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Gif-sur-Yvette, France
12Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Germany

13Climate and Environmental Physics / Oeschger Centre for Climate Change Research (OCCR), University of Bern, Switzerland
14Flanders Marine Institute (VLIZ), Ostend Belgium

15School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UK
16Dept. Geoscience, Environment and Society - BGEOSYS, Université Libre de Bruxelles, Brussels, Belgium
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Text S1. Observation-based products and
models description

S1.a pCO2-products

CMEMS-LSCE-FFNN (CMEMS)
The CMEMS-LSCE-FFNN product (Chau et al., 2022)

referred to here as CMEMS provides estimates of monthly
pCO2 and air-sea CO2 fluxes over the global coastal ocean
at a spatial resolution of 1×1 degree from 1985 to 2018.
Main characteristics setting CMEMS-LSCE-FFNN apart
from similar approaches are (1) model design, (2) ensemble-
based estimates of pCO2 and air-sea CO2 fluxes and un-
certainty, and (3) consistency of the coastal-ocean recon-
struction and the open-ocean reconstruction (Chau et al.,
2022). Coastal estimates were evaluated thoroughly from a
global scale to ocean basins and at time-series stations. The
coastal estimates are part of a global reconstruction of pCO2

fields based on monthly gridded SOCATv2020 data of CO2

fugacity covering both the open ocean and the coastal zone
(Bakker et al., 2016) (see Figure S1). The reconstruction is
based on an ensemble of 100 feed-forward neural networks
(FFNN), with two-thirds of SOCAT data used for model
training and one third kept for validation of reconstructed
pCO2 . The ensemble approach provides space-time vary-
ing uncertainty field (ensemble spread) associated with the
best pCO2 and air-sea fluxes’ estimates (ensemble mean).
These ensemble statistics permit the evaluation of recon-
struction uncertainty over coastal regions with sparse data
coverage. The seamless reconstruction of pCO2 and air-sea
fluxes over the global coastal and open ocean allows the
assessment of gradients and horizontal variability of pCO2

and air-sea CO2 fluxes over the continental shelf and to the
open ocean. The gas transfer velocity was calculated with
10-m ERA5 wind speed data (Hersbach et al., 2020) follow-
ing the parameterization by Wanninkhof (2014). A scaling
factor is applied such that the global average of kw equals
to 16.5 cm h−1 (Naegler, 2009). Air-sea CO2 fluxes are also
scaled proportional to CMEMS-OSTIA sea ice fraction over
polar and subpolar regions (S. Good et al., 2020).
Coastal-SOM-FFN

The coastal air-sea CO2 product (referred here as coastal-
SOM-FFN) is based on the continuous coastal pCO2 prod-
uct of Laruelle et al. (2017) that used the Self-Organizing
Map Feed Forward method developed by Landschützer et
al. (2013) but adapted for the coastal ocean to fill region
without data. The method in a first step clusters coastal
ocean regions into dynamic biogeochemical provinces. In
a second step, a non-linear regression step links physical,
biological and chemical proxy data with existing CO2 mea-
surements. The coastal ocean is thereby explicitly recon-
structed with coastal-only observations from the SOCATv4
database. The established regression relationship is then
used to fill areas where no observations exist (a more de-
tailed description can be found in Landschützer et al. (2013)
and Laruelle et al. (2017). The coastal domain defined by
Laruelle et al. (2017) excludes estuaries and inland water
bodies with an outer limit defined as 300 km away from
the shoreline (total surface area of 77 million km2). This
pCO2-product is available as monthly 0.25-degree maps for
the 1998-2015 period. The SST, SSS, wind product and
sea-ice used to calculate the air-sea CO2 exchange derived
from the daily NOAA OI SST V2 (Reynolds et al., 2007),
the daily Hadley center EN4 SSS (S. A. Good et al., 2013),
the monthly second moment of the 6-hour 0.25° global at-
mospheric reanalysis ERA-interim wind product (Dee et
al., 2011) and the monthly mean of the daily 0.25° sea-ice
dataset of Reynolds et al. (2007), respectively. We use the
equation developed by (Ho et al., 2011) to calculate the gas
exchange transfer velocity.
Merged-SOM-FFN

The air-sea CO2 flux product based on Landschützer
et al. (2020) (referred here as Merged-SOM-FFN) is built
on the combination of the open ocean CO2 product by
Landschützer et al. (2014) using SOCATv5 and the coastal
ocean product by Laruelle et al. (2017) using SOCATv4 (re-
ferred here as Coastal-SOM-FFN), both created using the
Self-Organizing Map Feed Forward Network (SOM-FFN)
method developed by Landschützer et al. (2013). Open
ocean regions in the original product are broadly defined
as all waters 1 degree off shore, whereas the coastal ocean
in Laruelle et al. (2017) includes all ocean areas within 300
km offshore following the SOCAT definition (Bakker et al.,
2016), whereas the overlap area is merged by simple error
statistics (Landschützer et al., 2020). The merged clima-
tology, presented in Landschützer et al. (2020), is avail-
able globally on a 0.25x0.25 degree grid to better resolve
fine coastal characteristics and covers coastal ocean regions,
shelf seas, as well as marginal seas. The dataset used to cal-
culate the air-sea CO2 flux (i.e., SST, SSS, wind) is the same
as described for the coastal-SOM-FFN product.

Carboscope-1

The Carboscope pCO2 interpolation is normally run at
a resolution of 2 x 2.5 degree (version oc v2021, update of
Rödenbeck et al. (2013)) but we use here a higher-resolution
version of 1 x 1 degree (CarboScope RunID oc 1x1 v2021)
to better resolve spatial details. As a secondary change for
computational feasibility, the calculation period has been
shortened, now starting in 1988, with the valid period start-
ing in 1992. We note that the Bayesian a-priori uncertainty
is set according to a global normalization condition, even
though the pCO2 constraint is a local one; thus the effec-
tive local regularization strength in the 1 x 1 version might
be somewhat different compared to that in the regular 2.5
x 2 version. This version uses SOCAT version 2021, sea ice
coverage is based on HadISST 2.2.0.0 (Titchner & Rayner,
2014). Wind speed are from JRA55-do v1.5.0 (Tsujino et
al., 2018) used quadratically as in (Wanninkhof, 1992), and
global mean piston velocity are scaled to 16.5 cm h−1 but
the normalization of the gas transfer velocity to a global
long-term average of 16.5 cm h−1 might lead to slight dif-
ferences in the local transfer velocities.

S1.b N2O and CH4 observation-based products

MARCATS-N2O and MARCATS-CH4

MARCATS-N2O and MARCATS-CH4 are based on the
collection of in-situ concentration data of N2O and CH4

from the MEMENTO (MarinE MethanE and NiTrous Ox-
ide) data base (Kock & Bange, 2015) and were computed
at the scale of the 45 MARgins and CATchments Segmen-
tation (MARCATS) regions (Laruelle et al., 2013) (Figure
S2). For each MARCATS region, N2O and CH4 surface
(1 - 10 m) concentration data were extracted from ME-
MENTO. Individual DN2O and DCH4 values (D = mea-
sured in-situ concentration – equilibrium concentration at
the time of sampling) were calculated in two ways (i) us-
ing in-situ measurements of atmospheric N2O or CH4 mole
fractions when archived together with the dissolved con-
centration data in MEMENTO or (ii) using zonally aver-
aged atmospheric N2O and CH4 mole fractions computed
with the data from the World Data Centre for Green-
house Gases (WDCGG, https://gaw.kishou.go.jp/) for the
respective sampling month. N2O and CH4 flux densities
were calculated by multiplying DN2O and DCH4 with the
air-sea transfer coefficient (kw) which was estimated with
the wind speed parameterization for kw from (Nightingale
et al., 2000). Wind speeds for the respective sampling
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Figure S1. (a) areal coverage in 0.25 x 0.25 degree grid cells of SOCATv2.0 database calculated as
the spatial density of the total number of observations 1985-2018 and (b) the number of distinct months
sampled by SOCATv2.0 during this period. White areas represent where there are no observations (0
observations). See Methods and Laruelle et al. (2017) for definition of wide coastal ocean.

Figure S2. Locations of the 45 MARgins and CATchments Segmentation (MARCATS) regions (Laruelle
et al., 2013) used to calculated the N2O and CH4 fluxes in MARCATS-N2O and MARCATS-CH4.

dates were taken from the NCEP wind speed Reanaly- sis Data II data base (NCEP/DOE Reanalysis II data:
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https://psl.noaa.gov) (Kanamitsu et al., 2002). Finally,
the individual N2O and CH4 flux densities were averaged
and extrapolated to the area of each MARCATS region to
obtain an emission estimate for the individual MARCATS
regions. The number of observatinos used in each MAR-
CATS to derive the CH4 and N2O fluxes is listed in Ta-
ble S1. MARCATS-N2O product has no observations in 6
MARCATS for the wide and 10 MARCATS for the narrow
coastal oceans. Similarly, the MARCATS-CH4 has no ob-
servations in 8 MARCATS for the wide and 14 MARCATS
for the narrow coastal oceans.
Yang-N2O

The N2O air-sea flux reconstruction by Yang et al. (2020)
is based on a synthesis of over 158,000 observations of
N2O mixing ratio, partial pressure, and concentration in
the surface ocean from the MEMENTO database (Kock &
Bange, 2015) and additional cruises (Yang et al., 2020).
N2O measurements are converted to surface N2O mixing
ratio anomalies using observations from the NOAA atmo-
spheric flask dataset and extrapolated to a 0.25-degree res-
olution global monthly climatology using an ensemble of
100 random forest realizations. The random forest algo-
rithm predicts N2O mixing ratio anomalies based on their
relationship to oceanographic predictors that include hydro-
graphic variables, nutrients, oxygen, chlorophyll, net pri-
mary production, and seafloor depth. Reconstructed mix-
ing ratio climatologies are used to estimate air-sea fluxes
by applying a commonly used gas exchange parameteriza-
tion (Wanninkhof, 2014). Two formulations of piston ve-
locity are adopted: one based on a quadratic dependence
on wind speed (Wanninkhof, 2014), and one that explicitly
accounts for bubble-mediated fluxes (Liang et al., 2013).
Sea ice cover, surface temperature, salinity and atmospheric
pressure are taken from ERA5 reanalysis (Hersbach et al.,
2020). Calculations are performed with two high-resolution
wind products (ERA5 and Remote sensing Cross-Calibrated
Multi-Platform version 2.0) that are available at 0.25, 6-
hourly resolution for the period from 1988 to 2017, yield-
ing four permutations of the piston velocity. The result-
ing ensemble of 400 global N2O air–sea flux estimates is
averaged in time to obtain monthly mean climatologies.
A description of the dataset and methods is presented in
(Yang et al., 2020). The compilation of N2O measurements,
the reconstructed global N2O climatology and air-sea flux
are available on the Biological and Chemical Oceanogra-
phy Data Management Office (BCO-DMO) portal (DOI:
10.26008/1912/bco-dmo.810032.1). The code used to
produce these datasets is archived on a public GitHub
repository at https://github.com/yangsi7/mapping-ocean-
n2o (DOI: 10.5281/zenodo.3757194).
Weber-CH4

The diffusive sea-air CH4 flux reconstruction by (Weber
et al., 2019) is based on a compilation of 120,000 individ-
ual concentration and partial pressure measurements from
the MEMENTO database (Kock & Bange, 2015) and ad-
ditional cruise datasets (Weber et al., 2019). These mea-
surements were converted to CH4 disequilibrium using at-
mospheric partial pressure from the NOAA Global Mon-
itoring Division archive, which has collected flask sam-
ples from a global network of monitoring stations since
1980 (www.esrl.noaa.gov/gmd/ccgg/) and extrapolated to
a 0.25-degree monthly climatology using 10,000 artificial
neural network and random regression forest models, each
trained with 70% of the data. Air-sea fluxes were computed
by combining each climatology with one of four piston ve-
locity relationships (Wanninkhof, 1992, 2014; Nightingale et
al., 2000; Liss & Merlivat, 1986), and one of four global wind
products (ERA5, CCMP, NCEP, reanalysis products, and
a blended WindSat/QuickSCAT satellite product). Flux
calculations were conducted at daily resolution then inte-
grated into an annual climatology representing the mean

1999-2016 flux. Ebullitive CH4 emissions to the atmo-
sphere were estimated using literature ranges for the global
ebullition rate from continental shelf sediments (Hornafius
et al., 1999; Hovland et al., 1993) and a bubble trans-
fer model to estimate the fraction of CH4 reaching the
surface (McGinnis et al., 2006). Full methodology is de-
scribed in Weber et al., 2019 and the product is available at
https://figshare.com/articles/dataset/ocean ch4 nc/9034451.

S1.c Global ocean biogeochemical models

CCSM-WHOI
The Community Earth System Model (CESM) is the

global ocean component of a coupled climate/earth system
model. The ocean component, the Biogeochemical Elemen-
tal Cycle (BEC) model, consists of an upper-ocean ecologi-
cal module and a full-depth ocean biogeochemistry module
both embedded in a three-dimensional (3-D) global phys-
ical ocean general circulation model. The physical model
is the Parallel Ocean Program (POP) z-level, hydrostatic,
primitive equation model. The specific CESM-LR version
used here has coarse, non-eddy resolution and is described
in detail in Doney et al. (2009). The ocean model is in-
tegrated in an uncoupled model forced with physical cli-
mate forcing from NCEP atmospheric reanalysis and satel-
lite data products. The ecosystem module builds on tradi-
tional phytoplankton–zooplankton–detritus–nutrient food-
web models and incorporates multi-nutrient limitation (N,
P, Si, Fe) on phytoplankton growth and specific phytoplank-
ton functional groups. The biogeochemical module includes
full carbonate system thermodynamics and air–sea CO2 and
O2 fluxes, nitrogen fixation, denitrification and a dynamic
iron cycle with atmospheric dust deposition, water-column
scavenging and a continental sediment source. There are 14
main compartments: pico/nano-plankton, diatoms, and di-
azotrophs; zooplankton; suspended and sinking particulate
detritus; and dissolved nitrate, ammonia, phosphorus, iron,
silicate, oxygen, dissolved inorganic carbon, and alkalinity.
The model was forced with the NCEP reanalysis and did
not include nutrients or carbon inputs by rivers.

CNRM-LR and CNRM-HR
CNRM-LR and CNRM-HR are the Earth System Mod-

els of second generation developed by CNRM-CERFACS
for the sixth phase of the Coupled Model Intercomparison
Project (CMIP6). Their ocean component uses the Nucleus
for European Models of the Ocean (NEMO) Version 3.6
(Madec et al., 2017) coupled to both the Global Experimen-
tal Leads and ice for ATmosphere and Ocean (GELATO)
sea ice model (Salas Mélia, 2002) Version 6 and the marine
biogeochemical model Pelagic Interaction Scheme for Car-
bon and Ecosystem Studies version 2-gas (PISCESv2-gas)
(Aumont et al., 2015). In CNRM-LR, NEMOv3.6 oper-
ates on the eORCA1L75 grid, which offers a nominal res-
olution of 1 degree to which a latitudinal grid refinement
of 1/3 degree is added in the tropics, while in CNRM-HR,
NEMO is run on the eORCA025 grid having a 0.25 degree of
horizontal resolution. Whatever the horizontal resolution,
the ocean is described with 75 vertical layers using a verti-
cal z⋆ coordinate with partial step bathymetry formulation
(Bernard et al., 2006). The ocean layers are distributed
unevenly as a function of depth with a resolution of 1 m
at ocean surface to 200 m below 4000 m. Key differences
between both configurations are detailed in Berthet et al.
(2019). The simulations were forced at the surface by the
atmospheric state of JRA55-do v1.5.0 (Tsujino et al., 2018).
Atmospheric CO2 concentration is given as annual means as
specified by CMIP6 protocols and is linearly interpolated in
time. Riverine inputs of dissolved inorganic carbon and al-
kalinity (Ludwig et al., 1996) as well as nutrients (Mayorga
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Table S1. Number of observations and density [in observations per 106 km2] from MEMENTO database used
in each MARCATS to calculate the MARCATS-N2O and MARCATS-CH4 observational products in the wide
and narrow coastals. See map in Figure S2 for MARCATS locations.

MARCATS N2O wide N2O narrow CH4 wide CH4 narrow
observations density observations density observations density observations density

1 71 9 20 7 38 5 9 3
2 159 21 28 10 124 17 5 1
3 229 31 8 2 12 1 0 0
4 1301 179 551 204 20 2 13 4
5 248 34 129 47 26 3 15 5
6 539 74 148 54 4 0 1 0
7 375 51 250 92 4 0 0 0
8 136 18 0 0 0 0 0 0
9 0 0 0 0 1 0 0 0
10 575 79 411 152 0 0 0 0
11 259 35 0 0 2 0 0 0
12 0 0 0 0 0 0 0 0
13 130 17 130 48 117 16 102 37
14 28 3 7 2 13 1 7 2
15 472 65 70 25 28 3 0 0
16 519 71 330 122 28 3 3827 1420
17 1294 178 917 340 1013 139 1014 376
18 250 34 91 33 3312 457 15 5
19 457 63 481 178 629 86 648 240
20 102 14 39 14 111 15 52 19
21 3 0 4 1 32 4 24 8
22 1286 177 430 159 474 65 148 54
23 396 54 17 6 5 0 1 0
24 185 25 69 25 5 0 5 1
25 514 70 54 20 0 0 0 0
26 173 23 0 0 0 0 0 0
27 1306 180 6 2 557 76 1 0
28 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0
30 243 33 47 17 16 2 1 0
31 289 39 22 8 55 7 62 23
32 321 44 21 7 20 2 24 8
33 476 65 76 28 7 0 0 0
34 88 12 20 7 53 7 12 4
35 276 38 206 76 113 15 144 53
36 144 19 16 5 43 5 10 3
37 37 5 37 13 7 0 3 1
38 182 25 129 47 89 12 46 17
39 253 34 111 41 72 9 48 17
40 0 0 0 0 0 0 0 0
41 0 0 0 0 22 3 3 1
42 62 8 48 17 17 2 13 4
43 33 4 17 6 659 90 655 243
44 48 6 0 0 85 11 36 13
45 1703 235 959 356 85 11 47 17

et al., 2010) are prescribed with a repeated seasonal cycle
scaled on freshwater riverine inputs. Burial of carbon at
the bottom of the ocean is emulated with a meta-model
based on POC export (Aumont et al., 2015). Originally im-
plemented by Martinez-Rey et al. (2015), the marine N2O
parameterization has benefited from a recoding and an im-
proved calibration presented in Berthet et al. (2022). A
comprehensive description of the configuration of the ma-
rine biogeochemical component is presented in Séférian et
al. (2019).
FESOM-LR and FESOM-HR

We use the ocean circulation model FESOM1.4 (C. Wang
et al., 2014) coupled to the ocean biogeochemical model
REcoM2 (Hauck et al., 2020, 2013; Schourup-Kristensen
et al., 2014). FESOM is an unstructured mesh model
used in a low-resolution configuration (FESOM-LR) and a
high-resolution configuration (FESOM-HR, see resolution
meshes in Figure S3). The Regulated Ecosystem Model
(REcoM) simulates the coupled cycles of carbon, nitrogen,
silicic acid, iron and oxygen. In this version, it simulates
two phytoplankton groups (small phytoplankton and di-
atoms) and one zooplankton group. It allows for variable
stoichiometry in phytoplankton (C:N:Chl:CaCO3 for small

phytoplankton and C:N:Chl:SI for diatoms), zooplankton
(C:N) and detritus (C:N:Si). There are no inputs of carbon
or nutrients by rivers and runoff. The FESOM-LR config-
uration is based on a coarse mesh with a global nominal
resolution of 1 degree, which is increased to about 25 km
north of 50◦N and to about 1/3° in the equatorial belt,
and is also moderately refined along the coasts (Sein et al.,
2018). The model is started from initial conditions (World
Ocean Atlas for nutrient fields (Garcia et al., 2014), Glodap
for alkalinity and preindustrial dissolved inorganic carbon
(Lauvset et al., 2016)). It is spun up from 1850-1957 years
using repeated year atmospheric forcing from the year 1961.
The atmospheric forcing fields for the spin-up and for the
simulation period 1958 to 2018 are taken from the Japanese
55-year Reanalysis Version 1.4.0 (Tsujino et al., 2018). Fur-
ther, spin-up and simulation period are forced with observed
atmospheric CO2 as provided by the Global Carbon Bud-
get (Friedlingstein et al., 2020). Carbonate chemistry and
air-sea CO2 exchange are calculated with the mocsy rou-
tines (Orr et al., 2015) that apply a quadratic gas-exchange
parameterization (Wanninkhof, 2014). This is the same
model version as used in the Global Carbon Budget 2020
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Figure S3. Horizontal resolution of the a) FESOM-LR and b) FESOM-HR models.

(Friedlingstein et al., 2020). The FESOM-HR configuration
has a locally eddy-resolving mesh with the horizontal reso-
lution varying according to the observed sea surface height
(SSH) variability. The coarsest resolution is 60 km, and the
finest is 8-10 km (Sein et al., 2018). This is equivalent to a
1/10° – 1/4° resolution. In particular, the high resolution is
located along the pathways of the main currents, including
the Gulf Stream. We performed a high-resolution physi-
cal ocean model spin-up run under JRA55 forcing. The
spin-up spanned one full cycle from 1958-2017, and a sec-
ond cycle 1958-1980 using FESOM-HR. We initialized our
model from an existing simulation driven by CORE-II forc-
ing (Large & Yeager, 2009). We branched off our simula-
tions with coupled physics and biogeochemistry at the end
of 1980 and ran the simulation from 1981 to 2019 using the
HR mesh with an increasing atmospheric CO2 concentra-
tion and interannual varying atmospheric forcing. The ini-
tial biogeochemical model fields for the year 1980 are taken
from the FESOM-LR simulation and are interpolated to the
FESOM-HR mesh.
IPSL

The IPSL ocean model uses the Nucleus for European
Models of the Ocean (NEMO) Version 3.6 which includes
three components, ocean physics from NEMO-OPA (Madec
et al., 2017), the sea ice dynamics and thermodynamics from
NEMO-LIM3 (Rousset et al., 2015), and the ocean biogeo-
chemistry from NEMO-PISCES-v2 (Aumont et al., 2015).
The global configuration used here is eORCA1L75, includ-
ing a horizontal nominal resolution of 1° (with a latitudinal
grid refinement of up to 0.3° in the equatorial region) and 75
levels on the vertical (with the partial step formulation of
Barnier et al. (2006) and layer thicknesses increasing from
1m at the surface to 200m at the bottom). The simulation
is forced at the surface by the atmospheric reanalysis prod-
uct of JRA55-do-v1.4 (Tsujino et al., 2018) and global and
annual mean values of atmospheric CO2 as specified in the
Global Carbon Budget protocol (Friedlingstein et al., 2022).
Riverine inputs of carbon, alkalinity and nutrients are based
on (Ludwig et al., 1996) and (Mayorga et al., 2010), and
prescribed with a repeated seasonal cycle. Sediment burial
of carbon, alkalinity and nutrients is simulated using the
formulation of (Dunne et al., 2007) and (Middelburg et al.,
1996).
MOM6-Princeton

The MOM6-Princeton model uses the Modular Ocean
Model version 6 (MOM6), the Sea Ice Simulator version 2
(SIS2), and the Carbon Ocean Biogeochemistry and Lower
Trophics version 2 (COBALT v2) developed by the NOAA
Geophysical Fluid Dynamics Laboratory (GFDL). The spe-
cific version used here is available on Github (Git com-
mit: 48536b downloaded in October 2018) and was used

in Liao et al. (2020) and the global carbon budget 2020
(Friedlingstein et al., 2020). The physical and biogeochem-
ical ocean configurations follow GFDL earth system model
version 4 (ESM4) (Dunne et al., 2020)). The horizontal
resolution is 0.5° in longitude and 0.25-0.5° in latitude. On
the vertical, it includes 75 hybrid isopycnal z⋆ coordinate,
including a z⋆ coordinate near the surface (about 2 m thick
layers in the upper 20 m in the tropical Pacific Ocean) and a
modified potential density coordinate below (Adcroft et al.,
2019). COBALT2 includes 33 state variables, including nu-
trients (nitrate, phosphate, and iron), silicate, three phyto-
plankton groups, three zooplankton groups, three dissolved
organic carbon pools, one particulate detritus pool, oxygen,
and the carbonate system (Stock et al., 2020). The model
was spun up from rest for 81 years by repeating the year
1959 of the JRA55-do v1.3 forcing. Temperature, salinity,
nutrients (nitrate, phosphate, and silicate), and oxygen were
initialized from World Ocean Atlas version 2013 (Garcia et
al., 2014; Locarnini et al., 2014; Zweng et al., 2014). Initial
dissolved inorganic carbon (DIC) and alkalinity (Alk) are
from GLODAP v2 (Olsen et al., 2016). The initial DIC is
corrected for the accumulation of anthropogenic carbon to
match the level expected in 1959 using the data-based esti-
mate of ocean anthropogenic carbon content (Khatiwala et
al., 2013). Other COBALT tracer initial conditions (e.g.,
ammonium, calcium carbonate) are from a preindustrial
GFDL-ESM2M-COBALT simulation (Stock et al., 2014).
The simulation includes riverine nutrients from the Global-
NEWS2 model (Mayorga et al., 2010) and riverine carbon
inputs designed to roughly balance carbon burial in the
model (here input of 0.11 of DIC and 0.07 of DOC). At the
end of the 81-year spin-up, the model has reached a near-
equilibrium between atmospheric pCO2 and surface ocean
pCO2 , with a drift in global air-sea CO2 flux ¡0.004 PgC/yr
over the last 10 years of spin-up. The simulation was then
performed from 1959 to 2018 using interannual forcing. In
this version, the gas transfer coefficient was calculated us-
ing the parameterization of (Wanninkhof, 1992) but with
the updated Schmidt number from (Wanninkhof, 2014).
MPIOM-HAMOCC

The Hamburg Ocean Carbon Cycle (HAMOCC) (Ilyina
et al., 2013; Paulsen et al., 2017) model is a global ocean
biogeochemical model embedded in the Max Planck Insti-
tute Ocean Model (MPIOM) (Jungclaus et al., 2013). The
version used here is the same as used in the Global Car-
bon Budget 2021 (Friedlingstein et al., 2022). The nom-
inal resolution here is 1.5 degree with 40 vertical levels.
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The biogeochemical cycles of carbon, nutrients (nitrate,
phosphate, iron), oxygen, silicate, phytoplankton (bulk and
cyanobacteria), zooplankton, detritus, and organic mat-
ter in HAMOCC are computed in the water column and
in the upper sediment. Biogeochemical tracers are trans-
ported with the ocean flow in the same way as temperature
and salinity in MPIOM. The composition of organic mat-
ter follows a constant Redfield ratio of carbon (C:N:P:O2
= 122:16:1:-172). The sinking of organic matter follows the
Martin curve, i.e. linearly increasing with depth. River
inputs of carbon and nutrients are included (Lacroix et al.,
2021). NCEP 6 hourly cyclic forcing (10 years starting from
1948) is used for the spin-up, transient NCEP forcing has
been used during 1948- 2021.The air-sea gas exchange pa-
rameterization follows the OMIP protocol (Orr et al., 2017).
MRI-ESM2-1

MRI-ESM2-1 is a modified version for the ocean com-
ponent of Meteorological Research Institute Earth System
Model version 2 (MRI-ESM2) (Yukimoto et al., 2019). The
source code is taken from Meteorological Research Institute
Community Ocean Model version 4 (MRI.COMv4) (Tsujino
et al., 2017), which is formulated on general orthogonal
curvilinear coordinate in the horizontal and z⋆ coordinate in
the vertical directions and is discretized on Arakawa B-grid
frame. The horizontal resolution is 1.0° in the zonal and
0.3–0.5° in the meridional directions. There are 60 vertical
levels with enhancement in the upper layer and an addi-
tional bottom boundary layer at the seafloor in the deep
and bottom water formation regions such as the northern
North Atlantic and in the Southern Ocean around Antarc-
tica. The configuration and performance of this model in
terms of physical fields are fully described and presented
by Urakawa et al. (2020). The biogeochemical processes
consist of a carbon cycle model with the carbonate chem-
istry and the surface gas exchange parameterization that
follow the protocols of OMIP-BGC (Orr et al., 2017) and a
simple NPZD (nutrient, phytoplankton, zooplankton, detri-
tus) type ocean ecosystem model as used by (Nakano et al.,
2011). Relative to the version used for CMIP6 (MRI-ESM2-
0), the sinking velocity of detritus is changed from 7.0 m
day-1 to 2.0 m day-1. Advection scheme for biogeochemical
tracers is changed from MPDATA (Multi-dimensional Posi-
tive Definite Advection Tracer Algorism) to PPM (Piece-
wise Parabolic Method). The simulation was forced at
the surface by the atmospheric state of JRA55-do v1.5.0
(Tsujino et al., 2018). Atmospheric CO2 concentration is
given as the spatially uniform, annual mean as specified by
CMIP6 protocols and is linearly interpolated in time. No
riverine inputs of nutrients or carbon and no burial are in-
cluded. Instead, surface DIC and Alkalinity fluxes are added
in proportion to surface salinity flux due to a restoring of
the model sea surface salinity to that of World Ocean Atlas
2013 version 2 (WOA13v2).
NEMO-PlankTOM

The NEMO-PlankTOM model is based on the ORCA2
version of the NEMO physical model, which calcu-
lates vertical diffusion explicitly and includes a dynamic-
thermodynamic sea-ice model. PlankTOM is the biogeo-
chemical module that represents full cycles of carbon, oxy-
gen, phosphorus, silica, calcite, and a simplified cycle for
iron and nitrogen. PlankTOM12, used here for its esti-
mate of CO2 fluxes, represents twelve Plankton Functional
Types, six phytoplankton, five zooplankton and archaea.
The version used here is based on the work of (Wright et
al., 2021) and integrates pteropods and the aragonite cycle
from (Buitenhuis et al., 2019). This is the same version pub-
lished in the Global Carbon Budget 2022 (Friedlingstein et
al., 2022). The model is initialized in 1750 and run forward
with constant atmospheric forcing up to 1948, then forced
with daily weather conditions using the NCEP reanalysis

data, and constant input of nutrient (N, P and Fe) and or-
ganic and inorganic carbon from rivers (see also Friedling-
stein et al. 2022). NCEP winds are also used to calculate
the gas exchange velocity using (Wanninkhof, 1992) formu-
lation. PlankTOM5 is used to estimate N2O fluxes. Plank-
TOM5 uses a simplified ecosystem composition with three
phytoplankton and two zooplankton, and a full representa-
tion of N2O production and loss processes (Buitenhuis et
al., 2018).
NorESM-OC2.0

NorESM-OC2.0 is the ocean carbon-cycle stand-alone
configuration of the Norwegian Earth System Model ver-
sion 2 (NorESM2, (Seland et al., 2020; Tjiputra et al.,
2020). The physical ocean component of NorESM2, the
Bergen Layered Ocean Model (BLOM), is configured on a
tripolar grid with a nominal resolution of 1° horizontally
and 51 isopycnic layers in the vertical with 2 additional lay-
ers representing a bulk mixed layer on top. Ocean biogeo-
chemistry is represented by the iHAMOCC model, which
is derived from HAMOCC5 (Ilyina et al., 2013) and in-
cludes a 12-layer sediment scheme. The iHAMOCC model
includes a NPZD ecosystem parameterization (Six & Maier-
Reimer, 1996) and carbon chemistry follows the OCMIP
protocols (Orr et al., 2015). The influx of carbon and nu-
trients from rivers to the coastal oceans has been imple-
mented based on the Global-NEWS2 model (Mayorga et
al., 2010) and work by (Hartmann et al., 2009) for DIC
and alkalinity fluxes. Riverine fluxes are distributed as a
function of river mouth distance (with an e-folding length
scale of 1000 km and cutoff of 300 km) to the ocean grid
and are assumed to be constant over time at year 2000 lev-
els. The NorESM-OC2.0 simulation used here follows the
CMIP6 omip2 protocol, which employs the JRA-55 atmo-
spheric forcing data set. The gas exchange coefficient for-
mulation is from (Wanninkhof, 2014).
ECCO2-Darwin and ECCO-Darwin

Global air-sea fluxes of N2O were evaluated from two
versions of the ECCO family: the ECCO2-Darwin and
ECCO-Darwin models which include the same biogeochem-
ical component Darwin but are embedded in two differ-
ent ocean physical settings. ECCO2-Darwin model, is a
global physical-biogeochemical ocean model with nominal
horizontal grid of 1/6 of degree therefore eddy-permitting
at lower latitudes. It is forced with ECMWF winds over
the 2006-2008 period and JRA-55 winds over the 2009-2013
period, optimized with adjoint technique in order to realis-
tically represent the observed physical ocean climate vari-
ability. ECCO-Darwin, a global physical-biogeochemical
ocean model with nominal horizontal grid resolution of 1/3
of degree, and is forced with ERA-Interim winds (Carroll et
al., 2020). Both models have 50 vertical levels and in the
top 100 m the model is vertically resolved with 10-meter
grid boxes. An extensive description of this model run of
ECCO2-Darwin including the optimized atmospheric forc-
ing spanning from 2004 to 2013 can be found in (Manizza
et al., 2019) while for ECCO-Darwin a more detailed model
description can be found in Carroll et al. (2020). The Dar-
win biogeochemical/ecological model used for this study ex-
plicitly represents the cycle of carbon, oxygen, phosphorus,
silica, and iron in the global ocean. It also has an ecosys-
tem component representing five groups of phytoplankton
and two groups of zooplankton (Manizza et al., 2019; Car-
roll et al., 2020). For this particular version of the model
we implemented a parameterization of the oceanic cycle of
(Manizza et al., 2012) using the scheme of (Nevison et al.,
2003) based on the oceanic oxygen cycle previously rep-
resented in ECCO2-Darwin model (Ganesan et al., 2020).
The air-sea gas flux of N2O was parameterized according
to Wanninkhof (1992). In addition, a thermal-only N2O
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tracer (a tracer in which biogeochemical sources and sinks
are suppressed but with the same solubility as N2O ) was
also added to the model to isolate the process of ocean ven-
tilation affecting the N2O concentration in the ocean at sea-
sonal time scales as done in (Manizza et al., 2012). The ven-
tilation component of the air-sea N2O fluxes is obtained by
subtracting the solubility-only N2O air-sea flux from the to-
tal N2O air-sea flux. In the ECCO2-Darwin simulation the
2004-2005 period was discarded and we used the 2006-2013
period only for our analysis. However, the ECCO-Darwin
numerical simulation was run for the 1992-2014 period but
we discarded the inclusion of the output relative to the 1992-
1996 period in our analysis due to the model adjustment in
this initial part of our numerical simulation.

S1.d Regional ocean biogeochemical models

ACM-NWAtl
The model is based on the Rutgers version of the Re-

gional Ocean Modelling System (ROMS) (Haidvogel et al.,
2008), has 30 vertical levels and approximately 10 km hor-
izontal resolution (240×120 horizontal grid cells). The
model uses atmospheric surface forcing from the European
Centre for Medium-Range Weather Forecasts (ECMWF)
global atmospheric reanalysis (ERA-Interim) (Dee et al.,
2011), and CO2 fluxes are calculated following the Ho et al.
(2006) parameterization. Within the ocean, it uses the GLS
vertical mixing scheme (Umlauf & Burchard, 2003; Warner
et al., 2005), and the “high-order spatial interpolation at the
middle temporal level” (HSIMT) advection scheme for trac-
ers (Wu & Zhu, 2010). Physical initial and boundary condi-
tions are defined using the regional physical ocean model of
the northwest North Atlantic by Urrego-Blanco and Sheng
(2012). Climatological river discharge is imposed for 12 ma-
jor rivers and uses observed long-term monthly means from
the Water Survey of Canada. Full details on the physical
model setup and its validation can be found in Brennan et
al. (2016) and Rutherford and Fennel (2018). These stud-
ies have shown that the model simulates the vertical struc-
ture and seasonal variations of temperature and salinity on
the shelf well. The model captures mesoscale features and
coastal upwelling events and simulates the volume transport
throughout the region in agreement with observation-based
estimates.

The biogeochemical model is based on the nitrogen-cycle
model with the inorganic carbon component of (Fennel et
al., 2006) and Fennel and Wilkin (2009) but was recently
expanded to include two phytoplankton and two zooplank-
ton functional groups (Laurent et al., 2021). For a de-
tailed description and validation of the biological model
and the model’s carbonate system parameters, we refer to
Laurent et al. (2021) and Rutherford et al. (2021) respec-
tively. Laurent et al. (2021) compared the model output
with glider transects of temperature, salinity, and chloro-
phyll and in situ measurements of chlorophyll and nitrate.
Rutherford et al. (2021) compared models results against
a high-resolution pCO2 time series and frequent cross-shelf
transects of pCO2 to ensure it faithfully represents both the
seasonal cycle and cross-shelf gradients. Atmospheric pCO2

is set to the seasonal cycle and secular trend derived from
Sable Island monitoring data contributed by Environment
Canada’s Greenhouse Gas Measurement Program (Environ-
ment and Climate Change Canada: Canadian Greenhouse
Gas Measurement Program). The long-term linear trend
in the atmospheric pCO2 is ∼2 uatm yr−1. Further de-
tails of the biogeochemical model, including the carbonate
chemistry equations, can be found in the supplementary in-
formation of (Laurent et al., 2017). Nitrate concentrations
in rivers are prescribed from Global NEWS model output
(Seitzinger et al., 2005). DIC and total alkalinity (TA) in
rivers were calculated by fitting a linear relationship with

salinity from Gulf of St. Lawrence bottle data and extrap-
olating to river water salinity.
ROMS-ETHZ-Atl and ROMS-ETHZ-Pac

The two regional models ETHZ-ROMS-Pac and ETHZ-
ROMS-Atl rely on the coupling of the Regional Oceanic
Modeling System (ROMS) (Shchepetkin & McWilliams,
2005) with the biogeochemical/ecological model BEC
(Moore et al., 2013). Both setups rely on a telescopic grid
that permits the model to resolve the mesoscale coastal
processes in the region of interest, while covering at the
same time nearly the entire ocean basin. In the ETHZ-
ROMS-Pac setup, the telescopic grid is centered on the US
West coast (resolution 4km), while in the ETHZ-ROMS-Atl
setup, the telescopic grid has two poles, one centered in the
Amazon outflow region (resolution 4km), and one on West-
ern Africa. BEC simulates the cycling of carbon and 4 nu-
trients (N, P, Si, Fe) which govern, along with light and tem-
perature, the growth of three phytoplankton types (Small
Phytoplankton, Diatoms and Trichodesmium). The ETHZ-
ROMS-Atl setup includes a fourth phytoplankton type rep-
resenting a symbiosis between a diatom and a N2-fixer, i.e.,
Diatom-Diazotroph-Assemblages that have been shown to
be regionally important for the cycling of carbon (Louchard
et al., 2021). All phytoplankton are grazed by one zooplank-
ton class. Particulate organic matter (POM) is produced
as a result of non-grazing mortality, aggregation or graz-
ing processes. POM is then exported and remineralized in
an explicit manner (Frischknecht, 2018) in ETHZ-ROMS-
Pac and following an implicit scheme in ETHZ-ROMS-Atl
(Armstrong et al., 2001). The atmospheric forcing of sur-
face short and long-wave radiations, wind stress, and sur-
face freshwater fluxes is derived from the hourly ERA5 re-
gridded product from 1979 to 2019 (Copernicus Climate
Change Service [C3S], 2017; (Hersbach et al., 2020)). Ad-
ditionally, the atmospheric forcing includes monthly vary-
ing atmospheric pCO2 provided by (Landschützer et al.,
2020), considering the dry air mixing ratio for the marine
boundary layer from GLOBALVIEW-CO2 (2014), the at-
mospheric pressure and the water vapor contribution from
Dickson et al. (2007). Also included in the atmospheric
forcing are the input of iron from dust and nitrogen deposi-
tion, and only in the ETHZ-ROMS-Atl setup, phosphorus
deposition, all derived from (Mahowald et al., 2009). The
initial conditions and the boundary conditions are based on
World Ocean Atlas for the main nutrients (Garcia et al.,
2014). For DIC and Alkanity, GLODAP gridded products
(Global Ocean Data Analysis Project version 2, (Lauvset
et al., 2016)) are used as a climatology (centered on 2002)
in ETHZ-ROMS-Alt and to create transiently evolving con-
ditions in ETHZ-ROMS-Pac, following the procedures de-
scribed by (Franco et al., 2018). Major rivers in the domain
are represented as a surface flux of freshwater and nutrients
(N,P) as described in (Frischknecht, 2018). One exception
in the ETHZ-ROMS-Atl setup is the Amazon River that
is represented by an inflow across an open lateral bound-
ary condition and is delivering the whole suite of dissolved
inorganic/organic nutrients and dissolved organic/inorganic
carbon (estimates based on (Araujo et al., 2014)).
ROMS-NYUAD-Indian

The circulation model is based on the Regional Ocean
Modeling System (ROMS) (Shchepetkin & McWilliams,
2005). Vertical mixing is represented using the non-local K-
profile parameterization (KPP) scheme (Large et al., 1994).
The model domain covers the Indian Ocean from 31.5S to
31N and 30E to 120E with a 1/10 degree horizontal res-
olution and 32 sigma-coordinate vertical layers with re-
fined resolution near the surface. Coupled to the hydro-
dynamic model is a nitrogen-based nutrient, phytoplank-
ton zooplankton, detritus (NPZD) model with two com-
ponents for nutrients, nitrate and ammonium, one phyto-
plankton, one zooplankton, and two detrital classes (Gruber
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et al., 2006). The model has a module describing the cy-
cling of oxygen as well as a parameterization of water col-
umn and benthic denitrification (Lachkar et al., 2016, 2021).
The model also includes a carbon module with three state
variables: DIC, Total Alkalinity, and calcium carbonate
(Gruber et al., 2012; Lachkar & Gruber, 2013; de Verneil
et al., 2022). Organic carbon is linked to organic nitrogen
through the Redfield ratio 106:16. Surface fluxes of DIC
and Total Alkalinity driven by changes in sea surface salin-
ity are included as virtual fluxes proportional to the sea
surface salinity forcing. Carbonate chemistry is calculated
using routines from the Ocean Carbon-Cycle Model Inter-
comparison Project (OCMIP) (Orr et al., 2005). The for-
mulation of air-sea gas transfer uses a quadratic wind speed
dependence following Wanninkhof (1992). Further details
of the biogeochemical model are provided in (Lachkar et
al., 2021; de Verneil et al., 2022). The hindcast simula-
tion is forced with ECMWF ERA-Interim 6-hourly heat
fluxes, air temperature, pressure, humidity, precipitation
and winds over the period from January 1980 to December
2018. Initial and lateral boundary conditions for tempera-
ture, salinity, currents and sea surface height are based on
the ECMWF Ocean Reanalysis System 5 (ORAS5). The
initial and lateral boundary conditions for nitrate and oxy-
gen are extracted from the World Ocean Atlas 2018. The
initial and lateral boundary conditions for DIC and alka-
linity are based on GLODAP. Atmospheric CO2 concentra-
tions are prescribed from monthly Mona Loa data (Keeling
et al., 2005). Riverine inputs include nutrients (Krishna et
al., 2016; Ramesh et al., 1995) but no carbon or alkalinity.
To account for the accumulation of anthropogenic carbon
at the lateral boundaries during the simulation period, we
used decadally-varying DIC based on available estimates of
anthropogenic CO2 (Key et al., 2004; Gruber et al., 2019;
Olsen et al., 2019) regressed to atmospheric CO2 concentra-
tions. Initial and boundary conditions for DIC and alkalin-
ity are processed following de Verneil et al. (2022) to include
a seasonal cycle in the upper ocean. The model is spun up
for 30 years with a repeated normal year (1984) forcing.
During the spin-up phase (1950-1979), time-varying atmo-
spheric CO2 concentrations and DIC are prescribed at the
atmospheric and lateral boundaries, respectively. Atmo-
spheric CO2 data prior to 1958 is based on (Joos & Spahni,
2008).
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Figure S4. Annual mean coastal pCO2 (in wide coastal ocean) for a) the 4-product median, b) the
15-model median, and c) the difference between model and product medians. The model median in
each point is calculated using the 11 global models and the 4 regional models. All are for 1998-2018
except coastal-SOM-FFN and merged-SOM-FFN pCO2 products available for 1998-2015 only. Hatching
indicates the coastal area with RMSD greater than 25 uatm across pCO2 products (panels a and c) or
33 uatm across models (panel b) (20% of coastal area with highest RMSD in each case). Here pCO2 is
masked where sea ice on average covers 50% of the grid cell, to improve visual comparison with the flux.
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Figure S5. Mean coastal pCO2 (in wide coastal ocean) for the SOCAT pCO2 dataset (top row), the
4-product median (middle row), and the 15-model median (bottom row) along the coast of Japan (left
column) and the eastern US (right column). The model median in each point is calculated using the 11
global models and the 4 regional models. Subsampling was done by sampling monthly climatologies of
each products and models at the location and month of the SOCAT observations.
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Figure S6. Mean coastal pCO2 (in wide coastal ocean) for the SOCAT pCO2 dataset (top row), the
subsampled 4-product median (middle row), and subsampled 15-model median (bottom row) along the
coast of the Antarctic Peninsula (left column) and the Peruvian margin (right column). The model
median in each point is calculated using the 11 global models and the 4 regional models. Subsampling
was done by sampling monthly climatologies of each products and models at the location and month of
the SOCAT observations.
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Figure S7. Latitudinal distribution of wide coastal ocean a) annual mean pCO2, b) pCO2 seasonal
amplitude computed as December-February minus June-August, c) March-May pCO2, d) June-August
pCO2 , e) September-November pCO2, and f) December-February pCO2 for the product and model
medians (thick lines). Thin lines indicate the mean pCO2 in each of 11 global models (green) and the 4
products (blue).
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Figure S8. Influence of wind speed and gas exchange coefficient. Latitudinal distribution of coastal
ocean (wide shelf) a) annual mean CO2 flux, b) CO2 flux seasonal amplitude computed as December-
February minus June-August, c) March-May CO2 flux, d) June-August CO2 flux, e) September-November
CO2 flux, and f) December-February CO2 flux in Coastal-SOM-FFN and Coastal SOM-FFN-kw (differ-
ent wind product and gas exchange coefficient formulation, see Methods).
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Figure S9. Latitudinal distribution of coastal ocean (wide shelf) a) annual mean CO2 flux densities,
b) CO2 flux densities seasonal amplitude computed as December-February minus June-August, for the
pCO2 -product median and range (black line and grey shading) and each individual models (colored
lines).

Figure S10. Latitudinal distribution of open ocean a) annual mean CO2 flux densities, b) CO2 flux
densities seasonal amplitude computed as December-February minus June-August, for the pCO2-product
median (black line) and each individual models (colored lines). Note that the product median only in-
cludes the 3 (out of 4) products with open ocean values (CMEMS*, Carboscope-1 and Merged-SOM-
FFN).
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Figure S11. 1998-2018 trend in surface ocean pCO2 in a) Carboscope-1 ; b) CMEMS* (area north of
75◦N removed) c) multi-model median (global and regional models).
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Figure S12. 1998-2018 trend in ∆pCO2 (difference between coastal ocean surface ocean pCO2 and
atmospheric ) for a) Carboscope-1; b) CMEMS* (area north of 75◦N removed) c) multi-model median
(global and regional models). Negative ∆pCO2 trend values indicate that ocean pCO2 increases at a
lower rate than atmospheric and would therefore favor ocean uptake assuming constant wind and sea-ice
coverage.
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Figure S13. Linear trends in sea ice fraction from all 15 models median (top) and observation-based
reference product NOAA-OISST (bottom). Stippling indicates where less than 6 out of the 11 global
models agree on the sign of change.
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Figure S14. Linear trends in 10-meter wind speed from Japanese reanalysis JRA-55 (top) and ECMWF
Reanalysis ERA-5 (bottom).
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Table S2. Estimates of mean coastal ocean CO2 flux densities, net CO2 uptake and pCO2 trends published
since RECCAP-1 (Chen et al., 2013) and used in figures in the main text. Most prior estimates are given for
coastal ocean areas similar to the area of the narrow coastal ocean used in this study (i.e. 28 million km2).

Mean coastal CO2 Net coastal CO2 Coastal pCO2 Coastal area
Study flux density [mol m−2 yr−1] uptake [PgC yr−1 ] trends [uatm/decade] [million km2]

Chen et al. (2013) -1.09±2.9 -0.25±0.05 NA 30
Bauer et al. (2013) NA -0.25 NA 26
Laruelle et al. (2013) -0.7 NA NA NA
Regnier et al. (2013) NA -0.2 NA 31
Laruelle et al. (2014) -0.56 (global shelf) -0.19±0.5 (1990-2011) NA 28

-0.7 (ice-free shelf) 22
Bourgeois et al. (2016) NA -0.1 (1993-2012) NA 27
H. Wang et al. (2017) NA NA +19.3±15.9 (from 10-30yr NA

intervals in 1957-2014)
Laruelle et al. (2018) NA -0.26 +13 [-6 to +32] 30 (only 14 covered

winter only winter only 1995-2006 by obs. used)
Lacroix et al. (2021) NA -0.15 (1998-2015) NA 24.5
Dai et al. (2022) -0.68±0.14 -0.25±0.05 (1998-2021) NA 30.32
Regnier et al. (2022) NA -0.32±0.08 (1990-2020) NA 28

References

Adcroft, A., Anderson, W., Balaji, V., Blan-
ton, C., Bushuk, M., Dufour, C. O., . . .
Zhang, R. (2019). The GFDL Global
Ocean and Sea Ice Model OM4.0: Model
Description and Simulation Features. Jour-
nal of Advances in Modeling Earth Systems,
11 (10), 3167–3211. Retrieved 2020-10-02,
from https://agupubs.onlinelibrary.wiley

.com/doi/abs/10.1029/2019MS001726 doi: 10

.1029/2019MS001726

Araujo, M., Noriega, C., & Lefevre, N. (2014,
May). Nutrients and carbon fluxes in
the estuaries of major rivers flowing into
the tropical Atlantic. Frontiers in Ma-
rine Science, 1 . Retrieved 2023-02-15, from
http://journal.frontiersin.org/article/

10.3389/fmars.2014.00010/abstract doi:
10.3389/fmars.2014.00010

Armstrong, R. A., Lee, C., Hedges, J. I., Honjo,
S., & Wakeham, S. G. (2001, January). A
new, mechanistic model for organic carbon fluxes
in the ocean based on the quantitative associa-
tion of POC with ballast minerals. Deep Sea
Research Part II: Topical Studies in Oceanog-
raphy , 49 (1-3), 219–236. Retrieved 2023-02-
15, from https://linkinghub.elsevier.com/

retrieve/pii/S0967064501001011 doi: 10
.1016/S0967-0645(01)00101-1
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Wright, R. M., Le Quéré, C., Buitenhuis, E., Pitois,
S., & Gibbons, M. J. (2021, February). Role
of jellyfish in the plankton ecosystem revealed
using a global ocean biogeochemical model.
Biogeosciences, 18 (4), 1291–1320. Retrieved
2023-03-27, from https://bg.copernicus.org/

articles/18/1291/2021/ (Publisher: Coperni-
cus GmbH) doi: 10.5194/bg-18-1291-2021

Wu, H., & Zhu, J. (2010, January). Advection scheme
with 3rd high-order spatial interpolation at the
middle temporal level and its application to salt-
water intrusion in the Changjiang Estuary. Ocean
Modelling , 33 (1-2), 33–51. Retrieved 2023-02-
15, from https://linkinghub.elsevier.com/

retrieve/pii/S1463500309002121 doi: 10
.1016/j.ocemod.2009.12.001

Yang, S., Chang, B. X., Warner, M. J., Weber,
T. S., Bourbonnais, A. M., Santoro, A. E., . . .
Bianchi, D. (2020, June). Global reconstruc-
tion reduces the uncertainty of oceanic nitrous ox-
ide emissions and reveals a vigorous seasonal cy-
cle. Proceedings of the National Academy of Sci-
ences, 117 (22), 11954–11960. Retrieved 2022-05-
12, from https://www.pnas.org/doi/10.1073/

pnas.1921914117 (Publisher: Proceedings of
the National Academy of Sciences) doi: 10.1073/
pnas.1921914117

Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N.,
Yoshida, K., Urakawa, S., . . . Ishii, M. (2019).
The Meteorological Research Institute Earth Sys-
tem Model Version 2.0, MRI-ESM2.0: Descrip-
tion and Basic Evaluation of the Physical Com-
ponent. Journal of the Meteorological Society of
Japan. Ser. II , 97 (5), 931–965. Retrieved 2023-
02-15, from https://www.jstage.jst.go.jp/

article/jmsj/97/5/97 2019-051/ article

doi: 10.2151/jmsj.2019-051

Zweng, M. M., Reagan, J. R., Antonov, J. I., Lo-



: X - 31

carnini, R. A., Mishonov, A. V., Boyer, T. P., . . .
Biddle, M. (2014). World Ocean Atlas 2013, Vol-
ume 2: Salinity. (Tech. Rep.). S. Levitus, Ed., A.

Mishonov Technical Ed.; NOAA Atlas NESDIS
74, 39 pp.


