Given that the Nash equilibrium is a socially undesirable equilibrium for the consumers,
it is possible to model government intervention through game manipulation. Similarly,
a game manipulation scenario can be used to model extortive behaviour by dominant
firms controlling the market, over smaller firms that have the potential to engage with
their existing costumers.
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Government intervention: For a demerit good market, the government (external
agent) proposes to the supplier (row player): Either you pay me K1, or if you decline, I
give you K2 whenever you play Low production. This translates into the negotiation of
governments with lobbyist from firms selling demerit goods. The government proposes
the supplier to either Accept to pay a tax (Either you pay me K1), or to get a subsidy
with the goal of reducing the production of the demerit good (or if you decline, I give
you K2 whenever you play Low production.).

For example, the government can propose to the car industry selling vehicles powered
by fossil fuels “Either you pay me a tax, or if you decline I give you a subsidy to
produce electric vehicles, as an incentive to decrease the production of petrol vehicles.”
Therefore, the analysis of game manipulation can provide a better understanding on
how to implement more efficient regulations on markets.

Extortion from a dominant firm: In a demerit good market, the dominant firm
(external agent) proposes to a smaller firm (row player): Either you pay me K1, or
if you decline, I give you K2 whenever you play Low production. This translates into
an extortive threat from a dominant firm against a smaller one. The dominant firm
pressures the smaller one to Accept to pay an extortive fee (Either you pay me K1), or
the dominant firm will distort the market such that a Low production of the smaller
firm is benefited (or if you decline, I give you K2 whenever you play Low production.).

In other words, the only way for the smaller firm to prevent that the dominant firm
distorts the base game is to pay the extortion fee. This example serves to illustrate
the wide variety of real-life situations where game manipulation acting as an extortion
mechanism could come into place.

Furthermore, in the growing economy over blockchain platforms, any platform partic-
ipant has the power to create binding contracts and may potentially intervene in a
strategic interaction between other participants if the incentives to do so exist. How-
ever, unlike government interventions, game manipulation coming from extortionists is
a concerning activity that is hard to regulate, especially in blockchain platforms.

Consequently, to provide a better understanding of the strategic implications of binding
contracts, in the upcoming sections, we analyse various ways in which they can be
introduced in games.

We study the logic and dynamics of the following scenarios:

• Section 5: The column player makes an offer to the row player

• Section 6: The first external manipulator enters

• Section 7: Row player’s counter-offer

• Section 8: The second external manipulator enters

All offers are proposed taking the base game as the reference point. Regarding dynamics
analysis, we employ the multiplicative weights and replicator dynamics to examine how
regret-minimizing agents based on reinforcement learning behave in each scenario.

6



4 Methods

We employ online algorithms to explore how agents learn to determine the best action
in a game. In particular, we simulate the scenario in which agents cannot directly
identify the best action from historical data alone; they must actively engage in the
game to learn which action is optimal. For this, agents repeatedly play the game,
aiming to reduce their cumulative losses, or more precisely, to minimize their regret
[Blum and Mansour (2007)]. In particular, we employ the most-studied no-regret algo-
rithm, known as the multiplicative weights update algorithm (see [Arora et al (2012)]
and references therein), and its continuum limit [Kleinberg et al (2009)], the replicator
dynamic [Hofbauer and Sigmund (1998)].

4.1 Multiplicative weights update algorithm

The multiplicative weights algorithm (MWUA) is a decision making method based on
an iterative rule that multiplicatively updates the weights assigned to each player’s
possible actions [Littlestone and Warmuth (1994), Fudenberg and Levine (1995)]. Ini-
tially, all actions have equivalent weights. After each time step, each action’s weight
is updated according to its payoff, thus the actions with higher payoffs have an in-
creased probability of being chosen in the next round. More precisely, the play-
ers’ learning process is modelled as a multiplicative weight update, where the ac-
tion’s distribution is skewed towards the successful actions providing a higher pay-
off [Grigoriadis and Khachiyan (1995), Arora et al (2012)]. As a result, the main
objective of the multiplicative weights algorithm is to reduce its cumulative losses,
or more specifically, to minimize the regret for agents playing a repeated game
[Bailey and Piliouras (2018)]. As stated in [Arora et al (2012)], the formulation of the
algorithm is the following:

Initialisation: fix η ≤ 1
2 . Associate a weight w

(1)
i := 1 to each action i, for each player.

For t = 1, 2, ..., T :

1. Choose action i with probability proportional to its weight w
(t)
i , i.e. use the

distribution p(t) = (
w

(t)
1

Φ(t) , ...,
w

(t)
n

Φ(t) ), where Φ(t) =
∑

iw
(t)
i , to choose an action on

each round.

2. Observe the payoffs of the actions m(t).

3. Update the weights for every action as w
(t+1)
i = w

(t)
i (1 + ηm

(t)
i ).

4.2 Replicator dynamics

The replicator dynamic is a foundational model for dynamics in evolutionary game the-
ory [Hofbauer and Sigmund (1998), Hofbauer et al (2009), Sandholm (2010)]. In par-
ticular, it can be used as a model to analyse how players learn to play an asymmetric
game. In this dynamic, at each time step, the row player chooses one of the n possible
actions with frequency x = (x1, ..., xn). Likewise, Column choose one of the m possible
actions with frequency y = (y1, ..., ym). In our setting, Row has the same amount of
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possible actions as Column, n = m (see base game (I)). Over time successful actions
are positively reinforced, which allows for players to eventually converge to an optimum
equilibrium. Thus, the replicator dynamic is represented by the following set of coupled
differential equations.

ẋi = xi[(Ay)i − xTAy] i = 1, .., n (1)

ẏj = yj [(Bx)j − yTBx] j = 1, ..,m. (2)

In this equation, A and B are the payoff matrices of the row and column player,
respectively. It should be noted that to obtain B, it is required to take the transpose of
the game for the column entries, such that the definition of symmetric games holds: A =
BT . For equation 1, (Ay)i is Row’s average performance of strategy i over Column’s
possible actions. On the other hand, xTAy is the averaged performance over all of
Row’s strategies. Thus, the replicator equation describes how the frequency of strategy
i changes over time according to its average performance relative to the mean. Equation
2 has an equivalent interpretation for the column player [Börgers and Sarin (1997),
Hofbauer and Sigmund (1998), Sato et al (2002)].

Dynamical systems such as the replicator dynamic arise as the continuum limit of
discrete no-regret algorithms. More precisely, it has been shown that a multiplicative
update process can be approximated to a continuous-time process displaying replicator
dynamics [Kleinberg et al (2009), Kleinberg et al (2011), Bailey and Piliouras (2018)].

5 Column makes an offer to Row

To introduce the underlying logic of the binding commitments, we first allow for Col
to make the following offer to Row: Either you give me 3 (Euros), or if you decline, I
give you 2 whenever you play T .

If the row player Accepts, the payoff is as follows.

L R

T 1,17 6,16

B 2,9 7,13 (III)

The unique Nash equilibrium in this new game does not change compared to the base
game (I), as it remains at (B,R), given that Bottom continues to be a strictly dominant
strategy over Top. The main difference with respect to the base game is that now Col
is able to extract a profit from Row, which in this case is equivalent to 3.

If the row player Declines, the payoffs are

L R

T 6,12 11,11

B 5,6 10,10 (IV)
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Now the unique Nash in this new game is (T, L), resulting in (6, 12). The Nash equi-
librium changes because Top now becomes the strictly dominant strategy for the row
player.

In particular, if the offer is Declined, Row’s payoff matrix becomes that of a temptation
game, that is, Row is tempted to play T and obtain the fee offered by Col, but the
resulting equilibrium leaves him worse off than if he had accepted the offer. Therefore,
it is better for Row to Accept the offer and allow for Col to extract the profit. Likewise
Col is better off if the Accept Nash equilibrium is reached. Most importantly, the
column player is better off in either scenario, Accept or Decline, compared to the base
game, which is the main motivation for Col to make the offer to Row.

Overall, for the full game, the subgame perfect equilibrium is the unique Nash equilib-
rium of the subgame (III), corresponding to (B,R) once Row Accepts given the NE in
the subgame (IV) with (T, L) when Declining the offer.

5.1 Formulation conditions

The binding offer to the row player can be generalised as: Either you give me c1
(Euros), or if you decline, I give you c2 whenever you play T . Therefore, an abstract
representation of the offer can be formulated using the payoff matrix of the base game
(I)

L R

T a11, b11 a12, b12
B a21, b21 a22, b22 (3)

the Accept fee c1 and the Decline fee c2. Particularly, we find that the crucial conditions
are

a12 + c2 > a22 > a12 (4)

a22 − c1 > a11 + c2 (5)

b11 > b12 (6)

a11 + c2 ≥ a21. (7)

5.2 Reduced-Normal form game

The sequential game composed of (III) and (IV) can be written in its reduced-normal
form, where Row has four possible actions (Accept and Top, Accept and Bottom,
Decline and Top, Decline and Bottom). Similarly, Column has four possible actions
but that depend on Row’s initial decision between (Accept, Decline). For example, the
action L,R means that Column chooses Left if Row Accepts and Right if Row Declines.
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L,L L,R R,L R,R

AT 1,17 1,17 6,16 6,16

AB 2,9 2,9 7,13 7,13

DT 6,12 11,11 6,12 11,11

DB 5,6 10,10 5,6 10,10 (V)

The pure Nash equilibria are (DT, L, L) and (AB, R,L), which coincide with the
equilibria of the individual games. There is also a mixed Nash equilibrium which we
do not consider in our study. For this representation, it can also be noted that AT and
DB are dominated strategies for Row.

5.3 Results

Figure 1: (a) A simulation of multiplicative weights dynamics (η = 0.5 for both players)
and (b) numerical solution to the replicator dynamics equations for Section 5, where
Column makes an offer to Row. For both methods, the row player converges to DT ,
which means to Decline the offer and then playing Top. The column player converges to
L,L and R,L, corresponding to Col playing Left once Row has declined the offer. Thus,
the system converges to the Nash equilibrium of the Decline game (IV). Interestingly,
this equilibrium does not coincide with the subgame perfect equilibrium of the full
game.
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Figure 1 shows the results for the scenario where Column makes an offer to Row,
as considered in the normal form game (VI). It can be seen that the multiplicative
weights algorithm converges to the same equilibrium as the replicator dynamics, namely
(T, L), the Nash equilibrium of the Decline game. It should be noted that the MWUA
plot shows the actions chosen by each player for every time step, while the replicator
dynamics displays how the action frequency evolve in time. In general, both methods
identify DT as the best possible action for Row taking into account Column’s available
actions. It is surprising that the replicator dynamics and the MWUA equilibrium are
consistently not in agreement with the subgame perfect equilibrium of the full game.

Interestingly, this suggests that Row prefers to Decline Column’s offer, such that he is
able to receive the c2 = 2 euro offered to him. In this way Row exploits Column back
by extracting the decline fee (c2) from her. The reason for such behaviour is that DT
performs better on average with respect to all possible strategies of the column player.
Unfortunately, if the row player Declines the drawback is that the game structure leaves
him worse off compared to the Accept equilibrium.

6 The first external manipulator enters

The observation that players can change a game to their advantage by making binding
commitments dates back to [Schelling (1956)]. Thus, we now introduce a novel scenario
where an external “game manipulator” (M1), makes an offer, in the form of a binding
contract, to extort a fee from players. More precisely, the game manipulator makes the
offer to Row: Either you give me 3 (Euros), or if you decline, I give you 2 whenever
you play T .

It should be noted that the main differences with respect to the first scenario is that an
external game manipulator is making the offer, instead of a player. Therefore, payoffs
injected or retrieved by the manipulator are not transfers between the two players
anymore. The equilibrium strategies for Row and Column remain, however, the same.

If the row player Accepts, the payoff matrix is as follows

L R

T 1,14,{3} 6,13,{3}
B 2,6,{3} 7,10,{3} (VI)

The third entry in a cell specifies the payoffs to the external manipulator M1. It should
be noted that after the offer is proposed, it cannot be revoked. Thus, the payoff of
M1 is solely an outcome of the players’ (Row and Col) decisions, such that the Nash
equilibrium in this subgame is (B,R) with payoffs (7, 10, {3}). For Row, Bottom is a
strictly dominant strategy while Column has an iterated dominant strategy. If Row
Accepts, the game manipulator extracts a profit of c1 = 3.

If the row player Declines, the payoffs are
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L R

T 6,14,{-2} 11,13,{-2}
B 5,6,{0} 10,10,{0} (VII)

The Nash equilibrium in this subgame is (T, L) with payoffs (6, 14, {−2}). In this game,
Top is a strictly dominant strategy. Left is an iterated dominant strategy. Therefore,
if Row Declines, the game manipulator pays a fee of c2 = 2 in this subgame.

The external game manipulator does not change the strategic situation for Row com-
pared to the previous case in Section 5, where Col made the offer. Again, it is better
for Row to Accept the offer, and pay c1 = 3, to reach the equilibrium in the Accept-
subgame, (B,R) = (7, 10, {3}), instead of the equilibrium in the Decline-subgame
(DT,L) = (6, 14, {−2}). In other words, the subgame perfect equilibrium outcome
corresponds to the Nash equilibrium outcome of game (VI), namely (B,R) once Row
Accepts.

It should be noted that for the logic of the external manipulator scenario, it is not
necessary for the fee the manipulator demands (c1 = 3) to be greater than the fee he
threatens to pay (c2 = 2). As long as it is better for Row to Accept the offer, any
positive fee c2 would be sufficient. c2 just cannot be too large, according to (VI), or
else the subgame perfect equilibrium would be modified and Row would be better off
Declining.

6.1 Reduced-Normal form game

The sequential game described by the games (VI) and (VII) can be described in its
reduced-normal form as

L,L L,R R,L R,R

AT 1,14,{3} 1,14,{3} 6,13,{3} 6,13,{3}
AB 2,6,{3} 2,6,{3} 7,10,{3} 7,10,{3}
DT 6,14,{-2} 11,13,{-2} 6,14,{-2} 11,13,{-2}
DB 5,6,{0} 10,10,{0} 5,6,{0} 10,10,{0} (VIII)

The pure Nash equilibria are (DT, L, L) and (AB, R,L), which coincide with the
equilibria of the individual subgames. There is also a mixed Nash equilibrium which
we do not consider here. It can be noted that AT and DB are dominated strategies
for Row.

6.2 Results

Figure 2 shows that the system converges to Row Declining the offer and then playing
Top, and to Column playing Left. More precisely, the system converges to the Nash
equilibrium of game (VII). The results are equivalent to the scenario where Column
makes an offer to Row. The reason for this is that the general payoff structure is
not changed when an external manipulator makes the offer instead of the column

12



Figure 2: (a) A simulation of multiplicative weights dynamics (η = 0.5 for both players)
and (b) numerical solution to the replicator dynamics equations for Section 6, where
the first external manipulator enters. For both methods, the row player converges
to DT , which means to Decline the offer and then playing Top. The column player
converges to L,L and R,L, corresponding to Col playing Left once Row has declined the
offer. Thus, the system converges to the Nash equilibrium of the Decline game (VII).
Interestingly, this equilibrium does not coincide with the subgame perfect equilibrium
of the full game.

player. Therefore, once again we reach an equilibrium that does not coincide with
the subgame perfect equilibrium of the full game. In this case, the results mean that
Row takes advantage of the situation to extract a fee c2 from the manipulator at the
cost of having a lower payoff than the base game, and the Accept equilibrium. This
decision indirectly benefits Col who obtains a better payoff for the Decline equilibrium
in comparison to the base game and the Accept equilibrium.

It is interesting to note that the results in figure 2 do not correspond to the subgame
perfect equilibrium of the full game. The reason for this is the fact that on average
DT performs better against all of Column’s possible actions. Therefore, the results
indicate that despite the theoretical prediction of players reaching the subgame perfect
equilibrium, which would enable the external manipulator to earn a profit of c1, the
manipulator would actually find it more advantageous to abstain from making an offer.
This is because players tend to converge towards the Decline equilibrium, which incurs
a cost of c2 for the manipulator.
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7 Row’s counter-offer

In the scenario of the first external manipulator, Row could propose a counter-offer to
Col: I shall decline the external manipulator’s offer and then give you d2 = 2 for you
playing Right. Therefore, if the row player Accepts, the payoff matrix is the same as
game (VI), namely

L R

T 1,14,{3} 6,13,{3}
B 2,6,{3} 7,10,{3} (IX)

The unique Nash equilibrium in this subgame is again (B,R) = (7, 10, {3}), given that
Bottom is a strictly dominant strategy and Right is iterated dominant. In this case,
the external game manipulator extracts a profit of c1 = 3.

If the row player Declines, Row’s counter-offer changes the payoff matrix as follows

L R

T 6,14,{-2} 9,15,{-2}
B 5,6,{0} 8,12,{0} (X)

Therefore, in subgame (XII) (T,R) = (9, 15, {−2}) is the new Nash equilibrium, where
Top and Right are strictly dominant strategies. In this equilibrium, Row and Col
obtain the best possible outcome. Even though Row is worse off than in the base
game (I), it is better off than in the Accept game and the previous Decline equilibrium.
For Column, it is beneficial to accept the offer because she is also better off than in
those two cases. In other words, Row has essentially transferred the fee obtained from
the external manipulator to Col. But if that is possible, the manipulator should not
attempt to pose a threat in the first place, as he risks losing c2 = 2 by his attempt. Of
course, this also depends on certain additional inequalities, with d2 now denoting the
payoff increase offered by Row to Col for playing Right.

b12 < b11 < b12 + d2 (8)

a11 + c2 < a12 − d2 (9)

Thus, Row’s counter-offer can prevent the game manipulator from extracting a profit.

7.1 Reduced-Normal form game

The sequential game described by the games (IX) and (X) can be represented in its
reduced-normal form as

L,L L,R R,L R,R

AT 1,14,{3} 1,14,{3} 6,13,{3} 6,13,{3}
AB 2,6,{3} 2,6,{3} 7,10,{3} 7,10,{3}
DT 6,14,{-2} 9,15,{-2} 6,14,{-2} 9,15,{-2}
DB 5,6,{0} 8,12,{0} 5,6,{0} 8,12,{0} (XI)
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The pure Nash equilibria are (DT, L,R), (DT, R,R) and (AB, R,L), which coincide
with the equilibria of the individual subgames games. It can be noted that AT and
DB are dominated strategies for Row.

7.2 Results

Figure 3: (a) A simulation of multiplicative weights dynamics (η = 0.5 for both players)
and (b) numerical solution to the replicator dynamics equations for Section 7, which
describes Row’s counter-offer. For both methods, the row player converges to DT ,
which means to Decline the offer and then playing Top. The column player converges
to R,R and L,R, corresponding to Col playing Right once Row has declined the offer.
Thus, the system converges to the Nash equilibrium of the Decline game (X), which is
in agreement with the subgame perfect equilibrium. Such equilibrium allows for both
Row and Column to obtain the best possible payoff.

As shown in figure 3, for the multiplicative weights algorithm and the replicator dy-
namics, the system converges to Row Declining and playing Top, and then for Column
to accept Row’s counter-offer to play Right. Therefore, the results are in agreement
with the subgame perfect equilibrium. This means that Row’s counter-offer effectively
neutralises the external game manipulator to the extent that the manipulator would
be better off by not posing a threat on the first place.
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8 The second external manipulator enters

In this section, we introduce a second external manipulator into Section 6, where the
first external manipulator appears. Thus, the first manipulator’s offer is the same as
in section Section 6. The second manipulator M2 (she) offers to the first manipulator
M1 (he): Either you pay me 2, or else if Row Declines your offer, I will offer Col an
additional payoff of 2 for playing Right.

The chronology of this scenario is as follows:

1. Time t1: Row and Column agree to play the original game, at time t6.

2. Time t2: M1 proposes the offer described in Section 6 to Row, specifying that
they must make their decision precisely at time t5.

3. Time t3: M2 proposes the offer described in this section to M1, specifying that
they must make their decision precisely at time t4.

4. Time t4: M1 decides upon the offer made by M2.

5. Time t5: Row decides upon the offer made by M1.

6. Time t6: Row and Column play the game determined in previous steps.

We focus on analysing the strategic implications of the offer from M2 to M1 (steps t3
and t4).

If M1 accepts M2’s offer, it implies that the Accept game is equivalent to game (VI),
but M1’s payoff is decreased by 2 amounting now to 1. Additionally, M2’s payoff of 2 is
added to the matrix, such that each entry follows the structure (Row, Col, {M1,M2}).

L R

T 1,14,{1,2} 6,13,{1,2}
B 2,6,{1,2} 7,10,{1,2} (XII)

The Nash equilibrium in this subgame is (B,R) with payoffs (7, 10, {1, 2}). For Row,
Bottom is a strictly dominant strategy and for Col, Right is iterated dominant. The
main difference in comparison to Section 6 is that now M1 only extracts a profit equiv-
alent to 1, instead of 3, and M2 appears with a payoff of 2.

If M1 declines M2’s offer and Row Declines M1’s offer, the new Decline subgame is as
follows:

L R

T 6,14,{-2,-2} 11,15,{-2,-2}
B 5,6,{0,0} 10,12,{0,0} (XIII)
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This leads to the Nash equilibrium in this subgame (T,R) = (11, 15, {−2,−2}) which
is the best that Row and Col can hope for. In particular, Top and Right are strictly
dominant strategies.

In general, the logic of the scenario is the following: M1 makes an offer to Row. Either
Row accepts M1’s offer, or the Nash equilibrium is shifted to Row’s disadvantage. It
is thus better for Row to accept M1’s offer. But before Row decides, M2 enters and
makes the offer to M1. Either M1 accepts M2’s offer, or the game is changed in such
a way that it now becomes advantageous for Row to decline M1’s offer. Therefore, it
is best for M1 to accept M2’s offer, and when Row then decides about M1’s offer, it is
also better to accept.

In fact, the subgame perfect equilibrium states that Row would be better off by De-
clining M1’s offer, in case M1 declines M2’s offer. Therefore, the threat posed by M2

to distort the game, by offering an additional payoff to the column player, guarantees
that M1’s offer is Declined by Row. As a result, M1 is forced to pay M2 a fee to retain
a profit from initially manipulating the Row player.

Interestingly, the results in Section 6 show that regret-minimizing players do not con-
verge initially to Accept M1’s offer, i.e. M1’s profit is not guaranteed from the start.
As a result, the current situation presents an interesting scenario, where a static anal-
ysis of the game contradicts the dynamical outcome obtained from online learning of
regret-minimizing agents.

8.1 Reduced-Normal form game

The sequential game described by the games (XII) and (XIII) can be represented in its
reduced-normal form as

L,L L,R R,L R,R

AT 1,14,{1,2} 1,14,{1,2} 6,13,{1,2} 6,13,{1,2}
AB 2,6,{1,2} 2,6,{1,2} 7,10,{1,2} 7,10,{1,2}
DT 6,14,{-2,-2} 11,15,{-2,-2} 6,14,{-2,-2} 11,15,{-2,-2}
DB 5,6,{0,0} 10,12,{0,0} 5,6,{0,0} 10,12,{0,0} (XIV)

Note that we do not specify the actions byM1 andM2 explicitly. In particular, the pure
Nash equilibria are (DT, L,R), (DT, R,R) and (AB, R,L), which coincide with the
equilibria of the individual subgames. It can be noted that AT and DB are dominated
strategies for Row.

8.2 Results

In figure 4, it can be seen that the system converges to Row Declining the offer and
playing Top, while Column plays Right. This equilibrium coincides with the Nash
equilibrium of game (XIII). Therefore, if M2’s offer is common knowledge, the players
converge to the subgame perfect equilibrium, where both Row and Col reach the best
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Figure 4: (a) A simulation of multiplicative weights dynamics (η = 0.5 for both players)
and (b) numerical solution to the replicator dynamics equations for Section 8, where
the second external manipulator enters. For both methods, the row player converges
to DT , which means to Decline the offer and then playing Top. The column player
converges to R,R and L,R, corresponding to Col playing Right once Row has declined
the offer. Thus, the system converges to the Nash equilibrium of the Decline game
(XIII). If M2 offer is common knowledge, this equilibrium is equivalent to the subgame
perfect equilibrium. This means that M1 is effectively forced to pay a fee to M2 to be
able to retain a profit from initially manipulating Row. However, this is a paradoxical
result becauseM1’s profit is not guarantee from the start when regret-minimizing agents
are playing the game.

possible outcome. This means that M1 is effectively forced to pay a fee to M2 to be
able to retain a profit from initially manipulating Row.

The current situation presents an interesting paradox when compared to Section 6,
because the results indicate that regret-minimizing players do not converge initially to
Accept M1’s offer. This means that M1’s profit is not guarantee from the start. As a
result, we find ourselves in an intriguing scenario where a static analysis of the game
contradicts the dynamical outcome obtained from regret-minimizing agents.
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9 Conclusions

In this paper, we explore commitment devices in game theory. More precisely, we study
the strategic implications of binding contracts using a tractable 2×2 asymmetric game.
Given that game manipulation through binding contracts can take different forms, from
government regulations to extortion in blockchain platforms, we systematically analyse
the logic of game manipulation via diverse setups.

Particularly, we investigate how regret-minimizing agents interact under the influence
of game manipulators. For this, we use the multiplicative weights update algorithm
(MWUA) and the replicator dynamics. We found that both methods provide consis-
tent results for all analysed scenarios. In particular, the results show that the regret-
minimizing agents avoid convergence to dominated strategies, as could be expected.

Furthermore, we observe that depending on how the binding offers distort the base
game, regret-minimizing agents might not converge to the subgame perfect equilibrium.
For instance, in both Section 5, where Column makes an offer to Row, and Section 6,
where the first external manipulator enters, players converge to the Decline equilibrium,
(T, L), while the subgame perfect equilibrium corresponds to the Accept equilibrium,
namely (B,R) once Row Accepts. This indicates that regret-minimizing agents do not
necessarily behave as backward induction predicts.

In addition, the results reveal that despite the distinction between Section 5, where
Column proposes the offer Row, and section Section 6, where an external manipulator
(M1) proposes the offer to Row, both scenarios are dynamically equivalent for MWUA
and the replicator dynamics. For both methods, the row player prefers to Decline the
offer, such that he is able to extract the fee c2 offered to him. The reason for such
behaviour is that DT performs better on average with respect to all possible strategies
of the column player. Unfortunately, the drawback is that if Row Declines, the game
structure leaves him worse off compared to the Accept equilibrium.

This suggests a contradicting situation for M1, because classical game theory suggests
that players would achieve the subgame perfect equilibrium and allow him to extract a
profit equivalent to c1. However, the equilibrium achieved by regret-minimizing agents
indicate that refraining from offering a contract would actually be more beneficial for
M1. Thus, when offering binding contracts to regret-minimizing agents, or agents only
rational at hindsight, it is essential to carefully examine the dynamic implications of
the contracts, in order to effectively leverage them. Relying solely on an analysis rooted
in classical game theory may not be adequate for this purpose.

On the other hand, in both Section 7, describing Row’s counter-offer, and Section 8,
where the second external manipulator enters, MWUA and the replicator dynamics
converge to the subgame perfect equilibrium. The reason for this is that both offers
alter the game structure in a similar manner, leading to two pure Nash equilibria,
in the normal form game, corresponding to Declining the offer. Therefore, despite
their differences, both offers have an equivalent impact on the game structure and its
dynamical outcome.

In the case of Section 7, the results indicate that Row’s counter-offer to Column effec-
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tively neutralises the external game manipulator M1 intention to profit from posing a
threat to distort the game. Particularly, the game manipulator M1 would be better off
by not proposing a binding contract on the first place under Row’s counter-offer.

Regarding Section 8, the second external manipulatorM2 proposes the binding contract
to M1 with the intention of extracting a fee from him. To be more precise, when M1

Declines the offer of M2, Row would be better off by also Declining the offer of M1.
This would inflict a loss of c2 to M1, whereas if M1 accepts the offer of M2, he would
retain a profit, because in that case, Row should AcceptM1’s offer according to classical
game theory. Moreover, the results obtained from MWUA and the replicator dynamics
confirm that M2’s offer is a credible threat for M1.

Interestingly, Section 8, where the second external manipulator enters, poses a paradox
in the light of the results of Section 6, where the first external manipulator enters. The
reason is that regret-minimizing agents converge to decline M1’s offer, thus M1’s profit
obtained from initially manipulating Row is not guaranteed from the start. Therefore,
M2’s intervention becomes unreasonable under such consideration.

In conclusion, a static analysis based solely on the concept of Nash equilibrium, an
its refinement the subgame perfect equilibrium, is not sufficient to understand the
behaviour of regret-minimizing agents in the framework of game manipulation through
binding contracts. A dynamic exploration is therefore crucial to effectively leverage
binding contracts as commitment devices in game theory.

10 Extensions and open questions

Possible extensions of the presented framework include bargaining over the details of
the contract. In that bargaining, the manipulator attempts to maximise the “free
money” that a player could give it. This topic is related to mechanism design applied
to the offer of the binding contracts. In the paper by [Bono and Wolpert (2014)], the
authors derive on the maximal amount a game manipulator can obtain for certain game
manipulation scenarios, as one varies over possible payoff matrices of the base game
and/or over possible contracts offered by the game manipulator. The analysis in that
paper also shows that the results of game manipulation on the resultant joint payoffs
of the players in the base game may differ in general from the Coaseian outcome.

In all of these cases, the presence of the game manipulator results in an entirely dif-
ferent strategic environment faced by the players in the base game. Therefore, the
manipulator makes considerable profit from recognising a situation in which one party
benefits from an output-contingent contract. But if the game manipulator manages to
make a profit, the possibility that other game manipulators appear, seeking to pose
their own contracts at lower prices, arises. This opens additional strategic implications
for the player whose payoff matrix is distorted by such offers.

Another option is for the external game manipulator to offer contracts to both players.
As an example, it may be that the manipulator offers contracts to both players with
the following properties. First, both players have a strictly dominant strategy to accept
the offered contract. Second, when they both inevitably accept, the outcome is that
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they are both worse off, and the game manipulator profits considerably. In fact, the
game manipulator may even promise to pay the players large sums of money if certain
outcomes are reached, knowing well that when all of the players accept the offered
contracts,such outcomes will never be obtained. (To do this, the game manipulator
effectively creates a prisoner’s dilemma among the players for his own benefit.)

It is also worth noting that in many game manipulation scenarios, “mixed contracts”
are needed to guarantee the existence of equilibria. With such contracts, players have
uncertainty about their opponent’s payoffs. However, unlike in Bayesian Nash equilib-
rium, for game manipulation scenarios this uncertainty is resolved before the game is
played. Thus, in this setting, the game manipulator’s only role is to make the players
indifferent among its own contracts such that players randomise among them according
to a probability distribution.

Furthermore, a rich mathematical structure is introduced if the players in the base
game are able to offer contracts to the external game manipulator, who can pick only
one of them, in which those players “purchase” a move-contingent payoff after the game
is played.

Finally, there are important timing issues in game manipulation scenarios, some of
which are explored in [Bono and Wolpert (2014)]. When players sequentially sign con-
tracts with game manipulators, there can be a significant first-mover advantage to the
first-signing player. This provides the game manipulator with yet another opportunity
for profit i.e. they can charge the players to move first. In addition, game manipulation
has complicated effects on efficiency. The effects depend on the underlying game as
well as the bargaining structure between players and the game manipulator. In general,
those effects can either increase equilibrium efficiency or decrease it.
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11 Appendix

11.1 Generalised game manipulation

For the general formulation, originally proposed in [Bono and Wolpert (2014)] (there
termed “game mining”), we first introduce the corresponding notation. Let T1 ∈
{Row,Col} be the unit for information, or bit, specifying which of the two players,
Row or Col, the game manipulator asks for a one-time payment in a single-stage game,
before the start of the base game. Let T2 ∈ {Row,Col} be a bit specifying which of the
two players the manipulator will make an output-contingent payment to, if the request
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for a one-time payment is refused. Let W ∈ {win, lose} be the bit saying whether
the player specified in T1 has better or worse expected payoff due to the intervention
of the game manipulator, compared to what their expected payoff in the base game
would be if the manipulator had never intervened. So for example, in the standard
game manipulation scenario considered in Section 6, T1 = T2 = Row and W = lose;
the player being exploited by the manipulator is worse off due to the intervention of
the manipulator.

Nonetheless, as pointed out by [Bono and Wolpert (2014)], there are base games in
which a game manipulator could benefit by intervening for either or both possibilities,
T1 ̸= T2 and T1 = T2. Moreover, there are games where W = win and games in
which W = lose, i.e., the player in the base game who is being exploited by the
manipulator can be made either worse off or better off. Thus, the particular case
presented in Section 6 is just one possible configuration in the myriad of all available
game manipulation opportunities.

11.2 Game manipulation compared to previous literature

The ideas underlying the game manipulation concept are implicit in a large
body of economic literature. As an illustration, in the model presented in
[Jackson and Wilkie (2005)] (JW), every player specifies outcome-contingent side-
payments that they will make after a non-cooperative strategic form game is played
and the payoffs are resolved. These side-payments are binding contracts, so the players
are ex ante determining their preferences over the game’s outcomes. In this regard the
game that the players actually play is endogenously determined. JW examine whether
a mechanism that allows players to make such outcome-contingent side-payments gen-
erally results in efficient outcomes and conclude that it does not. A related idea has
been recently explored in the context of mechanism design when considering auctions
with aftermarkets [Babaioff et. al. (2023)].

The simplest game-manipulation scenario can be viewed as a special case of JW. In this
special case, the only outcome-contingent side-payments are between the players and
the game manipulators. The game manipulators would be indifferent over the game
outcomes if not for the fact that they will be receiving side-payments dependent on
those outcomes. Furthermore, the game manipulators play no part in the game between
the players other than to accept contracts for outcome-contingent side-payments and
make the contracts public.

In contrast to JW, we do not focus on efficiency issues, and we do not assume that
a social planner installs a mechanism for players to make side-payments. Instead, we
look at a game without formal mechanisms and ask whether external parties will create
contracts for outcome-contingent side-payments in pursuit of profit. In particular, we
examine the implications of giving the game manipulator the power to offer contracts,
which will in general increase the game manipulator’s profits. In addition, we relax the
assumption in JW that all side-payments are non-negative. That is, we allow game
manipulators to pay players for certain outcomes. This will be important when exam-
ining optimal contracts as well as the extent to which a monopolist game manipulator
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can extract profits from players. We also consider how things change when there is
more than one manipulator, when manipulation contracts are offered in sequence, etc.
None of those issues arise in JW.

In another related paper, [Renou (2009)] analyses what happens when players are able
to embed the original game in a new two-stage game. In the second stage of that
new game the players play the original game. However before they do so, in the first
stage, the players each simultaneously commit not to play some subset of their possible
moves in that game in the second stage. These commitment games can be seen as
another special case of JW in which (1) player i’s side-payments are only contingent
on i’s action (rather than on the full profile of actions), (2) the side-payments are
made to external players and (3) the side-payments are effectively infinite. Renou’s
analysis does not apply to the full game manipulation scenario. This is because there
are many circumstances in which both the player and the game manipulator prefer
to make contracts that are fully outcome-contingent and that have non-infinite side-
payments. One particular example is when the player and game manipulator find it
optimal to agree on a contract that results in an equilibrium where the player uses a
mixed strategy with full support (and therefore does not make any commitment in the
first stage of Renou’s two-stage game).

The idea that there might be pre-game play in which players make choices to affect their
own preferences over outcomes is also present in [Wolpert et al (2008)]. The authors
analyse the idea that experimentally observed non-rationality is in fact rational, because
by committing to play the game with a non-rational “persona,” a player may increase
her ultimate payoff. This persona has the same effect as a side-payment or commitment,
as it is reflected in a temporary change to the player’s utility function. The persona
games model has been successful in explaining non-rational behaviour in non-repeated
traveler’s dilemma and even in versions of the non-repeated prisoner’s dilemma.

A related commitment game between the players has been formalised in
[Tennenholtz (2004)] as the notion of program equilibria (see [LaVictoire et. al. (2014),
Oesterheld (2019)] for further extensions of this model). The program equilibrium
model describes a scenario where each player designs a computer program that will
determine their actions in the game. As in the persona game, it is necessary that the
commitments will be made public: the programs can read the other players’ programs,
and their actions are contingent on the content of these programs (a simple example
of such an equilibrium in the prisoner’s dilemma is “cooperate if the other program is
identical to this program or defect otherwise”).

In [Kolumbus and Nisan (2022a), Kolumbus and Nisan (2022b)], the authors study
scenarios of repeated games where players are assisted by learning algorithms. It is
shown that in auctions and other game classes, the long-term outcomes of learning
dynamics induce a meta-game between the players in which the players often have
incentives to misreport their true preferences to their own learning algorithms. The
commitment that players make in this case, namely, to use learning algorithms, is dif-
ferent in nature from notions of punishments or rewards studied in repeated games,
since actions are not contingent on the opponents’ play. Interestingly, in this model,
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the details of the algorithms or the goals provided to them need not be made public,
but rather they are revealed through the dynamics.2

There is a subset of the principal-agent literature concerning delegation games that is
closely related to game manipulation. In these models, the principal is able to contract
with an agent that will engage in a game with the principal’s opponent (or agent of the
principal’s opponent). One concern of this literature is detailing the optimal contract
for a principal (see [Vickers (1985), Fershtman (1985), Sklivas (1987)]). Another con-
cern is whether a mechanism that allows specific types of contracts can lead to Pareto
efficiency (see [Fershtman et al (1991), Katz (1991)]). Game manipulation is closely
related to a previously unexplored aspect of principal-agent scenarios: the degree to
which the agents can profit from delegation contracts.

Furthermore, our work is related to the general literature on commitment in games
because, at its core, game manipulation is about what happens when players
benefit by strategically restricting themselves. One well-studied aspect of com-
mitment is the role of timing. Papers such as [Hamilton and Slutsky (1990)],
[van Damme and Hurkens (1996)] and [Romano and Yildirim (2005)] concern endoge-
nous timing and Stackelberg-like commitments. Another area of study is the role
of commitment in repeated games. In their study of finitely repeated games,
[Garcia-Jurado and Gonzalez-Diaz (2006)] introduce a weakening of SPE called virtual
subgame perfect equilibrium. [Kalai et al (2007)] also study commitment in finitely re-
peated games, but do so in a manner similar to JW. That is, they are concerned with
the role of commitment in bringing about efficiency.

The contracts offered by an external party in our case are also related to the
broad literature on mechanism design, where a platform offers outcome-contingent
incentives to the players, for example, in auctions [Milgrom (2004)], capital-
raising [Halac et. al. (2022), Babaioff et. al. (2022)], and various social choice sce-
narios [Brandt et. al. (2016)]. Perhaps most closely related in this literature is
[Monderer and Tennenholtz (2013)], who explore the cost needed from an external de-
signer for implementing (i.e., incentivising) a given outcome in a game. This literature
mostly focuses on a mechanism designer who aims to implement socially efficient out-
comes. By contrast, we explore the potential implications of a self-interested external
entity intervening in the interaction between our players. The latter scenario may, in
principle, lead to a negative effect on society as long as the external party has profits.
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