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Abstract
We present a new, simple, algorithm for the local vertex connectivity problem (localVC)

introduced by Nanongkai et al. [STOC’19]. Roughly, given an undirected unweighted graph G, a
seed vertex x, a target volume ν, and a target separator size k, the goal of LocalVC is to remove
k vertices “near” x (in terms of ν) to disconnect the graph in “local time”, which depends only
on parameters ν and k. Nanongkai et al. presented an O(ν1.5k polylog(νk))-time deterministic
algorithm for this problem. In this paper, we present a simple randomized algorithm with
running time O(νk2) and correctness probability 2/3. Our algorithm is faster than the previous
one when k = O(

√
ν). We also can handle directed graphs and achieve (1 + ε)-approximation

with even faster running time.
Plugging our new localVC algorithm in the generic framework of Nanongkai et al. immediately

lead to a randomized Õ(m+ nk3)-time algorithm for the classic k-vertex connectivity problem
on undirected graphs. (Õ(T ) hides polylog(T ).) This is the first near-linear time algorithm for
any 4 ≤ k ≤ polylogn. Previously, linear-time algorithms were known only for k ≤ 3 [Tarjan
FOCS’71; Hopcroft, Tarjan SICOMP’73], despite a linear-time algorithm being postulated since
1974 in the book of Aho, Hopcroft and Ullman. Previous fastest algorithm for small k takes
Õ(m+ n4/3k7/3) time [Nanongkai et al., STOC’19].

This work is inspired by the algorithm of Chechik et al. [SODA’17] for computing the
maximal k-edge connected subgraphs. In turn, our algorithms lead to some improvements over
the bounds of Chechik et al. Forster and Yang [arXiv’19] has independently developed local
algorithms similar to ours, and showed that they lead to an Õ(k3/ε) bound for testing k-edge
and -vertex connectivity, resolving two long-standing open problems in property testing since
the work of Goldreich and Ron [STOC’97] and Orenstein and Ron [Theor. Comput. Sci.’11].
Inspired by this, we use local approximation algorithms to obtain bounds that are near-linear in
k, namely Õ(k/ε) and Õ(k/ε2) for the bounded and unbounded degree cases, respectively. For
testing k-edge connectivity for simple graphs, the bound can be improved to Õ(min(k/ε, 1/ε2)).

Independent work: Independently from our result, Forster and Yang [2019] present local algorithms similar to ours
and observed faster algorithms for computing the vertex connectivity and the maximal k-edge connected subgraphs
(with lower running time than ours for the second problem).1 They additionally observed that this leads to resolving
two open problems in property testing, but did not observe an application to approximating the vertex connectivity.
Our bounds for testing connectivities were inspired by their observation.
∗Work partially done while at KTH Royal Institute of Technology, Sweden.
†Work partially done while at Michigan State University, USA.
1On April 17, 2019, our result was announced in the TCS+ talk by Thatchaphol Saranurak (https://youtu.be/

V1kq1filhjk) and Forster and Yang announced their result at https://arxiv.org/abs/1904.08382.
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1 Introduction
Vertex connectivity is a basic graph-theoretic concept. It concerns the smallest vertex cut where
a set S of vertices is a vertex cut of a graph G if its removal disconnects some vertex u /∈ S from
another vertex v /∈ S. (When G is directed, this means that there is no directed path from u
to v in the remaining graph.) The vertex connectivity of G, denoted by κG , is the size of the
smallest vertex cut. The goal of the vertex connectivity problem is to compute κG and the smallest
vertex cut. In this paper, we present a new, simple, algorithm for the local version of this problem,
leading to almost optimal bounds for computing and approximating κG when κG is small, and other
applications. For simplicity, our discussions below focus on exact algorithms for undirected graphs.

Local Vertex Connectivity (LocalVC). This problem concerns finding a vertex cut “near” a
given vertex x. More precisely, for any vertex v ∈ V , define N(v) to the set of neighbors of v,
deg(v) = |N(v)|, N(L) = (

⋃
v∈LN(v)) \ L, and vol(L) =

∑
v∈L deg(v) (we call vol(L) the volume of

L). Given a vertex x and two integers ν and k, the LocalVC problem concerns the set L ⊆ V such
that

x ∈ L, N(L) is a vertex cut of size less than k, and vol(L) ≤ ν . (1)

In other words, we are interested in a small vertex cut N(L) that is “near” x in the sense that
L has small volume. An algorithm for this problem takes as input x, k, ν, and a pointer to an
adjacency-list representation of G, and either

• outputs that L ⊆ V satisfying Equation (1) does not exist, or
• returns a vertex cut S of size less than k.

Nanongkai et al. [NSY19] recently introduced the LocalVC problem and designed a deterministic
algorithm that takes O(ν1.5k polylog(νk)) time under mild conditions. In this paper, we present a
simple randomized (Monte Carlo) algorithm that takes O(νk2) time under the same conditions.

Theorem 1.1 (Main Result). There is a randomized (Monte Carlo) algorithm that takes as input
a vertex x ∈ V of an n-vertex m-edge graph G = (V,E) represented as adjacency lists, and integers
k < n/4 and ν < m/(8320k) and runs in O(νk2) time to output either

• the “⊥” symbol indicating that, with probability at least 1/2, L ⊆ V satisfying Equation (1)
does not exist, or
• a vertex cut S of size less than k.

Note that the error probability 1/2 above can be made arbitrarily small by repeating the
algorithm. Compared to the previous algorithm of Nanongkai et al., our algorithm is faster when
k ≤
√
ν. It is worth noting that one can also derive an (νkO(k))-time algorithm from the techniques

of Chechik et al. [CHI+17] and some slower algorithms in the context of property testing (e.g.
[GR02, OR11, YI12, YI10]). Our algorithm is in fact very simple: it simply repeatedly finds a path
starting at x and ending at some random vertex. Our analysis is also very simple.

(Global) Vertex Connectivity. The main application of our result is efficient algorithms for the
vertex connectivity problem. There has been a long line of research on this problem since at least five
decades ago (e.g. [Kle69, Pod73, ET75, Eve75, Gal80, EH84, Mat87, BDD+82, LLW88, CT91, NI92,
CR94, Hen97, HRG00, Gab06, CGK14]). (See Nanongkai et al. [NSY19] for a more comprehensive
literature survey.) For the undirected case, Aho, Hopcroft and Ullman [AHU74, Problem 5.30] asked
in their 1974 book for an O(m)-time algorithm for computing κG. Prior to our result, O(m)-time
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algorithms were known only when κG ≤ 3, due to the classic results of Tarjan [Tar72] and Hopcroft
and Tarjan [HT73]. In this paper, we present an algorithm that takes near-linear time whenever
κG = O(polylog(n)). In this paper, we obtain the first algorithm in many decades that guarantees
a near-linear time complexity for higher values of κG.

Theorem 1.2. There is a randomized algorithm that takes as input an undirected graph G and,
with high probability, in time Õ(m+ nk3) outputs a vertex cut S of size k = κG.2

The above result is near-linear time whenever k = O(polylog(n)). By combining with pre-
vious results (e.g. [HRG00, LLW88]), the best running time for solving vertex connectivity
is Õ(m + min{nk3, n2k, nω + nkω}). Prior to our work, the best running time for k > 3 was
Õ(m+min{n4/3k7/3, n2k, nω +nkω}) [NSY19, HRG00, LLW88]. In particular, we have an improved
running time when k ≤ O(n0.457).

This result is obtained essentially by plugging in our LocalVC algorithm to the recent framework
of Nanongkai et al. [NSY19]. The overall algorithm is fairly simple: Let L be such that N(L) is the
optimal vertex cut. We guess the values ν = vol(L) and k = κG, and run our LocalVC algorithm
with parameters ν and k on n/ν randomly-selected seed nodes x.

Approximation Algorithms and Directed Graphs. Results in Theorems 1.1 and 1.2 can
be generalized to (1 + ε)-approximation algorithms and to algorithms on directed graphs. The
approximation guarantee means that the output vertex cut S is of size less than b(1 + ε)kc. The
time complexity for LocalVC is O(νk/ε). This improves the Õ(ν1.5/(

√
kε1.5))-time algorithm of

Nanongkai et al. [NSY19] when k ≤ (ν/ε)1/3. For approximating κG, the time complexity is
Õ(min{mk/ε, n2+o(1)√k/ poly(ε)}) where k = κG.

Observe that the time complexities for exact algorithms in Theorems 1.1 and 1.2 can be obtained
by setting ε = 1/(2k) and using the fact that for undirected graphs we can ensure in O(m) time
that m = O(nk) [NI92].

Maximal k-Edge Connected Subgraphs. For any set of vertices C ⊆ V , its induced subgraph
G[C] is a maximal k-edge-connected subgraph of G if G[C] is a k-edge-connected graph and no
superset of C has this property.3 Chechik et al. [CHI+17] presented deterministic algorithms
that can compute all maximal k-edge-connected subgraphs in kO(k)m

√
n log(n) time on undirected

graphs and kO(k)m
√
m log(n) time on directed graphs.

Our result is mainly inspired by a part of Chechik et al.’s algorithms which runs some algorithm
as a subroutine. Note that it is not hard to adapt their techniques to solve LocalVC in kO(k)ν time.
Our result is an improvement over this, and in turn implied an improved running time for computing
the maximal k-edge-connected subgraphs. We improve the dependency on k in Chechik et al.’s
result from kO(k) to poly(k).

Independent work by Forster and Yang [FY19]. Independently from this paper (see Foot-
note 1), Forster and Yang present results similar to the above-mentioned results, except that (i)
they show additional steps that lead to a better time complexity for computing the maximal k-edge
connected subgraphs on undirected graphs, namely O(k4n3/2 logn+ km log2 n), (ii) they show some
applications in graph property testing, and (iii) they do not consider approximation algorithms.
Inspire by their property testing results, and by using approximation LocalVC algorithms, we obtain
new bounds for testing vertex- and edge-connectivity below.

2As usual, with high probability (w.h.p.) means with probability at least 1− 1/nc for arbitrary constant c ≥ 1.
3Recall that a graph is k-edge connected we we need to remove at least k edges so that there is no path from some

node u to another node v.
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Table 1: Comparison of property testing algorithms.

Unbounded-Degree From [FY19] This paper
k-edge-connectivity Õ(k4/(ε2d̄2)) = Õ(k2/ε2) Õ(k2/(ε2d̄)) = Õ(k/ε2)

k-edge-connectivity on simple graphs Õ(k4/(ε2d̄2)) = Õ(k2/ε2) Õ(min{k2/(d̄ε2), k/(d̄ε3)})
= Õ(min{k/ε2, 1/ε3})

k-vertex-connectivity Õ(k5/(ε2d̄2)) = Õ(k3/ε2) Õ(k2/(ε2d̄)) = Õ(k/ε2)
Bounded-Degree From [FY19] This paper
k-edge-connectivity Õ(k3/ε) Õ(k/ε)

k-edge-connectivity on simple graphs Õ(k3/ε) Õ(min{k/ε, 1/ε2})
k-vertex-connectivity Õ(k3/ε) Õ(k/ε)

Testing Vertex- and Edge- Connectivity. The study of testing graph properties, initiated by
Goldreich et al. [GGR98], concerns the number of queries made to answer a question about graph
properties. In the (unbounded-degree) incident-lists model [GR02, OR11], it is assumed that there
is a list Lv of edges incident to each node v (or lists of outgoing and incoming edges for directed
graphs), and an algorithm can make a query q(v, i) for the ith edge in the list Lv (if i is bigger
than the list size, the algorithm receives a special symbol in return). For any ε > 0, we say that an
m-edge graph G is ε-far from having a property P if the number of edge insertions and deletions
to make G satisfies P is at least εm. Testing k-vertex connectivity is a problem where we want to
distinguish between when G is k-vertex connectivity and when it is ε-far from having such property.
Testing k-edge connectivity is defined analogously. It is assumed that the algorithm receives n, ε,
and k in the beginning. We show the following.

Theorem 1.3. In the unbounded-degree incident-list model, k-vertex (where k < n/4) and -edge
connectivity for directed graphs can be tested in Õ(k/ε2) queries with probability at least 2/3. Further,
k-edge connectivity for simple directed graphs can be tested in Õ(min{k/ε2, 1/ε3}) queries.

In particular, our Õ(k/ε2) bound is linear in k, and it can be independent of k for testing k-edge
connectivity on simple graphs. In the bounded-degree incident-list model, the maximum degree d is
assumed to be given to the algorithm and a graph is said to be ε-far from a property P if it needs
at least εnd edge modifications to have such property. We show the following.

Theorem 1.4. In the bounded-degree incident-list model, k-vertex (where k < n/4) and -edge
connectivity for directed graphs can be tested in Õ(k/ε) queries with probability at least 2/3. Further,
k-edge connectivity for simple directed graphs can be tested in Õ(min{k/ε, 1/ε2}) queries.

It has been open for many years whether the bounds from [GR02, OR11, YI10, YI12] which are
exponential in k can be made polynomial (this was asked in e.g. [OR11]). Forster and Yang [FY19]
answered this using the same result as our local algorithms. The dependence on k in their bounds
is at least k3, even on bounded-degree graphs. We can improve the dependence on k essentially by
using approximation local algorithms.

Detailed comparisons: To precisely compare our bounds with the previous ones, note that there
are two sub-models: (i) In the unbounded-degree incident-list model, previous work assumes that
d̄ = m/n is known to the algorithm in the beginning. (ii) in the bounded-degree incident-list model,
the maximum degree d is assumed to be given to the algorithm and a graph is said to be ε-far
from a property P if it needs at least εnd edge modifications to have such property. Our Õ(k/ε2)
bound can be generalized to Õ(k2/(ε2d̄)) bound in the unbounded-degree model. Similarly, our
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Õ(min{k/ε2, 1/ε3}) bound can be generalized to Õ(min{k2/(d̄ε2), k/(d̄ε3)}) bound in the unbounded-
degree model. 4 The bounds that are exponential in k by [OR11, YI10, YI12] are Õ(( ck

εd̄
)k+1) and

Õ(( ckεd )kd) in the unbounded- and bounded-degree models, respectively, for testing both directed
k-vertex and -edge connectivity. The bounds that are polynomial in k by Forster and Yang [FY19]
are (i) Õ(k5/(εd̄)2) for k-vertex connectivity in the unbounded-degree model, (ii) Õ(k4/(εd̄)2) for
k-edge connectivity in the unbounded-degree model, and (iii) Õ(k3/ε) for both k-vertex and -edge
connectivity in the bounded-degree model. Table 1 details comparisons between our results, and
those from [FY19].

2 Preliminaries
Let G = (V,E) be a directed graph. For any S, T ⊆ V , let E(S, T ) = {(u, v) | u ∈ S, v ∈ T}. For each
vertex u, we let degout(u) denote the out-degree of u respectively. For a set S ⊆ V , the out-volume of S
is volout(S) =

∑
u∈S degout u. The a set of out-neighbors of S is Nout(S) = {v | (u, v) ∈ E(S, V −S)}.

We can define in-degree degin(u), in-volume volin(S), and a set of in-neighbors N in(S) analogously.
We add a subscript G to the notation when it is not clear which graph we are referring to.

We say that (L, S,R) is a separation triple of G if L, S,R partition V where L,R 6= ∅, and
E(L,R) = ∅. We also say that S is a vertex cut of G of size |S|. S is an st-vertex cut if s ∈ L and
t ∈ R. We say that s and t is k-connected (or k-vertex-connected) if there is no st-vertex cut of size
less than k. G is k-connected if s and t is k-connected for every pair s, t ∈ V .

3 Local edge connectivity
In this section, we show a local algorithm for detecting an edge cut of size k and volume ν containing
some seed node in O(νk2) time. The algorithm accesses (i.e. make queries for) O(νk) edges (this is
needed for our property testing results). Roughly, it outputs either a “small” cut or a symbol “⊥”
indicating that there is no small cut containing x. The algorithm makes errors (i.e. it might be
wrong when it outputs ⊥) with probability at most 1/4. By standard arguments, we can make the
error probability arbitrarily small. Both the algorithm description and the analysis are very simple.

Theorem 3.1. There exists the following randomized algorithm. It takes as inputs,
• a pointer to an adjacency list representing an n-vertex m-edge graph G = (V,E),
• a seed vertex x ∈ V ,
• a volume parameter (positive integer) ν,
• a cut-size parameter (positive integer) k, and
• a slack parameter (non-negative integer) gap, where

k ≥ 1, ν > k, gap ≤ k and ν < m(gap + 1)/(130k). (2)

It accesses (i.e. makes queries for) O(νk/(gap + 1)) edges and runs in O(νk2/(gap + 1)) time. It
then outputs in the following manner.
• If there exists a vertex-set S′ such that S′ 3 x, volout(S′) ≤ ν, and |E(S′, V − S′)| < k, then
with probability at least 3/4, the algorithm outputs S a non-empty vertex-set S ( V such that
|E(S, V − S)| < k + gap and volout(S) ≤ 130νk/(gap + 1) (otherwise it outputs ⊥).
• Otherwise (i.e., no such S′ exists), the algorithm outputs either the set S as above or ⊥.

4Theorem 1.3 can be obtained simply from the fact that k ≤ d̄, d ≤ k/ε can be assumed without loss of generality.

4



In particular, we obtain exact and (1 + ε)-approximate local algorithms for Theorem 3.1 as
follows. We set gap = 0 in Theorem 3.1 for the exact local algorithm. For (1 + ε)-approximation,
we set gap = bεkc.

Corollary 3.2. There exists the following randomized algorithm. It takes as the same inputs as in
Theorem 3.1 where gap = 0. It accesses (i.e. makes queries for) O(νk) edges and runs in O(νk2)
time. It then outputs in the following manner.
• If there exists a vertex-set S′ such that S′ 3 x, volout(S′) ≤ ν, and |E(S′, V − S′)| < k, then
with probability at least 3/4, the algorithm outputs S a non-empty vertex-set S ( V such that
|E(S, V − S)| < k (otherwise it outputs ⊥).
• Otherwise (i.e., no such S′ exists), the algorithm outputs either the set S as above or ⊥.

Corollary 3.3. There exists the following randomized algorithm. It takes as the same inputs as in
Theorem 3.1 with additional parameter ε ∈ (0, 1] where gap is set to be equal to bεkc. It accesses (i.e.
makes queries for) O(ν/ε) edges and runs in O(νk/ε) time. It then outputs in the following manner.
• If there exists a vertex-set S′ such that S′ 3 x, volout(S′) ≤ ν, and |E(S′, V − S′)| < k, then
with probability at least 3/4, the algorithm outputs S a non-empty vertex-set S ( V such that
|E(S, V − S)| < b(1 + ε)kc (otherwise it outputs ⊥).
• Otherwise (i.e., no such S′ exists), the algorithm outputs either the set S as above or ⊥.

Proof. The results follow from Theorem 3.1 where we set gap = bεkc, and the following fact:

k + gap = k + bεkc = bkc+ bεkc ≤ bk + εkc = b(1 + ε)kc. (3)

Algorithm 1: LocalEC(x, ν, k, gap)
Input: Seed node x ∈ V, target volume ν ≥ k, target cut-size k ≥ 1, slack gap ≤ k.
Output: a vertex-set S or the symbol ⊥ with as in Theorem 3.1.

1 repeat k + gap times
2 y ← NIL.
3 Grow a BFS tree T starting from x (where every edges point towards leaves) as follows:
4 while the BFS algorithm still has an edge e = (a, b) to explore do
5 if e is not marked then
6 Mark e.
7 if the algorithm marks ≥ 128νk/(gap + 1) edges then return ⊥.
8 With probability (gap + 1)/(8ν), set y ← a and break the while-loop.

9 if y = NIL then return V (T ).
10 else Reverse the direction of edges in the path Pxy in T from x to y.
11 return ⊥.

The algorithm for Theorem 3.1 is described in Algorithm 1. Roughly, in each iteration of the
repeat-loop the algorithm runs a standard breadth-first search (BFS) algorithm, but randomly stop
before finishing the BFS algorithm; this means we break the while-loop in Algorithm 1 . (If the
BFS algorithm finishes first, it outputs all nodes found in such iteration.) If an edge (a, b) is the
last edge explored by the algorithm before the random stop happens, we flip the direction of all
edges on the unique path from x to b in the BFS tree. We repeat this for k + gap iterations.

5



In the analysis below, we assume that every node accessed by Algorithm 1 has degree at least k.
Otherwise, an edge-cut is found and we are done. We start with the following important observation.

Lemma 3.4. Let S ⊂ V be any set where x ∈ S. Let Pxy be a path from x to y. Suppose we reverse
the direction of edges in Pxy. Then, we have |E(S, V − S)| and volout(S) are both decreased exactly
by one if y /∈ S. Otherwise, |E(S, V − S)| and volout(S) stay the same.

Proof. We fix the set S and the path Pxy where x ∈ S. If y /∈ S, then Pxy crosses the edges between
S and V − S back and forth so that the number of out-crossing edges (i.e., from S to V − S) is one
plus the number of in-crossing edges (i.e., from V − S to S). Therefore, reversing the direction of
edges in Pxy decreases both |E(S, V − S)| and volout(S) exactly by one. If y ∈ S, then the number
out-crossing edges is equal to the number of in-crossing edges. Thus, reversing the direction of edges
in Pxy does not change |E(S, V − S)| and volout(S).

It is easy to see Algorithm 1 accesses O(νk/(gap + 1)) edges, and runs in time O(νk2/(gap + 1)).

Lemma 3.5. Algorithm 1 runs in time O(νk2/(gap + 1)), and accesses O(νk/(gap + 1)) edges.

Proof. By , the algorithm accesses at most d128νk/(gap + 1)e = O(νk/(gap + 1)) edges. The
running time follows since BFS runs linear in number of edge accesses, and we repeat at most
k + gap ≤ 2k iterations.

The following two lemmas prove the correctness of Algorithm 1.

Lemma 3.6. If a vertex set S is returned, then ∅ 6= S ⊂ V, |E(S, V − S)| < k + gap and
volout(S) ≤ 130νk/(gap + 1).

Proof. If S is returned, then the BFS tree T gets stuck at S = V (T ). That is, at the end of the

algorithm, we have |E(S, V − S)| = 0 and volout(S) ≤ 128νk/(gap + 1)
(2)
< m. We first show that

S 6= ∅ and S 6= V . Note that by design either S contains a single node or x ∈ S. The fact that S 6= V
follows since volout(S) < m and BFS tree T gets stuck with a spanning tree, V (T ) = V , only if all
edges are marked. The algorithm has reversed strictly less than k+ gap many paths Pxy because the
algorithm did not reverse a path in the iteration that S is returned. Therefore, Lemma 3.4 implies
that, initially, |E(S, V −S)| < k+gap, and volout(S) < 128νk/(gap+1)+k+gap ≤ 130νk/(gap+1).

Lemma 3.7. If there is S where x ∈ S, |E(S, V − S)| < k and volout(S) ≤ ν, then ⊥ is returned
with probability at most 1/4.

Proof. Let τ = 128νk/(gap+1), and R⊥ be an event that ⊥ is returned. For the purpose of analysis,
let X be a random variable denoting the total number of edges that the algorithm marked assuming
line 7 is ignored, which is the same as the total number of edges accessed by the algorithm. Our goal
is to show that Pr[R⊥] ≤ 1/4. It is enough to show that Pr[X ≥ τ ] ≤ 1/8 and Pr[R⊥ | X < τ ] ≤ 1/8.
If this is true, then we have the following.

Pr[R⊥] = Pr[R⊥ ∩ (X < τ)] + Pr[R⊥ ∩ (X ≥ τ)]
= Pr[R⊥ | X < τ ] Pr[X < τ ] + Pr[R⊥ | X ≥ τ ] Pr[X ≥ τ ]
≤ Pr[R⊥ | X < τ ] + Pr[X ≥ τ ]
≤ 1/8 + 1/8 = 1/4.

6



The first two equalities follow from conditional probability. The third inequality follows since
Pr[X < τ ] ≤ 1, and if X ≥ τ , the the algorithm always outputs ⊥.

We show that Pr[X ≥ τ ] ≤ 1/8. In other words, we show the probability that the algorithm
returns ⊥ at line 7 is at most 1/8. We first show E[X] ≤ 16νk/(gap + 1). For i ∈ {1, . . . , k + gap},
let Xi be a random variable denoting the number of edges that are marked at the ith iteration of the
repeat-loop. Then E[Xi] = 8ν/(gap + 1). Let X =

∑k+gap
i=1 Xi. By linearity of expectation, we have

E[X] =
k+gap∑
i=1

E[Xi] = (k + gap)(8ν)/(gap + 1) ≤ 16νk/(gap + 1). (4)

It remains to show that Pr[X < τ ] ≥ 1 − 1/8. By Equation (4), E[X] ≤ 16νk/(gap + 1), so
8 · E[X] ≤ 128νk/(gap + 1) = τ. By Markov’s inequality, Pr[X < 8 · E[X]] ≥ 1− 1/8. Therefore,
Pr[X < τ ] ≥ 1− 1/8, and we have Pr[X ≥ τ ] ≤ 1/8.

Next, we show that Pr[R⊥ | X < τ ] ≤ 1/8. In other words, given that ⊥ is not returned at
line 7, we compute the probability that ⊥ is returned at the last line. Suppose that no set S′ is
returned before the last iteration. We will show that Pr[R̄⊥ | X < τ ] ≥ 1− 1/8. It suffices to show
that the number of stops at edge (a, b) where a ∈ S (i.e., an edge (a, b) ∈ E(S, V )) is at most gap
after k + gap iterations with probability at least 1− 1/8. If this is true, and such an event happens,
then there are at least k− 1 iterations where we stop at edges in the set E(V −S, V ), and we do not
stop at any edge in the set E(S, V ) in the final iteration. Lemma 3.4 implies that |E(S, V − S)| = 0
at the beginning of the last iteration. Therefore, the the BFS tree T will return the set V (T ) since
we do not stop at any edge in E(S, V ) in the final iteration.

Let Z be a random variable denoting the number of stops at an edge in E(S, V ) after k + gap
iterations. We show that Pr[Z ≤ gap] ≥ 1 − 1/8. Since we never unmark edges, and we stop
with probability (gap + 1)/(8ν) for each first visited edge by linearity of expectation, we have
E[Z] ≤

∑
e∈E(S,V )(gap+1)/(8ν) ≤ ν(gap+1)/(8ν) = (gap+1)/8. Therefore, by Markov’s inequality,

we have P (Z < 8E[Z]) ≥ 1− 1/8. Note that Z < 8E[Z] ≤ gap. Hence, P (Z ≤ gap) ≥ 1− 1/8 as
gap is an integer.

4 Local vertex connectivity
In this section, we show the vertex cut variant of the local algorithms from Section 3.

Theorem 4.1. There exists the following randomized algorithm. It takes as inputs,
• a pointer to an adjacency list representing an n-vertex m-edge graph G = (V,E),
• a seed vertex x ∈ V ,
• a volume parameter (positive integer) ν,
• a cut-size parameter (positive integer) k, and
• a slack parameter (non-negative integer) gap, where

k ≥ 1, ν > k, gap ≤ k and ν < m(gap + 1)/(8320k). (5)

It accesses (i.e. makes queries for) O(νk/(gap + 1)) edges and runs in O(νk2/(gap + 1)) time. It
then outputs in the following manner.
• If there exists a separation triple (L′, S′, R′) such that L′ 3 x, volout(L′) ≤ ν, and |S′| < k,
then with probability at least 3/4, the algorithm outputs a vertex-cut of size at most k + gap
(otherwise it outputs ⊥).
• Otherwise (i.e., no such separation triple (L′, S′, R′) exists), the algorithm outputs either a
vertex-cut of size at most k + gap or ⊥.
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We obtain exact and (1 + ε)-approximate local algorithms for Theorem 4.1 by setting gap = 0
and gap = bεkc, respectively.

Corollary 4.2. There exists the following randomized algorithm. It takes as the same inputs as in
Theorem 4.1 where gap is set to be equal to 0. It accesses (i.e. makes queries for) O(νk) edges and
runs in O(νk2) time. It then outputs in the following manner.
• If there exists a separation triple (L′, S′, R′) such that L′ 3 x, volout(L′) ≤ ν, and |S′| < k, then
with probability at least 3/4, the algorithm outputs a vertex-cut of size at most k (otherwise it
outputs ⊥).
• Otherwise (i.e., no such (L′, S′, R′) exists), the algorithm outputs either a vertex-cut of size at
most k or ⊥.

Corollary 4.3. There exists the following randomized algorithm. It takes as the same inputs as in
Theorem 4.1 with additional parameter ε ∈ (0, 1] where gap is set to be equal to bεkc. It accesses (i.e.
makes queries for) O(ν/ε) edges and runs in O(νk/ε) time. It then outputs in the following manner.
• If there exists a separation triple (L′, S′, R′) such that L′ 3 x, volout(L′) ≤ ν, and |S′| < k,
then with probability at least 3/4, the algorithm outputs a vertex-cut of size at most b(1 + ε)kc
(otherwise it outputs ⊥).
• Otherwise (i.e., no such (L′, S′, R′) exists), the algorithm outputs either a vertex-cut of size at
most b(1 + ε)kc or ⊥.

Proof. The results follow from Theorem 4.1 where we set gap = bεkc, and Equation (3).

To prove Theorem 4.1, in Section 4.1 we first reduce the problem to the edge version of the
problem using the well-known reduction (e.g. [Eve75, HRG00]) and then in Section 4.2 we plug the
algorithm from Theorem 3.1 into the reduction.

4.1 Reducing from vertex to edge connectivity

Given a directed n-vertex m-edge graph G = (V,E) and a vertex x ∈ V , let G′ = (V ′, E′) be an
n′-vertex m′-edge graph defined as follows. We call G′ the split graph w.r.t. x. For each v ∈ V −{x},
we add vertices vin and vout to V ′ and a directed edge (vin, vout) to E′. We also add x to V ′ and we
denote xin = xout = x for convenience. For each edge (u, v) ∈ E, we add (uout, vin) to E′. Suppose,
for convenience, that the minimum out-degree of vertices in G is 1. The following two lemmas draw
connections between G and G′.

Lemma 4.4. Let (L, S,R) be a separation triple in G where S = Nout
G (L). Let L′ = {vin, vout |

v ∈ L} ∪ {vin | v ∈ S} be a set of vertices in G′. Then |EG′(L′, V ′ − L′)| = |S| and volout
G (L) ≤

volout
G′ (L′) ≤ 2 volout

G (L).

Proof. As S = Nout
G (L), we have |EG′(L′, V ′−L′)| = |{(vin, vout) | v ∈ S}| = |S|. Also, volout

G′ (L′) =
volout

G (L) + |L| + |S| ≤ 2 volout
G (L) because every vertex in G has out-degree at least 1 and S =

Nout
G (L).

Lemma 4.5. Let L′ 3 x be a set of vertices of G′. Then, there is a set of vertices L in G such
that volout

G (L) ≤ 2 volout
G′ (L′) and |S| ≤ |EG′(L′, V ′ − L′)| where S = NG(L). Given L′, L can be

constructed in O(volout
G′ (L′)) time.

Let R = V − (L ∪ S). We have R 6= ∅, i.e. (L, S,R) is a separation triple if volout
G′ (L′) ≤ m′/32

and |EG′(L′, V ′ − L′)| ≤ n/2.
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𝑎𝑖𝑛 𝑎𝑜𝑢𝑡

𝑏𝑖𝑛 𝑏𝑜𝑢𝑡

𝑐𝑖𝑛 𝑐𝑜𝑢𝑡
𝑥

𝑟𝑖𝑛 𝑟𝑜𝑢𝑡

𝑝𝑖𝑛 𝑝𝑜𝑢𝑡

𝑞𝑖𝑛 𝑞𝑜𝑢𝑡

𝐿𝐿′

𝑆

𝑤𝑖𝑛 𝑤𝑜𝑢𝑡

𝑦𝑖𝑛 𝑦𝑜𝑢𝑡

𝑧𝑖𝑛 𝑧𝑜𝑢𝑡

𝑢𝑖𝑛 𝑢𝑜𝑢𝑡

𝑣𝑖𝑛 𝑣𝑜𝑢𝑡
𝐿0
′

Figure 1: Construction of a separation triple (L, S,R) in G from an edge cut L′ in G′. Most edges
are omitted. From this example, L′0 = L′ ∪ {uin, vin}, L = {r, p, q, x}, S = {u, v, w, y, z}.

Proof. First of all, note that if there is v where vout ∈ L′ and degout
G′ (vout) ≤ |EG′(L′, V ′ − L′)|,

then we can return L = {v} and S = Nout
G ({v}) and we are done. So from now, we assume that

degout
G′ (vout) > |EG′(L′, V ′ − L′)|.
By the structure of G′, observe that there are sets S1, S2 ⊆ V be such that

EG′(L′, V ′ − L′) = {(vin, vout) | v ∈ S1} ∪ {(uout, vin) | v ∈ S2}

Let L′0 = L′ ∪ {vin | v ∈ S2}. See Figure 1 for illustration. So there is a set S ⊂ V where

EG′(L′0, V ′ − L′0) = {(vin, vout) | v ∈ S}.

We have |S| = |EG′(L′0, V ′ − L′0)| ≤ |EG′(L′, V ′ − L′)| because for each v ∈ S2, degout(vin) ≤ 1 ≤
degin(vin). Also, volout

G′ (L′0) ≤ volout
G′ (L′) + |EG′(L′, V ′ − L′)| ≤ 2 volout

G′ (L′).
Let L = {v | vin, vout ∈ L′0}. Note that L ∩ S = ∅. See Figure 1 for illustration. Observe that

x ∈ L because xout = xin. Moreover, NG(L) = S and volout
G (L) ≤ volout

G′ (L′0) ≤ 2 volout
G′ (L′). L

be can constructed in time O(|{vout ∈ L′}|) = O(volout
G′ (L′)) because the minimum out-degree of

vertices in G is 1.
For the second statement, observe that R = V − (L ∪ S) = {v | vin /∈ L′0}. Let V ′in = {vin ∈

V ′} ∪ {x} and V ′out = {vout ∈ V ′} − {x}. Let k′ = |EG′(L′0, V ′ − L′0)|. Suppose for contradiction
that R = ∅. We claim that

|V ′ − L′0| = |V ′out − L′0| = k′.

This is because L′0 ⊇ V ′in, V ′ − L′0 ⊆ V ′out, and EG′(L′0, V ′ − L′0) only contains edges of the form
(vin, vout). Now, there are two cases. If m′ ≥ 4n′k′, then we have

m′ = volout
G′ (L′0) + volout

G′ (V ′ − L′0)
≤ 2 volout

G′ (L′) + n′|V ′out − L′0|
≤ 2 ·m′/32 + n′k′

≤ m′/16 +m′/4 < m′

which is a contradiction. Otherwise, we have m′ < 4n′k′. Note that n′ < 2n by the construction of
G′ and so m′ < 8nk′. Hence, we have

volout
G′ (L′0) ≥ |L′0 ∩ V ′out|k′ ≥ (n− k′)k′ ≥ nk′/2 > m′/16

which contradicts volout
G′ (L′0) ≤ 2 volout

G′ (L′) ≤ 2 ·m′/32.
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4.2 Proof of Theorem 4.1

Given an n-vertex m-edge G = (V,E) represented as adjacency lists, a vertex x ∈ V and parameters
ν, k, gap from Theorem 4.1 where ν ≤ (gap + 1)m/(8320k) and k ≤ n/4, we will work on the split
graph G′ with n′-vertex m′-edge as described in Section 4.1. The adjacency list of G′ can be created
“on the fly”. Let LocalEC(x′, ν ′, k′, gap′) denote the algorithm from Theorem 3.1 with parameters
x′, ν ′, k′, gap′. We run LocalEC(x, 2ν, k, gap) on G′ = (V ′, E′) in time O(νk2/(gap + 1)). Note that
2ν ≤ (gap + 1)m/(8k) ≤ (gap + 1)m′/(8k) as required by Theorem 3.1.

We show that if there exists a separation triple (L, S,R) in G where L 3 x, |S| < k, and
volout

G (L) ≤ ν, then LocalEC(x, 2ν, k, gap) outputs ⊥ with probability at most 1/4. By Lemma 4.4,
there exists L′ in G′ such that L′ 3 x, |EG′(L′, V − L′)| < k, and volG′(L′) ≤ 2 volG(L) ≤ 2ν.
Therefore, by Theorem 3.1, LocalEC(x, 2ν, k, gap) returns ⊥ with probability at most 1/4.

If, in G′, LocalEC(x, 2ν, k, gap) returns L′, then by Theorem 3.1 we have L′ 3 x, |EG′(L′, V ′ −
L′)| < k + gap and volout

G′ (L′) ≤ 260νk/gap. It remains to show that we can construct L ⊂ V in
G such that Nout

G (L) is a vertex-cut, and |Nout
G (L)| < k + gap. By Lemma 4.5, we can obtain in

O(νk/(gap + 1)) time and two sets L and S = Nout(L) where |S| < k + gap. Let R = V − L ∪ S.

As volout
G′ (L′) ≤ 260νk/(gap + 1)

(5)
≤ m′/32 and k + gap ≤ 2k ≤ n/2, we have that (L, S,R) is a

separation triple by Lemma 4.5. That is, S = Nout
G (L) is a vertex cut.

5 Vertex connectivity
In this section, we show the first near-linear time algorithm for checking of k-connectivity for any
k = Õ(1) in both undirected and directed graphs.

Theorem 5.1. There is a randomized (Monte Carlo) algorithm that takes as input an undirected
graph G and a cut-size parameter k and an accuracy parameter ε ∈ (0, 1], and in time Õ(m+nk2/ε)
either outputs a vertex cut of size less than b(1 + ε)kc or declares that G is k-connected w.h.p. By
setting ε < 1/k, the same algorithm decides (exact) k-vertex-connectivity of G in Õ(m+ nk3) time.

By combining with the state-of-the-art algorithms for undirected graph, we obtain the the
following.

Corollary 5.2. There is a randomized (Monte Carlo) algorithm that takes as input an undi-
rected graph G and a cut-size parameter k and an accuracy parameter ε ∈ (0, 1], and in time
Õ(m+ poly(1/ε) min{nk2, n5/3+o(1)k2/3, n3+o(1)/k, nω}) either outputs a vertex cut of size less than
b(1 + ε)kc or declares that G is k-connected w.h.p. For exact vertex connectivity, there is a random-
ized (Monte Carlo) algorithm for exact k-vertex-connectivity of G in Õ(m+min{nk3, n2k, nω+nkω})
time.

Proof. For approximate vertex connectivity, Nanongkai et al. [NSY19] (Theorem 1.2) present
Õ(m+ poly(1/ε) min{k4/3n4/3, n5/3+o(1)k2/3, n3+o(1)/k, nω})-time algorithm. By Theorem 5.1, we
have the Õ(m+ nk2/ε)-time algorithm. Combining both algorithms, the term k4/3n4/3 is replaced
by nk2. For exact vertex connectivity, we combine the running time in Theorem 5.1 with the
Õ(min{m+n2k, nω +nkω})-time algorithm, which is given by Henzinger, Rao and Gabow [HRG00],
and Linial, Lovász and Wigderson [LLW88].

Now we present the new results for directed graph.

Theorem 5.3. There is a randomized (Monte Carlo) algorithm that takes as input a directed graph
G and a cut-size parameter k and an accuracy parameter ε ∈ (0, 1], and in time
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Õ(min{mk/ε, poly(1/ε)n2+o(1)√k}) either outputs a vertex cut of size less than b(1 + ε)kc or declares
that G is k-connected w.h.p. For exact vertex connectivity, there is a randomized (Monte Carlo)
algorithm for exact k-vertex-connectivity of G in Õ(min{mk2, k3n+ k3/2m1/2n}) time.

Similarly, by combining with the state-of-the-art algorithms for directed graph, we obtain the
the following.

Corollary 5.4. There is a randomized (Monte Carlo) algorithm that takes as input an undi-
rected graph G and a cut-size parameter k and an accuracy parameter ε ∈ (0, 1], and in time
Õ(poly(1/ε) min{mk,mn2/3+o(1)/k1/3, k1/2n2+o(1), n7/3+o(1)/k1/6, n3+o(1)/k, nω}) either outputs a
vertex cut of size less than b(1 + ε)kc or declares that G is k-connected w.h.p. For exact vertex
connectivity, there is a randomized (Monte Carlo) algorithm for exact k-vertex-connectivity of G in
Õ(min{mk2, k3n+ k3/2m1/2n,mn, nω + nkω}) time.

Proof. For approximate vertex connectivity, Nanongkai et al. [NSY19] (Theorem 1.2) present
Õ(poly(1/ε) min{m4/3, nm2/3k1/2,mn2/3+o(1)/k1/3, n7/3+o(1)/k1/6, n3+o(1)/k, nω})-time algorithm. By
Theorem 5.3, we have the Õ(min{mk2, k3n+ k3/2m1/2n})-time algorithm. Combining both algo-
rithms, the terms m4/3 and nm2/3k1/2 are subsumed. For exact vertex connectivity, we combine
the running time in Theorem 5.3 with the Õ(min{mn, nω + nkω})-time algorithm, which is given
by Henzinger, Rao and Gabow [HRG00], and by Cheriyan and Reif [CR94].

To prove Theorem 5.1 and Theorem 5.3, we will apply our framework [NSY19] for reducing the
vertex connectivity problem to the local vertex connectivity problem. To describe the reduction, let
Tpair(m,n, k, ε, p) be the time required for, given vertices s and t, either finding a st-vertex cut of
size less than b(1 + ε)kc or declaring that s and t is k-connected correctly with probability at least
1− p. Let Tlocal(ν, k, ε, p) be the time for solving correctly probability at least 1− p the local vertex
connectivity problem from Corollary 4.3 when a volume parameter is ν, the cut-size parameter is k,
and the accuracy parameter is ε.

Lemma 5.5 ([NSY19] Lemma 5.14, 5.15). There is a randomized (Monte Carlo) algorithm that
takes as input a graph G, a cut-size parameter k, and an accuracy parameter ε > 0, and runs in
time in one of these expressions

Õ(m/ν) · (Tpair(m,n, k, ε, 1/polyn) + Tlocal(ν, k, ε, 1/polyn)) (6)
Õ(n/n) · (Tpair(m,n, k, ε, 1/polyn) + Tlocal(n2 + nk, k, ε, 1/polyn)) (7)

where ν ≤ m, and n ≤ n are optimizing parameters that can be chosen, and either outputs a
vertex cut of size less than b(1 + ε)kc or declares that G is k-connected w.h.p.

For completeness, we give a simple proof sketch of Equation (6) which is used for our algorithm
for undirected graphs. The idea for other equations is similar and also simple.

Proof sketch. Suppose that G is not k-connected. It suffices to show an algorithm that outputs a
vertex cut of size less than b(1 + ε)kc w.h.p. By considering both G and its reverse graph (where
the direction of each edge is reversed), there exists w.l.o.g. a separation triple (L, S,R) where
volout(L) ≤ volout(R). There are two cases.

Suppose volout(L) ≥ ν. By sampling Õ(m/ν) pairs of edges e = (x, x′) and f = (y, y′), there
exists w.h.p. a pair (e, f) where x ∈ L and y ∈ R. For such pair (x, y), if we check x and y is
k-connected in time Tpair(m,n, k, ε, 1/polyn), we must obtain an xy-vertex cut of size less than
b(1 + ε)kc. So, if we check this for each pair (x, y) and we will obtain the cut w.h.p.
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Suppose volout(L) ≤ ν. Suppose further that volout(L) ∈ (2i−1, 2i]. By sampling Õ(m/2i) pair
of edges e = (x, x′), there exists w.h.p. a edge e where x ∈ L. For such vertex x, if we check the
local vertex connectivity in time Tlocal(2i, k, ε, 1/polyn), then the algorithm must return a vertex cut
of size less than b(1 + ε)kc. So, if we check this for each pair (x, y) and we will obtain the cut w.h.p.

To conclude, the running time in the first case is Õ(m/ν) · Tpair(m,n, k, ε, 1/polyn). For the
second case, we try all O(logn) many 2i, each of which case takes Õ(m/2i) ·Tlocal(2i, k, ε, 1/polyn) =
Õ(m/ν) · Tlocal(ν, k, ε, 1/polyn) assuming that Tlocal(ν, k, ε, 1/polyn) ≥ ν. This complete the proof
of the running time. For the correctness, if G is not k-connected, we must obtain a desired vertex cut
of size b(1 + ε)kc w.h.p. So if we do not find any cut, we declare that G is k-connected w.h.p.

5.1 Undirected graphs

Here, we prove Theorem 5.1. First, it suffices to show an algorithm with Õ(mk/ε) time. Indeed, by
using the sparsification algorithm by Nagamochi and Ibaraki [NI92], we can sparsify an undirected
graph in linear time so that m = O(nk) and k-connectivity is preserved. By this preprocessing,
the total running time is O(m) + Õ((nk)k/ε)) = Õ(m+ nk2/ε) as desired. Next, we assume that
k ≤ min{n/4, 5δ} where δ is the minimum out-degree of G. If k > 5δ, then it is G is clearly not
k-connected and the out-neighbor of the vertex with minimum out-degree is a vertex cut of size less
than k. If k > n/4, then we can invoke the algorithm by Henzinger, Rao and Gabow [HRG00] for
solving the problem exactly in time O(mn) = O(mk).

Now, we have Tpair(m,n, k, ε, p) = O(mk) by Ford-Fulkerson algorithm. By repeating the
algorithm from Corollary 4.3 O(log 1

p) times for boosting success probability, Tlocal(ν, k, ε, p) =
O(νkε−1 log 1

p). We choose ν = O(εm) as required by Corollary 4.3 and also k ≤ min{n/4, 5δ}.
Applying Lemma 5.5 (Equation (6)), we obtain an algorithm for Theorem 5.1 with running time

Õ(m/εm)×O(mk + (εm)kε−1 logn) = Õ(mk/ε).

5.2 Directed graphs

Here, we prove Theorem 5.3. We again assume that k ≤ min{n/4, 5δ} using the same reasoning as
in the undirected case. We first show how to obtain the claimed time bound for the approximate
problem. Note that the Õ(mk/ε)-time algorithm follows by the same argument as in the undirected
case, because both Ford-Fulkerson algorithm and the local algorithm from Corollary 4.3 work as
well in directed graphs.

Next, we show an approximate algorithm with running time Õ(poly(1/ε)n2+o(1)√k). We assume
k ≤ n2/3 (for k ≥ n2/3, we use state-of-the-art Õ(poly(1/ε)n3+o(1)/k)-time algorithm by [NSY19]).
We have Tlocal(ν, k, ε, p) = O(νkε−1 log 1

p) by Corollary 4.3 and Tpair(m,n, k, ε, 1/polyn) = Õ(poly(1/ε)n2+o(1))
using the recent result for (1+ε)-approximating the minimum st-vertex cut by Chuzhoy and Khanna
[CK19]. By choosing n = n/

√
k for Lemma 5.5 (Equation (7)), we obtain an algorithm with running

time

Õ(n/n) · (n2+o(1) poly(1/ε) + (n2k + nk2)/ε) = Õ(
√
k poly(1/ε)) · (n2+o(1) + n2 + nk1.5)

= Õ(n2+o(1)√k poly(1/ε)).

Next, we show how to obtain the time bound for the exact problem. First, observe that we
can obtain a Õ(mk2)-time exact algorithm from the Õ(mk/ε)-time approximate algorithm by
setting ε < 1/k. It remains to show an algorithm with the running time Õ(k3n + k3/2m1/2n).
By Corollary 4.2, there is an exact algorithm for local vertex connectivity with running time
Tlocal(ν, k, 1/2k, p) = O(νk2 log 1

p). Also, we have Tpair(m,n, k, ε, p) = O(mk) by Ford-Fulkerson
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algorithm. By choosing n = O(
√
m/k) in Lemma 5.5 (Equation (7)), we obtain an algorithm with

running time

Õ(n/n) · (mk + (n2 + nk)k2) = Õ(n/n) · (mk + (m/k +
√
mk)k2)

= Õ(n
√
k/m) · (mk + k2.5√m)

= Õ(k3/2m1/2n+ k3n).

Note that n2 + nk = O(m/k) as required by Corollary 4.2.

6 Property Testing
In this section, we show property testing algorithms for distinguishing between a graph that is
k-edge/k-vertex connected and a graph that is ε-far from having such property with constant
probability for both unbounded-degree and bounded-degree incident-list model. Recall that for any
ε > 0, a directed graph G is ε-far from having a property P if at least εm edge modifications are
needed to make G satisfy property P . We assume that d̄ = m/n is known to the algorithm at the
beginning.

Theorem 6.1. For unbounded-degree model, there is a property testing algorithm for k-edge (k-
vertex where k < n/4) connectivity with correct probability at least 2/3 that uses Õ(k2/(ε2d̄)) queries
(same for k-vertex) and runs in Õ(k2/(ε11/3d̄)) time (Õ(k2/(ε2.5d̄)) time for k-vertex). If d̄ is
unknown, then there is a similar algorithm that uses Õ(k/ε2) queries (same for k-vertex), and runs
in Õ(k/ε8/3) time (Õ(k/ε2.5) time for k-vertex). If G is simple, then the same algorithm for testing
k-edge-connectivity queries at most Õ(min{k2/(d̄ε2), k/(d̄ε3)}) (or Õ(min{k/ε2, 1/ε3}) edges if d̄ is
unknown), and runs in Õ(1/(ε14/3d̄)) (or Õ(1/ε11/3) if d̄ is unknown).

For bounded-degree model, we assume that d is known in the beginning.

Theorem 6.2. For bounded-degree model, there is a property testing algorithm for k-edge (k-vertex
where k < n/4) connectivity with correct probability at least 2/3 that uses Õ(k/ε) queries (same for
k-vertex) and runs in Õ(k/ε8/3) time (Õ(k/ε1.5) time for k-vertex). If G is simple, then the same
algorithm for testing k-edge-connectivity queries at most Õ(min{k/ε, 1/ε2}).

We prove Theorem 6.1 using properties of ε-far from being k-edge/vertex connected from [OR11]
and [FJ99] along with a variant of approximate LocalEC in Section 6.1, and approximate LocalVC
in Section 6.3.

6.1 Testing k-Edge-Connectivity: Unbounded-Degree Model

In this section, we prove Theorem 6.1 for testing k-edge-connectivity. The key tool for our property
testing algorithm is approximate local edge connectivity in a suitable form for the application to
property testing. We can derive the following gap version of LocalEC in [NSY19] by essentially
setting ε = gap/k.

Lemma 6.3 (Implicit in [NSY19] ). There is a randomized (Monte Carlo) algorithm that takes
as input a vertex x ∈ V of an n-vertex m-edge directed graph G = (V,E) represented as incidence
lists, a volume parameter ν, a cut-size parameter k ≥ 1, and “gap” parameter gap ∈ (0, k) where
ν < gap ·m/(8k), queries at most Õ(νk/gap) edges, runs in Õ((ν/gap)5/3k) time, and
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• if there is a vertex-set S such that S 3 x, volout(S) ≤ ν, and |E(S, V − S)| < k − gap, then it
returns an edge-cut of size less than k,
• if there is no vertex-set S such that S 3 x, volout(S) ≤ ν, and |E(S, V − S)| < k, then it
returns the symbol ⊥.

We present an algorithm for testing k-edge-connectivity assuming Lemma 6.3.

Algorithm.

1. Sample Θ(1
ε ) vertices uniformly.

2. If any of the sampled vertex has degree less than k, returns the corresponding edge-cut.

3. Sample Θ(k log k
εd̄

) vertices uniformly (if d̄ is unknown, then we sample Θ( log k
ε ) instead).

4. For each sampled vertex x, and for i ∈ {0, 1, . . . , blog2 kc},

(a) let ν = 2i+2ε−1blog2 kc, and gap = 2i − 1.
(b) run GapLocalEC(x, ν, k, gap) on both G and GR where GR is G with reversed edges.

5. Return an edge-cut of size less than k if any execution of GapLocalEC returns a cut. Otherwise,
declare that G is k-edge-connected.

Query and Time Complexity. We first show that the number of edge queries is at most
Õ(k2/(ε2d̄)). For each sampled vertex x and i ∈ {0, 1, . . . , blog2 kc}, by Lemma 6.3, GapLocalEC
queries Õ(νk/gap) = Õ(k/ε) edges. The result follows from we repeat log2 k times per sample, and
we sample O(k log k/(εd̄)) times. Next, we show that the running time is Õ(k2/(ε11/3d̄)). This
follows from the same argument, but we use the running time for GapLocalEC instead of edge-query
complexity. If d̄ is unknown, we can remove the term k/d̄ from above since we sample Θ( log k

ε )
vertices instead.

Correctness. If G is k-edge-connected, the algorithm above never returns an edge-cut. We show
that if G is ε-far from being k-edge-connected, then the algorithm outputs an edge-cut of size less k
with constant probability. We start with simple observation.

Lemma 6.4. If m < nk/4, then with constant probability, the algorithm outputs an edge-cut of size
less than k at step 2.

Proof. Suppose m < nk/4. There are at most n/2 nodes with out-degree at least k. Hence, there
are at least n/2 nodes of degree less than k. In this case, we can sample O(1) time where each
sampled node x we check degout(x) < k to get k-edge-cut with constant probability.

From now we assume that

m ≥ nk/4. (8)

Next, we state important properties when G is ε-far from being k-edge-connected. For any
non-empty subset X ⊂ V , let dout(X) = |E(X,V −X)|, and din(X) = |E(V −X,X)|.

Theorem 6.5 ([OR11] Corollary 8). A directed graph G = (V,E) is ε-far from being k-edge-
connected (for k ≥ 1) if and only if there exists a family of disjoint subsets {X1, . . . , Xt} of vertices
for which either

∑
i(k − dout(Xi)) > εm or

∑
i(k − din(Xi)) > εm.
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Let F := {X1, . . . , Xt} as in Theorem 6.5. We assume without loss of generality that∑
i

(k − dout(Xi)) > εm. (9)

Let C−1 = {X ∈ F : k ≤ dout(X)}. For i ∈ {0, 1, . . . , blog2 kc}, let Ci = {X ∈ F : k − dout(X) ∈
[2i, 2i+1)}. Note that

2i ≤ k, for any i ∈ {0, . . . , blog2 kc} (10)

and

F =
blog2 kc⊔
i=−1

Ci (11)

where
⊔

is the disjoint union. Let Ci,big = {X ∈ Ci : volout(X) ≥ 2i+2ε−1(blog2 kc + 1)}, and
Ci,small = Ci − Ci,big. The following lemma is the key for the algorithm’s correctness.

Lemma 6.6. There is i such that |Ci,small| ≥ εnd̄/(4k(blog2 kc + 1)). If d̄ is unknown, we have
|Ci,small| ≥ εn/(16(blog2 kc+ 1)) instead.

We show that Lemma 6.6 implies the correctness of the algorithm. By sampling O(k log k/(εd̄))
many vertices (or O(log k/ε) if d̄ is unknown), we get an event where a sampled vertex belongs
to some vertex set X ∈ Ci,small with constant probability (since Ci,small contains disjoint sets). We
run GapLocalEC for every i ∈ {0, 1, . . . , blog2 kc} using ν = 2i+2ε−1blog2 kc, and gap = 2i − 1; also,
there exists i such that |Ci,small| ≥ εnd̄/(4k(blog2 kc+ 1)) (or (εn/(16(blog2 kc+ 1))) if d̄ is unknown)
by Lemma 6.6. Therefore, by Lemma 6.3 GapLocalEC outputs an edge-cut of size less than k with
constant probability.

Proof of Lemma 6.6. We show that there is i > 0 such that |Ci| > εm/(2i(blog2 kc+ 1)). First, we
show that there is i > 0 such that∑

X∈Ci

(k − dout(X)) > εm/(blog2 kc+ 1). (12)

Suppose otherwise that for every i,
∑
X∈Ci

(k − dout(X)) ≤ εm/(blog2 kc+ 1). We have
∑
X∈F (k −

dout(X)) (11)=
∑blog2 kc
i=−1

∑
X∈Ci

(k − dout(X)) ≤
∑blog2 kc
i=0

∑
X∈Ci

(k − dout(X)) ≤ εm. However, this
contradicts Equation (9) as in Theorem 6.5. Second, we claim that for any i,

|Ci|2i+1 ≥
∑
X∈Ci

(k − dout(X)).

This follows trivially from that each element X in the set Ci, k− dout(X) ≤ 2i+1. For i that satisfies
Equation (12) we have

|Ci| ≥
∑
X∈Ci

(k − dout(X))/2i+1 > εm/(2i+1(blog2 kc+ 1)). (13)

Recall that Ci,big = {X ∈ Ci : volout(X) ≥ 2i+2ε−1(blog2 kc+ 1)}, and Ci,small = Ci −Ci,big. We show
that |Ci,big| < |Ci|/2. Therefore, for i that satisfies Equation (13) we have

2|Ci,big| ≤
∑

X∈Ci,big

volout(X)/(2i+1ε−1(blog2 kc+ 1)) ≤ εm/(2i+1(blog2 kc+ 1))
(13)
< |Ci|.
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The first inequality is because the term volout(X)/(γε−1(blog2 kc + 1)) ≥ 2 for each X ∈ Ci,big,
we have

∑
X∈Ci,big

volout(X)/(2i+1ε−1(blog2 kc + 1)) ≥ 2|Ci,big|. The second inequality is because
elements in Ci,big are disjoint and thus

∑
X∈Ci,big

volout(X) ≤ m. The final inequality follows from
Equation (13).

For the same i, since |Ci,big| < |Ci|/2, we have

|Ci,small| ≥ |Ci|/2 ≥ εm/(2i+2(blog2 kc+ 1)) ≥ εnd̄/(4k(blog2 kc+ 1)). (14)

The last inequality follows from m = nd̄, and Equation (10). If d̄ is unknown, by Equation (8), the
last inequality becomes εm/(2i+2(blog2 kc+ 1)) ≥ εnk/(16kblog2 kc) = εn/(16(blog2 kc+ 1)). This
follows from Equation (10) and Equation (8).

An improved bound for a simple graph. The same algorithm gives an improved bound when
G is simple. If ε ≥ 4/k, the algorithm queries at most Õ(k2/(ε2d̄)) = Õ(1/(ε4d̄)) edges (and Õ(1/ε3)
edges if d̄ is unknown). Now, we assume ε > 4/k, we show that there are Ω(εnd̄/k) (Ω(εn) if d̄ is
unknown) many vertices with degree less than k.

Lemma 6.7. If ε > 4/k, G is simple, and ε-far from being k-edge-connected, then there exist at
least εn/2 vertices (εd̄n/(8k) vertices if d̄ is unknown) with degree less than k.

Lemma 6.7 immediately yields the correctness of the algorithm as number of singleton with
degree less than k is at least εn/2 vertices (εd̄n/(8k) vertices if d̄ is unknown), and we sample
Θ(k/(εd̄)) (or Θ(1/ε) vertices if d̄ is unknown) at step 1 and 2 to check if each sampled vertex has
degree less than k. Next, we prove Lemma 6.7.

Proof of Lemma 6.7. Let C = {X : k − dout(X) ≥ 1}. We claim that

|C| > εm/k. (15)

This follows from
|C|k ≥

∑
X∈C

(k − dout(X)) ≥
∑
X∈F

(k − dout(X)) > εm.

The first inequality follows from each term k − dout(X) is at most k, and there are |C| terms. The
second inequality follows from each X ∈ F \ C, k − dout(X) ≤ 0. The third inequality follows from
Equation (9).

Let Cbig = {X ∈ C : volout(X) ≥ 2k/ε}, and Csmall = C − Cbig. We claim that

|Csmall| > εn/8. (16)

First, we show that

|Cbig| < |C|/2. (17)

This follows from
|Cbig| ≤

∑
X∈Cbig

volout(X)/(2kε−1) ≤ εm/(2k) < |C|/2.

The first inequality follows from the fact that for each X ∈ Cbig, volout(X)/(2kε−1) ≥ 1. Hence,∑
X∈Cbig

volout(X)/(2kε−1) ≥ |Cbig|. The second inequality follows from the fact that Cbig contains
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disjoint sets, and
∑
X∈Cbig

volout(X) ≤ volout(V ) = m. The last inequality follows from Equation (15).
Next, we have

|Csmall| ≥ |C|/2 ≥ εm/(2k) ≥ ε(nd̄)/(2k) ≥ ε(nd̄)/2. (18)

The first inequality follows from Equation (17) and that Csmall = C − Cbig. The second inequality
follows from Equation (15). The third inequality follows from m = nd̄. If d̄ is unknown, the last
part of Equation (18) becomes m/(2k) ≥ ε(nk)/(8k) ≥ εn/8. This follows from Equation (8).

It suffices to show that, for each X ∈ Csmall, the average degree of vertices in X, which is volout(X)
|X| ,

is less than k. If this is true, then there exists node x ∈ X where deg x < k. Since the sets in
C are disjoint, each set X ∈ C contains a vertex with degree less than k, and |Csmall| > εn/8 (by
Equation (16)), we have that the number of singleton vertex with degree less than k is > εn/8, and
we are done.

Now, fix X ∈ Csmall and we want to show that volout(X)
|X| < k. Consider three cases. If |X| = 1,

then volout(X)
|X| = dout(X) < k. Next, if |X| ≥ 2/ε, then volout(X)

|X| < 2k/ε
2/ε = k as X ∈ Csmall. In the

last case, we have 2 ≤ |X| < 2/ε ≤ k/2. Note that volout(X) ≤ dout(X) + |X|2 because the graph is
simple. So,

vol(X)
|X|

≤ d(X) + |X|2

|X|
<

k

|X|
+ |X| < k

2 + k

2 = k.

6.2 Testing k-Edge-Connectivity: Bounded-Degree Model

In this section, we prove Theorem 6.1 for testing k-edge-connectivity for bounded degree model.
In this model, we know the maximum out-degree d. We assume that G is d-regular, meaning that
every vertex has degree d. If G is not d-regular, we can “treat” G as if it is d-regular as follows. For
any list Lv of size less than d, and i ∈ (|Lv|, d], we ensure that query(v, i) returns a self-loop edge
(i.e., an edge (v, v)).

Edge-sampling procedure. The key property of a d-regular graph is that we can sample edge
uniformly as follows. We first sample a vertex x ∈ V . Then, we make query(x, i) where i is an
integer sampled uniformly from [1, d].

Proposition 6.8. For any edge e ∈ E, the probability that e is sampled from the edge-sampling
procedure is 1/m.

Proof. Fix any edge e ∈ E. The edge e belongs to some list Lv. Therefore, the probability that e is
queried according to edge-sampling procedure is

P (e is queried) = P (e is queried | Lv is sampled)P (Lv is sampled)+
P (e is queried | Lv is not sampled)P (Lv is not sampled)
= P (e is queried | Lv is sampled)P (Lv is sampled)
= (1/d)(1/n) = 1/m.

We present an algorithm for testing k-edge-connectivity for bounded-degree model assuming
Lemma 6.3.

Algorithm.

1. Sample Θ(1
ε ) vertices uniformly.

2. If any of the sampled vertex has degree less than k, returns the corresponding edge-cut.
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3. For each i ∈ {0, . . . , blog2 kc}, and for each j ∈ {0, . . . , blog2 ηic} where ηi = 2i+2ε−1blog2 kc,

(a) Sample Θ( blog2 kcblog2 ηic
ε2j−i ) = Θ̃( 1

ε2j−i ) edges uniformly.
(b) let ν = 2j+1, and gap = 2i − 1.
(c) run GapLocalEC(x, ν, k, gap) on both G and GR where GR is G with reversed edges,

and x is a vertex from the sampled edge of the form (x, y).

4. Return an edge-cut of size less than k if any execution of GapLocalEC returns a cut. Otherwise,
declare that G is k-edge-connected.

Query and Time Complexity. We first show that the number of edge queries is at most Õ(k/ε).
For each vertex x from the sampled edge (x, y) and for each (i, j) pair in loops, by Lemma 6.3,
GapLocalEC queries Õ(νk/gap) = Õ(2j−ik) edges, and we sample Õ(1/(ε2j−i)) times. Therefore,
by repeating Õ(1) time, the total edge queries is at most Õ(k/ε).

Next, we show that the running time is Õ(k/ε8/3). This follows from the same argument, but
we use the running time for GapLocalEC instead of edge-query complexity. For each iteration,
the running time is Õ((ν/gap)5/3k · 1/(ε2j−i)) = Õ((2j−i)2/3k/ε) = Õ(k/ε8/3). The last inequality
follows because by definition 2j ≤ 2i+2ε−1blog2 kc.

Correctness. If G is k-edge-connected, then the algorithm never returns any edge-cut, and we are
done. Suppose G is ε-far from being k-edge-connected, then we show that the algorithm outputs an
edge-cut of size less than k with constant probability. Since G is d-regular, we have d̄ = d. Therefore,
we can use results from Section 6.1. Let F := {X1, . . . , Xt} as in Theorem 6.5. We assume without
loss of generality that ∑

i

(k − dout(Xi)) > εm. (19)

Let C−1 = {X ∈ F : k ≤ dout(X)}. For i ∈ {0, 1, . . . , blog2 kc}, let Ci = {X ∈ F : k − dout(X) ∈
[2i, 2i+1)}. Let Ci,big = {X ∈ Ci : volout(X) ≥ 2i+2(blog2 kc + 1)/ε}, and Ci,small = Ci − Ci,big. By
Lemma 6.6, there is i such that

|Ci,small| ≥ εnd̄/(4k(blog2 kc+ 1)) = εm/(4k(blog2 kc+ 1)). (20)

This last inequality follows since nd̄ = nd = m. We fix i as in Equation (20). Let ηi = 2i+2ε−1blog2 kc.
For j ∈ {0, 1, . . . , blog2 ηic}, let Ci,small,j = {X ∈ Ci,small : volout(X) ∈ [2j , 2j+1)}.

Lemma 6.9. For i that satisfies Equation (20), there is j such that
∑
X∈Ci,small,j

volout(X) ≥
εm2j−i/(4(blog2 kc+ 1)(blog2 ηic+ 1)).

We show that Lemma 6.9 implies the correctness. By sampling Θ( blog2 kcblog2 ηic
ε2j−i ) = Θ̃( 1

ε2j−i )
edges, we get an event where a sampled edge (u, v) has u ∈ X for some X ∈ Ci,small,j with constant
probability (since Ci,small,j contains disjoint elements). For each (i, j) ∈ {0, 1, . . . , blog2 kc} ×
{0, . . . , blog2 ηic}, we run GapLocalEC with ν = 2j+1, and gap = 2i− 1; also, there exists (i, j) such
that

∑
X∈Ci,small,j

volout(X) ≥ εm2j−i/(4(blog2 kc+ 1)(blog2 ηic+ 1)) by Lemma 6.9. Therefore, by
Lemma 6.3, GapLocalEC outputs an edge-cut of size less than k with constant probability.

Proof of Lemma 6.9. We claim that there is j such that

|Ci,small,j | ≥ |Ci,small|/(blog2 ηic+ 1) (21)
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Suppose otherwise. We have for all j ∈ {0, . . . , blog2 ηic}, |Ci,small,j | < |Ci,small|/(blog2 ηic + 1).
Therefore,

∑
j∈{0,...,blog2 ηic} |Ci,small,j | < |Ci,small|, a contradiction. Now, for the same j, we have∑

X∈Ci,small,j

volout(X) ≥ |Ci,small,j |2j

(21)
≥ |Ci,small|2j/(blog2 ηic+ 1)

(20)
≥ εm2j/(4k(blog2 kc+ 1)(blog2 ηic+ 1))

(10)
≥ εm2j−i/(4(blog2 kc+ 1)(blog2 ηic+ 1))

The first inequality is because the set Ci,small,j contains disjoint elements, and that volout(X) ≥ 2j
by definition.

An improved bound for a simple graph. The same algorithm gives an improved bound,
Õ(min{k/ε, 1/ε2}) queries, when G is simple. If ε ≥ 4/k, then the algorithm queries at most
Õ(k/ε) = Õ(1/ε2) edges. Otherwise, ε > 4/k, by Lemma 6.7, there are Ω(εn) many vertices with
degree less than k, and this implies that the algorithm outputs an edge-cut of size less than k at
step 2.

6.3 Testing k-Vertex-Connectivity: Unbounded-Degree Model

In this section, we prove Theorem 6.1 for testing k-vertex-connectivity. The key tool for our property
testing algorithm is approximate local vertex connecitvity in a suitable form for the application to
property testing. We can derive the following gap version of LocalVC in [NSY19] by essentially
setting ε = gap/k.

Lemma 6.10 ([NSY19] Theorem 4.1). There is a randomized (Monte Carlo) algorithm that takes as
input a vertex x ∈ V of an n-vertex m-edge directed graph G = (V,E) represented as incidence-lists
with minimum out-degree δ ≥ 1, a volume parameter ν, a cut-size parameter k, and “gap” parameter
gap ∈ (0, k) where ν < gap ·m/(640k), and k ≤ n/4, that queries at most Õ(νk/gap) edges, runs
in Õ((ν/gap)1.5k) time and

• if there is a separation triple (L, S,R) where L 3 x, |S| < k − gap, volout(L) ≤ ν and either
minv∈L{degout(v)} < k or |S| < k − gap, then it returns a vertex-cut of size less than k,
• if there is no separation triple (L, S,R) where L 3 x, |S| < k, volout(L) ≤ ν, then it returns
the symbol ⊥.

We present an algorithm for testing k-vertex-connectivity assuming Lemma 6.10, and analysis.

Algorithm.

1. Sample Θ(1) vertices uniformly.

2. If any of the sampled vertex x has out-degree less than k, returns N(x).

3. Sample Θ(k log k/(εd̄)) vertices uniformly (if d̄ is unknown, sample Θ(log k/ε) vertices instead).

4. For each sampled vertex x, and for i ∈ {0, . . . , blog2 kc},

(a) let ν = 2i+3blog2 kc/ε, and gap = 2i − 1.
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(b) run GapLocalVC(x, ν, k, gap) on both G and GR where GR is the same graph with
reversed edges.

5. Return a vertex-cut of size less than k if any execution of GapLocalVC returns a vertex-cut.
Otherwise, declare that G is k-vertex-connected.

Query and Time Complexity. We first show that the number of edge queries is at most
Õ(k2/(ε2d̄)). For each sampled vertex x and i ∈ {1, . . . , blog2 kc}, by Lemma 6.10, GapLocalVC
queries Õ(νk/gap) = Õ(k/ε) edges. The result follows from we repeat blog2 kc times per sample,
and we sample O(k log k/(εd̄)) times. Next, we show that the running time is Õ(k2/(ε2.5d̄)). This
follows from the same argument, but we use the running time for GapLocalVC instead of edge-query
complexity.
Correctness. If G is k-vertex-connected, it is clear that the GapLocalVC never returns any
vertex-cut. We show that if G is ε-far from k-vertex-connected, then the algorithm outputs a
vertex-cut of size less than k with constant probability. We start with simple obsevation.

Lemma 6.11. If m < nk/4, then with constant probability, the algorithm outputs an vertex-cut of
size less than k at step 2.

Proof. Suppose m < nk/4. There are at most n/2 nodes with out-degree at least k. Hence, there
are at least n/2 nodes of degree less than k. In this case, we can sample O(1) time where each
sampled node x we check |N(x)| < k to get k-vertex-cut with constant probability.

From now we assume that

m ≥ nk/4. (22)

We start with important properties when G is ε-far from k-vertex-connected. We say that two
separation triples (L, S,R) and (L′, S′, R′) are independent if L ∩ L′ = ∅ or R ∩R′ = ∅.

Theorem 6.12 ([OR11] Corollary 17). If a directed graph G = (V,E) is ε-far from being k-
vertex-connected, then there exists a set F ′ of pairwise independent separation triples5 such that∑

(L,S,R)∈F ′ max{k − |S|, 0} > εm.

Let F be a family of pairwise independent separation triples of G such that
p(F) :=

∑
(L,S,R)∈F (max{k− |S|, 0}) is maximized. By Theorem 6.12, we have

∑
(L,S,R)∈F max{k−

|S|, 0} > εm.
We say that a left-partition L of a separation triple (L, S,R) is small if |L| ≤ |R|. Similarly, a

right-partition R is small if |R| ≤ |L|.

Lemma 6.13 ([FJ99] Lemma 7). The small left-partitions6 in F are pairwise disjoint, and the
small right-partitions in F are pairwise disjoint.

Let FL be the set of separation triples with small left-partitions in F , and FR be the set of sepa-
ration triples with small-right partitions in F . By Theorem 6.12, we have that max{p(FL), p(FR)} >
εm/2. We assume without loss of generality that

p(FL) > εm/2. (23)
5We use the term separation triple (L, S,R) instead of the term one-way pair (L,R) used by [OR11] for notational

consistency in our paper. These terms are equivalent in that there is no edge from L to R and our S is their V −(L∪R).
6In [FJ99], they use the term one-way pair (T,H), and define a tail T of a pair (T,H) if small if |T | ≤ |H|.

Similarly, they define a head H of a pair (T,H) to be small if |H| ≤ |T |. We only repharse from “tail” to left-partition,
and “head” to right-partition.
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Let C−1 = {(L, S,R) ∈ FL : k ≤ |S|}. For i ∈ {0, . . . , blog2 kc}, let Ci = {(L, S,R) ∈ FL : k −
|S| ∈ [2i, 2i+1)}. Let Ci,big = {(L, S,R) ∈ Ci : volout(L) ≥ 2i+3ε−1(blog2 kc + 1)}, and Ci,small =
Ci − Ci,big. The following lemma is the key for the algorithm’s correctness.

Lemma 6.14. There is i such that |Ci,small| > εnd̄/(8k(blog2 kc+ 1)). If d̄ is unknown, then there
is i such that |Ci,small| ≥ εn/(32(blog2 kc+ 1)) .

We show that Lemma 6.14 implies the correctness of the algorithm. By sampling Θ(k log k/(εd̄))
many nodes (or Θ(log k/(ε)) vertices if d̄ is unknown), we get an event where x belongs to some
vertex set L in separation triple (L, S,R) ∈ Ci,small with constant probability (this follows since
Ci,small contains pairwise disjoint small left-partitions by Lemma 6.13). We run GapLocalVC for
every i ∈ {0, 1, . . . , blog2 kc}, and there exists i such that |Ci,small| ≥ εnd̄/(8k(blog2 kc + 1)) (or
|Ci,small| ≥ εn/(32(blog2 kc+ 1))) by Lemma 6.14. Therefore, by Lemma 6.10, GapLocalVC outputs
a vertex-cut of size less than k with constant probability.

Proof of Lemma 6.14. We show that there is i > 0 such that

|Ci| > εm/(2i+2(blog2 kc+ 1)). (24)

First, we show that there is i > 0 such that∑
(L,S,R)∈Ci

(k − |S|) > εm/(2(blog2 kc+ 1)). (25)

Suppose otherwise that for every i,
∑

(L,S,R)∈Ci
(k−|S|) ≤ εm/(2(blog2 kc+1)). We have

∑
(L,S,R)∈FL

(max{k−
|S|, 0}) =

∑blog2 kc
i=−1

∑
(L,S,R)∈Ci

(k − |S|) =
∑blog2 kc
i=0

∑
(L,S,R)∈Ci

(k − |S|) ≤ εm/2. However, this con-
tradicts Equation (23). Second, we show that for any i,

|Ci|2i+1 ≥
∑

(L,S,R)∈Ci

(k − |S|). (26)

This follows trivially from that each (L, S,R) in the set Ci, k − |S| ≤ 2i+1. Therefore, for i that
satisfies Equation (25), we have

|Ci|
(26)
≥

∑
(L,S,R)∈Ci

(k − |S|)/2i+1 (25)
> εm/(2i+2(blog2 kc+ 1)). (27)

Recall that Ci,big = {(L, S,R) ∈ Ci : volout(L) ≥ 2i+3(blog2 kc+ 1)/ε}, and Ci,small = Ci − Ci,big.
We claim that for i that satisfies Equation (27), |Ci,big| < |Ci|/2. Indeed, we have

4|Ci,big| ≤
∑

(L,S,R)∈Ci,big

volout(L)/(γε−1(blog2 kc+ 1)) ≤ m/(γε−1(blog2 kc+ 1))
(24)
< 2|Ci|.

The first inequality follows because volout(L)/(2i+1ε−1(blog2 kc + 1)) ≥ 4 for each (L, S,R) ∈
Ci,big.The second inequality follows since left-partitions in Ci,big are disjoint, and

∑
(L,S,R)∈Ci,big

volout(L) ≤
m.

Next, we have

|Ci,small| ≥ |Ci|/2
(24)
> εm/(2i+3(blog2 kc+ 1)) ≥ εnd̄/(8k(blog2 kc+ 1)). (28)

The first inequality follows because |Ci,big| < |Ci|/2, and |Ci| = |Ci,big|+ |Ci,small|. The last inequality
follows because m = nd̄, and 2i ≤ k. If d̄ is unknown, the last inequality of Equation (28) becomes

εm/(2i+3(blog2 kc+ 1))
(22)
≥ εnk/(32k(blog2 kc+ 1)) = εn/(32(blog2 kc+ 1)).
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6.4 Testing k-Vertex-Connectivity: Bounded-Degree Model

In this section, we prove Theorem 6.1 for testing k-vertex-connectivity for bounded degree model.
By the same argument in Section 6.2, we assume that G is d-regular, and thus we can sample edge
uniformly by Proposition 6.8.

We present an algorithm for testing k-edge-connectivity for bounded-degree model assuming
Lemma 6.10.

Algorithm.

1. Sample Θ(1) vertices uniformly.

2. If any of the sampled vertex has degree less than k, returns its out-neighbors.

3. For each i ∈ {0, . . . , blog2 kc}, and for each j ∈ {0, . . . , blog2 ηic} where ηi = 2i+2ε−1blog2 kc,

(a) Sample Θ( blog2 kcblog2 ηic
ε2j−i ) = Θ̃( 1

ε2j−i ) edges uniformly.
(b) let ν = 2j+1, and gap = 2i − 1.
(c) run GapLocalVC(x, ν, k, gap) on both G and GR where GR is G with reversed edges,

and x is a vertex from the sampled edge of the form (x, y).

4. Return a vertex-cut of size less than k if any execution of GapLocalVC returns a vertex-cut.
Otherwise, declare that G is k-vertex-connected.

Query and Time Complexity. We first show that the number of edge queries is at most Õ(k/ε).
For each vertex x from the sampled edge (x, y) and for each (i, j) pair in loops, by Lemma 6.10,
GapLocalVC queries Õ(νk/gap) = Õ(2j−ik) edges, and we sample Õ(1/(ε2j−i)) times. Therefore,
by repeating Õ(1) itereations, the total edge queries is at most Õ(k/ε).

Next, we show that the running time is Õ(k/ε1.5). This follows from the same argument, but we
use the running time for GapLocalEC instead of edge-query complexity. For each iteration, the
running time is Õ((ν/gap)1.5k · 1/(ε2j−i)) = Õ((2j−i)1.5k/(ε2j−i)) = Õ(k/ε1.5). The last inequality
follows because by definition 2j ≤ 2i+2ε−1blog2 kc.

Correctness. If G is k-vertex-connected, then the algorithm never returns any vertex-cut, and
we are done. Suppose G is ε-far from being k-vertex-connected, then we show that the algorithm
outputs a vertex-cut of size less than k with constant probability. Since G is d-regular, we have
d̄ = d. Therefore, we can use results from Section 6.3. Let FL be the set of separation triples with
small left-partitions in F , and FR be the set of separation triples with small-right partitions in F .
By Theorem 6.12, we have that max{p(FL), p(FR)} > εm/2. We assume without loss of generality
that

p(FL) > εm/2. (29)

Let C−1 = {(L, S,R) ∈ FL : k ≤ |S|}. For i ∈ {0, . . . , blog2 kc}, let Ci = {(L, S,R) ∈ FL : k − |S| ∈
[2i, 2i+1)}. Let Ci,big = {(L, S,R) ∈ Ci : volout(L) ≥ 2i+3ε−1blog2 kc}, and Ci,small = Ci − Ci,big. By
Lemma 6.14, there is i such that

|Ci,small| > εnd̄/(8k(blog2 kc+ 1)) = εm/(8k(blog2 kc+ 1)). (30)

The last inequality follows since nd̄ = nd = m. We fix i as in Equation (30). Let ηi = 2i+3ε−1blog2 kc.
For j ∈ {0, . . . , blog2 ηic}, let Ci,small,j = {(L, S,R) ∈ Ci,small : volout(L) ∈ [2j , 2j+1)}.
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Lemma 6.15. For i that satisfies Equation (30), there is j such that
∑

(L,S,R)∈Ci,small,j
volout(L) ≥

εm2j−i/(8(blog2 kc+ 1)(blog2 ηic+ 1)).

We show that Lemma 6.15 implies the correctness. By sampling Θ( blog2 kcblog2 ηic
ε2j−i ) = Θ̃( 1

ε2j−i )
edges, we get an event where a sampled edge (u, v) has u ∈ L for some L from a separation
triple (L, S,R) ∈ Ci,small,j with constant probability ( since Ci,small contains pairwise disjoint
small left-partitions by Lemma 6.13). For each (i, j) ∈ {0, 1, . . . , blog2 kc} × {0, . . . , blog2 ηic},
we run GapLocalVC with ν = 2j+1, and gap = 2i − 1; also, there exists (i, j) such that∑
X∈Ci,small,j

volout(X) ≥ εm2j−i/(8(blog2 kc + 1)(blog2 ηic + 1)) by Lemma 6.15. Therefore, by
Lemma 6.10, GapLocalVC outputs an vertex-cut of size less than k with constant probability.

Proof of Lemma 6.15. We claim that there is j such that

|Ci,small,j | ≥ |Ci,small|/(blog2 ηic+ 1) (31)

Suppose otherwise. We have for all j ∈ {0, . . . , blog2 ηic}, |Ci,small,j | < |Ci,small|/(blog2 ηic + 1).
Therefore,

∑
j∈{0,...,blog2 ηic} |Ci,small,j | < |Ci,small|, a contradiction. Now, for the same j, we have∑

(L,S,R)∈Ci,small,j

volout(L) ≥ |Ci,small,j |2j

(31)
≥ |Ci,small|2j/(blog2 ηic+ 1)

(30)
≥ εm2j/(8k(blog2 kc+ 1)(blog2 ηic+ 1))
≥ εm2j−i/(8(blog2 kc+ 1)(blog2 ηic+ 1))

The first inequality is because the small left-partitions in Ci,small,j are pairwise disjoint by Lemma 6.13,
and that volout(L) ≥ 2j by definition. The last inequality follows since 2i ≤ k by definition.
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A An alternate algorithm for local edge connectivity
In this section, we show local algorithms for detecting an edge cut of size k and volume ν containing
some seed node in time O(νk2). Both the algorithms and analysis are very simple.

Theorem A.1. There is a randomized (Monte Carlo) algorithm that takes as input a vertex x ∈ V
of an n-vertex m-edge graph G = (V,E) represented as adjacency lists, a volume parameter ν, a
cut-size parameter k ≥ 1, and an accuracy parameter ε ∈ (0, 1] where ν < εm/8 and runs in O(νk/ε)
time and outputs either

• the “⊥” symbol indicating that, with probability 1/2, there is no S 3 x where |E(S, V −S)| < k
and volout(S) ≤ ν, or

• a set S 3 x where S 6= V , |E(S, V − S)| < b(1 + ε)kc and volout(S) ≤ 10ν/ε.7

By setting ε < 1
k , we have that b(1 + ε)kc = k. In particular, we obtain an algorithm for the

exact problem:

Corollary A.2. There is a randomized (Monte Carlo) algorithm that takes as input a vertex x ∈ V
of an n-vertex m-edge graph G = (V,E) represented as adjacency lists, a volume parameter ν, and
a cut-size parameter k ≥ 1 where ν < m/8k and runs in O(νk2) time and outputs either

7We note that the factor 10 in Theorem A.1 can be improved. We only use this factor for simplifying the analysis.
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• the “⊥” symbol indicating that, with probability 1/2, there is no S 3 x where |E(S, V −S)| < k
and volout(S) ≤ ν, or

• a set S 3 x where S 6= V , |E(S, V − S)| < k and volout(S) ≤ 10νk.

Algorithm 2: LocalEC(x, ν, k, ε)
1 repeat b(1 + ε)kc times
2 Grow a DFS tree T starting from x and stop once exactly 8ν/ε edges have been visited.
3 Let EDFS be the set of edges visited.
4 if |EDFS| < 8ν/ε then return V (T ).
5 else
6 Sample an edge (y′, y) ∈ EDFS uniformly.
7 Reverse the direction of edges in the path Pxy in T from x to y.

8 return ⊥.

The algorithm for Theorem A.1 in described in Algorithm 2. We start with the following
important observation.

Lemma A.3. Let S ⊂ V be any set where x ∈ S. Let Pxy be a path from x to y. Suppose we
reverse the direction of edges in Pxy. Then, we have |E(S, V − S)| and volout(S) are both decreased
exactly by one if y /∈ S. Otherwise, |E(S, V − S)| and volout(S) stay the same.

It is clear that running time of Algorithm 2 is b(1 + ε)kc ×O(ν/ε) = O(νk/ε) because the DFS
tree only requires O(ν/ε) for visiting O(ν/ε) edges. The two lemmas below imply the correctness of
Theorem A.1

Lemma A.4. If a set S is returned, then S 3 x, S 6= V , |E(S, V − S)| < b(1 + ε)kc and
volout(S) ≤ 10ν/ε.

Proof. If S is returned, then the DFS tree T get stuck at S = V (T ). That is, |E(S, V − S)| = 0
and volout(S) ≤ 8ν/ε at the end of the algorithm. Note that x ∈ S and S 6= V because 8ν/ε < m.
Observe that the algorithm has reversed strictly less than b(1 + ε)kc many paths Pxy, because the
algorithm did not reverse a path in the iteration that S is returned. So Lemma A.3 implies that,
initially, |E(S, V − S)| < b(1 + ε)kc and, volout(S) < 8ν/ε+ b(1 + ε)kc ≤ 10ν/ε.

Lemma A.5. If ⊥ is returned, then, with probability at least 1/2, there is no S 3 x where
|E(S, V − S)| < k and volout(S) ≤ ν.

Proof. Suppose that such S exists. We will show that ⊥ is returned with probability less than 1/2.
Suppose that no set S′ is returned before the last iteration. It suffices to show that at the beginning
of the last iteration, |E(S, V − S)| = 0 with probability at least 1/2. If this is true, then the DFS
tree T in the last iteration will not be able to visit more than ν edges and so will return the set
V (T ).

Let k′ = b(1 + ε)kc − 1 denote the number of iterations excluding the last one. Let Xi

be the random variable where Xi = 1 if the sampled edge (y′, y) in the i-th iteration of the
algorithm is such that y ∈ S. Otherwise, Xi = 0. As volout(S) never increases, observe that
E[Xi] ≤ volout(S)

|EDFS| ≤
ν

8ν/ε = ε/8 for each i ≤ k′. Let X =
∑k′
i=1Xi. We have E[X] ≤ εk′/8 by

linearity of expectation and Pr[X ≤ εk′/4] ≥ 1/2 by Markov’s inequality. So Pr[X ≤ bεk′/4c] ≥ 1/2
as X is integral.
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Let Y = k′ − X. Notice that Y is the number of times before the last iteration where the
algorithm samples y /∈ S. We claim that k′ − bεk′/4c ≥ k − 1 (see the proof at the end). Hence,
with probability at least 1/2, Y ≥ k′ − bεk′/4c ≥ k − 1 ≥ |E(S, V − S)|. By Lemma A.3, if
Y ≥ |E(S, V − S)|, then |E(S, V − S)| = 0 at the beginning of the last iteration. This concludes
the proof.

Claim A.6. k′ − bεk′/4c ≥ k − 1 for ε ∈ [0, 1]

Proof. If ε < 4/k′, then bεk′/4c = 0, so k′ − bεk′/4c = b(1 + ε)kc − 1 ≥ k − 1. If ε ≥ 4/k′, then8

k′ −
⌊
εk′/4

⌋
≥ (1− ε/4)k′

≥ (1− ε/4)((1 + ε)k − 2)
≥ (1− ε/4)(1 + ε)k − 2
≥ (1 + ε/2)k − 2
≥ k − 1.

where the last inequality is because εk/2 ≥ 4
k′ ·

k
2 ≥ 1 as k′ ≤ b(1 + ε)kc ≤ 2k.

8The main reason we choose the factor 8 in the number 8ν/ε of visited edges by the DFS is for simplifying the
following inequalities.
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